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1. Introduction.

One of the recent developments in algorithmic number theory is the use of elliptic curves. In this lec-
ture it is shown how elliptic curves can be used to find the prime factor decomposition of large integers.
To do this, one must first be able to recognize whether a number is prime (primality testing), and next,
if it is not, find a non-trivial divisor (factorization). Elliptic curves can be applied both to primality

testing and to factorization.

2. Multiplicative methods.

For older algorithms to do primality testing and factorization, see [4, 6]. Only two of these will be dis-
cussed here, in their most rudimentary form, because they are helpful in motivating and understanding
the new methods. The two methods that we describe depend on properties of the multiplicative group,
in particular on the fact that the order of the multiplicative group modulo a prime number p is p-1.

Primality testing. 1f an integer n>1 is composite then there are many pseudoprime tests that n fails to
pass, so that the compositeness of n is usually easy to prove. But if n is prime then it passes all pseu-
doprime tests that it is subjected to. The problem then becomes how to prove that n is prime. If one
knows a sufficiently large completely factored divisor s of n-1 the following classical result can be used.
Theorem 1. Let n be an integer, n>1, and s a divisor of n-1. Suppose that there is an integer a
satisfying

: a"!'=1lmodn,

gcd(a("“‘)/"—l, n)=1 for each prime divisor q of 8.

Then every positive divisor p of n is 1mods, and if aZﬁ then n is prime.

. To prove this one may assume that p is prime. The element a(™1/* has order # in the multiplicative
~ group mod p. By Lagrange's theorem in group theory this implies that s divides the order of the group,
which is p-1. The theorem follows.

The basic shortcoming of the primality test based on Theorem 1 is that it can only prove the
primality of prime numbers n for which n-1 has a large divisor that one knows to factor completely.
This is the case, for example, if n-1 has many small prime factors, and sometimes also if n-1 is the pro-
duct of a small number and a large prime number g; in the latter case one can attempt to prove the
primality of g recursively.

Factorization. The Pollard p-1-method attempts to find a non-trivial divisor of an integer n>1 in the
following way. Pick a€Z/nZ at random, and calculate, by repeated squarings and multiplications mod
, integers a that are congruent to ¢® mod n, for k=1,2,... . In addition, calculate ged(a;-1,n) for each
, using Euclid’s algorithm, and stop if this ged is a non-trivial divisor of n.

 The reason that one expects this to work sometimes is as follows. Suppose that n has a prime
ivisor p for which p-1 is built up from small prime factors only. Then p-1 divides K for a relatively
mall value of k. If now p does not divide a, then again by Lagrange's theorem the order of a in the
ultiplicative group mod p divides k!. Therefore p divides a;-1, so it divides ged(a-1,n) as well.
if this ged is different from n it is a non-trivial divisor of n.
~ Along these lines it can be proved that the Pollard p-1-method is good in discovering prime divi-
p of n for which p-1 has no large prime factors. It can also be proved that if n has no such prime
or p then the method is unlikely to work within a reasonable amount of time.

 be a positive integer. Consider the set of all triples (2,4,2)E(Z/nZ)* for which z,y,2 generate the
ideal of Z/nZ. The group of units (Z/nZ)" acts on this set by u(z,y,2)=uz,uy,uz). The orbits
T this action are the points of the projective plane over Z[nZ. The orbit of (2,y,2) is denoted by

ASS}!me now for simplicity that ged(n,8)=1. An elliptic curve over Z/nZ is a plane cubic curve
Z|nZ defined by a polynomial of the form f=YZZ~X3—aXZQ-bZS, where a,b€Z/nZ are such
46 +270°€(Z/ nZ)*. A point on E over Z[nZ is a point (z:3:2) of the projective plane for which
). Let the set of these points be denoted by E(Z[nZ).
h set of points on an elliptic curve E over Z /nZ can in a natural way be made into an addi-
\}t;ten abelian group. The zero element is O=(0:1:0), and if P=(z:y:2) then ~P=(z:-y:2). If n
50 that Z/nZ is a field, one can add two points P and Q as follows (see [8]). Consider the line
and @ (the tangent line to the curve if P=@) and let R be the third intersection point of the
curve, Then P+ Q=-R. For general n the addition operation is somewhat more compli-
cribe (cf. [1]). In the applications to prime factor decomposition one can simply attempt to
rmulae that are valid in the case that n is prime. This fails if division is required by a non-
of Z/nZ that is no unit. But then a ged-calculation leads to a non-trivial divisor of n,
ctly what one is looking for.
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If n=p is a prime number, then by a theorem of Hasse (1934) one can write H#E(Z | pZ)=p+1-t
with t€Z, |¢|<2Vp. Schoof [7] gave an algorithm to calculate ¢ that is based on the interpretation of ¢
as the "trace of Frobenius”. His algorithm runs in time O((logp)°), and it is not clear whether it is use-
ful in practice.

For general n no good algorithm is known to calculate the order of the group E(Z/nZ) of points
on an elliptic curve £. As for the multiplicative group, one has the formula

#EZ/nZ)y=n" [ (#E(Z/pZ)/p),
p|n, p prime
but it requires knowledge of the prime factorization of n. One can of course attempt to use Schoof’s
algorithm, but if n is not prime it is not likely to give an answer; and even if it does then this answer
has no obvious interpretation - in particular it need not give the order of E(Z/nZ).

Let again n=p be a prime number. The strength of the methods to be discussed in the next sec-
tion, when compared to the multiplicative methods of section 2, is due to the fact that there are many
elliptic curves over Z/pZ and that, imprecisely speaking, for a randomly chosen E the order
#E(Z[pZ) is a random number near p- More accurately, one has the following proposition, the proof
of which depends on results of Deuring (1941).

Proposition 2. There are positive effectively computable constants ¢y and ¢y such that for any prime
number p>3 and any set S of integers m Jor which |m~(p+1)| <Vp one has

_#5-2 -l N #S5 ) 2
21 ¢y(logp)™ < 7 < ﬁ2[\/5]+1 ¢, (logp)-(loglogp)?,

where N denotes the number of pairs (a,b)E(Z/pZ)* for which f=Y2Z-X°-aXZ2-b2° defines an elliptic
curve E over 2/ pZ with # E(7Z/pZL)ES.

Note that N/p® is the probability that a random pair (a,b) has the stated property. The proposition
asserts that, apart from a logarithmic factor, this probability is essentially equal to the probability that
a random number pear pis in S.

4. Elliptic curve methods.

Primality testing. The following theorem is analogous to Theorem 1.

Theorem 3. Let n be an snteger, n>1, with ged(n,8)=1. Let E be an elliptic curve over Z/nZ, and
m, s positive integers with o dividing m. Suppose that there is a point PEE(Z[nZ) satisfying
m-P=0,
ged(z,,n)=1 for each prime divisor g of s, where (m/q)'P=(zq:yq:zq).
Then #E(Z[pZ)=0mods for every prime divisor p of n, and if s> (n'/*+1)? then n is prime.
The proof is analogous to the proof of the Theorem 1.

To use Theorem 3 to prove the primality of a number n that one suspects to be prime one can
proceed as follows. Choose a random elliptic curve E over Z/nZ, and determine a number m such that
if nis prime then # E(Z/n%Z)=m; this can be done with Schoof’s algorithm (if Schoof’s algorithm fails
then n is not prime). Next let s be the largest divisor of m that one is able to factor completely. If
a>(n'/‘+1)2 one now looks for a point PEE(Z[nZ) as in Theorem 3, and applies the theorem to prove
that n is prime. If s is smaller one can either use refinements of Theorem 3 that are analogous to
existing refinements of Theorem 1, or start all over again with a different elliptic curve. One can keep
changing the elliptic curve until the number ¢ appearing in the algorithm is sufficiently large. This
alternative has no analogue for the multiplicative method from section 2.

In the primality test of Goldwasser and Kilian [3] one changes curves until the conjectural order
m of E(Z/nZ) is of the form m==2q, where ¢ is a number that is very likely to be prime in the sense
that it passes certain pseudoprime tests. With the help of Theorem 3, with #=m==2¢, one can then
prove the primality of n provided that one knows that ¢ is prime. To prove the primality of ¢ one
proceeds recursively, replacing n by q

See [1, 2] for a primality test depending on elliptic curves with "complex multiplication”.

Factorization. The analogue of the Pollard p-1-method is as follows. Let n be the composite integer
that one wishes to factor, and assume that n>1, ged(n,6)=1. Pick a random pair (E,P), where Eis an
elliptic curve over Z/nZ and PEE(Z/nZ). This can be done by choosing a,2,y€Z/nZ at random,
putting P=(z:y:1), and letting E be defined by f=Y?Z-X-aXZ?-6Z°, where b is chosen such that
PEE(Z/nZ); so b=y-2*—az. Next calculate, by repeated duplications and additions, the points
Py=kPEE(Z[nZ), for k=12,... . In addition, if Py=(z;:y;:2;), calculate ged(z,n) for each &, and stop
if this ged is a non-trivial divisor of n. If k reaches a certain upper bound that one fixes beforehand,
and no non-trivial divisor of n has been found, then one changes the pair (E,P) and starts all over
again.

As for the Pollard p-1-method, one can show that a given pair (E,P) is likely to be successful in
this algorithm is n has a prime divisor p for which #E(Z/pZ) is built up from small primes only. The
probability for this to happen increases with the number of pairs (E,P) that one tries. This has no
analogue for the Pollard p-1-method.
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Efficiency. With the help of Proposition 2 one can estimate the running time of the above algorithms,
provided that one knows how certain sets of integers are distributed in short intervals. The
Goldwasser-Kilian primality test can be proved to run in eapected polynomial time (i.e., bounded by a
power of logn), if one assumes the truth of a standard conjecture about the number of primes in an
interval of the form (z,z+\/;), The factorization method can be proved to be successful within
expected time exp((1+ o(1))\/2(Iogp)(loglogp))~(]ogn)9, where p is the least prime factor of n and the
o(1) is for p—o0, provided that one makes a reasonable assumption about the number of integers in the
interval (z,;t+\/;) that are built up from prime factors <y.

The practical merits of the Goldwasser-Kilian primality test are not yet clear, since it depends
on Schoof’s algorithm. The factorization method depending on elliptic curves has proved to be of great

practical value, see [5].
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4. Introduction. Computational complexity is a new principle in Mathematics,
ately related to Togic and Foundations and to Numerical Methods, also
f growing interest in other fields like Geometry, Number Theory, Algebra.

6 we consider algebraic equations under deterministic, sequential models
mputation - no probabilistic methods; for a recent survey on parallel
mp L Xlty see [4]. The prime fields GF(p) and § together with their finite
tensions admit exact arithmetic; elements are encoded as tuples of binary
egers. Computations with real or complex numbers use dynamic precision
the sense of recursive dependance. Tnputs « € R are potentially given at
recision: When called with a specified parameter value N, some oracle
2 (binary) rational a with |a—d|<¢2‘", without extra cost.
his setting, equality is undecidable.

omplexity is discussed with regard to multitape Turing machines, also
nter machines, cf.[8]; the latter are real-time equivalent to simple
ccess machines.- Algebraic complexity theory (we recommend the sur-—
o uses the concept of straight-line programs (computation trees with
5 gg), where "time" is the (maximal) number of srithmetic operations.
alar complexity" refers to counting * and / only.

?Eingly high, but considerable progress has been made in factoring
o1 i and on related topics (see refs. in 4]). Pactorization of uni-
abi{ggmlals over § is possible in polynomial time T6], also testing
'soll'y by radicals.- Here we focus on the complexity of very basic
olving: first ax=b, then P(z)=0 over ¢, finally solving systems
equations and characteristic equations.



