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Let A be a Dedekind domain, and denote by Z the set of its non-zero prime ideals. It is
well known that 4 is a principal ideal domain if Z is finite. An infinite analogue of this
result was obtained by Claborn [Z; Z, chapter III, section 13]. He proved that A4 is a prin-
cipal ideal domain if 2 3

(1 HA>(#Z2),

where a is the least infinite cardinal and # S denotes the cardinality of S.

If Z is finite then 4 is not only a principal ideal domain but even a Euclidean
domain [Z{’ Proposition 5]. The latter statement means that there exists a map ¢ from
A—{0} to a well-ordered set W such that for all a, beAd with b5£0, a@Ab, there exists
rea+Ab with ¢(r)<¢(b). For finite Z one can take for W the set of non-negative
integers.

It is a natural question whether Claborn’s result can be extended in a similar way,
i.e. whether 4 is Euclidean if (1) holds. In the present paper we show that this is indeed
the case. For W we take a well-ordered set of order type w?, where w is the least infinite
ordinal. The elements of W can be written in a unique way as wa +b, where g, b are non-
negative integers; and wa +b<<wa’-+b’ if and only if either a<<a’ or a=a’, b<<b’.

We shall see that the other results that Claborn obtained in [Z] can be extended in
an analogous way.

We let K denote the field of fractions of A4, and v,, for peZ, the normalized
exponential valuation of K corresponding to p. The group of units of 4 is denoted by A4*.

Claborn’s first result [}, Proposition; 2, Proposition 13.7] states that 4 is a principal
ideal domain if 4 contains a field k satisfying #4 = #k>#Z. A sharper result is as fol-
lows.

e, I

(2) Proposition. Let A be a Dedekind domain, and suppose that A contains a subset k with
the properties

3) H#Hik>#2Z,
4 A—peA* U{0) for all \, pek.
Then A is Euclidean.

Proof. For xeA —{0}, let <1>(x):2pe SV p(x). We prove that 4 is Euclidean with respect

to ¢.
Let a, beA, b0, a¢Ab. First suppose that for some Aek we have
A-(a+Ab)y=Aa-+Ab. Then
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vy(a +Ab)=min{v,(a),v,(b)}<vy(b)
for all peZ, with strict inequality for at least one . Hence the element r=a+Ab of
a + Ab satisfies ¢(r)<<¢(b), as required.

Next suppose that no such A exists. Then for every Aek there exists py€Z such
that a +Abep,(da +Ab). The map k—Z sending A 10 Py is not injective, by (3), so there
are A, pek, As“p, with py=p,. Then (A—wb=(a+Ab)—(a+pb)ep\-(da+Ab), so
bepy(da+Ab), by (4). We conclude that Aa +Ab=A-(a+Ab)+Ab is contained in
m «(Aa +Ab), which is a contradiction. This proves ).

If A is the ring of integers in an algebraic number field then condition (3) can be substan-
tially weakened, see | j, Theorem (1.4)].
For a subset Y CZ, we define the subring 4y CK by
Ay={xeK: v,(x)=0 for all peY}.

Notice that Az =A. Claborn [f, Theorem; 2, Theorem 13.8] proved that every ideal of Ay
is generated by an element of A if the inequality #A4>(#Y)" is satisfied. To formulate
our stronger result we need a definition. Let the pair (4,Y) be called Euclidean if there
exist a well-ordered set W and a map ¢:4 —{0}—>W such that for all a, bed, b0,
a¢Ayb, there exists r ea +A4b with ¢(r)<<¢(b). We have Az =A, and (4,Z) is Euclidean if
and only if 4 is.

Let (4,Y) be Euclidean and b a non-zero Ay-ideal. Then b is generated by bN4,
and if bebNA has minimal ¢-value then it follows easily that Ayb=Db. Hence, if (4,Y)is
a Euclidean pair, then every ideal of Ay is generated by an element of 4. This shows that
the following theorem is indeed sharper than Claborn’s result.

(5) Theorem. Let A be a Dedekind domain, and Y a set of non-zero prime ideals of A such
that #A>(#Y)", where a denotes the least infinite cardinal. Then (A,Y) is a Euclidean
pair.

The proof uses the following lemma. Let W be the well-ordered set of order type «®
defined above.

(6) Lemma. Let A be Dedekind, Y CZ a subset, and suppose that there exists a finite subset
X CY with the property that for every x eAx—Ay there exists q €A such that (x+q) "' €Ay.
Then (A,Y) is a Euclidean pair with respect to the map $:4 — (0}—W defined by

Hx)=w Jvy(x) + X vpx).

peX peY—X

Proof of (6). Let a, beA, b0, a¢A yb. We have to find r ea +A4b such that o(r)y<¢(b).

First suppose that v,(a)=v,(b) for all pe X. Then x =a/b belongs to Ay, but not
to Ay, so by the hypothesis of the lemma there exists g €4 such that (x +¢)” =b/(a +gb)
belongs to Ay. Then beAy(a +gb), and therefore Ay(a +gb)=Aya+Ayb. Hence
r=a-+qgbea+ Ab satisfies

vyla +gb)=min{v(a),v,(b)}<v,(b)
for all peY, with strict inequality for at least one p because agAyb. 1t follows that

’

Hr)<e(b).

Secondly, suppose that vy(a)<<v,(b) for at least one peX. Since X is finite, the
approximation theorem/for Dedekind domains implies that there exists €4 with the fol-
lowing properties:

vp(r—a)=vy(b) for all peZ with v, (a)<<v,(b),
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v(r)=v,(b) for all pe X with v,(a)=v,(b),

vp(r)=vy(b) for all pe Z — X with v, (a)=v,(b)>0.
Then we have v,(r —a)=v,(b) for all peZ, so rea+A4b. Also, v,(r)<v,(b) for all peX,
with strict inequality if v,(a)<<v,(b), which occurs for at least one peX. Hence

2 vp(r) < 3 vp(b), and it follows that ¢(r)<<¢(b), as required. This proves (6).
peX peX

Notice that the lemma implies that (4, Y) is a Euclidean pair if Y is finite.

Proof of the theorem. 1t suffices to show that some for finite subset X C Y the condition of
the lemma is satisfied. By the remark just made we may assume that Y is infinite. Let
peZ, and let 4, be the p-adic completion of 4. Then from
(HY) ' <HA<HA,=(#A/p)"
we see that #Y<<#A4 /p. So A /b is infinite for every peZ.
Suppose that there does not exist a finite subset X CY satisfying the condition of
6), i.e.:
7N for every finite X C Y there exists x e4y— Ay such that
(x +q)_1 gAy for all geA.
We derive a contradiction.
. Using (7) we construct a sequence (x,,)m o of elements of K—Ay with the follow-
ing two properties:
®) (x,+q) "' @Ay for all n=0 and all geA4,
) if X,={peY: vy(x,)<O0} then
X;iNX;= @ for all i, j=0, i~
The construction is by induction on m. Let m=0, and let x,, for 0<<n<m, be such that
(8), (9) hold when restricted to i, j, n<<m. Applying (7) to X= n<mX,, we find

Xn,€Ax—Ay such that (xm+q)_1 ¢Ay for all gedA. For n<m we then have
Xn€Ax CAx , so X,NX,, = &. Hence (8) and (9) hold for i, j, n<<m. This concludes the
induction step and the construction of the sequence (x,,)5 =¢.

If (an)m=0 1is any sequence of elements of A4, then plainly also
m)m =0 =Xm +ay)n =0 satisfies (8) and (9), with x_replaced by y . We claim that for a
suitable choice of (a,,);;=o the sequence (y,, ) —o has the following additional property:

(10) there is no peY such that there exist i, j, k with

Vp()’i "“‘_yj)>0, Vp()’j “‘_yk)>0, l<_]<k.

The proof is again by induction. Let m=0, and let a,€A4, for n<<m, be such that (10)
holds when restricted to kK <\m. The only peY which can possibly violate (10), with k =m,
are those for which v,(y; —y;)>0 for certain i, j with i<j<m. There are only finitely
many such p, since y;=y; would imply that X;=X;, so X;= & by (9), contradicting that
x;&Ay. Notice that v, (y; —y;)=>0, with i <{j<m, implies that peX; and peX;. If peX,,
then regardless of the choice of a, we have vp(y;—ym)<0. If peX,, then we have
Vp(¥; —¥m)=0 provided that

AmFEYj — X mod p
(in the local ring at p). Hence, for (10) to be valid with k =m, it suffices that a,, avoids a
finite set of residue classes modulo each of a finite number of prime ideals of 4. Since
A /p is infinite for all peZ, the approximation theorem/guarantees the existence of an ele-
ment a,, €4 satisfying these conditions. This completes our inductive proof of (10).
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From (8), (9) (with y_for x_) and (10) we derive a contradiction. Fix geA. Then
for each n=0 there exists p,eY with v, (y,+4)>0, by (8). If p;=p;=bk for i<j<k,
then with p=p; we obtain a contradiction to (10). Hence each peY occurs at most twice
as b,, and the map f: {0,1,2,...}>Y defined by f,(n)=p, has infinite image.

The number of maps {0,1,2,...}—>Y is (#Y)*, so from #4>(#Y)" it follows that
there exist g74r in A with f; =f,. For p=f,(n) we then have v, (y, +¢)>0, v,(y, +7)>0,
and therefore

vp(g —r)>0 for all p in the image of f,.

But f; has infinite image, so it follows that g —r =0, a contradiction.
This proves the theorem.

(11) Corollary. Let A be a Dedekind domain, and suppose that the set Z of non-zero prime
ideals of A satisfies #A>(#Z)". Then A is Euclidean.

This follows from (5), with Y =2Z.
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