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1. Introduction. In this lecture we shall discuss a problem that has fasci-
nated many mathematicians throughout history, such as Eratosthenes (~ —284—
~ —202), Fibonacci (~ 1180— ~ 1250), Fermat (1601-1665), Euler (1707-1783),
Legendre (1752-1833), and Gauss (1777-1855). This is the problem of how to
find the prime factor decomposition of a given large integer.

Surveys of methods that are used for this purpose can be found in Riesel’s
recent book [27] and in the contributions to [21]. The present lecture is devoted
to a development that took place since the appearance of Riesel’s book, namely,
the introduction of elliptic curves.

Two stages can be distinguished in most methods to find the prime factoriza-
tion of a given number. In the first stage (primality testing) one decides whether
the number is prime or composite. In the second stage (factorization) one finds
a nontrivial divisor of the number, if it is composite. It is clear that the complete
prime factor decomposition can be obtained by applying a primality testing al-
gorithm and a factorization algorithm recursively. Elliptic curves can be applied
both to primality testing and to factorization, and they give rise to algorithms
with an excellent performance, both in theory and in practice.

Primality testing is considered to be easier than factorization. Suppose, for
example, that two 100-digit numbers p and q have been proved prime; this is
easily within reach of the current primality testing methods. Suppose moreover
that the numbers p and ¢ are thrown away by mistake, but that the product pq
is saved. How to recover p and ¢? It must be felt as a defeat for mathematics
that, in these circumstances, the most promising approaches are searching the
waste paper basket and applying mnemo-hypnotic techniques.

Until recently, the subject of primality testing and factorization was not
taken seriously by most mathematicians. Nowadays, a change in this attitude is
noticeable. Partly, this change is due to the introduction of more sophisticated
mathematical techniques than were used before. Indeed, the use of elliptic curves,
which is the main topic of this lecture, has been referred to as the first application
of twentieth-century mathematics to the problem of prime factor decomposition.
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ar = (a*modn). This can be done by performing O(logk) squarings and
multiplications (modn). Finally, one calculates ged(ax — 1,n) by means of Eu-
clid’s algorithm, and one hopes that this ged is a nontrivial divisor of n.

Pollard’s (p — 1)-method is usually successful if n has a prime divisor p for
which p — 1 is built up from small prime factors only. Suppose, to be specific,
that p — 1 divides k, and that p does not divide a. Since the order of (Z/pZ)*
equals p — 1, it then follows that a* = 1 mod p, so p divides ged(ax — 1,n). In
many cases one has p = ged(ax — 1,n), and the method finds a nontrivial divisor
of n.

Along these lines it can be proved that the Pollard (p — 1)-method is good
in discovering prime divisors p of n for which p — 1 has no large prime factors.
It can also be proved that if n has no such prime divisor p then the method is
unlikely to work within a reasonable amount of time.

We refer to [25] for a refinement of the method, which improves its practical
performance; to [39] for a variant that uses a twisted multiplicative group, and
for which p + 1 rather than p — 1 should be built up from small prime factors;
and to [3] for a generalization that appears to be only of theoretical value.

The advantage of elliptic curves is the same as with primality testing. If one
uses an elliptic curve rather than the multiplicative group, then p+1 is replaced
by a number in the neighborhood of p that varies with the curve, and one can
keep changing the curve until the algorithm is successful; one may hope that a
fair proportion of the numbers in the neighborhood of p is built up from small
primes only, so that not too many curves need be tried. More details can be
found in §6.

3. Elliptic curves over rings. Let R be a ring. A finite collection (a;)ier
of elements of R will be called primitive if it generates R as an R-ideal, i.e., if
there exist b; € R, for ¢ € I, such that ), ;b;a; = 1. This terminology will
in particular be applied to vectors and to matrices that have coefficients in R.
Notice that if R is a field, a collection (a;);ecs is primitive if and only if not all
a; are zero.

In the sequel we assume that R satisfies the following two conditions:

(i) 6 € R™;

(ii) for all positive integers n, m and every primitive matrix (a;;)1<i<n, 1<j<m
over R with the property that all 2x2-subdeterminants vanish (a;;ax—a;ax; = 0
for all 4,7, k,l with 1 <1 < k <n, 1 <7 <l < m) there exists an R-linear
combination of the rows that is primitive as an element of R™.

If R is a field the first condition means that char R # 2,3. We impose this
condition only to simplify the exposition; for 6 ¢ R* one must work with more
general normal forms for elliptic curves, as in [35, Chapter 3].

The second condition, however, is essential for the definition of elliptic curves
and their addition law that we shall give. Condition (ii) means that every
projective R-module of rank one is free, or equivalently that the Picard group
Pic R of R vanishes [4]. Obviously, the condition is satisfied for fields, and below
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we shall see that it is also satisfied for finite rings. More generally, it holds for
rings that have only finitely many maximal ideals. If R is a Dedekind ring, for
example, the ring of integers in a number field, then (ii) is true if and only if the
class group of R is trivial. :

It is easy to prove that the primitive element of R™ whose existence is pos-
tulated by (ii) is in fact uniquely determined up to multiplication by units.

Let R be a ring satisfying (i) and (ii). The unit group R* acts on the set
of primitive triples (z,y,2) € R® by u(z,y,2) = (uz,uy,uz). The set of orbits
under this action is denoted by P?(R), and called the projective plane over R.
The orbit of (z,y, z) is denoted by (z : y : 2).

An elliptic curve over R is a pair of elements a,b € R for which 4a® + 276 €
R*. These elements are to be thought of as the coefficients in the homogeneous
Weierstrass equation

vz = 2% + azz? + b2°.
We denote the elliptic curve (a,b) by Eq 4, or simply by E. If we multiply the
above equation by u®, for some u € R*, and replace u*z, u®y by z,y, respectively,
then we obtain the equation for E,/ p, where a’ = u*a and b’ = u®b. Two such
curves are said to be isomorphic over R.

Let E = E,; be an elliptic curve over R. The set of points E(R) of E over
R is defined by

ER)={(z:y:2) e PX(R): 4%z = 2° 4 azz® + b23}.

The point (0:1:0) € E(R) is called the zero point of the curve, and denoted by
O. Notice that if R is a field this is the only element of E(R) whose z-coordinate
is zero.

It is a basic fact that F(R) has in a natural way the structure of an abelian
group with O as the neutral element. The group law, which is written additively,
is such that —(z:y:2) = (z:—y:2) forall (z:y:2) € E(R). To define the
group law we first consider the case that R is a field. In this case the addition
formulae, and the proof that E(R) is a group, can be found in [35, Chapter 3].
We briefly summarize what we need.

Let R be a field, and let Py, P, € E(R). To add P, and P,, consider the
straight line passing through P; and P; (the tangent line to the curve if Py = P,).
The line and the curve have three intersection points, if we count them with
suitable multiplicities, and two of them are P; and P,. If @ is the third one,
then P; + P, = —@Q. To turn this geometric description into algebraic formulae,
we may suppose that P; and P, are nonzero and that Py # —P,. Then we
can write P; = (z; : y; : 1) for ¢ = 1,2, where (z;,y;) lie on the affine curve
y? = 23 4+ ax + b. The straight line is given by y = Az + v, where

Nt - A___z§+z2x1+z%+a
To — T1 Y2 + Y1

and v = y; — Az;. Notice that P; # —P, implies that at least one of the values
for X is well defined, and that they are equal if they are both well defined. The
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sum P; = P; + P, is now given by P3 = (23 : y3 : 1), where
23 =A% — 1y — x4, y3 = —(Azg +v).

This gives the addition formulae if R is a field, but for the sequel it is desirable to
bring them into homogeneous form. To do this, one replaces z; and y; by z;/z;
and y;/z;, respectively, and one clears the denominators. Then one finds that the
sum of two points Py = (z1 : y1 : 21), Pa = (22 : y2 : 22) on E(R) is given by one
of two formulae (g : 71 : 81), (g2 : r2 : $2), depending on which formula for A is
used. Here qy,..., sy are certain polynomial expressions in z1,y1, 21, Z2, Y2, 22,0
with integer coefficients. It turns out that for every pair (Py, P;) € E(R) x E(R)
except (Py, Py) = (0, 0) at least one of these two formulae is meaningful in the
sense that it does not give (0: 0 : 0), and that any of the two that is meaningful
actually gives the sum of P; and P, in the group E(R). For the remaining pair
(0, 0) we know of course that O + O = O = (0: 1:0), but this formula is not
satisfactory because it does not have the property of correctly giving the sum
Py + P, for all pairs of points Py, P, for which it is meaningful. To remedy this
situation one has to develop an addition law that is valid “in a neighborhood of
(0,0),” and that can be done as in [35, Chapter IV, §1]. The result is that one
finds nine polynomial expressions g;,7;,s; (1 =1,2,3) in 21,91, 21, T2, Y2, 22, a,b
with integer coefficients, with the property that the sum of any two points P; =
(z1:y1:21), P2 = (z9:y2:22) on E(R) is given by one of the three formulae
(g : 7 @ 8), 1 = 1,2,3, and that in fact any of the three formulae that is
meaningful is correct. The latter statement is equivalent to nine formal identities
qire — @21 = 0,...,7983 — r3s = 0 in the ring Z[a,b, z1,y1, 21, T2, Y2, 22]/1,
where a, ...,z are considered as polynomial variables and I denotes the ideal
generated by the two polynomials y?z; — 23 — az;2? — b2}, 1 = 1,2. Likewise,
the fact that P; + P lies again on the curve, and that the addition defined in
this way satisfies the group axioms, with the zero element and the negatives of
points as indicated above, is expressed by a series of formal identities in the same
ring. Nine explicit polynomials gy, ..., s3 with all these properties can be found
in [19].

We now drop the condition that R be a field. To add two points P; = (z1 :
y1:21), P2 = (z2:9y2:22) on E(R) one proceeds as follows. One uses the same
nine polynomial expressions that appeared above to obtain a 3 X 3-matrix

g1 71 81
g2 T2 S2
g3 T3 S3

with entries from R. This is a primitive matrix, since otherwise there would
be a maximal ideal m C R containing all nine entries; but this would contra-
dict the fact that at least one of the rows can be used to add the two points
P; modm, P, modm on the elliptic curve E; mod m,b mod m (R/m) over the field
R/m. Also, all 2 x 2-subdeterminants of the matrix are zero, so by condition (ii)
above there is an R-linear combination (qo, ro, So) of the rows that is primitive;
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moreover, the orbit of (gg,70,80) under R* is uniquely determined. We now
define the sum of P; and P; on E(R) to be (go : 7o : S0)-

The fact that E(R) is closed under this operation, and that the addition
defined in this way satisfies the group axioms, with the zero element and the
negatives of points as indicated earlier, is a consequence of the formal identities
that we mentioned above. We omit the details, which are somewhat tedious.

It is a natural question to ask for an algorithm to add two points on E(R).
From the definition of addition we see immediately that, given the formulae
from [19], it suffices to have an algorithmic version of condition (ii): one needs a
method to find the primitive linear combination that is asserted to exist. Before
we describe such a method for the case that R is finite it should be pointed
out that at the moment this method has only theoretical value. Namely, for the
purposes that we have in mind (see the following sections) there is a much easier
method, as follows. Pick any nonzero entry from the matrix, and determine
whether it is a unit in R. If it is, then the row containing that element is
primitive, and one is done. If it isn’t, then one knows a nonzero nonunit of R,
and in each of the cases that we shall consider this is also satisfactory. Suppose
for example, that R = Z/nZ, where n is an integer that one is trying to factor;
then a nonzero nonunit of R leads to a nontrivial divisor of n, which is exactly
what one wants.

Assume now that R is a finite ring. We assume that the elements of R
are represented by elements of a certain finite set S; one may think of S, for
example, as consisting of strings of zeros and ones. It is allowed that two distinct
elements s, s’ of S represent the same element of R, but we do require that given
s,s' € S there is an efficient algorithm to decide whether this is the case. Here
“efficient” may be taken to mean that the time needed by the algorithm is
bounded by a polynomial function of log #S. We also require that there is an
efficient algorithm to do addition in R; that is, given s,s’ € S, one should be
able to find an element of S that represents the sum of the elements represented
by s and s'. Likewise we require that subtraction and multiplication can be done
efficiently, as well as the solution of equations of the sort cz = d (given ¢ and
d, find z), if they are solvable. Finally we require that an element representing
1 € R is known.

With these hypotheses there is an efficient algorithm that given a primitive
n X m-matrix (a;;) as in condition (ii) produces a linear combination of the rows
that is primitive; here “efficient” means that the time needed by the algorithm is
bounded by a polynomial function of n,m, and log #S. We begin with a lemma.

LEMMA. Let R, S be as above, and denote by t the least positive integer for
which 2tY1 > #S. Then for every ¢ € R there exists x € R with ¢!z = ct.
Moreover, an element ¢ € R s nilpotent if and only if ¢ = 0.

PROOF. Consider the sequence of ideals

RO ReDRe2> -2 Rct D Rettl.
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If any two consecutive ideals in this chain are distinct, one obtains #S > #R >
index[R: Rct*1] > 2t*1, which is a contradiction. Hence ¢* = ¢tz for some
z € R and some integer ¢« with 0 < ¢ < t, and the first statement of the lemma
follows upon multiplication by ¢t~*.

If v is an integer with u > ¢, then it follows that ¢%z = c%~!. Therefore, if
¢ is nilpotent, the smallest integer u with ¢* = 0 cannot be larger than ¢. This
implies the last statement of the lemma.

It follows from the lemma that there is an efficient algorithm to decide whether
an element of the ring is nilpotent.

We now describe an efficient algorithm that given an n X m-matrix A = (a;;)
as in (ii) finds a primitive combination of its rows. The algorithm proceeds by
recursion on the cardinality of R. If R is the zero ring (which can be decided by
testing whether 1 = 0, where 0 = 1 —1), then any row of the matrix is primitive.
Now suppose that R is not the zero ring. Since the matrix is primitive, not all
of its entries are nilpotent. Let ¢ be an entry that is not nilpotent. Using the
lemma, solve cttlz = ¢!. Then c?!2 = ¢!, so if we put e = ctz® then e is an
idempotent: e? = e. Also, from cle = ¢' # 0 one sees that e # 0. If now e = 1
then c is a unit, so the row of the matrix containing c is primitive, and one is done.
Suppose therefore that e # 1. Then R; = Re and Ry = R(1 — €) are nonzero
commutative rings with unit elements e and 1 — e, respectively. Moreover, the
map R — R; X Ry sending r € R to (re,r(1 —¢)) is an isomorphism of rings.
The matrix A gives rise to a matrix A; over R; and a matrix As over Ry. Now
notice that, for each 7 = 1,2, the map S — R — R; shows that the set S can
again be used to represent the elements of R;, and that the same conditions as
for R are satisfied. Hence, recursively, we can find an R;-linear combination of
the rows of A; that is primitive as an element of R", for each 7z = 1,2. Adding
these two rows in R™ one finds the desired primitive linear combination of the
rows of A. This finishes the description of the algorithm.

We remark that, in the above algorithm, the element ¢ € R is mapped to an
element (c1,c2) € Ry X Ry for which ¢; is a unit and ¢q is nilpotent. Hence the
row of A; containing c¢; is already primitive, and the recursion is only needed
for the ring Ry. Since the number of nilpotent entries in Ag is at least one more
than in the matrix A, this shows that the depth of the recursion is bounded by
nm. In the case that is of interest to us one has nm = 9.

4. The number of points on an elliptic curve. Let R be a finite ring
with 6 € R*, and F = E, ; an elliptic curve over R. In this section we discuss
the order of the finite group E(R).

If f: R — R’ is any ring homomorphism from R to a ring R’ that also satisfies
the two conditions (i), (ii) from §3, then Ef(4) s(s) is an elliptic curve over R'.
We denote this elliptic curve again by E.

If R contains an element ¢ that is neither a unit nor nilpotent then, as we
saw in the previous section, R can be written as the product of two nonzero
rings. By induction on #R it follows that R is isomorphic to the product of
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finitely many rings R;, where each R; is such that every element of R; is either
nilpotent or a unit. Then each R; is a local ring, which means that the set m; of
nonunits of R; forms an ideal of R;; this ideal must be maximal, so that R;/m; is
a field. It is now easy to see that E(R) is isomorphic to the product of the groups
E(R;), so that #E(R) = [], #E(R;). Furthermore, from Hensel’s lemma one
can deduce that for each 4 the natural group homomorphism E(R;) — E(R;/m;)
is surjective and that its kernel has the same cardinality as m;, so that #E(R;) =

#E(R;/m;) - #m,. Summarizing, we have
H #E(R/m)
#R/m
where m ranges over the set of maximal ideals of R. If these maximal ideals are

known, then this formula reduces the computation of #E(R) to the case that R
is a field. If R = Z/nZ for some positive integer n, then the above formula reads

#E Z/nZ H #E

where p ranges over the set of primes d1v1d1ng n. Notice that the same formula
holds with the order of the elliptic curve replaced by the Euler ¢-function, which
is the order of the multiplicative group.

Assume, for the rest of this section, that R is a finite field, of characteristic
different from 2 and 3. Denote the cardinality of R by ¢, so that we may write
R = F,. We assume that an explicit representation for the elements of R is
available, as in the previous section, and that each arithmetic operation in R
can be performed in time O((log q)?).

According to a theorem of Hasse (1934) we have #E(F,) = ¢+ 1—t, where ¢
is an integer satisfying |t| < 2,/g. Four methods have been proposed to calculate
the number #E(F,) or, equivalently, the number ¢.

The first method, which was employed by Lang and Trotter [18], depends on
the formula

#E(F) =1+ 3 _ (1+x(2))
z€F,
where x(z) denotes the element of {0,1,—1} that maps to (z* + az + b)la=1)/2
under the natural map Z — F,. To prove this formula one simply notes that,
for fixed z € F,, the number of y € F, with y? = 2% + az + b is given by
1 + x(z). Applying this formula in a straightforward way leads to an algorithm
to calculate #E(F,) that takes time O(¢g'*¢), for any € > 0.

The second method, which is significantly faster, is probabilistic in the sense
that it depends on random choices. It is analogous to an algorithm of Shanks
[33] for the calculation of class numbers of imaginary quadratic fields. We give
a brief description.

First, one picks a random point P € E(F,). This is done by selecting random
elements = € F, until an element is found for which 2® + az + b is a square in
F,; this can be tested by checking whether x(z) # —1, with x as above. If such
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an z has been found, one can find an element y € F, with y? = 2% + az + b by
applying another probabilistic algorithm of Shanks [34] or by applying a general
zero-finding routine for polynomials over finite fields [17, §4.6.2]. The point
P = (z:y:1) is now on the curve.

Next one determines all integers m for which both |m — (¢ + 1)| < 2,/q and
m - P = O. Clearly such integers exist, since m = #E(F,) has these properties.
By means of the “baby step—giant step” strategy, for the details of which we refer
to [33], all these integers m can be found in time O(g(*/4*¢), for any € > 0.

If m is unique, then m = #E(F,), and one is done. If m is not unique, then
the difference between any two consecutive m’s equals the order of P, and it is
easy to see that P cannot generate the group E(F,), if ¢ > 37. In the latter
case one selects another random point P’ € E(F,), and in a similar way one
determines the order of the point P’ modulo the subgroup generated by P. In
this way one continues until the order k of the subgroup that has been found
satisfies [k — (g +1)| < 2,/g. Then #E(F,) =k, if ¢ > 37.

This algorithm has expected running time O(¢(1/9+¢), for any ¢ > 0, and
it determines not only the order of E(F,) but also its group structure. It is of
practical value if ¢ has not more than approximately 20 decimal digits.

The third method that we discuss is due to Schoof [30]. It is completely de-
terministic. The method depends on properties of the Frobenius endomorphism
¢ of the curve, which is defined as follows. Denote by K an algebraic closure of
F,. Then ¢ is the automorphism of the abelian group E(K) defined by

dlz:y:z)=(27:y%:29).
Notice that E(F,) may be considered as a subgroup of E(K), and that E(F;) =
{P € E(K):¢(P) = P}. It is a basic theorem that ¢ satisfies the quadratic
equation ¢? — t¢ + ¢ = 0 in the endomorphism ring of E(K), where t is the
integer for which #E(F,) =q¢+1—t.

To determine ¢ one now observes that it suffices to determine ¢ mod! for all
odd primes ! < c;logq that are different from char F,; here ¢; is a positive
constant, chosen such that []/ > 4,/g for all g. Namely, if one knows all these
t mod! then one can determine ¢t mod []! by means of the Chinese remainder
theorem, and since [t| < 2,/g this suffices to find ¢ and hence #E(Fy).

Now let [ be an odd prime number, | # charF,. To determine ¢ mod /[, one
first calculates the polynomial ¢; defined by

dr=1-]](X -2),
with z ranging over the set of those elements of K for which there exists y € K
for which (z : y : 1) is an element of E(K) of order [. It is known that ¢; has
degree (12 —1)/2 and belongs to F,[X]. The polynomial t; can be calculated
by means of recursion formulae that can be found, for example, in [35, Chapter
111, Exercise 3.7].
Define the ring T' by

T =F,[X,Y]/(4,Y? - X® —aX —b).
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Every element of T has a unique representation

(*-3)/2 1 o
Z Z ai; XY’ with a;; € Fy,
=0 j=0

where X,Y denote the images of X,Y in T. It follows that 7' is a finite ring in
which the ring operations can be performed efficiently, in the sense of §3.

Let @Q = (X :Y : 1) € E(T), and define the endomorphism o: £(T) —
E(T) by the same formula as ¢ above: o(z :y : 2) = (29 : y? : 29). As we
shall see in a moment, the points Q and o(Q) have order [, and o satisfies the
equation 02 — to 4+ ¢ = 0 in the endomorphism ring of E(T"). Therefore ¢t mod!
is characterized by the equality

@) +q-Q=t 0(Q)
Thus, to determine ¢t mod! one can simply calculate the left-hand side of this
equality, and compare it with 0-0(Q),1-0(Q),2-0(Q),. ... Here the calculations
in E(T) can be done as in §3.

To establish the properties of @ and ¢ that we used we consider the set V' of
points P € E(K) of order [. For each such P = (zp : yp : 1) there is a unique
F ;-linear ring homomorphism 7' — K sending X,Y to zp,yp, respectively. It is
straightforward to check that the combined ring homomorphism 7" — HpGV K is
injective, so that E(T') may be considered as a subgroup of []pcy, E(K). Since
@ corresponds to (P)pey, it has order I. Also, o is the restriction to E(T') of
the automorphism of [] ¢, E(K) that on each coordinate is given by ¢; hence
the equality 02 — to 4+ ¢ = 0 is a consequence of the equality ¢? — t¢ + g = 0.
Clearly, o is injective, so o(Q) has order [. This concludes our sketch of Schoof’s
algorithm.

The algorithm is completely deterministic, and it can be shown to run in
time O((log q)®). (This is slightly better than Schoof [30], who has O((log ¢)?).)
However, it seems that the algorithm is not suited for practical computations.

We remark that Schoof’s algorithm does not calculate the structure of the
abelian group E(F,). It is known that E(F,) = Z/d\Z x Z/d;Z for certain
positive integers d;, ds for which d; divides dy, and that d; divides

ged(#E(Fy),q - 1).
V. Miller has shown that if the prime factorization of the latter ged is known,
one can find d; and d; by means of a probabilistic algorithm that has expected
running time O((logq)°?) for some c¢2 > 0. For an account of this algorithm,
which depends on the Weil pairing, we refer to [22].

The fourth method to calculate #E(F,) applies only to curves £ that are
obtained in a special way. For the sake of simplicity we restrict the discussion
to the case that ¢ is a prime number.

The complex multiplication field of the elliptic curve E over the prime field
F, is defined to be the field L = Q((t? — 4¢)'/2), where ¢ € Z is such that
#E(F,) = ¢+1—t. This is an imaginary quadratic field, and its ring of integers
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A contains a zero 7 of the polynomial X2—tX+q. We have m+7 =t, 77 = g, and
#E(F,) = (r—1)(7 —1). This gives an easy way to calculate #E(F,) provided
that L is known, which is the case for certain special curves. We illustrate this
by means of two examples that were basically known to Gauss. For proofs, see
[15, Chapter 18] and also [12, §7; 5].

Let it first be assumed that ¢ = 1 mod3 and that the curve E = Eg4p has
a = 0. Then one can prove that L = Q(y/—3). The ring of integers A of L is given
by A = Z[(1++/=3)/2]. To find the element = € A with #E(F,) = (7—1)(7—1)
and 77 = q one starts by finding an ideal g with Aq = 47, as follows.

One first determines an integer d with d> = —3 mod ¢. This can be done in one
of three ways. The first is to apply general zero-finding routines for polynomials
over finite fields, see [17, §4.6.2]. The second is to apply a square root extraction
algorithm as in [34]. The third is to draw elements u € F} until one finds one
for which w(a=1/3 £ 1 and to put d = 2u(?=1/% + 1 mod ¢. Each of these three
methods is probabilistic and practical.

Suppose now that d has been determined. Adding g to d, if necessary, we
may assume that d is odd. Then q = Zq+ Z(d + v/—3)/2 is a prime ideal of A
dividing g, and qq = Aq.

Next one determines an element 7 € q for which ¢ = An. This can be done
by searching for the shortest nonzero vector of g, for which there exist standard
reduction algorithms. Alternatively, one can calculate ged(g, (d ++/—3)/2) by
means of the Euclidean algorithm, which is valid in A. Notice that 7 is only
uniquely determined by q up to units of A, of which there are six.

Now let ¢ be the unique sixth root of unity in A for which 6=)/6 = ¢ mod g;
here b is such that E = Eg ;. Multiplying 7 by a suitable sixth root of unity we
can achieve that 7 = ¢ mod 2v/=3. Then one has

#E(F,) = (r—1)(* —1) = ¢+ 1 — 2Re(m).

It can be proved that E(F,) is isomorphic to A/(m—1)A as an abelian group,
so that this method gives the group structure as well.

In the second example that we give we assume that the prime g satisfies
¢ = 1 mod4 and that the curve E = E,; has b = 0. Then one can prove
that L = Q(i) with i = —1. It has ring of integers A = Z[i]. As before,
one can find a prime ideal q of A such that q§ = Aq and an element 7 € q
such that g = Am. Denote by ¢ the unique fourth root of unity in A for which
(—a)@=1/4 = ¢ mod q. Multiplying 7 by a suitable fourth root of unity we may
assume that 7 = ¢ mod 2(1 + i), and then one has #E(F,) = (7 — 1)(7 — 1).

We briefly sketch how these results can be generalized to any imaginary
quadratic field L. Let A be the ring of integers of L, and denote by jr the
j-invariant of the elliptic curve C/A over C (cf. [35, Chapter VI]). It is known
that j, is a zero of an irreducible polynomial Fy, € Z[X ] with leading coefficient
1 and degree equal to the class number of L. Methods to calculate F can be
found in [37]; see also the last section of [30]. The cases j = 0 and j = 1728
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correspond to the fields L = Q(v/—3) and Q(i) that we just considered; let these
now be excluded.

Let g be a prime number that does not divide the discriminant of L, and
suppose that ¢ > 3. Then there are methods, analogous to those discussed
above, to decide whether there exists 7 € A with 77 = ¢, and to find such an
element 7 if it does exist; it is unique up to conjugation and sign. Suppose that
indeed 7 exists. Then it can be shown that the polynomial (Fr, modg) € F,[X]
splits into distinct linear factors. Denote by j any zero of this polynomial in F,.
One can prove that j # 0, 1728. Writing k = j/(1728 — j) € F, we now consider
the two elliptic curves

/
E = Esp ok, E" = Esge2 2kct

over F,, where ¢ € F, is any nonsquare. Then L is the complex multiplication
field of each of the two curves E, E’, and the two numbers #E(F,), #E'(Fg)
are the same as the two numbers (7 — 1)(7 — 1), (—m — 1)(—=7 — 1). Presumably
there is an easy rule to tell which curve belongs to which number, but I do not
know what it is. In practice one can decide between the two cases by picking a
point P € E(F,) at random and using that P is annihilated by #E(F).

This concludes our discussion of the methods to calculate the number of points
on an elliptic curve over a finite field.

It is a natural question to ask how the numbers #E(F,) are distributed if g
is held fixed and E ranges over all elliptic curves over Fg, up to isomorphism.
In particular, one may ask how often a given number occurs as #FE(F;). The
answer to the latter question, in terms of class numbers of imaginary quadratic
orders, is basically due to Deuring [13]; see also [36, 31]. If ¢ is a prime number,
then Deuring’s result implies that every integer of the form ¢ + 1 — ¢ with |t]| <
2,/q occurs as #E(F,) for some elliptic curve E over Fq. Moreover, it can
be deduced that if E is uniformly distributed over all elliptic curves over Fg,
then #E(F,) is approximately uniformly distributed over the numbers near g +
1. More accurately, one has the following proposition, which is useful for the
analysis of some of the algorithms to be presented in §§5 and 6.

PROPOSITION. There are positive effectively computable constants c3 and c4
such that for any prime number ¢ > 3 and any set S of integers s for which
|s = (¢4 1)| < \/q one has

sy colosd) ™ < 7 < gt culos) - loglox)”,

where N denotes the number of pairs (a,b) € F2 that define an elliptic curve
E =E,;, over Fy with #E(F,) € S.

1 N #S

Note that N/q? is the probability that a random pair (a,b) has the stated
property. The proposition asserts that, apart from a logarithmic factor, this
probability is essentially equal to the probability that a random number near g
isin S.
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For the proof of the proposition we refer to [20, Proposition (1.16)].

5. Primality testing. It was first pointed out in [5] and [8] that elliptic
curves can be used for primality testing. Goldwasser and Kilian [14] proved,
modulo a reasonable assumption, that this leads to a probabilistic primality
testing algorithm of which the expected running time is bounded by a constant
power of log n, where n is the number to be tested. The algorithm of Goldwasser
and Kilian depends on Schoof’s method to count the number of points on an
elliptic curve (see §4), and for this reason it is currently not of practical value.
Atkin [2] developed a variant of this algorithm, in which he employs only the
special elliptic curves to which the fourth counting method of §4 applies. His
algorithm performs very well in practice, and for the numbers to which it has
been applied it beats the method of Adleman et al. [1] as implemented by Cohen
and A. K. Lenstra [10]; these numbers have approximately 200 digits. It seems
very hard to give an exact running time estimate of Atkin’s algorithm; but a
rough heuristic analysis indicates that its expected running time is again bounded
by a constant power of logn.

All these methods depend on a result similar to the following theorem, which
is the analogue of Theorem 1.

THEOREM 2. Let n be an integer, n > 1, with ged(n,6) = 1. Let E be an
elliptic curve over Z/nZ, and m, s positive integers with s dividing m. Suppose
that there is a point P € E(Z/nZ) satisfying

m-P =0,
ged(zg,n) =1 for each prime divisor q of s,
where m(m/q) - P = (Zq:Yq: 2q)-

Then #E(Z/pZ) = 0 mod s for every prime divisor p of n, and if s > (nt/4+1)?
then n is prime.

The proof, which is analogous to the proof of Theorem 1, is as follows. Let
p be a prime divisor of n, and write @ = (m/s) - P € E(Z/nZ). Denote by
Q, the image of Q@ in E(Z/pZ). From m - P = O it follows that s - Q =0,
so the order of @, divides s. Also, if ¢ is a prime divisor of s, then s/q -
Qp = (x4 mod p:y, modp: 2, modp). This is not the zero point of E(Z/pZ),
since by hypothesis z, is not divisible by p. Therefore the order of (Jp is not a
divisor of s/q, for any prime g dividing s, so this order is equal to s itself. By
Lagrange’s theorem it follows that #E(Z/pZ) is divisible by s. This proves the
first assertion of the theorem. If also s > (n/4 + 1)? then Hasse’s inequality
(p*/? +1)? > #E(Z/pZ) implies that p > n'/2, and this can only be true for all
primes p dividing n if n is prime. This proves Theorem 2.

The algorithms of Goldwasser-Kilian and Atkin need the above theorem only
in the case that s is prime, so that only ¢ = s has to be considered in the second
hypothesis on P in the above theorem. The following schematic description fits
both algorithms.
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Let n be a large positive integer that one suspects to be a prime number
(cf. the remarks in the introduction). To prove that n is prime one proceeds as
follows.

(a) One selects an elliptic curve E over Z/nZ and a positive integer m such
that the following conditions are satisfied:

(i) m < (y/n+1)?, and if n is prime then #E(Z/nZ) = m;

(ii) there are integers k > 1 and ¢ > (n!/4 + 1)? such that m = kq and such
that ¢ is probably prime.

Here probably prime means that g passes a pseudoprime test as in [17, p.
379], cf. the introduction. To find one pair E,m satisfying (i) and (ii), both
the algorithm of Goldwasser-Kilian and Atkin’s algorithm generate many pairs
E,m satisfying (i); we shall see below how this is done. It is then hoped that
at least one of these pairs satisfies (ii) as well. To check whether a given pair
E,m satisfies (ii), one first subjects m to a factoring algorithm that is efficient
in finding small factors, such as trial division, or the Pollard (p — 1)-method (see
§2), or the elliptic curve method (see §6); next one lets k be equal to the product
of the small prime factors of m that are found, and one puts ¢ = m/k; finally,
one checks whether k£ > 1 and whether q is probably prime in the sense explained
above. (Goldwasser-Kilian require that in fact k = 2 in (ii); this makes it even
easier to check (ii).)

(b) Now suppose that E,m,k,q as in (a) have been found. Then one picks
a random point P of the form (zp : yp : 1) ih E(Z/nZ). This is done as in
the second counting algorithm explained in §4. (This algorithm works if Z/nZ
is a field, which one believes to be the case; for the algorithm to work it is
not necessary that one has a proof that Z/nZ is a field!) Next one calculates
@ = k- P. One now hopes that @ # O; it can be proved that this is the case
for more than half of all choices of P, if n is actually prime. If Q) = O one picks
another point P € E(Z/nZ), and one keeps trying until @ = k- P # O. Suppose
now that @ # O. Then one checks that ¢ - @ = O, as must be the case if n is
prime (by ¢-Q = m - P and (i) above). Finally one checks that ged(z,n) =1, if
Q@ = (z : y : z); this must also be the case if n is prime, since ) # O.

(c) The final stage of the algorithm consists of proving that g is prime. This
can be done by a recursive application of the algorithm, or, if ¢ is below a certain
bound, by a more direct method. Notice that ¢ = m/k < (y/n + 1)?/2, so that
the depth of the recursion is O(logn).

If (a), (b), and (c) have been performed successfully, then n is indeed a prime
number. This follows from Theorem 2, with s = gq.

It remains to explain how to find many pairs E, m as in (i). In the Goldwasser-
Kilian algorithm this is done as follows. First one draws a,b € Z/nZ at random
until 4a® 4 27b% # 0; this happens with probability (n — 1)/n, if n is indeed
prime. Next one checks that ged(n,4a® + 27b%) = 1, as should be the case if
n is prime. Now one puts £ = E,;, and by means of Schoof’s algorithm one
calculates a number m such that (i) holds. If Schoof’s algorithm doesn’t work
then 7 is not prime. (If n is not prime, then it is unlikely but not impossible that
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Schoof’s algorithm calculates a number m; it is an interesting question which
information about n this would provide, and what the significance of m would
be.)

Atkin’s method to find pairs £, m as in (i) is different. Consider the sequence

~3,—4,-7,—8,—11,-15, —19, —20, . ..

of discriminants of imaginary quadratic fields; an integer belongs to this sequence
if and only if it is negative, not divisible by the square of an odd prime number,
and in one of the residue classes 1 mod4,8 mod 16,12 mod16. For each A
in a suitable beginning segment of this sequence, one decides whether the ring
of integers A = Z[(A + v/A)/2] of the imaginary quadratic field L = Q(VA)
contains an element 7 with n = 77, and one finds such an element = if it exists;
the probabilistic methods to do this that we referred to in §4 are successful
provided that n is prime, but, as above, do not require a proof that n is prime.
The discriminants for which 7 does not exist are discarded, and the remaining
discriminants A each give rise to six (if A = —3) or four (if A = —4) or two (if
A < —7) pairs E,m as in (i), as explained in §4.

For most values of A it is easier to determine the values of m than to calculate
the coefficients a,b defining E; hence, it is wise to test whether m satisfies (ii)
before calculating a, b.

This finishes the description of the primality tests of Goldwasser-Kilian and
Atkin.

The running time of a suitable version of the Goldwasser-Kilian algorithm can
be analyzed with the help of the proposition stated in §4. The result is expressed
in the following two theorems. The first one states that if a certain standard
conjecture concerning the distribution of primes is true, then the algorithm runs
in expected polynomial time. The second theorem asserts that in any case this
is true for almost all input primes n.

THEOREM 3. Suppose that there are positive constants cs and cg such that
for all real numbers x > 2 the number of primesp withx < p < z+/2x is at least
cs\/z(logz) . Then on any prime input n, the Goldwasser-Kilian algorithm
proves the primality of n in expected time O((logn)!0F¢e).

For the proof we refer to [14]. (The exponent 10 4 c¢ is 1 less than the
exponent in [14]. This is due to the corresponding improvement in Schoof’s
algorithm.)

THEOREM 4. There exist positive constants cy and cg such that for all
integers k > 2 the fraction of the set of primes n that have k binary digits
and for which the expected running time of the Goldwasser-Kilian algorithm s
< c7(logn)!! is at least

1 c 2_k1/loglogk
—Cg .
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For the proof we again refer to [14]. It employs a theorem of Heath-Brown,
which states that the hypothesis made in Theorem 3 is true in a certain average
sense.

6. Factorization. We describe a method to factor integers that depends on
the use of elliptic curves. It is the analogue of Pollard’s (p— 1)-method described
in §2.

Let n be the composite integer that one wishes to factor, and assume that
n > 1, ged(n,6) = 1. Pick a random pair (E, P), where F is an elliptic curve
over Z/nZ and P € E(Z/nZ). This can be done by choosing a,z,y € Z/nZ
at random, putting P = (z : y : 1), and letting E be defined by the pair (a,b),
where b is chosen such that P € E(Z/nZ); so b = y? — 23 — az. To be certain
that E is an elliptic curve one should check that ged(4a® + 27b%,n) = 1. As in
Pollard’s (p — 1)-method, one now selects a positive integer k that is divisible
by many small prime powers, for example, k¥ = lem{1,2,... ,w} for a suitable
bound w. Next one calculates the point k- P € E(Z/nZ). This can be done by
O(log k) duplications and additions in the group E(Z/nZ). f k-P=(z:y: z),
one calculates ged(z,n). One stops if this ged is a nontrivial divisor of n. If,
on the other hand, this ged equals 1 or n, then one changes the pair (E, P) and
starts all over again. The latter option is not available in Pollard’s method.

As for the Pollard (p — 1)-method, one can show that a given pair (E, P)
is likely to be successful in this algorithm if n has a prime divisor p for which
#E(Z/pZ) is built up from small primes only. The probability for this to happen
increases with the number of pairs (F, P) that one tries.

We refer to [20] for the running time analysis of a variant of the elliptic curve
factoring algorithm. Using the proposition from §4 and properties of modular
curves one finds an upper bound for the expected running time of the algorithm.
This upper bound is expressed in terms of the probability that a random num-
ber in the interval (p + 1 — /p,p + 1 + /p) has all its prime factors below a
certain bound, where p denotes the least prime dividing n. To estimate the lat-
ter probability we need the following unproved conjecture from analytic number
theory.

For a real number z > e, define

L(.’L‘) — 6\/logctlog logz'

A theorem of Canfield, Erdds, and Pomerance [7, Corollary to Theorem 3.1]
implies the following. Let o be a positive real number. Then the probability
that a random positive integer m < z has all its prime factors < L(z)® is
L(z)~1/(22)+0(1) for z — co. The conjecture that we need is that the same
result is valid if m is a random integer in the interval (z — \/Z,z + /T).
Assuming this conjecture, one arrives at the following running time estimate
for the elliptic curve factoring algorithm. Let n € Z, n > 1, be the integer that
one wishes to factor, and assume that n is not divisible by 2 or 3 and that it is
not a prime power. Let further g be any positive integer. Then the variant of
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the elliptic curve factoring algorithm described in [20] finds with probability at
least 1 —e~9 a nontrivial divisor of n within time gK (p)(log n)?, where p denotes
the smallest prime divisor of n and K:Rs¢ — R is a function with

K(.’I}) — e\/(2+o(1))logxloglogz for z — 00.

The algorithm may be repeated on the divisors that are found, until the
complete prime factorization of n is obtained. The conjectural running time
estimate will then also contain terms gK (p')(log n)? corresponding to the other
prime divisors p’ of n, with the exception of the largest one. In all cases one
may expect the total factoring time to be at most L(n)t+e() for n — oo, with
L as above. The worst case occurs if the second largest prime divisor of n is not
much smaller than /7, so that n is the product of some small primes and two
large primes that are of the same order of magnitude.

Several other factoring methods have been proposed for which, conjecturally,
the running time is L(n)l‘“’(l) for n — o0, such as the class group method
[29] and the quadratic sieve [26]; see also the discussion in [11]. However, for
these other methods the running time is basically independent of the size of the
prime factors of n, whereas the elliptic curve method is substantially faster if
the smallest prime factor of n is much smaller than /n.

The storage requirement of the elliptic curve factoring method is only O(logn).
This is also true for the class group method [29], but all other known factoring
algorithms of conjectured speed L(n)”"’(l) have a storage requirement that is a
positive power of L(n).

We refer to [23, 6] for modifications of the elliptic curve method that improve
its practical performance. It turns out that, with these modifications, the elliptic
curve method is one of the fastest integer factorization methods that is currently
used in practice. The quadratic sieve algorithm still seems to perform better
on integers that are built up from two prime numbers of the same order of
magnitude; such integers are of interest in cryptography (28].
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