Algorithms in number theory

AK. Lenstra and H.W. Lenstra, Jr.
The University of Chicago
Technical Report 87-008, May 1987

UNIVERSITY OF CHICAGO
DEPARTMENT OF COMPUTER SCIENCE

Algorithms in number theory

AK. Lenstra
- Department of Computer Science
The University of Chicago
Chicago, IL 60637

HW. Lenstra, Jr.

Department of Mathematics
University of California
Berkeley, CA 94720

Abstract. In this paper we discuss three closely related computational problems in number theory:
computing discrete logarithms, factoring integers, and proving primality.

version 19880304.

Key words: discrete logarithm, integer factorization, primality testing, elliptic curves, class groups.
1980 Mathematics subject classification (1985): 11Axx, 11-01, 68Q25.

CR Categories: F.2.1.

Acknowledgment. The second author is supported by the National Science Foundation under Grant
No. DMS-8706176.

To appear in: J. van Leeuwen, A. Meyer, M. Nivat, M. Paterson, D. Perrin (eds), Handbook of
theoretical computer science, North-Holland, Amsterdam.

Introduction

Number theory, once believed to be the purest of sciences, has appeared to be widely applica-
ble in computer science. Ironically, some of these applications are not based on achievements
number theory may be proud of. Instead, they rely on the fact that certain number theoretical
problems have not been solved satisfactorily. This would not be something to be dissatisfied
with, if one could at least prove that those problems are intractable, but in this direction noth-
ing is known. :

A famous example is the RSA signature scheme [55], whose security depends on our inabil-
ity to factor a composite integer efficiently. On the other hand, the RSA-scheme would not
have been applicable without the existing fast methods to find large prime numbers.

In this chapter we will concentrate on what can be done in our attempt to solve three closely
related computational problems in number theory. After a preparatory first section, we discuss
in Section 2 the problem of computing discrete logarithms, a subject which can conveniently
be phrased in terms of algorithms for finite abelian groups. This is also the case for many of
the algorithms in Sections 3 and 4, which are devoted to the problem of determining the prime
factorization of integers: algorithms for factoring integers in Section 3, and methods for prov-
ing primality in Section 4. Of these problems, only the problem in Section 4 is considered to
be reasonably well solved. We will not present applications of the possible intractability of the
other two problems; for this we refer to the contribution of R. Rivest to this volume.

We have restricted ourselves to the asymptotically fastest algorithms, which often represent
the most recent developments. For those who are interested in a more historical treatment, we
have attempted to give sufficiently many references to the extensive literature on these subjects.

Throughout this chapter time will mean number of bit operations.

1. Preliminaries

(1.1) Smoothness

In many of the algorithms that we will present the notion of smoothness will play an important
role. We say that an integer is smooth with respect to y, or y-smooth, if all its prime factors
are <y. In what follows, we will often be interested in the probability that a random integer
between 1 and x is smooth with respect to some y.

To derive an expression for this probability, we define y(x, y) as the number of positive
integers < x that are smooth with respect to y. Lower and upper bounds for y(x, y) are
known from [12] and [21]. Combination of these results yields the following. For a fixed
arbitrary € > 0, we have that for x > 10 and u < (logx)'"¢,

i ‘V(xv xl/u) = x.u—u+f(x,u)’
for a function f that satisfies f(x,u)u — 0 for u — o uniformly in x. For fixed
o, B € R, we find that for n — oo
v, BV (oglogn)logn) = n®((o/B)Vlognloglogn)-(1'*0(1))(0'!!3)‘4108"/108108'l ,

which can conveniently be written as
y(n% L(n) = n®%L (n) @Bro)

where L(n) = eVo87lo8len ¢ follows that a random positive integer < n® is smooth with
respect 1o L () with probability L (1) @O for p = oo,

For B € R we will often write L, [B] for L(n)P, and we will abbreviate L, [B+o(1)] to
L,[B], for n = . Notice that in this notation L, [o]+L, [B] = L, [max(c, B)], and that the
prime counting function & satisfies n(L, [B]) = L, [B].

(1.2) Elliptic curves

We give an introduction to elliptic curves. For details and proofs we refer to [37,62]. Our
presentation is by no means conventional, but reflects the way in which we apply elliptic
curves.

Let p be a prime number and let IF, = Z/pZ. The projective plane]l>2(le) over IF, con-
sists of the equivalence classes of triples (x, y, z) € F,XIF,xF,, (x, y, z) # 0, where two tri-
ples (x,y,z) and (x’,y’, z") are equivalent if cx =x", ¢y =y’, and cz =z’ for some
c € lF' the equivalence class containing (x, y, z) is denoted by (x:y:z).

Now assume that p is unequal to 2 or 3. An elliptic curve over IF, is a pair a, b € F, for
which 4a3+27b% # 0. These elements are to be thought of as the Coefficients in the Weier-
strass equation

1.3) y2=x+ax+b.
An elliptic curve a, b is denoted by E, ,, or simply by E.
(1.4) Set of points of an elliptic curve. Let E be an elliptic curve over IF,. The set of points
E(F,) of E over F, is defined by

E(F,) = {(x:y:z) € PXF,): y*z = x3+axz®+bz*).
There is one point (x:y:z) € E(IF,) for which z = 0, namely the zero point (0:1:0), denoted
by O. The other points of E(IF,) are the points (x:y:1), where x,y € F, satisfy (1.3). The
set E(IF,) has the structure of an abelian group. The group law, which we will write addi-
tively, is defined as follows.
(1.5) The group law. For any P e E(F,) we define P+O = O+P =P. For non-zero
P =(xpyl), Q = (x3iyy:1) € E(F,) we define P+Q = O if x; =x; and y, = —y,. Other-
wise, the sum P+Q is defined as the point (x:-y:1) € E (F,,) for which (x, y) satisfies (1.3)
and lies on the line through (x,, y;) and (x5, yo); if x; = x, we take the tangent line to the

-3-

curve in (x;, y,) instead. With A = (y;=y)/(x1=x2) if x; # x5, and A = (3x#+a)/(2y,) other-
wise, we find that x = A>~x,—x, and y = Mx-x;H+y;. The proof that E(FF,) becomes an
abelian group with this group law can be found in [62, Chapter 3].

(1.6) The order of E(F,). The order #E (F,) of the abelian group E (IF,) equals p+1-t for
some integer ¢ with I¢| < 2Vp , a theorem due to Hasse (1934). Conversely, a result of Deur-
ing [22] can be used to obtain an expression for the number of times a given integer of the
above form p+1-t occurs as #E(IF,), for a fixed p, where E ranges over all elliptic curves
over IF,. This result implies that for any integer ¢t with It < 2‘/1-)_ there is an elliptic curve E
over F, for which #E(F,) = p+1-t. A consequence of this result that will prove to be
important for our purposes, is that #E(IF,) is approximately uniformly distributed over the
numbers near p+1 if E is uniformly distributed over all elliptic curves over IF,.

(1.7) Proposition (cf. [37, Proposition (1.16)]). There are positive effectively computable con-
stants ¢y and c, such that for any prime number p 2 5 and any set S of integers s for which
Is—(p+1)| <Vp one has
#S-2 -1
20p o1 T S
where N denotes the number of pairs a, b € T, that define an elliptic curve E = E, , over
F, with #£(F,) € S.

Because N /p2 is the probability that a random pair a, b defines an elliptic curve E over IF,
for which #E(IF,) € S, this proposition asserts that this probability is essentially equal to the
probability that a random integer near p isin S.

(1.8) Computing the order of E (IF,). For an elliptic curve E over I, the number #E(IF,) can
be computed by means of the division points method, due to Schoof [59]. This method works
by investigating the action of the Frobenius endomorphism on the [-division points of the
curve, for various small prime numbers /. An [-division point is a point P over an extension
of F, for which [P =0, and the Frobenius endomorphism is the map sending (x:y:z) to
(xP:yP:zP). The division points method is completely deterministic, guaranteed to work if p is
prime, and runs in O ((logp)8) bit operations (cf. [38]); with fast multiplication techniques this
becomes (logp oW s practical value is questionable, however.

Another method makes use of the complex multiplication field. The complex multiplication
field L of an elliptic curve E with #E(IF,) = p+1-t is defined as the imaginary quadratic field
Q((t*—4p)'?) (cf. (1.6)). For certain special curves L is known; for instance for the curve
y2=x+4x and p =1 mod 4 we have L =Q(i), a fact that was already known to Gauss.
Knowing L gives a fast way of computing #E(IF,). Namely, suppose that L is known for
some elliptic curve E, then the ring of integers A of L contains the zeros p, P of the polyno-
mial X2-1X +p, and #E (IF,) = (p-1)(P-D). Although this polynomial is not known, a zero can
be determined by looking for an element 7t in A for which n® = p (see (4.12)). This « can be
shown to be unique up to complex conjugation and units in A. For a suitable unit ¥ in A we
then have that p = um, so that #E(IF,) = (u n—-1)(@T®—-1). In most cases A will have only two
units, namely 1 and —1; only if L = Q(i) (or L = Q(¥=3)) we have four (or six) units in A.
In the case that A has only the units 1 and —1, an immediate method to decide whether
#E (F,) equals (n-1)(X-1) = m’ or (-n-1)(-Tt—1) = m” does not yet exist, as far as we know;
in practice one could select a random point P € E (IF,) such that not both m”-P and m”-P are
equal to O, so that #£(IF,) = m for the unique m e {m’,m”} for which m-P=0. If A
contains four or six units there exists a more direct method [28, Chapter 18].

In Section 4 we will use this method in the situation where L, A, and p are known; the
elliptic curve E will then be constructed as a function of L and p.

N #__ ¢,(ogp)-(loglogp)?,

-4 -

(1.9) Elliptic curves modulo n. To motivate what follows, we briefly discuss elliptic curves
modulo n, for a positive integer n. First we define what we mean by the pro;ectxve plane
Pz(Z/nZ) over the ring Z/nZ. Consider the set of all triples (x, y, z) € (Z/n Z)* for which
x,Yy, z generate the unit ideal of Z/nZ. The group of units (Z/nZ) acts on this set by
u(x,y,z)=(ux, uy, uz). The orbit of (x, y, z) under this action is denoted by (x:y:z), and
PAZ/nZ) is the set of all orbits.

An elliptic curve E =E,, modulo n is a pair a,be Z/nZ for which
6(4a’+27b%) € (Z/nZ)y. It follows from (1.2) that for any prime p dividing n, the pair
@=amodp, b =b modp defines an elliptic curve E, z 5 over IF,. The set of points of this
latter curve will be denoted by E (IF,).

The set of points E(Z/nZ) of E modulo n is defined by

EZnZ)= {(x:y:z) e IPz(Z/nZ): yzz = x3+axzz+bz3}.
Clearly, for any (x:y:z) € E(Z/nZ) and for any prime p dividing n, we have that
(x mod p:y mod p:z mod p) € E(IF,). It is possible to define a group law so that E(Z/nZ)

becomes an abelian group, but we do not need this group structure for our purposes. Instead it
suffices to define the following "pseudo-addition" on a subset of E (Z/n Z).

(1.10) Partial addition algorithm. Let V, c WXZ/nZ) consist of the elements (x:y:1) of
PZ(ZJnZ) together with the zero element (0:1:0), which will be denoted by O. For any
P € V, we define P+O = O+P =P. For non-zero P = (x;:y;:1), Q@ = (x3:y,:1) € V,, and
any a € Z/nZ we describe an addition algorithm that either finds a divisor d of n with
1 <d < n, or determines an element of R € V, that will be called the sum of P and Q:

(1) Ifx;=x,and y; ==y, put R = O and stop.

(2) If x; # x,, perform step (2a), otherwise perform step (2b).

(2a) Use the Euclidean algorithm to compute s,te€ Z/nZ such that
s (x;=x)+tn = ged(x;—x,, n). If this gcd is not equal to 1, call it d and stop. Otherwise

" put A = s(y,—Yy5), and proceed to step (3).

(2b) Use the Euclidean algorithm to compute s,t € Z/nZ such that
s (y+y)+tn = ged(y+y,, n). If this ged is not equal to 1, call it d and stop. Otherwise
put A = s (3x#+a), and proceed to step (3).

(3) Putx = A’—x;—x3, ¥ = Mx-x+y;, R = (x:=y:1) and stop.

This finishes the description of the addition algorithm. Clearly the algorithm requires

O ((logn)® bit operations. Notice that this algorithm can be applied to any P, Q € V,, for

any a € Z/nZZ, irrespective as to whether there exists b € Z/nZ such that a, b defines an

elliptic curve modulo n.

(1.11) Partial addition when taken modulo p. Let p be any prime dividing n, and let P,
denote the point of P2(F,,) obtained from P e V, by reducing its coordinates modulo p.
Assume that, for some a € Z/nZ, and P, Q € V, the algorithm in (1.10) has been suc-
cessful in computing the sum R = P+Q € V,. Let @ denote a mod p, and suppose that there
exists an element b € FF, such that 6(453+27b2) # 0 and such that P,, 0, € E;,(IF,). It
then follows from (1.5) and (1.10) that R, = P,+Q, in the group EE,b (IF,).
Notice also that P = O if and only if P, = 0,, for P € V,.

(1.12) Multiplication by a constant. The algorithm in (1.10) allows us to multiply an element
P e V, by an integer k € Z,; in the following way. By repeated application of the addition
algorithm in (1.10) for some a € Z/nZ, we either find a divisor d of n with 1 <d <n, or
determine an element R = kP € V, such that according to (1.11) the followmg holds: for any
prime p dividing n for which there exists an element b €]F such that 6(4a +27b2) # 0 and

-5-

P, € E; ,(F,), we have R, = kP, in Ez , (), where @ = a mod p.

Notice that in the latter case R, = 0, if and only if the order of P, € E; .,,(FP) divides k.
ButR, = 0, if and only if R = O, as we noted in (1.11), which is equivalent to R, = O, for
any prime ¢ dividing n. We conclude that, if k-P has been computed successfully, and if ¢ is
another prime satisfying the same conditions as p above, then k is a multiple of the order of
P, if and only if k is a multiple of the order of P,.

By repeated duplications and additions, multiplication by k can be done in O (logk) applica-

tions of algorithm (1.10), and therefore in O ((logk)(logn)2) bit operations.
(1.13) Randomly selecting curves and points. In Section 2 we will be in the situation where
we suspect that n is prime and have to select elliptic curves E modulo » and points in
E(Z/nZ) at random. This can be accomplished as follows. Assume that gcd(n, 6) = 1. Ran-
domly select a, b € Z/nZ until 4a>+27b% =0, and verify that ged(n, 4a*#276%) =1, as
should be the case for prime n; per trial the probability of success is (n—1)/n, for n prime.
The pair a, b now defines an elliptic curve modulo n, according to (1.9).

Given an elliptic curve E = E, , modulo n, we randomly construct a point in E(Z/nZ).
First, we randomly select an x € Z/nZ until x’+ax+b is a square in Z/nZ. Because we
suspect that n is prime, this can be done by checking whether (x*+ax+b)® D2 = 1. Next, we
determine y as a zero of the polynomial X 2_(x*+ax+b) € (Z/nZ)[X] using for instance the
probabilistic method for finding roots of polynomials over finite fields described in [31, Section
4.6.2]. The resulting point (x:y:1) is in E(Z/nZ).

For these algorithms to work, we do not need a proof that n is prime, but if n is prime, they
run in expected time polynomial in logn.

(1.14) Class groups

We review some results about class groups. For details and proofs we refer to [8,58]. A poly-
nomial aX2+bXY +cY2 e Z[X, Y] is called a binary quadratic form, and A = b®>4ac is called
its discriminant. We denote a binary quadratic form aX Z4bXY +cY? by (a, b, c). A form for
which @ >0 and A < 0 is called positive, and a form is primitive if ged(a, b, c) =1. Two
forms (a, b, ¢) and (@', b’, ¢’) are equivalent if there exist a, B, ¥, & € Z with ad—By=1
such that a’U2+b’UV+c¢’V? = aX*+bXY +cY?, where U = aX+yY, and V = BX+3Y. Notice
that two equivalent forms have the same discriminant.

Now fix some negative integer A with A=0 or 1 mod 4. We will often denote a form
(a, b, ¢) of discriminant A by (a, b), since ¢ is determined by A = b%2—-4ac. The set of
equivalence classes of positive, primitive, binary quadratic forms of discriminant A is denoted
by C,. The existence of the form (1, A) shows that C, is non-empty.

(1.15) Reduction algorithm. It has been proved by Gauss that each equivalence class in Cy
contains precisely one reduced form, where a form (a, b, c) is reduced if

Ibl€a<c

b20if Ibl=aorifa =c.
These inequalities 'imply that a < VIA1/3; it follows that C, is finite. For any form (a, b, ¢)
of discriminant A we can easily find the reduced form equivalent to it by means of the follow-
ing reduction algorithm:
(1) Replace (a, b) by (a, b-2ka), where k € Z is such that —a < b-2ka < a.
(2) If (a, b, c) is reduced, then stop; otherwise, replace (a, b, c¢) by (¢, =b, a) and go back
- tostep (1.
It is easily verified that this is a polynomial-time algorithm. Including the observation made in

[31, exercise 4.5.2.30] in the analysis from [33], the reduction algorithm can be shown to take
0((10ga)2) bit operations, where we assume that the initial b is already O(a). It is not

-6 -

unlikely that with fast multiplication techniques one gets 0((loga)“°) by means of a method
analogous to [57].

If the reduction algorithm apphed to a form (a’, b’, ¢”) yields the reduced fom (a, b, c),
then for any value ax*+bxy+cy? a pair w=ox+y, v=Bx+d with
a’u+b’uv+c'v? = ax2+bxy+cy? can be computed if we keep track of a 2x2-transformation
matrix in the algorithm. This does not affect the asymptotic running time of the reduction
algorithm.

(1.16) Composition algorithm. The set C,, which can now be identified with the set of
reduced forms of discriminant A, is a finite abelian group, the class group. The group law,
which we will write multiplicatively, is defined as follows. The inverse of (a, b) follows from
an application of the reduction algorithm to (@, —b), and the unit element 1, is (1, 1) for A
odd, and (1, 0) for A even. To compute (a,, b)(a,, b,), we use the Euclidean algorithm to
determine d = gcd(a,, az, (b1+by)2), and r,s,t € Z such that d = ra +sa+t(b+by)/2.
The product then follows from an apphcanon of the reduction algorithm to
(alazld by +2a,(s (b—by)2—tcy)/d), where ¢, = (b2 —-A)/(4a,). It is again an easy matter to
verify that this is a polynomial-time algorithm.

(1.17) Ambiguous forms. A reduced form is ambiguous if its square equals 1,; for an ambigu-
ous form we have b =0, or a = b, or a = ¢c. From now on we assume that A =1 mod 4. It
was already known to Gauss that for these A’s there is a bijective correspondence between
ambiguous forms and factorizations of IAl into two relatively prime factors. For relatively
prime p and ¢ the factorization IAl = pq corresponds to the ambiguous form (p, p) for
3p <q, and to ((p+9)/4, (g—p)2) for p < q <3p. Notice that the ambiguous form (1, 1)
corresponds to the factorization 1Al = 1-1Al.

(1.18) The class number. The class number h, of A is defined as the cardinality of the class
group C,. Efficient algorithms to compute the class number are not known. In [58] an algo-
rithm is given that takes time |AIY5*(, for A — —oo; both its running time and correctness
depend on the assumption of the generahzed Riemann hypothesis (GRH). It follows from the
Brauer-Siegel theorem (cf. [35, Ch. XVI]) that h, = IAIY2*°® for A — —ce. Furthermore,
hy < (NTATlogI A2 for A < =3. It follows from (1.17) that h, is even if and only if 1Al is
not a prime power.

(1.19) Finding ambiguous forms. The ambiguous forms are obtained from forms whose order
is a power of two. Namely, if (a, b) has order 2% with k > 0, then (a, b) "is an ambiguous
form. Because of the bound on h,, we see that an ambiguous form can be computed in
O (logl Al) squarings, if a form (a, b) of 2-power order is given.

Such forms can be determined if we have an odd multiple u of the largest odd divisor of
h 5, because for any form (c, d), the form (c, d)* is of 2-power order. Forms of 2-power
order can therefore be determined by computing (c, d)* for randomly selected forms (c, d), or
by letting (c, d) run through a set of generators for C,; if in the latter case no (c, 4) is found
with (¢, d)* # 14, then h, is odd, so that A is a prime power according to (1.18).

(1.20) Prime forms. For a prime number p we define the Kronecker symbol (—3—) by

1 if A is a quadratic residue modulo 4p and gcd(A, p) =1
(£)=140 if gcdA, p) = 1
p .
-1 otherwise.

For a prime p for which (—) = 1, we define the prime form I, as the reduced form equivalent

to (p, by), where b, = mm{b e Zy: b2 = Amod 4p}. It follows from a result in [34] that,
if the genemlxzed Rlemann hypothesis holds, then there is an effectively computable constant

-7 -

c, such that C,, is generated by the prime forms /, with p < c-(loglAl)?, where we only con-
sider primes p for which (—2—) = 1 (cf. [58, Cor. 6.2]); apparently no explicit value for the con-

stant ¢ has been published.

(1.21) Smoothness of forms. A form (a, b, c¢) of discriminant A, with gcd(a, A) =1, for
which the prime factorization of a is known, can be factored into prime forms in the following
way. Ifa = I'Ip pn-mep" is the prime factorization of a, then (a, b) = HP s , where
5, € {-1, +1} satisfies b = s,b, mod 2p, with b, as in (1.20). Notice that the prime forms
1, are well-defined because the primes p divide a, gcd(a, A) = 1, and b% = Amod 4a.

We say that a form (a, b) is y-smooth if a is y-smooth. In [61] it has been proved that,
under the assumption of the GRH, a random reduced form (a, b) € C, is L4 [B]-smooth
with probability at least L, [-1/(4B)], for any B € R,o. Since @ < VIAI/3 this is what can
be expected on the basis of (1.1); the GRH is needed because we only have the primes for
which (-ﬁ-) =1

(1.22) Solving systems of linear equations

Let A be an nxn-matrix over a finite field, for some positive integer n, and let b be an n-
dimensional vector over the same field. Suppose we want to solve the system Ax = b over the
field. It is well-known that this can be done by means of Gaussian elimination in 0(n3) field
operations. This number of operations can be improved to O (n%3"®) using the techniques from
[19].

A more important improvement can be obtained if the matrix A is sparse, i.e., if the number
of non-zero entries in A is very small. This will be the case in the applications below. There
are several methods that take advantage of sparseness. For two of those algorithms, we refer
to [18] and [44]. There it is shown that both the conjugate gradient method and the Lanczos
method, methods that are known to be efficient for sparse systems over the real numbers, can
be adapted to finite fields. These algorithms, which are due to D. Coppersmith, N. Karmarkar,
and AM. Odlyzko, achieve, for sparse systems, essentially the same running time as the
method that we are going to present here.

(1.23) The coordinate recurrence method. This method is due to Wiedemann [67]. Assume
that A is non-singular. Let F be the minimal polynomial of A on the vector space spanned by
b,Ab, A%, ... Because F has degree < n we have

F(A)b = T f;A'b =0,
=0
and for any ¢t 2 0,

n .
TFAMb =0,
i=0
Let v; ; be the jth coordinate of the vector A’b, then

n i
(1.24) SfiVisj =0
i=0

foreveryt 20and 1 < j < n. Fixing j, 1< j < n, we see that the sequence (v; ;)izo satisfies
the linear recurrence relation (1.24) in the yet unknown coefficients f; of F. Suppose we have
computed v; ; for i =0, 1, .., 2n as the jth coordinate of A'b. Given the first 2n+1 terms
Voj» V1js - V2a,; Of the sequence satisfying a recurrence relation like (1.24), the minimal
polynomial of the recurrence can be computed in 0 (n? field operations by means of the
Berlekamp-Massey algorithm [40]; denote by F; this minimal polynomial. Clearly F; divides
F.

If we compute F; for several values of j, it is not unlikely that F is the least common

-8 -

multiple of the F;’s. We expect that a small number of F;’s, say 20, suffice for this purpose
(cf. [44,67)). Suppose we have computed F in this way. Because of the non-singularity of A
we have f # 0, so that

n
(1.25) x=—f5'3fiA"7b
i=1
satisfies Ax = b.

To analyse the running time of this algorithm for a sparse matrix A, let w(A) denote the
number of field operations needed to multiply A by a vector. The vectors A'b for
i=0,1, .., 2n can then be computed in O (nw(A)) field operations. The same estimate holds
for the computatmn of x. Because we expect that we need only a few F;’s to compute F, the
applications of the Berlekamp-Massey algorithm take 0(n? field operanons The method
requires storage for O (n 2) field elements. At the cost of recomputing the A’b in (1.25), this
can be improved to O (n)+w(A) field elements, if we store only those coordinates of the A'b
that we need to compute the F;’s. For a rigorous proof of these timings and a deterministic
version of this probabilistic algonthm we refer to [67]. How the singular case should be han-
dled, can be found in [67] and [44].

(1.26) Solving equations over the ring Z/mZ. In the sequel we often have to solve a system
of equations over the ring Z/m Z, where m is not necessarily prime. We briefly sketch how
this can be done using Wiedemann’s coordinate recurrence method. Instead of solving the sys-
tem over Z/mZ, we solve the system over the ﬁelds Z/p Z for the primes p |m, lift the solu-
tions to the rings Z/p Z for the prime powers p k\m, and finally combine these solutions to
the solution over Z/mZ by means of the Chinese remainder algorithm. In practice we will
not try to obtain a complete factorization of m, but we just start solving the system modulo m,
and continue until we try to divide by a zero-divisor, in which case a factor of m is found.

Lifting a solution Axo =5 modulo p to a solution modulo p can be done by writing
Axy-b =py for some mteger vector y, and solving Ax;=y modulo p. It follows that
A (xg—px;) = b modulo p2. This process is repeated until the solution modulo p is deter-
mined. We conclude that a system over Z/mZ can be solved by O (logm) applications of
algorithm (1.23).

2. Algorithms for finite abelian groups

(2.1) Introduction

Let G be a finite abelian group whose elements can be represented in such a way that the
group operations can be performed efficiently. In this section we are interested in two compu-
tational problems concemning G : finding the order of G or of one of its elements, and comput-
ing discrete logarithms in G. For the latter problem we will often assume that the order n of
G, or a small multiple of n, is known.

By computing discrete logarithms we mean the following. Let H be the subgroup of G
generated by an element h € G. For an element y of G, the problem of computing the
discrete logarithm log,y of y with respect to h, is the problem to decide whethery € H, and
if so, to compute an integer m such that A™ =y, in the latter case we write log,y = m. Evi-
dently, log,y is only defined modulo the order of H. Because the order of H is an unknown
divisor of n, we will regard log,y as a not necessarily well-defined integer modulo n, and
represent it by an integer in {0, 1, ..., n—1}. Although log,y is often referred to as the index
of y with respect to h, we will only refer to it as the discrete logarithm, or logarithm, of y.

Examples of groups we are interested in are: multiplicative groups of finite fields, sets of
points of elliptic curves modulo primes (cf. (1.2)), class groups (cf. (1.14)), and multiplicative
groups modulo composite integers. Notice that in the first example n is known, and that for

-9-

the second example two methods to compute n were mentioned in (1.8).

In all examples above, the group elements can be represented in a unique way. Equality of
two elements can therefore be tested efficiently, and membership of a sorted list of cardinality
k can be decided in logk comparisons. Examples where unique representations do not exist,
are for instance multiplicative groups modulo an unspecified prime divisor of an integer n, or
sets of points of an elliptic curve modulo n, when taken modulo an unspecified prime divisor
of n (cf. (1.9)). In these examples inequality can be tested by means of a gcd-computation. If
two non-identically represented elements are equal, the gcd will be a non-trivial divisor of ».
In Section 3 we will see how this can be exploited.

In Section (2.2) we present some algorithms for both our problems that can be applied to
any group G as above. By their general nature they are quite slow; the number of group
operations required is an exponential function of logn. Algorithms for groups with smooth
order are given in Section (2.6). For groups containing many smooth elements subexponential
discrete logarithm algorithms are given in Section (2.8). Almost all of the algorithms in Sec-
tion (2.8) are only applicable to the case where G is the multiplicative group of a finite field,
with the added restriction that & is a primitive root of the same field. In that case G = H, so
that the decision problem becomes trivial. An application of these techniques to class groups
is presented in Remark (2.15).

For practical consequences of the algorithms in this section we refer to the original papers
and to [44].

(2.2) Exponential algorithms

Let G be a finite abelian group as in (2.1), let A € G be a generator of a subgroup H of G,
and let y € G. In this section we discuss three algorithms to compute log,y. The algorithms
have in common that, with the proper choice for y, they can easily be adapted to compute the
order n, of h, or a small multiple of n,.

Of course, log,y can be computed deterministically in at most n, multiplications and com-
parisons in G, by computing A fori =1, 2, ... until A’ =y or h' = 1; here 1 denotes the unit
element in G. Then y € H if and only if h' = =y for some i, and if y ¢ H the algorithm ter-
minates after O (n,) operations in G; in the latter case (and if y = 1) the order of h has been
computed. The method requires storage for only a constant number of group elements.

(2.3) Shanks’s baby-step-giant-step algorithm (cf. [32, exercise 5.17]). We can improve on the
number of operations of the above algorithm if we allow for more storage being used, and if a
unique representation of the group elements exists. The algorithm is based on the following
observation. If y € H and log,y < s? for some s € Z,,, then there exist integers i and j
with 0<i,j <s such that y = = h**_ In this situation log,y can be computed as follows.
First, make a sorted list of the values h’/ for 0 < j <5 in O(slogs) operations in G. Next,
compute yh™* for i =0, 1, ..., s—1 until y»™ equals one of the values in the list; this search
can be done in O (logs) compansons per i because the list is sorted. If yh™* is found to be
equal to h/, then log,y = is+j. Otherwise, if yh™ “ s not found in the list for any of the
values of i, then either y ¢ H or log,y 2 s

This method can be tumed into a method that can be guaranteed to use O (\/n, logn,) opera-
tions in G, both to compute discrete logarithms and to compute n,. For the latter problem, we
put y =1, and apply the above method with s =2* for k =1, 2, ... in succession, excluding
the case where both i and j are zero. After O (3, Rog 7y 12 log2") = O (\n,logn,) operations
in G, we find i and j such that hi%* =1, and therefore a small multiple of n,. To compute
log,y we proceed similarly, but to guarantee a timely termination of the algorithm in case
y ¢ H, we look for ™ in the list as well; if some A is in the list, but none of the yA™ is
theny ¢ H. We could also first determine n,, and put s = [\, |.

We conclude that both the order of A and discrete logarithms with respect to A can be

-10 -

computed deterministically in n,/?**") multiplications and comparisons in G, for nj — ee.
The method requires storage for O (\n,) group elements. In practice it can be recommended
to use hashing (cf. [32, Section 6.4]) instead of sorting.

(2.4) Pollard’s Rho method (cf. [48]). The following randomized method needs only a con-
stant amount of storage. It is randomized in the sense that we cannot give a worst-case upper
bound for its running time. We can only say that the expected number of group operations to
be performed is O (¥n) to compute discrete logarithms, and O (\n,,) to compute the order n,
of h: here n is the order of G. Let us concentrate on computing discrete logarithms first.

Assume that a number n is known that equals the order of G, or a small multiple thereof.
We randomly partition G into three subsets G, G, and G, of approximately the same size.
By an operation in G we mean either a group operation, or a membership test x ! G;. For
y € G we define the sequence yg, ¥1, Y2, -.. in G by yo =y, and

hyiy if yi, € G,
2.5) yi={y4 if yine Gy

yYia if yiog € G,
for i > 0. If this sequence behaves as a random mapping from G to G, its expected cycle
length is O (Yn) [31, exercise 4.5.4.4]. Therefore, when comparing y; and y,; fori = 1,2, ..,
we expect to find y, =y, fork = O (¥n'). The sequence has been defined in such a way that
yi =y easily yields y* = ™ for certain e;, my € {0, 1, ..., n—1}. Using the extended
Euclidean algorithm we compute s and ¢ such that s-e,+t-n =d where d = gcd(e, n); if
d =1, we find log,y = s-m;, mod n.

Otherwise, if d > 1, we can proceed as follows. We introduce a number / >0, to be
thought of as the smallest known multiple of n,. Initially we put I = n. Every time that / is
‘changed, we check that y’ =1 @f y' # 1 then clearlz y € H), and we compute new s, ¢, and
d with d = gcd(e,, 1) = s-e,+t-1. Note that h'™* =y™* = 1, 5o that n, | Im,/d. 1f d
does not divide m,, then change I to gcd(/, im;/d). Ultimately, d divides m,. We have that
y4 = h°™, so we may stop if d = 1. Otherwise, we determine the order d” of h'¥ by means
of any of the methods described in sections (2.2) and (2.6). If this is difficult to do then d is
large (which is unlikely), and it is probably best to generate another relation of the sort
y® =h™. Ifd’ < d then change ! to ld’/d. Finally, suppose thatd’=d. Lety’ = yh
then y € H if and only if y’ € H, and since (") =1, this is the case if and only if y’
belongs to the subgroup generated by A’ = '/, The problem with y and h is now reduced to
the same problem with y’ and h’, with the added knowledge that the order of h” equals d.
The new problem can be solved by means of any of the methods described in sections (2.2)
and (2.6).

Of course, we could define the recurrence relation (2.5) in various other ways, as long as the
resulting sequence satisfies our requirements.

Notice that, if y € H, the recurrence relation (2.5) is defined over H. If also the G;NH are
such that the sequence behaves as a random mapping from H to H, then we expect the
discrete logarithm algorithm to run in O (\/n,) operations in G. A multiple of n, can be com-
puted in a similar way in about O (\/n,,) operations in G. To do this one partitions G into a
somewhat larger number of subsets G;, say 20, and one defines yo=1, and y; = h'i Y- if
Yi-1 € Gj; here the numbers ¢; are randomly chosen from {2, 3, .., B-1}, where B is an esti-
mate for n, (cf. [56]).

We conclude this section by mentioning another randomized algorithm for computing
discrete logarithms, the so-called Lambda method for catching kangaroos, also due to Pollard
[48). It can only be used when log,y is known to exist, and lies in a specified interval of

-11-

width w. The method requires O (Yw) operations in G, and a small amount of storage
(depending on the implementation), but cannot be guaranteed to have success; the failure pro-
bability €, however, can be made arbitrarily small, at the cost of increasing the running time
which depends linearly on Viog(l/e). We will not pursue this approach further, but refer the
interested reader to [48]. Notice that, with w = n, this method can be used instead of the Rho
method described above, if at leasty € H.

(2.6) Groups with smooth order

In some cases one might suspect that the order of G, or of h, has only small prime factors,
i.e., is s-smooth for some small s € Z,y If one also knows an upper bound B on the order,
this smoothness can easily be tested. Namely, in these circumstances the order should divide
k= I]p", where p ranges over the primes < s, and where 1, € Zy is maximal such that
p" < B. Raising h to the kth power should yield the unit element in G; this takes
O (slog, B) multiplications in G to verify. If h* indeed equals the unit element, the order of h
can be deduced after some additional computations.

(2.7) The Chinese remainder theorem method (cf. [46]). Also for the discrete logarithm prob-
lem a smooth order is helpful, as was first noticed by R. Silver, and later by Pohlig and Hell-

man. Let n, =T7J, ,,,*p"’ be the prime factorization of n,. If y € H, then it suffices to deter-

mine log,y = m modulo each of the p", followed by an application of the Chinese remainder
algorithm.

To compute m modulo p, where p is one of the primes dividing n, and e =¢,, we
proceed as follows. Write m = Yfxim;p’ modulo p*, with m; € {0, 1, .., p—1}, and notice
that

(m—(m mod p‘))n,/p**! = (n,/p)m; modulo n,
fori =0, 1, ..., e~1. This implies that, if y € H, then
(y-h—(m mod p"))n;./P"*‘ = (hPym

Because h = h™” generates a cyclic subgroup H of G of order p, we can compute
mg, my, .., m,_; in succession by computing the discrete logarithms of
yi =(@-hm mod p/)y%P™ ith respect to 7, for i =0, 1, ..., e—1. This can be done by means
of any of the methods mentioned in Section (2.2). If y; ¢ H for some i, then y ¢ H, and the
algorithm terminates. We leave the analysis of running time and storage requirements to the
reader.

(2.8) Subexponential algorithms

In this section we will concentrate on algorithms to compute discrete logarithms with respect to
a primitive root g of the multiplicative group G of a finite field. In this case the order of G is
known. In principle the methods to be presented here can be applied to any group for which
the concept of smoothness makes sense, and that contains sufficiently many smooth elements.
This is the case for instance for class groups, as is shown in Remark (2.15).

We do not address the problem of finding a primitive root of G, or deciding whether a
given element is a primitive root. Notice however that the latter can easily be accomplished if
the factorization of the order of G is known. It would be interesting to analyse how the algo-
rithms in this section behave in the case where it is not known whether g is a primitive root or
not.

A rigorous analysis of the expected running time has only been given for a slightly different
version of the first algorithm below [51]. The timings of the other algorithms in this section
are heuristic estimates.

-12 -

(2.9) Remark. Any algorithm that computes discrete logarithms with respect to a primitive
root of a finite field, can be used to compute logarithms with respect to any non-zero element
of the field. Let g be a primitive root of a finite field, G the multiplicative group of order n
of the field, and h and y any two elements of G. To decide whether y € <h>=H and, if
so, to compute log,y, we proceed as follows. Compute log,h =m,, log,y =m,, and
ind(h) = gcd(n, m,). Then y € H if and only if ind(h) divides m,, and if y € H then
log,y = (m, /ind(h))(m;, find(h))"1 mod n,,, where n, = n/ind(h) is the order of A.

(2.10) Smoothness in (Z/p Zy IfG = Z/p Z)', for some prime p, we identify G with the
set {1, 2, ..., p—1} of least positive residues modulo p; the order n of G equals p-1. It fol-
lows from (1.1) that a randomly selected element of G that is < n® is L, [B]-smooth with pro-
bability L, [-0/(2B)], for o, B € R, fixed with o< 1, and n — e=. The number of primes
<L, [B] is n(L, [B]) = L, [B]. In Section 3 we will see that an element of G can be tested for
L, [B]-smoothness in expected time L, [0]; in case of smoothness the complete factorization is
computed at the same time (cf. (3.5)).

(2.11) Smoothness in Fym. If G = IF,a, for some positive integer m, we select an irreducible
polynomial f € I,[X] of degree m, so that F,,. = (K,[X])/(f). The elements of G are then
identified with non-zero polynomials in IF,[X] of degree < m. We define the norm N(h) of an
element © € G as N(h) = 2%8~=*) Remark that N(f) = #IF,, and that the order n of G
equals 2™-1.

A polynomial in IR,[X] is smooth with respect to x, for some x € R, if it factors as a
product of irreducible polynomials of norm < x. It follows from a theorem of Odlyzko [44]
that a random element of G of norm < n® is L, [B]-smooth with probability L, [-o/(2P)], for
o, B e R, fixed with a < 1, and n — . Furthermore, an element of G of degree k can be
factored in time polynomial in k£ (cf. [31]). The number of irreducible polynomials of norm
< L, [B] is about L, [Bllogy(L, [B]) = L, [B].

These results can all easily be generalized to finite fields of arbitrary, but fixed, characteris-
tic.

(2.12) The index-calculus algorithm. Let g be a generator of a group G of order n as in
(2.10) or (2.11); ‘prime element’ will mean ‘prime number’ (2.10) or ‘irreducible polynomial’
(2.11), and for G = (Z/pZ)' the ‘nom’ of x € G will be x itself. Lety € G, and let S be
the set of prime elements of norm < L, [B] for some B € R, We abbreviate L, [B] to L [Bl.
The algorithms to compute log,y that we present in this section consist of two stages (cf.
[66]):

1 - Precomputation: compute log, s forall s € §;

2 - Computation of log,y: find a multiplicative relation between y and the elements of S,

and derive log,y using the result from the precomputation stage.

This gives rise to an algorithm whose expected running time is bounded by a polynomial func-
tion of L (n); notice that this is better than O (n®) for every € > 0 (cf. [1]).

First, we will describe the second stage in more detail, and analyse its expected running
time. Suppose that the discrete logarithms of the prime elements of norm < L [B] all have
been computed in the first stage. We determine an integer e such that y-g¢ factors as a pro-
duct of elements of S, by randomly selecting integers e € {0, 1, .., n—1} until y-g* € G is
smooth with respect to L [B]. For the resulting e we have

ygt=TIs",
ses
so that

log,y = ((X esloggs)—e) mod n,

seS

-13 -

where the log, s are known from the precomputation stage. By the results cited in (2.10) and
(2.11) we expect that L [1/(2B)] trials suffice to find e. Because the time per trial is bounded
by L [0] for both types of groups, we expect to spend time L [1/(2B)] for each discrete loga-
rithm. v

Now consider the precomputation stage, the computation of log, s for alls € S. We collect
multiplicative relations between the elements of S, i.e., linear equations in the log,s. Once we
have sufficiently many relations, we can compute the log, s by solving a system of linear equa-
tions.

Collecting multiplicative relations can be done by randomly selecting integers
e e {0,1,.., n-1} until g¢ € G is smooth with respect to L [B]. For a successful e we
have

ge = H s‘.
seS
which yields the linear equation
2.13) e =(3 elog,s)modn.
ses
We need about 1S I= L [B] equations of the form (2.13) to be able to solve the resulting sys-
tem of linear equations, so we repeat this step about L [(] times.

It follows from the analysis of the second stage that collecting equations can be done in
expected time L [B+1/(2B)]. Because the system can be solved in time L [3B] by ordinary
Gaussian elimination (cf. (1.22) and (1.26)), the precomputation stage takes expected time
L [max(B+1/(2B), 3B)]l, which is L [3/2] for the optimal choice B = 1/2. This dominates the
cost of the second stage which takes, for B = 1/2, time L[1] per logarithm. The storage
requirements are L [1] for the precomputation (to store the system of equations), and L [1/2]
for the second stage (to store the log, s fors € S).

An important improvement can be obtained by noticing that in the equations of the form
(2.13) at most log,n of the 1S | = L [B] coefficients e, can be nonzero. This implies that we
can use the coordinate recurrence method described in (1.23), which has, combined with
(1.26), the following consequence. Multiplying the matrix defining the system by a vector can
be done in time (logyn)L [B], which is L [B]. The system can therefore be solved in time
L [2B], so that the expected time for the precomputation stage becomes L [max(B+1/(2f), 2f)].
For B = V172, we get L [V2] arithmetic operations in G or Z/nZ for the precomputation, and
L [V1/2] operations per logarithm. The method requires storage for L [V1/2] group elements
both in the precomputation and in the second stage. We refer to [51] for a rigorous proof that
a slightly modified version of the index-calculus algorithm runs in time L [V1/2], for both our
choices of G.

(2.14) Remark. As suggested at the end of (2.11), the algorithm in (2.12), and the
modifications presented below, can be adapted to finite fields of arbitrary, but fixed, charac-
teristic. For sz a modified version of the index calculus algorithm is presented in [24];
according to Odlyzko [44] this method applies to le.., for fixed m, as well. It is an as yet
unanswered and interesting question how to compute discrete logarithms when both p and m
tend to infinity.

(2.15) Remark. The ideas from the index calculus algorithm can be applied to other groups as
well. Consider for instance the case that G is a class group as in (1.14), of unknown order n.
Suppose we want to compute the discrete logarithm of y with respectto &, forh,y € G. Let
S be a set of prime forms that generates G (cf. (1.20)). The mapping ¢ from Z5 to G that
maps (¢,); e s € Z° 10 [, c 55~ € G is a surjection. The kemel of ¢ is a sublattice of the
lattice Z5, and Z°5 /ker(¢) = G. In particular the determinant of ker(¢) equals n.

-14 -

To calculate ker(¢), we introduce a subgroup A of Z5, to be thought of as the largest sub-
group of ker(¢) that is known. Initially one puts A = {0}. To enlarge A, one looks for rela-
tions between the elements of S. Such relations can be found in a way similar to the precom-
putation stage of (2.12), as described in (3.14); the primitive root g is replaced by a product of
random powers of elements of S, thus producing a random group element. Every relation
gives rise to an element r € ker(¢). One tests whether r € A, and if not one replaces A by
A+Zr; if A is given by a basis in Hermite form, this can be done by means of the algorithm
of [30]. Repeating this a number of times, one may expect to find a lattice A containing 1S |
independent vectors. The determinant of A is then a non-zero multiple of n. After some addi-
tional steps it will happen that A does not change anymore, so that one may hope that
A =ker(¢). In that case det(A) = n, and Z5/A = G.

Supposing that A = ker(¢), we can write G as a direct sum of cyclic groups, by bringing the
matrix defining A to diagonal form [30]. This may change the set of generators of G. To
solve the discrete logarithm problem one expresses both A and y as products of powers of the
new generators, and applies (2.9) repeatedly. Notice that if the assumption A = ker(9) is
wrong (i.e., we did not find sufficiently many relations), we may incorrectly decide that
y € <h>.

(2.16) A method based on the residue-list sieve from [18]. We now discuss a variant of the
index-calculus algorithm that yields a better heuristic running time. Instead of looking for ran-
dom smooth group elements that yield equations like (2.13), we look for smooth elements of
much smaller norm, that still produce the necessary equations. Because elements of smaller
norm have a higher probability of being smooth, we expect that this will give a faster algo-
rithm.

For ease of exposition we take G = (Z/p Z)', as in (2.10), so that n =p—1. Let the notation
be as in (2.12). Linear equations in the log,s for s € S are collected as follows. Let
o e Ry and let 4 and v be two integers in {[Vp J+1, ..., [Np +L [0]]}, both smooth with
respect to L [B]. If uv—p is also smooth with respect to L [B], then we have found an equation
of the type we were looking for, because log, u + log, v = log, (uv-p).

We analyse how much time it takes to collect L [B] equations in this way. The probability
of uw—p = O (L [a]Np) being smooth with respect to L [B] is L [-1/(4P)], so we have to con-
sider L [B+1/(4pB)] smooth pairs (#, v), and test the corresponding uv—p for smoothness. This
takes time L [B+1/(4B)]. It follows that we mneed L [B/2+1/(8B)] integers
u e {[¥p J+1, ..., [Np +L [a]]} that are smooth with respect to L [B]. For that purpose we
take L [B/2+1/(8B)+1/(4P)] integers in {|Np J+1, ..., [Np +L []]} and test them for smooth-
ness, because the probability of smoothness is L [-1/(4B)]. Generating the u’s therefore takes
time L [B/2+3/(8B)]. Notice that we can take o = [/2+3/(8B). Notice also that u, v, and
uv-p are not generated randomly, but instead are selected in a deterministic way. Although
we cannot justify it theoretically, we assume that these numbers have the same probability of
smoothness as random numbers of about the same size. The running times we get are there-
fore only heuristic estimates.

Combined with the coordinate recurrence method (cf. (1.23), (1.26)), we find that the
precomputation takes time L [max(B+1/(4B), B/2+3/(8B), 2B)]. This is minimized for B = 1/2,
so that the precomputation can be done in expected time L [1] and storage L [1/2]. Notice that
for B = 1/2 we have a = 1.

The second stage as described in (2.12) also takes time L [1]. If we keep the L [1/2] smooth
u's from the precomputation stage, then the second stage can be modified as follows. We find
e such that y-g® mod p is smooth with respect to L [2] in time L [1/4]. To calculate log,y, it
suffices to calculate log, x for each prime factor x < L [2] of y -g® mod p. For fixed x this is
done as follows. Find v in an interval of size L [1/2] around ‘/p_ /x that is smooth with respect
to L[1/2) in time L[1/2). Finally, find one of the L[1/2] smooth u’s such that

-15 -

uvx-p =0(L [5/21Np) is smooth with respect to L [1/2] in time L [1/2]. The value of log, x
now follows. Individual logarithms can therefore be computed in expected time and storage
L[1/2].

Generalization of this idea to G = F;.., as in (2.11), follows immediately, if we select some
polynomial g € F{[X] of norm about 2™2 (for instance g =X!™2l), and compute
g, r € F[X] such that f = gg+r (cf. (2.11)) with degree(r) < degree(g). In the precompu-
tation we consider u = g+, v = q+v for polynomials @, v € IF,[X] of norm < L [a], so that
N(uv—f) is close to L [a]2""2; here L[] =L,m_[0]. In the second stage we write
q = hx+x for h,X € F[X] with degree(¥) < degree(x), where x is as above, choose
v = h+v with N(¥) <L [1/2], and consider uvx—f. The running time analysis remains
unchanged. Instead of finding g, ¢, r as above, we could also choose f in (2.11) such that
f = X™+f, with degree(f ;) < m/2, so that we can take g = g = X [+D2],

(2.17) A method based on the linear sieve algorithm from [18]. Again we consider
G =(Zp Z)'. An improvement of (2.16) that is of practical importance, although it does not
affect the timings when expressed in L(n), can be obtained by including the numbers
u e {[Np J+1, ... [\p +L [0]]} in the set S as well. For such u and v we again have
uv-p = O (L [o]Vp), but now we only require that uv—p is smooth with respect to L [B],
without requiring smoothness for u or v. It follows in a similar way as above that the
L [B]+L [a] equations can be collected in time L [1] and storage L[12] for B=1/2 and
o = B/2+1/(8B) = 1/2. The reason that this version will run faster than the algorithm from
(2.16), is that uv—p is now only O (L [1/2Vp), whereas it is O (L [1]¥p) in (2.16). In prac-
tice this will make a considerable difference in the probability of smoothness. The second
stage can be adapted in a straightforward way. The running times we get are again only
heuristic estimates.

In the methods for G = (Z/p Z)' described in (2.16) and (2.17), the use of the smoothness test
referred to in (2.10) can be replaced by sieving techniques. This does not change the asymp-
totic running times, but the resulting algorithms will probably be faster in practice [18].

(2.18) A more general L function. For the description of the last algorithm in this section, the
bimodal polynomials method, it will be convenient to extend the definition of the function L
from (1.1) slightly. For a, r € R with 0 < r <1, we denote by L, [r; o] any function of x
that equals e @+ (D)Xlogx) (oglogn)™ ' for x5 oo Notice that this is (logx)* for r =0, and x°
for r = 1, up to the o(1) in the exponent. For r = 1/2 we get the L from (1.1).

The smoothness probabilities from (1.1) and (2.11) can now be formulated as follows. Let

o, B,7r,s € R be fixed witha, >0, 0<r <1,and 0<s <r. From (1.1) we find that a
random positive integer < L, [r; o] is L, [s; B]-smooth with probability L, [r—s; —o(r-s /Bl
for x = o. From the same theorem of Odlyzko referred to in (2.11) we have that, for
r/100 < s < 99r/100, a random polynomial in IF;[X] of norm < L,[r; o] is smooth with
respect to L, [s; B] with probability L, [r—s; —a(r—s)/B], for x — ee.
(2.19) Coppersmith’s bimodal polynomials method (cf. [17]). We conclude this section with
an algorithm that was especially designed for G = Fz'.., as in (2.11). This algorithm does not
apply to fields with a large characteristic. It is again a variant of the index-calculus algorithm
(2.12). We assume that f can be written as X™+fy, for f; € F[X] of degree < m*”,
Because about one out of every m polynomials in IF,[X] of degree m is irreducible, we expect
that such an f can be found.

We use the function L from (2.18), and we abbreviate L,m_, [r; a] to L [r; a]. Notice that

with this notation L [r; o] = 2a(1+°(1»'"’a°”")1—', for >0, and m — oo.
Let S be the set of irreducible polynomials in I,[X] of norm < L [1/3; B], for some B # 0.
Furthermore, let k be a power of 2 such that N(X ™%l is as close as possible to N(v*), for a

- 16 -

polynomial v e Fﬁz[X] of norm L [1/3; B]; this is achieved for a power of 2 close to
B~2mBog,m) 1R, We find that ¢t = k/(B~2mP(logym)™1?) satisfies V1/2 < t < V2 and that
N(x Im/ly <L (2/3; VB/t] and N(v¥) < L [2/3; +VB]. For polynomials vy, v, € J;,[X] of norm
< L[1/3; B], we take u; = X!"*1*ly 4y, and u, = uf mod f. Remark that the polynomial
u; can be considered as a string of bits with two peaks; this explains the name of the method.
Since log,u; = (k-logyuy) mod (2™~1), we find a linear equation in the log,s for s € §, if
both u;’s are smooth with respect to L [1/3; B]. Because the equations generated in this way
are homogeneous, we assume that g is smooth with respect to L [1/3; B] as well. To analyse
the probability that both u;’s are smooth, we compute their norms. By the choice of k we
have that N(u,) < L [2/3; VP/t]. Because k is a power of 2, we have

uy = (XU E L kY mod £
= X(I_mlk_|+1)k—Mf 1Vf+V§,

so that N(u,) < L [2/3; tVB]. The probability that both are smooth with respect to L [1/3; B]
therefore is assumed to be L [1/3; —=1/3tVB)I-L [1/3; =t/(3VB)] = L [1/3; —(t+t"1)/(3VB)]. The
L [1/3; B)? pairs (vy, v;) must suffice to generate the = L[1/3; B] equations that we need
(where we only consider polynomials v,, v, that are relatively prime because the pairs (vy, v5)
and (w-v,, w-v,) yield the same equation). It follows that B must satisfy

L [1/3; 28] 2 L [1/3; B+(+ (BB
The optimal choice for B is ((t+t")/3)2’3, and the value for ¢ then follows by taking ¢ with

V1/2 <t V2 such that t((t+7)/3)PmPog,m)™”? is a power of 2. In the worst case
t =V2 we find B=(1/2)!»=0.794, so that the precomputation can be done in time

(15880 WIm*ogam)® (o (1 23y (126)). If we are so lucky that ¢ can be chosen as 1, we find
B = (4/9)'” = 0.764, which makes the precomputation slightly faster.

To compute log,y fory e IF;,. we proceed as follows. We find e such that y-g¢ mod f of
nom < L [1; 1] is smooth with respect to L [2/3; 1] in time L [1/3; 1/3]. Let ¥ be one of the
irreducible factors of y-g® mod f with N(¥) < L [2/3; 1]. Let k be a power of 2 such that
N(x Inly = Nv*), for a polynomial v € I,[X] of norm L [2/3; 1]; in the worst case we get
N(x /)y = [, [5/6; N1/2] and N(v¥) = L [5/6; v2]. Find polynomials v, v, € I;,[X] of norm
<L[2/3;1], such that y divides u,=XU*Mly 4y, and such that both u,y and
Uy = u’f mod f are smooth with respect to L [1/2; 1]. It follows from the choice for k that
u,/y and u, have norms bounded by L [5/6; V1/2] and L [5/6; V2], respectively, so that the
probability that both are smooth with respect to L [1/2; 1] is assumed to be
L [1/3; =N2/6)-L [1/3; =N2/3] = L [1/3; -V1/2]. Because L [2/3; 1%L [2/3; 1] of the pairs
(v, v satisfy the condition that y” divides u,, we must have that

L[2/3; 112 L[1/3;V172).
This condition is satisfied, and we find that the computation of the u;’s can be done in time
L [1/3; VT3] = 2020 (O Pogm®

Because log,u; = (k-(log, (u,/jf‘)+logg}7)) mod (2™-1), we have reduced the problem of
computing the discrete logarithm of a polynomial of norm L [2/3; 1] (the factor y of
y-g® mod f), to the problem of computing the discrete logarithms of polynomials of norm
< L [1/2; 1] (the irreducible factors of u,/y and uy). To express log,y in terms of log, s for
s € S, we apply the above method recursively to each of the irreducible factors of u;/y and
u,, thus creating a sequence of norms L [1/3+1/3; 1], L [1/3+1/6; 1], L [1/3+1/12; 1], ... that
converges to L [1/3; 1]. The recursion is always applied to < m polynomials per recursion
step, and at recursion depth O (logm) all factors have norm < L [1/3; 1], so that the total time
to express log,y in tenlrnls o”f’ log,s for seS is bounded Dby

-17 -

The analysis of the storage needed for this algorithm is left to the reader. We refer to [17]
for some useful remarks conceming the implementation of this algorithm.

3. Factoring integers

(3.1) Introduction

A well-known method to factor a composite number n, Pollard’s p—1 method, is based on the
following observation. For a prime p and any multiple k¥ of the order p—1 of (Z/p Zy, we
have a* = 1 mod p, for any integer a that is not divisible by p. Therefore, if p divides n,
then p divides gcd(a*—1, n), and it is not unlikely that a non-trivial divisor of n is found by
computing this gcd. This implies that prime factors p of n for which p—1 is s-smooth, for
some s € Z,;, can often be detected in O (slog,n) operations in Z/nZZ, if we take k as in
(2.6), with B = n. Notice that, in this method, we consider a multiplicative group modulo an
unspecified prime divisor of n, and that we hope that the order of this group is smooth (cf.
2.1)).

Unfortunately, this method is only useful for composite numbers that have prime factors p
for which p—1 is s-smooth for some small s. Among the generalizations of this method
[6,47,69] one method, the elliptic curve method [37], stands out: instead of relying on fixed
properties of a factor p, it depends on properties that can be randomized, independently of p.
To be more precise, the multiplicative group (Z/p Z)' of fixed order p-1, is replaced by the
set of points of an elliptic curve modulo p. This set of points is a group whose order is close
to p; varying the curve will vary the order of the group and trying sufficiently many curves
will almost certainly produce a group with a smooth order.

Another way of randomizing the group is by using class groups. For a small positive
integer ¢t with t = —n mod 4, we have that A =—tn satisfies A=1mod 4 if n is odd.
According to (1.19) a factorization of A can be obtained if we are able to compute an odd mul-
tiple of the largest odd divisor of the class number h,. If h, is s-smooth, such a multiple is
given by k as in (2.6), where p ranges over the primes 2 <p < s, and B = 1A112%®) (cf.
(1.18)). By varying ¢, we expect to find a smooth class number after a while: with
s =L, [1/2], we expect L, [1/2] trials (cf. (1.1), (1.18)), so that, with (2.6) and (1.19), it takes
expected time L, [1] to factor n. For details of this method, the class group method, we refer
to [56].

In this section we will discuss the elliptic curve method (Section 3.2), its consequences for
other methods (Section (3.9)), and a very practical factoring algorithm that does not depend on
the use of elliptic curves, the multiple polynomial variation of the quadratic sieve algorithm
(Section (3.19)).

Other methods and extensions of the ideas presented here can be found in [31,39,54]. The
running times we derive are only informal upper bounds. For rigorous proofs of some of the
results below, and for lower bounds, we refer to [49] and [S1].

(3.2) Factoring integers with elliptic curves
Let n be a composite integer that we wish to factor. In this section we present an algorithm to
factor n that is based on the theory of elliptic curves. The running time analysis of this factor-
ing algorithm depends upon an as yet unproved hypothesis, for which we refer to Remark
(3.6).
(3.3) The elliptic curve method (cf. [37]). We assume that n > 1, that ged(n, 6) = 1, and that
n is not a power with exponent > 1; these conditions can easily be checked. To factor n we
proceed as follows: :
Randomly draw a,x,y € Z/nZ, put P =(x:y:1) e V, (cf. (1.10)), and select an
integer k£ as in (2.6) (with s and B to be specified below). Attempt to compute &P by
means of the algorithm described in (1.12). If the attempt fails, a divisor d of n with

-18 -

1 <d <n is found, and we are done; otherwise, if we have computed kP, we start all
over again.
This finishes the description of the algorithm.

(3.4) Explanation of the elliptic curve method. We expect this algorithm to work, for a suit-
able choice of k, for the following reason. Let p and ¢ be primes dividing n withp < ¢. In
most iterations of the algorithm it will be the case that the pair a, yz—x3—ax when taken
modulo p (q) defines an elliptic curve over IF, (IF;). Now suppose that k is a multiple of the
order of P,; the value for k will be chosen such that a certain amount of luck is needed for
this to happen If it happens, it is unlikely that we are so lucky for g as well, so that k is not
a multiple of the order of P,. Then kP cannot have been computed successfully (see (1.12)),
but a factorization of n has been found instead.

(3.5) Running time analysis. Let p be the smallest prime divisor of n, and let B € R,,. We
assume that the probability that the order of P, is smooth with respect to L, [B] is approxi-
mately L, [-1/(2B)] (cf. (1.1) and (1.6), and see Remark (3.6)). Therefore, 1f we take k as in
2.6) w1th s=L, [B] and B p+2*f— +1 (cf. (1.6)), then about one out of every L, [1/2B)]
iterations will be successful in factoring n. According to (2.6) and (1.12) each xteranon takes
o, [B)-logp) additions in V,, which amount to O (L, [BlQogp)(ogn)2) bit operations. The
total expected running time therefore is 0 ((logp)(logn)2L [B+1/(2B)])) which becomes
O ((logn)L,, [V2]) for the optimal choice B =

Of course the above choice for k depends on the divisor p of n that we do not know yet.
This can be remedied by replacing p by a tentative upper bound v in the above analysis. If
one starts with a small v that is suitably increased in the course of the algorithm, one finds that
a non-trivial factor of n can be found in expected time O ((logn)2L [¥2]), under the assump-
tion made in (3.6). In the worst case v = Vn this becomes L, [1] The storage required is
O (logn).

Another consequence is that for any fixed o € R, an integer n can be tested for smooth-
ness with respect to v = L, [a] in time L, [0]; in case of smoothness the complete factorization
of n can be computed in time L, [0] as well.

For useful remarks conceming the implementation of the elliptic curve method we refer to

[10] and [42].
(3.6) Remark. A point that needs some further explanation is our assumption in (3.5) that the
order of P, is L, [B]-smooth with probability approximately L, [-1/2B)]. Let E; ,,(]FP) be the
group under cons1deranon Regarding @ and b as random mtegers modulo p, Proposition
(1.7) asserts that the probability that #E b(F,,) is smooth with respect to L, [B] and contained
in the interval (p—\p +1 -ﬁ‘-/_.p +Vp +1), is essenually the same as the pmbabxhty that a random
integer in (p—Vp +1,p+Vp +1) is L, [B]-smooth.

From (1.1) we know that a random integer <p is L, [B]-smooth with probability
L,[-1/2B)], and we assume here that the same holds for random integers in
(p—‘/_ +1,p+Vp +1). Because this has not been proved yet, the running times in (3.5) are con-
jectural.

Of course, if #E,;(]Fp) is L, [B]-smooth, then the order of P, is L, [B]-smooth as well.

(3.7) A rigorous smoothness test. As explained in (3.6), the running times in (3.5) are conjec-
tural. The result concerning the elliptic curve smoothness test can, however, be rigorously
proved, in a slightly weaker and average sense. Briefly, the following has been shown in [51].
Let for some real number Y the set S(y) be as in [51] the set of primes p, 3<p <y, for
which the number of ¢%®*.smooth integers in the interval (p—Vp p+Vp) is more than
\p -e~Gowy)'loglowy¥6 A5 shown in [51] it follows from a result in [25] that #S(y) is reason-
ably close to m(y), the number of all primes <y. Define y,(x,y, z) as the number of

-19 -

integers < x that are built up from primes p such that p <z or p € S(y). For the proper y
and z, this function y(x, y, z) behaves as y(x, y) (cf. (1.1)):

38w, L [B], e®Er)) = xL, [-1/2P)),

for B € Ry fixed (cf. [51, Lemma 3.1]). We say that an integer < x is (x, y)-smooth if it is
built up from primes p such that p < e%@8°%’ or p € S(y).

It follows from (3.8) that (n, L, [B])-smooth numbers occur asymptotically about as fre-
quently as ordinary L, [B]-smooth numbers. Furthermore, it can be proved that an (n, L, [B])-
smooth number < n can be recognized with hlgh probability in time L, [0]. This is done as
follows. First, the prime factors < e541°8°6")° are removed by trial division. If the resulting
quotient @ is not equal to 1, apply the elliptic curve method to find the factors < L, [B] of a.
If a is (n, L, [B])-smooth, then all factors in the second stage are actually in S(L, [BD.
Because of the way S (y) is defined, it can be proved that, in case of smoothness, the complete
factorization will be found with probability at least 1—(loga)/a and in time L, [0] (cf. [51,
Theorem 2.1]).

(3.9) Applications of the elliptic curve method to older factorization methods
The elliptic curve smoothness test that we have seen at the end of (3.5) appears to be very use-
ful as an auxiliary tool in various other subexponential integer factoring algorithms. In this
section we will illustrate this with three examples. We abbreviate L, [B] to L [B].

(3.10) Dixon’s random squares algorithm (cf. [23,49]). Let n be a composite integer that we
wish to factor, and let B € R, In this algorithm one attempts to find integers x and y such
that x2 = y? mod n in the following way:

(1) randomly select integers m until sufficiently many are found for which the least positive
residue r (m) of m? mod n is L [B]-smooth;

(2) find a subset of the m’s such that the product of the corresponding r(m)’s is a square, say
- x%

(3) put y equal to the product of the m’s in this subset, then x?=y?mod n.

Dixon has shown that, if n is composite, not a prime power, and free of factors <L [B], then
with probability at least 1/2, a factor of n will be found by computing gcd(x+y, n), for x and
y as above (cf. [23]). Therefore, we expect to factor n if we repeat the second and third step
a small number of times.

Before analysing the running time of this algorithm, let us briefly explain how the second
step can be done. First notice that n(L [B]) = L [B] (cf. (1.1)). Therefore, each r(m) can be
represented by an L [B]-dimensional integer vector whose ith coordinate is the number of times
the ith prime occurs in r(m). A linear dependency modulo 2 among those vectors then yields
a product of r(m)’s where all primes occur an even number of times, and therefore the desired

. This idea was first described in [43].

To analyse the running time of the random squares algorithm, notice that we need about
L [B] smooth m’s in the first step to be able to find a linear dependency in the second step.
According to (1.1) a random integer < n is L [B]-smooth with probability L [-1/(2B)], and
according to (3.5) such an integer can be tested for smoothness with respect to L [B] in time
L [0]. One L [B]-smooth r(m) can therefore be found in expected time L [1/(2B)], and L (B] of
them will take time L [B+1/(2B)]. It is on this point that the random squares algorithm distin-
guishes itself from the other factoring algorithms in this section. Namely, it can be proved
that, for random m’s, the r(m)’s behave with respect to smoothness properties as random
integers < n (cf. [23]). This makes it possible to give a rigorous analysis of the expected run-
ning time of the random squares algorithm. For practical purposes, however, the algorithm
cannot be recommended.

The linear dependencies in the second step can be found by means of Gaussian elimination
in time L [3B]. The whole algorithm therefore runs in expected time L [max(B+1/(2B), 3B)1.

-20 -

This is minimized for B = 1/2, so that we find that the random squares algorithm takes time
L [3/2) and storage L [1].

As in algorithm (2.12), however, we notice that at most logyn of the L [B] coordinates of
each vector can be nonzero. To multiply the matrix consisting of the vectors representing
r(m) by another vector takes therefore time at most (logon)L [B] = L [B]. Applying the coor-
dinate recurrence method (cf. (1.23)) we conclude that dependencies can be found in expected
time L [2p], so that the random squares algorithm takes }ggected time L [max(B+1/(2B), 2B)],
which is L [V2] for B = V1/2. The storage needed is L [V1/2]. The random squares algorithm
is the fastest, fully proved factoring algorithm; for a rigorous proof using the smoothness test
from (3.7) we refer to [S1]. Notice that the random squares algorithm is in a way very similar
to the index calculus algorithm (2.12).

(3.11) The continued fraction algorithm (cf. [43]). If we could generate the m’s in step (1) of
the random squares algorithm in such a way that the r(m)’s are small, say < Vn, then the
r(m)’s would have a higher probability of being smooth, and that would probably speed up the
factoring algorithm. This is precisely what is done in the continued fraction algorithm. Sup-
pose that n is not a square, let a;/b; denote the ith continued fraction convergent to Vn, and
let r(a;) = a~nb?. It follows from the theory of continued fractions (cf. [27, theorem 164])
that Ir(a;)! < 2Vn . Therefore we replace the first step of the random squares algorithm by
the following:
Compute a; mod n and r(a;) fori =1, 2, ... until sufficiently many L [B]-smooth r(a;)’s
are found.
The computation of the a; mod n and r(a;) can be done in O ((logn)2) bit operations (given
the previous values) by means of an iteration that is given in [43]. The second step of the ran-
dom squares algorithm can be adapted by including an extra coordinate in the vector represent-
ing r(a;) for the factor —1. The smoothness test is again done by means of the elliptic curve
_method. Assuming that the |r(g;)! behave like random numbers < 2\n the probability of
smoothness is L [1/(4B)], so that the total running time of the algorithm becomes
L [max(B+1/(4B), 2P)). With the optimal choice p = 1/2 we find that time and storage are
bounded by L [1] and L [1/2], respectively.
We have assumed that the Ir(a;)! have the same probability of smoothness as random
numbers < 2¥n . The fact that all primes p dividing r(a;) and not dividing n satisfy (-I-’"-) =1,

is not a serious objection against this assumption; this follows from (3.17) under the assump-
tion of the generalized Riemann hypothesis. More serious is that the r(q;) are generated in a
deterministic way, and that the period of the continued fraction expansion for Yn might be
short. In that case one may replace n by a small multiple.

~ The algorithm has proved to be quite practical, where we should note that in the implemen-
tations the smoothness of the 7 (a;) is usually tested by other methods. For a further discussion
on the theoretical justification of this method we refer to [49].

(3.12) Seysen’s class group algorithm (cf. [61]). Let n be the composite integer to be fac-
tored. We assume that n is odd, and that —n = 1 mod 4, which can be achieved by replacing
n by 3n if necessary. Put A = —n, and consider the class group C, (cf. (1.14)). We introduce
some concepts that we need in order to describe the factorization algorithm.

(3.13) Randomly generating reduced forms with known factorization. Consider the prime
forms /,, with p < c-(loglAl)z, that generate C, (cf. (1.20)). Lete, € {0, 1, ..., IAl-1} be
randomly and independently selected, for every I,. It follows from the bound on the class
number h, (cf. (1.18)) and from the fact that the /, generate C 5, that the reduced form]'[1;’
behaves approximately as a random reduced form in C,, i.e.: for any reduced form f € C,

we have that f =]"[1;” with probability (140 (1))/h, for n — o (cf. [61, Lemma 8.2]).

221 -

(3.14) Finding an ambiguous form. Let B € R,g; notice that L B] > c-(loglAI)z. We attempt
to find an ambiguous form (cf. (1.17)) in a way that is more or less similar to the random
squares algorithm.

A randomly selected reduced form (a, b) € C, can be written as [], < L[B]Ip with proba-
bility L [-1/(4B)] (cf. (1.21)), where at most O (loglAl) of the exponents z, are non-zero.
According to (3.13) we get the same probability of smoothness if we generate the forms (a, b)
as is done in (3.13). Therefore, if we use (3.13) to generate the random reduced forms, we
find with probability L [-1/(4f)] a relation

I1 lp’ = JI Ip’.
p Sc-(oglal)? psSLB]
p prime p prime
With r, =e,—t,, where e, =0 forp > c'(loglAl)z, we get
(3.15) Il 7 =1a
psSLIB
p prime

Notice that at most c-(logl Al y>+log 1Al of the exponents r, are non-zero. If all exponents are
even, then the left hand side of (3.15) with r, replaced by r,/2 is an ambiguous form. There-
fore, if we have many equations like (3.15), and combine them in the proper way, we might be
able to find an ambiguous form; as in the random squares algorithm this is done by looking for
a linear dependency modulo 2 among the vectors consisting of the exponents 7,,.

There is no guarantee, however, that the thus constructed ambiguous form leads to a non-

trivial factorization of |Al. Fortunately, the probability that this happens is large enough, as
shown in [61, Proposition 8.6] or [36, Section (4.6)]: if L [B] equations as in (3.15) have been
determined in the way described above, then a random linear dependency modulo 2 among the
exponent-vectors leads to a non-trivial factorization with probability at least 1/2—o(1).
(3.16) Running time analysis. The L [B]xL [B]-matrix containing the exponent-vectors is
sparse, as reasoned above, so that a linear dependency modulo 2 can be found in expected time
L [2B] by means of the coordinate recurrence method (cf. (1.23)). For a randomly selected
reduced form (a, b), we assume that a can be tested for L [B]-smoothness in time L [0] (cf.
(3.5)). Generation of the L [B] equations like (3.15) then takes time L [B+1/(4B)], under the
assumption of the GRH. The whole algorithm therefore takes expected time
L [max(B+1/(4B), 2B)], which is L[1] for B = 1/2, under the assumption of the generalized
Riemann hypothesis.

We can prove this expected running time rigorously under the assumption of the GRH, if we
adapt the smoothness test from (3.7) to this situation. Let \uA(x y) be the number of positive
integers < x that are built up from primes p <y for which (—) = 1. Under the assumption of

the generalized Riemann hypothesis we have that
(3.17) Walx, L [B]) = x-L [-1/(4B)],
where x = VIAI/2 and with B € R, fixed (cf. [61, Theorem 5.2]). Let S(y) be as in (3.7),
and let y, ;(x, y, z) be the number of posmve integers < x that are built up from primes p for
whichp <z orp € S(y), and for which (-—) =1.

As in (3.7) we have that for the proper x y, and z, the function Wy, (x, y, z) behaves as
Yalx, y):
(3.18) yau(x, L[B], 54068 = x-L [-1/(4P)),
where again x = VIAI/2 and B € R, fixed. This follows from (3.17) and the proof of [51,

Lemma 3.1}, under the assumption of the GRH. We say that an integer S x is (x, y, A)-
smooth if it is built up from primes p with (—) =1 and such that p < e“ﬂ"‘lw‘)‘ or

-22-

p € S(y); define (x, y, A)-smoothness for forms correspondingly.

From [61, Lemma 5.1] we have that the number of L [B]-smooth reduced forms (a, b) with
a <VIAI/2 is at least W,(NTAT/2, L [B]), and it follows then easily from (3.17) and the bound
on h, from (1.18) that a random reduced form is L [B]-smooth with probability at least
L[-1/(4B)]. Similarly one proves, using (3.18), that a random reduced form is
(VIA172, L [B], A)-smooth with probability at least L [-1/(4B)]. If we therefore use this some-
what stronger notion of smoothness in (3.14), we still have a probability L [-1/(4p)] to find a
relation as in (3.15). The smoothness test is done as explained in the last paragraph of (3.7).
It follows from (3.7) that, in case of smoothness, the complete factorization will be found with
probability at least 1-(loga)/a, where a is the least prime in S(L [B]) that is > ¢S40oglogn)’,
The time needed for the smoothness test is L [0].

From these observations it follows that a random reduced form that is (\fTZT , L[B], A)-
smooth, can be found in expected time L [1/(4B)]. We conclude that, under the assumption of
the generalized Riemann hypothesis, this version of Seysen’s class group algorithm can be
rigorously proved to run in expected time L [1]. This improves Seysen’s result. We refer to
[36] for a more detailed proof.

(3.19) The quadratic sieve algorithm

In this final section about factorization algorithms, we briefly describe a practical factoring
algorithm that runs in expected time L, [1], and that existed before the elliptic curve method.
As the methods from the previous section, but unlike the elliptic curve method, the running
time of the algorithm to be presented here does not depend on the size of the factors.
Nevertheless, the method has proved to be very useful, especially in cases where the elliptic
curve method performs poorly, ie., if the number n to be factored is the product of two
primes of about the same size. We abbreviate L, [] to L [B].

(3.20) Pomerance’s quadratic sieve algorithm (cf. [49]). The quadratic sieve algorithms only
differ from the algorithms in (3.10) and (3.11) in the way the L [B]-smooth quadratic residues
modulo n are determined, for some B € R,y In the ordinary quadratic sieve algorithm that is
done as follows. Let r(X) = ([\51_ H+X y-n be a quadratic polynomial in X. For any m € Z
we have that r(m) = ([Vn J+m)*mod n is a square modulo n, so in order to solve
x2=y2mod n we look for = L [B] integers m such that r (m) is L [B]-smooth.

Let o € IRy, and let Im| < L[a]. Then Ir(m)l =0(L [o]Vn), so that Ir(m)! is L [B]-
smooth with probability L [-1/(4B)] according to (1.1), if 17(m)| behaves as a random integer
<L [a)]Vn . Under this assumption we find that we must take & > B+1/(4f3), in order to obtain
sufficiently many smooth r(m)’s for Im | < L [a].

We have that (2)=1 for primes p #2 not dividing n, because if plr(m), then

([Vn #m)* = n mod p. As in (3.11), this is not a serious objection against our assumption
that the r (m) have the same probability of smoothness as random numbers of order L [o]Vn
(cf. (3.17) under the GRH). The problem is to prove that at least a certain fraction of the
r(m)’s with |m | < L [o] behave with respect to smoothness properties as random numbers of
order L [a]*frT . For a further discussion of this point see [49].

Now consider how to test the L [a] numbers r (m) for smoothness with respect to L [B]. Of
course, this can be done by means of the elliptic curve smoothness test in time L [a] (cf.
(3.5)), thus giving a method that runs in time L [max(B+1/(4B), 2B)] = L [1] for B=1/2 (cf.
(1.23)). The same time can, however, also be achieved without the elliptic curve method. Let
p be a prime <LI[B] not dividing n such that p #2 and (%) = 1. The equation
r(X) =0 mod p then has two solutions m,(p) and m,(p), which can be found by means of a
probabilistic method in time polynomial in logp (cf. [31, Section 4.6.2]). But then
r(m;(p)y+kp) = 0 mod p for any k € Z. Therefore, if we have a list of values of r(m) for all
consecutive values of m under consideration, we easily find the multiples of p among them at

-23-

locations m; (p y+kp for any k € Z such that |m;(p)+kp | < L[a], and i =1, 2. For every p
this takes twice time L [a)/p, so that for all p < L [B] with (%) = 1 together, this so-called

sieving can be done in time 3, L [al/p =L [a]. A similar procedure takes care of the powers
of p and p =2. We conclude that we indeed get the same time L [1] as with the elliptic curve
smoothness test, but now we need to store all L [1] values r(m). We should note, however,
that sieving is in practice much faster than applying the elliptic curve smoothness test, and that
the sieving interval can easily be divided into smaller consecutive intervals, to reduce the
storage requirements. (Actually, not the 7 (m) but their logarithms are stored, and the r(m) are
not divided by p but logp is subtracted from logr(m) during the sieving.) For other practical
considerations we refer to [49].

(3.21) The multiple polynomial variation (cf. [50,63]). Because there is only one polynomial
in (3.20) that generates all smooth numbers that are needed, the size of the sieving interval
must be quite large. Also, the quadratic residues 7 (m) grow linearly with the size of the inter-
val, which reduces the smoothness probability. If we could use many polynomials as in (3.20)
and use a smaller interval for each of them, we might get a faster algorithm. This idea is due
to Davis (cf. [20]); we follow the approach that was independently suggested by Montgomery
(cf. [50,63]).

Let r(X) = a®X%+bX +c, for a, b, c € Z. In order for r(m) to be a quadratic residue
modulo n, we require that the discriminant D = b%4a’c is divisible by n, because then
r(m) = (@m+b/2a))* mod n. We show how to select a, b and ¢ so that
Ir(m)! =0 [o]¥n) for Im| < L[c). Let D =1 mod 4 be a small multiple of n, and let
a =3 mod 4 be free of primes < L [B] (if p divides a then r(X) has at most one root modulo
p), such that a? = VD /L [o] and the Jacobi symbol (%) equals 1. For a we take a probable

prime satisfying these conditions (cf. (4.3)). We need an integer b such that b%=D mod 4a%
the value for ¢ then follows. We put b; = D®*Y* mod g, so that b = D mod a because a
is a quadratic residue modulo D and D =1mod4. Hensel’s lemma now gives us
b = b+a-((2b) (D -b}?)la) mod a); if b is even, we replace b by b—a?, so that the result
satisfies b2 = D mod 4a>.

It follows from a2 = VD /L[] that b = O (VD /L [a]), so that ¢ = O (L [a]ND). We find
that r(m)=0([0]ND) for Im| < L [o]). For any a as above, we can now generate a qua-
dratic polynomial satisfying our needs. Doing this for many a’s, we can sieve over many
shorter intervals, with a higher probability of success. Remark that this can be done in parallel
and independently on any number of machines, each machine working on its own sequence of
a’s.

4. Primality testing

(4.1) Introduction

As we will see in Section (4.2) it is usually easy to prove the compositeness of a composite
number, without finding any of its factors. Given the fact that a number is composite it is in
general quite hard to find its factorization, but once a factorization is found it is an easy matter
to verify its correctness. For prime numbers it is just the other way around. There it is easy
to find the answer, i.e., prime or composite, but in case of primality it is not at all straightfor-
ward to verify the correctness of the answer. The latter problem, namely proving primality, is
the subject of this section. By primality test we will mean an algorithm to prove primality.

In Section 3 we have seen that replacing the multiplicative group (Z/p Z)' in Pollard’s p—1
method by the group E (Z/p Z), for an elliptic curve E modulo p, resulted in a more general
factoring algorithm. In this section we will see that a similar change in an older primality test
that is based on the properties of (Z/p Z) , leads to new primality tests.

-2 -

This older algorithm is reviewed in Section (4.2), together with some well-known results
concerning probabilistic compositeness algorithms. The primality tests that depend on the use
of elliptic curves are described in Section (4.6).

More about primality tests and their implementations can be found in [68] and [39].

(4.2) Some classical methods

Let n be a positive integer to be tested for primality. In this section we review a method,
based on a variant of Fermat's theorem, by which compositeness of n can easily be proved. If
n has not been proved to be composite by this method, then it is considered to be very likely
that n is a prime; actually, such numbers are called probable primes. It remains to prove that
such a number is prime. For this purpose, we will present a method that is based on a
theorem of Pocklington, and that makes use of the factorization of n—1.

(4.3) A probabilistic compositeness test. Fermat’s theorem states that, if n is prime, then
a” =a mod n for all integers a. Therefore, to prove that n is composite, it suffices to find
an integer a for which a” # a mod n; such an a is called a witness to the compositeness of
n. Unfortunately, there exist composite numbers, the so-called Carmichael numbers, for which
no witnesses exist, so that a compositeness test based on Fermat’s theorem cannot be
guaranteed to work.

The following variant of Fermat's theorem does not have this disadvantage: if n is prime,
then a* = +1 mod n or a*? =-1 mod n for an integeri € (1, 2, ..., k=1}, whereO<a <n
and n—-1=u-2* with u odd. Any a for which no such i exists is again called a witness to
the compositeness of n; if a is not a witness we say that n passes the test for this @. It has
been proved [53] that for an odd composite n, there are at least 3(n—1)/4 witnesses among
{1,2, ..., n—=1}. Therefore, if we randomly select some a’s from this interval, and subject n
to the test using these a’s, it is rather unlikely that a composite n passes all tests. A number
passing several tests, say 10, is called a probable prime.

Miller has shown that, if the generalized Riemann hypothesis holds, then there is for each
composite n a witness in {2, 3, .., c-(logn)?} for some effectively computable constant ¢
[41]; according to [5] the value ¢ = 2 suffices. Notice that a proof of the generalized Riemann
hypothesis therefore would lead to a primality test that runs in time polynomial in logr. For a
probabilistic compositeness test based on Jacobi symbols see [64]; this test is weaker than the
above test, in the sense that for composite n there is a smaller number of witnesses to the
compositeness of n.

Now that we can recognize composite numbers, let us consider how to prove the primality
of a probable prime.

(4.4) Pocklington’s theorem (cf. [45]). Let n be an integer > 1, and let s be a positive divi-
sor of n—1. Suppose there is an integer a satisfying

a"'=1modn,

ged(@®~Ya—1, n) = 1 for each prime q dividing s.

Then every prime p dividing n is 1 mod s, and if s > Vn -1 then n is prime.

We omit the proof of this theorem, as it can easily be deduced from the proof of a similar
theorem below (cf. (4.7)), by replacing the role that is played by E(Z/p Z) in that proof by
(Z/pZ) here. Instead, let us consider how this theorem can be employed to prove the primal-
ity of a probable prime n.

Apparently, to prove the primality of n by means of this theorem, we need a factor s of
n-1, such that s > Vn —1, and such that the complete factorization of s is known. Given such
an s, we simply select non-zero integers a € Z/nZ at random until both conditions are
satisfied. For such a, the first condition must be satisfied, unless n is composite. The second
condition might cause more problems, but if n is prime then ¢—1 out of ¢ choices for a will
satisfy it, for a fixed ¢ dividing s. Therefore, if an a satisfying both conditions is not found

=25 -

after a reasonable number of trials, we begin to suspect that n is probably not prime, and we
subject n to some probabilistic compositeness tests as in (4.3).

The main disadvantage of this method is that an s as above is not easy to find, because fac-
toring n—1 is usually hard. If n is prime, then n—1 is the order of (Z/p Z)' for the only prime
p dividing n; in the next section we will randomize this order by replacing (Z/p Z) by
E(Z/pZ). For other generalizations of this method we refer to the extensive literature on this
subject [11,39,54,60,68]. _ '

(4.5) The Jacobi sum test (cf. [3,16]). The first primality test that could routinely handle
numbers of a few hundred decimal digits was the Cohen-Lenstra version [16] of the primality
test by Adleman, Pomerance, and Rumely [3]. It runs in time (logn)0 dogloglogn) which makes
it the fastest deterministic primality test. Details conceming the implementation of this algo-
rithm can be found in [15].

(4.6) Primality testing using elliptic curves

We assume that the reader is familiar with the material and the notation introduced in Section
(1.2). In this section we discuss the consequences of the following analogue of Theorem (4.4).

(4.7) Theorem. Let n > 1 be an integer with gcd(n,6)=1. Let E = E,;, be an elliptic
curve modulo n (cf. (1.9)), and let m and s be positive integers with s dividing m. Suppose
there is a point P € (V,—{0 NNE(Z/nZ) (cf. (1.10)) satisfying

m-P =0 (cf. (1.12)),

(m/q)-P is defined and different from O, for each prime q dividing s,
where in (1.12) we choose the a that is used in the definition of the elliptic curve E, ,. Then
#E(IF,) = 0 mod s for every prime p dividing n (cf. (14), (1.9)), and if s > (n'4+1)? then n
is prime.
Proof. Let p be a prime dividing n, and let Q = (m/s)-P. Because P, € E(F,), we have
that 0, € E(TF,), according to (1.9) and (1.11). From m-P = O it follows that s-Q = O, so
that, according to (1.11), the order of Q, divides s. But for a prime ¢ dividing s we have
that (s/q)-@, = (m/q)-P, # O,, because (m/q)P # O (cf. (1.11)). The order of Q,, is there-
fore not a divisor of s/q, for any prime ¢ dividing s, so this order equals s, and we find that
#E(IF,) =0 mod 5.

In (1.6) we have seen that #E(IF,) = p+1-t, for some integer ¢ with 1t] < 2‘/17 (Hasse’s
inequality). It follows that (p'2+1)? 2 #E(FF,). With s > (n"*+1)? and #E(F,) = 0 mod s
this implies that p > Vn , for any prime p dividing n, so that n must be prime. This proves
the theorem.

(4.8) Remark. The proof of theorem (4.4) follows the same lines, with p—1 replacing m.

Theorem (4.7) can be used to prove the primality of a probable prime n in the following way,
an idea that is due to Goldwasser and Kilian (cf. [26]); for earlier applications of elliptic curves
to primality tests see [9] and [14].

(4.9) Outline of the primality test. First, select an elliptic curve E over Z/nZ and an integer
m, such that m = #E (Z/nZ) if n is prime, and such that m can be written as kg for a small
integer k > 1 and probable prime ¢ > (n'*+1)%. Next, find a point P e E(Z/nZ) satisfying
the requirements in Theorem (4.7) with s = ¢, on the assumption that ¢ is prime. This is
done as follows. First, use (1.13) to find a random point P € E(Z/nZ). Next, compute
(m/q)-P = k-P; if k-P is undefined, we find a non-trivial divisor of n, which is exceedingly
unlikely. If k-P = O, something that happens with probability < 1/2 if n is prime, select a
new P and try again. Otherwise, verify that ¢-(k-P) = m-P = O, which must be the case if n
is prime, because in that case #E(Z/nZ)=m. The existence of P now proves that n is
prime if ¢ is prime, by (4.7). Finally, the primality of ¢ is proved recursively.

-26 -

We will discuss two methods to select the pair E, m.

(4.10) The random curve test (cf. [26]). Select a random elliptic curve E modulo n, and
attempt to apply the division points method mentioned in (1.8) to E. If this algorithm works,
then it produces an integer m that is equal to #E (Z/nZ) if n is prime. If the algorithm does
not work, then n is not prime, because it is guaranteed to work for prime 7.

This must be repeated until m satisfies the requirements in (4.9).

(4.11) The running time of the random curve test. First remark that the recursion depth is
O (ogn), because k > 1 so that ¢ < n +1)2/2 (cf. (1.6)). Now consider how often a random
elliptic curve £ modulo n has to be selected before a pair E, m as in (4.9) is found. Assum-
ing that n is prime, #E (Z/nZ) behaves approximately like a random integer near n, according
to Proposition (1.7). Therefore, the probability that m = kg with k and g as in (4.9) should
be of the order (logn)1, so that O (logn) random choices for E should suffice to find a pair E,
m.
The problem is to prove that this probability is indeed of the order (logn)™, for a positive
constant ¢. This can be shown to be the case if we suppose that there is a positive constant ¢
such that for all x € R,, the number of primes between x and x+V2x (cf. (1.6)) is of the
order Vx (logx)™. Under this assumption, the random curve test proves the primality of n in
expected time O ((logn)**) (cf. [26]).

By a theorem of Heath-Brown, the assumption is on the average correct. In [26] it is shown
that this implies that the fraction of primes n for which the algorithm runs in expected time
polynomial in logn, is at least 1-O (2"“"‘“’), where | = [logyn]. In their original algorithm,
however, Goldwasser and Kilian only allow k = 2, i.e., they wait for an elliptic curve E such
that #E(Z/nZ) = 2q. By allowing more values for k, the fraction of primes for which the
algorithm runs in polynomial time can be shown to be much higher [52] (cf. [2]). For a pri-
mality test that runs in expected polynomial time for all n see (4.14) below.

Because the random curve test makes use of the division points method, it is not considered

to be of much practical value. A practical version of (4.9) is the following test, due to Atkin
[4].
(4.12) The complex multiplication test [4]. Here one does not start by selecting E, but by
selecting the complex multiplication field L of E (cf. (1.8)). The field L can be used to calcu-
late m, and only if m is of the required form kq (cf. (4.9)), one determines the pair a, b
defining E .

This is done as follows. Let A be a negative fundamental discriminant < -7, i.e., A=0 or
1 mod 4 and there is no s € Z,; such that A/s? is a discriminant. Denote by L the imaginary
quadratic field Q(VA) and by A = Z[(A+VA)/2] its ring of integers (cf. (1.8)). We try to find v
with W =n in A. It is known that (%) =1 and (7';-) =1 for the odd prime divisors p of A

are necessary conditions for the existence of v, where we assume that gcd(n, 24) = 1. If these
conditions are not satisfied, select another A and try again. Otherwise, compute an integer
b € Z with b? = Amod n. This can for instance be done using a probabilistic method for
finding the roots of a polynomial over a finite field [31, Section 4.6.2], where we assume that
n is prime; for this algorithm to work, we do not need a proof that n is prime. If necessary
add n to b to achieve that b and A have the same parity. We then have that b% = A mod 4n,
and that n = Zn+2Z((b+VA)2) is a prime ideal in A with n-m =A-n. Attempt to solve
n = A-v by looking for a shortest non-zero vector u in the lattice n. If pfl = n then take
v = }; otherwise VW = n is unsolvable.

- Finding W, and v if it exists, can for example be done by means of the reduction algorithm
(1.15). With b as above, consider the form (a, b, c) witha =n and ¢ = (bz—A)/(4n). For
any two integers x and y the value ax2+bxy+cy2 of the form at x,y equals
Ixn+y ((b+VA)/2)1%/n, the square of the absolute value of the corresponding element of n

-27-

divided by n. It follows that b can be determined by computing integers x and y for which
ax*+bxy+cy? is minimal. More in particular, it follows that v with W = n exists if and only
if there exist integers x and y for which the form assumes the value 1.

Because gcd(n, 2A) = 1, we have that ged(n, b) = 1, so that the form (a, b, ¢) is primitive,
which makes the theory of (1.14) applicable. Apply the reduction algorithm (1.15) to
(a, b, ¢); obviously the set {ax*+bxy+cy?:x,y € Z} does not change in the course of the
algorithm. Because a reduced form assumes its minimal value for x = 1and y =0, the x and
y for which the original form (a, b, ¢) is minimized now follow, as mentioned in the last
paragraph of (1.15). The shortest non-zero vector L € 1 is then given by xn+y (b+)12).
Now remark that ax2+bxy+cy? = 1 if and only if the reduced form equivalent to (a,b,c)is
the unit element 1,. Therefore, if the reduced form equals 14, put v =, otherwise select
another A and try again because v with VW = n does not exist.

Assuming that v has been computed, consider m = (v-1)(V-1), and m’ = (-v-1)(-V-1). If
neither m nor m’ is of the required form, select another A and try again. (For n =1 mod 3
(n =1 mod 4) we should also include A = -3 (A =-4), as it gives rise to six (four) pairs E,
m (cf. [38]).) Supposing that m = kq, an elliptic curve E such that #E(Z/nZ)=m if n is
prime can be constructed as a function of a zero in Z/nZ of a certain polynomial F, € Z[X].
To determine this polynomial F , define, for a complex number z with Im z > 0,

o ;3 k
(14240 3 X4
@)= b
q - T10-¢*)*
k=1
where ¢ = e™. Then
b+VA
Fa= T x-j &2y
(a,b) 2a

with (a, b) ranging over the set of reduced forms of discriminant A, see (1.15). The degree of
F, equals the class number of L, and is therefore = VIAI. As these polynomials depend only
on A, they should be tabulated. More about the computation of these polynomials can be
found in [65, Sections 125-133].

Compute a zero j € Z/nZ of F over Z/nZ, and let ¢ be a quadratic non-residue modulo
n (assuming that n is prime). Put k = j/(1728-j), then k is well-defined and non-zero
because A < —7. Finally, choose E as the elliptic curve E3; g OF Egp 24,3 in such a way that
#E(Z/nZ) = m if n is prime; the right choice can be made as described at the end of (1.8).

The computation of v is dominated by the computation of VA mod n and therefore takes
expected time O ((logn »*) [31, Section 4.6.2]; with fast multiplication techniques this can be
reduced to O ((logn)**). It is reasonable to expect that one has to try O ((logn)#*€) values of
A before m (or m’) has the required form, so that we may assume that the final A is
0 ((ogn)*®). For a reduced form (a, b) and z=(b+VA)/(2a), q = €***, one can show that
Ij (z)—q’l 1<2100; and if, with the same notation, the summation in the definition of ;j(z) is
terminated after K terms and the product after K factors, then the error is O (K 3q). To
bound the coefficients of F, we notice that j(z) can only be large for small a. Since the
number of reduced forms (a, b) with a fixed a is bounded by the number of divisors of a,
there cannot be too many large j(z)’s. It follows that one polynomial F, can be computed in
time 1A12°® = 0 ((logn)**); it is likely that it can be done in time 1A1*® = 0 ((logn)™**)
using fast multiplication techniques. Assuming that n is prime, a zero of F, can be computed
in time O ((degF ,)*(logn)®) = O ((logn)**¢) (ordinary), or O ((degF ,)logn)**®) = O ((logn)»**9)
(fast). Heuristically, it follows that the whole primality proof takes time O ((logn)¢*€), which
includes the O (logn) factor for the recursion. The method has proved to be quite practical.

-28 -

With fast multiplication techniques one gets O ((logn »**¢). As J.O. Shallit observed the
latter result can be improved to O ((logn)), if we only use A’s that can be written as the pro-
duct of some small primes; to compute the square roots modulo n of the A’s, it then suffices to
compute the square roots of those small primes, which can be done at the beginning of the
computation.

(4.13) Remark. It should be noted that both algorithms based on (4.9), if successful, yield a
certificate of primality that can be checked in polynomial time.

(4.14) The abelian variety test (cf. [2]). A primality test that runs in expected polynomial time
for all n can be obtained by using abelian varieties of higher dimensions, as claimed by Adle-
man and Huang in [2]. We give the idea of their algorithm; our description is not complete
and serves only as an illustration of the method.

Abelian varieties are higher dimensional analogues of elliptic curves. By definition, an
abelian variety over a field K is a projective group variety A over K. The set of points A (K)
of an abelian variety over a field K has the structure of an abelian group. Moreover, if
K =F, then #A(F,) = p¢+0 ((4p¥~'7), where g is the dimension of A. One-dimensional
abelian varieties are the same as elliptic curves.

Examples of abelian varieties over FF,, for an odd prime p, can be obtained as follows. Let
f be a monic square-free polynomial of odd degree 2g+1 over I,, and consider the hyperel-
liptic curve y* = f (x) over IF,. Then the Jacobian A of this curve is an abelian variety of
dimension g over F,. The elemems of A(IF,) can in this case be regarded as pairs (a, b)
witha, b € T, [T], a monic, b? = =f moda and degree(b) < degree(a) < g. Note the anal-
ogy with the deﬁmnon of reduced forms in (1.14) and (1.15), with f playing the role of A.
The composition in the abelian group A (IF,) can be done as in (1.16) (cf. [13]).

The abelian variety test proceeds in a similar way as the random curve test, but with g =1
replaced by g = 2. The order of A (IF,) is then in an interval of length O (x**) around x = p2.
The main difference with the random curve test is that it can be proved that this interval con-
tains sufficiently many primes [29]. The problem of proving the primality of a probable prime
n is then reduced, in expected polynomial time, to proving the primality of a number of order
of magnitude n?. Although the recursion obviously goes in the wrong direction, it has been
claimed in [2] that, after a few iterations, we may expect to hit upon a number whose primality
can be proved in polynomial time by means of the random curve test (4.10).

References

1. L.M. Adleman, A subexponential algorithm for the discrete logarithm problem with appli-
cations, Proc. 20th IEEE Found. Comp. Sci. Symp. (1979), 55-60.

2. L.M. Adleman, M.A. Huang, Recognizing primes in random polynomial time, Proc. 19th
Annual ACM Symp. on Theory of Computing (1987), 462-469.

3. L.M. Adleman, C. Pomerance, R.S. Rumely, On distinguishing prime numbers from com-
posite numbers, Ann. of Math. 117 (1983), 173-206.

4. A.O.L. Atkin, personal communication.

5. E. Bach, Analytic methods in the analysis and design of number-theoretic algorithms,
MIT Press (1985).

6. E. Bach, J. Shallit, Factoring with cyclotomic polynomials, Proceedings 26th FOCS
(1985), 443-450.

7. T. Beth, N. Cot, I. Ingemarsson (eds), Advances in cryptology, Springer Lecture Notes in
Computer Science, Vol. 209 (1985).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

217.

28.

-29 -

Z1. Borevi¢, LR. Safarevit, Teorija Ctisel, Moscow 1964. Translated into German,
English and French.

W. Bosma, Primality testing using elliptic curves, report 85-12, Mathematisch Instituut,
Universiteit van Amsterdam 1985.

R.P. Brent, Some integer factorization algorithms using elliptic curves, research report
CMA-R32-85, The Australian National University, Canberra 1985. »

J.Brillhart, D.H. Lehmer, J.L. Selfridge, B. Tuckerman, S.S. Wagstaff, Jr., Factorizations
of b"+1, b =2,3,5,6,7,10,11,12 up to high powers, Contemporary Mathematics 22, Provi-
dence: AM.S., 1983.

E.R. Canfield, P. Erdds, C. Pomerance, On a problem of Oppenheim concerning "Factor-
isatio Numerorum", J. Number Theory 17 (1983), 1-28.

D.G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Math. Comp., 48
(1987), 95-101.

D.V. Chudnovsky, G.V. Chudnovsky, Sequences of numbers generated by addition in for-
mal groups and new primality and factorization tests, Advances in Appl. Math. 7 (1986),
187-237.

H. Cohen, A K. Lenstra, Implementation of a new primality test, Math. Comp. 48 (1987),
103-121.

H. Cohen, H.W. Lenstra, Jr., Primality testing and Jacobi sums, Math. Comp. 42 (1984),
297-330.

D. Coppersmith, Fast evaluation of logarithms in fields of characteristic two, IEEE Trans.
Inform. Theory, IT-30 (1984), 587-5%4.

D. Coppersmith, A.M. Odlyzko, R. Schroeppel, Discrete logarithms in GF(p), Algorith-
mica 1 (1986), 1-15.

D. Coppersmith, S. Winograd, Matrix multiplication via Behrend's Theorem, IBM techni-
cal report, 1986.

J.A. Davis, D.B. Holdridge, Factorization using the quadratic sieve algorithm, Sandia
National Laboratories Tech Rpt. SAND 83-1346 (Dec. 1983).

N.G. de Bruijn, On the number of positive integers < x and free of prime factors >y, 11,
Indag. Math. 38 (1966), 239-247.

M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkbrper, Abh.
Math. Sem. Hansischen Univ. 14 (1941), 197-272.

1.D. Dixon, Asymptotically fast factorization of integers, Math. Comp. 36 (1981), 255-
260.

T. ElGamal, A subexponential-time algorithm for computing discrete logarithms over
GF (p?), IEEE Trans. Inform. Theory, IT-31 (1985), 473-481.

J.B. Friedlander, J.C. Lagarias, On the distribution in short intervals of integers having no
large prime factor, J. Number Theory 25 (1987), 249-273.

S. Goldwasser, J. Kilian, Almost all primes can be quickly certified, Proc. 18th Annual
ACM Symp. on Theory of Computing (1986), 316-329.

G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, fifth edition, Oxford
Univ. Press, Oxford, 1979.

K. Ireland, M. Rosen, A classical introduction to modern number theory, Graduate Texts
in Math. 84, Springer-Verlag, New York 1982.

29.
30.

3L
32.

33.

35.
36.
37.

38.

39.
40,
41,
42,
43,
44,
45,
46.
47.
48,
49,

50.

- -30-

H. Iwaniec, M. Jutila, Primes in short intervals, Ark. Mat. 17 (1979), 167-176.

R. Kannan, A. Bachem, Polynomial algorithms for computing the Smith and Hermite nor-
mal forms of an integer matrix, SIAM J. Comput. 8 (1979), 499-507.

D.E. Knuth, The art of computer programming, vol. 2, Seminumerical algorithms, second
edition. Reading: Addison-Wesley (1981).

D.E. Knuth, The art of computer programming, vol. 3, Sorting and searching. Reading:
Addison-Wesley (1973).

J.C. Lagarias, Worst-case complexity bounds for algorithms in the theory of integral qua-
dratic forms, J. of Algorithms 1 (1980), 142-186.

J.C. Lagarias, H.L. Montgomery, A.M. Odlyzko, A bound for the least prime ideal in the
Chebotarev density theorem, Inventiones Math. 54 (1975), 137-144.

S. Lang, Algebraic number theory, Addison-Wesley, Reading, 1970.

A K. Lenstra, Fast and rigorous factorization under the generalized Riemann hypothesis,
technical report 87-007, Department of Computer Science, The University of Chicago,
1987.

H.W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math., 126 (1987),
649-673.

H.W. Lenstra, Jr., Elliptic curves and number-theoretic algorithms, Universiteit van
Amsterdam, report 86-19; to appear in Proceedings Intemational Congress of Mathemati-
cians 1986, Berkeley.

H.W. Lenstra, Jr., R. Tijdeman (eds), Computational methods in number theory, Math.
Centre Tracts 154/155, Mathematisch Centrum, Amsterdam 1982.

JL. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Inform. Theory 15
(1969), 122-127.

G.L. Miller, Riemann’s hypothesis and tests for primality, J. Comput. System Sci. 13
(1976), 300-317.

P.L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization,
Math. Comp., 48 (1987), 243-264.

M.A. Morrison, J. Brillhart, A method of factoring and the factorization of F4, Math.
Comp. 29 (1975), 183-205.

AM. Odlyzko, Discrete logarithms and their cryptographic significance, pp 224-314 in:
(7]

H.C. Pocklington, The determination of the prime and composite nature of large numbers
by Fermat's theorem, Proc. Cambridge Philos. Soc 18 (1914-16), 29-30.

S.C. Pohlig, M.E. Hellman, An improved algorithm for computing logarithms over GF(p)
and its cryptographic significance, IEEE Trans. Inform. Theory, IT-24 (1978), 106-110.
JM. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Philos.
Soc. 76 (1974), 521-528.

JM. Pollard, Monte Carlo methods for index computation (mod p), Math. Comp. 32
(1978), 918-924. '

C. Pomerance, Analysis and comparison of some integer factoring algorithms, pp 89-139
in: [39]

C. Pomerance, The quadratic sieve factoring algorithm, pp 169-182 in: [7].

51,

52.

53.

54.

55.

56.

57.

58.
59.

60.

61.

62.

63..

6S.
66.

67.

68.
69.

-31-

C. Pomerance, Fast, rigorous factorization and discrete logarithm algorithms, in: T. Nish-
izeki, H. Wilf (eds), Discrete algorithms and complexity, Proceedings of the Japan-US
joint seminar on discrete algorithms and complexity theory, Academic Press, to appear.

C. Pomerance, personal communication.

M.O. Rabin, Probabilistic algorithms for testing primality, J. Number Theory 12 (1980),
128-138. '

H. Riesel, Prime numbers and computer methods for factorization, Progr. Math. 57,
Birkh4user, Boston 198S.

R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and
public-key cryptosystems, Comm. ACM 21 (1978), 120-126.

C.P. Schnorr, H.W. Lenstra, Jr., A Monte Carlo factoring algorithm with linear storage,
Math. Comp. 43 (1984), 289-311.

A. Schdnhage, Schnelle Berechnung von Kettenbruchentwicklungen, Acta Informatica 1
(1971), 139-144.

R.J. Schoof, Quadratic fields and factorization, pp 235-286 in: [39].

R.J. Schoof, Elliptic curves over finite fields and the computation of square roots mod p,
Math. Comp. 44 (1985), 483-494.

J.L. Selfridge, M.C. Wunderlich, An efficient algorithm for testing large numbers for pri-
mality, pp. 109-120 in: Proc. Fourth Manitoba Conf. Numerical Math., University of
Manitoba, Congressus Numerantium XII, Utilitas Math. Winnipeg 1975.

M. Seysen, A probabilistic factorization algorithm with quadratic forms of negative
discriminant, Math. Comp. 48 (1987), 757-780.

J.H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Math. 106, Springer-
Verlag, New York 1986.

R.D. Silverman, The multiple polynomial quadratic sieve, Math. Comp. 48 (1987), 329-
339.

R. Solovay, V. Strassen, A fast Monte-Carlo test for primality, SIAM J. Comput. 6
(1977), 84-85; erratum, ibid., 7 (1978), 118.

H. Weber, Lehrbuch der Algebra, Bd. 3, Vieweg, Braunschweig, 1908.

AE. Western, J.C.P. Miller, Tables of indices and primitive roots, Royal Society
Mathematical Tables, vol. 9, Cambridge Univ. Press, 1968.

D.H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans. Inform.
Theory, IT-32 (1986), 54-62.

H.C. Williams, Primality testing on a computer, Ars Combin. § (1978), 127-185.
H.C. Williams, A p +1 method of factoring, Math. Comp. 39 (1982), 225-234.

