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Let G be a group and H a subgroup. It is shown that the set of indices
{[H:HngHg~l] | geG) has a finite upper bound n if and only if there is a
normal subgroup N < G which is commensurable with //; i.e., such that
[H:Nr\H] and [N:Nr>H] are finite; moreover, the latter indices admit bounds
depending only on n. If the bounded index hypothesis is assumed only for g
running over some subgroup K<G, the conclusion holds with "normal"
weakened to "normalized by K".

More detailed Information is gölten under the assumption that
{[//://ngHg~ l] | geG} = {!,/>} for p prime. In particular, when p = 2 there
exists N < G such that either H has index 2 in 7V, or N has index 2 in H.

1. THE {l,p} CASE

This section contains the results referred to in the second paragraph of the abstract. The main results of
the first paragraph are obtained in §2, which may be read independently. In the last three sections we
extend both sets of results to the "normalized by K" context, obtain some modified bounds, and note
some examples.

We begin with the result that started this investigation.

THEOREM l. Let G be a group, and H a subgroup. Then [H:Hr\gHg~l] <2 for all geG if and
only if G has a normal subgroup N such that either (a) H < N and [N:H] < 2, or (b) N < H and
[H:N] < 2 .

Proof. "If" is clear. We shall prove "only if".
Let X denote the set of conjugates of H. We observe that there are no proper inclusion relations

among members of X, since if χ properly contained gxg~l, the latter would have index 2 in x,
hence g2xg~ would have index 4 in x, a contradiction. Thus, if two members of X are distinct,
their intersection has index 2 in each.

Let us now choose any xeX and define two equivalence relations, [x] and <x>, on X-{x}, letting
y[x}z mean yr\x = zr>x, and y<x>z mean yx = zx (equality of subsets). We Claim
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(1) If x, y, zeX are pairwise distinct, then either y[x]z, or y<x>z.

Indeed, suppose first that y n z c x. Then y n z ε y n *, and since both sides are subgroups of index
2 in y, we must have yrtz = ynx. Likewise yr\z = xr\z; hence yr\x = x n z , i.e. y[jc]z. On the
other band, suppose yr\z Ά x- Then yjenz* consists of more than one left coset of x. But since yx
and zx each consist of just two such cosets, we must have yx = zx, that is, y<x>z.

Now, it is straightforward to verify that if two equivalence relations R and 5 on a set T satisfy
/?u5 = T x r (cf. (1)), then one of R, S is indiscrete, i.e. equal to ΓΧΓ. If the relation [x] is
indiscrete, then all the intersections xr>y (jeX-{jc>) are equal, hence their common value, the
intersection of all conjugates of x, is a normal subgroup N of index 2 in x (unless X is a singleton,
in which case x itself is normal), and in this case we have Statement (b). If on the other hand <x> is
indiscrete then (again excepting the case X = {x}) the common value of the products yx will be closed
under left multiplication by all conjugates y Φ χ of x, and clearly also under conjugation by members of
x, hence under left multiplication by x; so it is closed under left multiplication by the subgroup N all
these groups generate. Therefore it equals this normal subgroup, and äs it consists of two left cosets of x,
we have Statement (a). |

Theorem l is equivalent to the p = 2 case of the next result, the proof of which is an elaboration of
the same idea; but for later convenience, it will be preferable to formulate this proof in terms of the action
of G on the left G-set G/H rather than its action on the set of conjugates of H.

If G is a group, and X a left G-set, then for xeX, Gx will denote the stabilizer {geG \ gx = x}.
It is easy to verify that for any three elements x, y, z of a left G-set X, one has

(2) (Gx)z 3 (Gy)z o (GX)(GZ) 2 Gy <=> (GZ)(GX) 2 Gy «=> (G2)x ^ (Gy)x.

THEOREM 2. Let G be a group, H a subgroup, and p a prime number, and suppose
{[H:Hr\gHg~l] \ geG] = {l, p}. Then G has a normal subgroup N such that either (a) H < N and
[N: H] = p, or (b) N3H and H/N is isomorphic to a transitive permutation group on p letters.

Proof. We see äs in the proof of Theorem l that there can be no proper inclusion among conjugates of
//; hence any two conjugates of H either coincide, or their intersection has index p in each of them.
Letting X denote the G-set G/H, this says that for any x, j e X , either Gx - Gy, i.e. (Gx)y and
(Gy)x are singletons, or (Gx)y and (Gy)x both have cardinality p.

Let us now fix xeX, and define two equivalence relations [x] and <x> on the set of points of X
which have stabilizers distinct from G . Namely, y[x]z will mean that the subgroup of GX fixing all
points of (Gx)y coincides with the subgroup of Gx fixing all points of (Gx)z, while y<x>z will mean
that (Gy)x=(Gz)x. We shall again prove that for all y and z one of these relations holds.

Suppose y[x]z does not hold. Without loss of generality we can assume that the pointwise stabilizer
of (Gx)y in Gx does not fix all points of (G^z. Now this stabilizer is a normal subgroup of Gx,
hence the orbits of its action on (Gx)z, which by the above assumption are not all singletons, have equal
cardinalities. But (Gx)z has prime cardinality p, so the indicated stabilizer must act transitively on
(Gx)z. This implies that the orbit of z under the possibly larger group Gy contains this set:
(G )z 2 (Gx)z. But (G )z cannot have cardinality larger than p, so we have equality: (Gy)z = (Gx)z.
In particular, we have the reverse of our previous inclusion: (Gx)z 3 (Gy)z. By (2), this is equivalent to
(Gz)x 2 (Gy)x. Now by the observation of our initial paragraph, the fact that neither y nor z is fixed
by Gx teils us that x is fixed neither by Gy nor by Gz, hence each of the above orbits has cardinality
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so this inclusion is an equality, proving y<x>z.
Hence by the same observation on equivalence relations made in the proof of Theorem l, either [je] or

must be the indiscrete equivalence relation on elements having different stabilizers from x. Let us
note that the set of such elements is nonempty, because our hypothesis on indices implies that H is non-
normal. Let us now assume χ chosen so that Gx - H, and let y be an element with Gy Φ Gx.

If the relation [x] is indiscrete, then the pointwise stabilizer subgroup in Gx of the p-element orbit
(Gx)y is the pointwise stabilizer in G of all of X, hence is a normal subgroup N<G, and we see that
we have conclusion (b).

Suppose, then, that the relation <x> is indiscrete. In this case (Gy)x is the orbit of χ under Gz

whenever this stabilizer group is different from Gx. This constitutes a characterization of the set
5 = (Gy);t in terms of the point χ alone, hence S must be invariant under the action of Gx. Thus it is
invariant under the actions of the stabilizers of all points of X, hence under the subgroup N that they
generate, which will be a normal subgroup of G, in which H = Gx has index card(5) = p. Moreover
the action of H = Gx on the p-element set S cannot have any orbits of cardinality p, because it fixes
xeS, hence Gx must equal the pointwise stabilizer of this whole orbit of W, so it is a normal subgroup
of N. This gives conclusion (a). |

Note that case (a) of the conclusion of the above Theorem implies the hypothesis of the Theorem, but
case (b) does not. However, in §4 below we shall get more Information about that case. We shall give
examples of both cases in §5.

It is also possible to get results under weaker hypotheses, which have the above Theorem äs special
cases. Cheryl Praeger has proved such results under more general assumptions on the set of indices
{[H:HngHg~l] \ geG}, while I.M.Isaacs has obtained a result in which all assumptions on the indices,
other than boundedness, are replaced by the condition that ihe Hr\gHg~^ are maximal subgroups of H
(personal Communications).

2. B OUNDED INDICES

We now turn to results holding when it is merely assumed that the set of indices [H:Hr\ gHg~l] have
a finite bound. This says that the images of H under the action of G by conjugation "stay close to"
H; we will see that this happens if and only if H is close to a subgroup that is fixed under this action.

Recall that two subgroups H and K of a group G are called commensurable if both [H:HnK]
and [K: H n K] are finite.

THEOREMS. Let G be a group and H a subgroup. Then the following conditions are equivalent:

(i) The set of indices {[H: H n gHg~l] \ geG} has a finite upper bound n.

(ii) H is commensurable with a normal subgroup N < G.

Proof. (ii)=>(i) is straightforward. To prove the converse, let n be äs in (i), and let X be the left
G-set G/H. We shall again write Gx for the stabilizer in G of an element xeX. For any subset
S £ X, G$ will denote the pointwise stabilizer f \ e 5 · Gx.

Our hypothesis translates to say that for all *e G, Gx acts on X with orbits of cardinality < n.
Now for every finite nonempty subset S £ X, let m(S) < n denote the maximum of the cardinalities of
the orbits of the action of Gs on X. Let m be the least value of the integers m(5) äs 5 ranges over
all finite nonempty subsets of X, and let us call a finite nonempty set S with m(5) = m a "strong" set.
For S a strong set, let N(S) denote the group of all elements of G that carry into themselves all
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cardinality-m orbits of G 5 . Note that Gs < N(S).
Clearly if S is a strong set, and T a finite set containing S, then T is also strong. In this Situation,

every Gj--orbit of cardinality m is a G^-orbit; for if it were not, it would be contained in a strictly larger
orbit of the group G$ £ Gj·, but by assumption G^ has no orbits of cardinality larger than m. It
follows that N(T) £ N(S). Hence the groups N(S) (S a strong subset of X) form an upward directed
System of subgroups of G. Let N be the union of this System. Since this characterization of N in terms
of X is translation-invariant, N is normal. (Concretely, this can be deduced by showing gN(S)g~l =

Now, taking a strong set 5 containing an element χ such that Gx - H, we have

[H:HnN] < [H:Hr>N(S)] <, [H:Hr\Gs] < n

caTd^S'

where the next-to-last Step uses our bound on indices of intersections, [H:Hr\gHg~ ] < n.
This gives half of commensurability; it remains to show that [N:HnN] < oo; in other words, that the

orbits of the action of N on X are finite. Clearly, if we can find a finite upper bound on the cardinalities
of orbits of the groups N(S), this will also bound the cardinalities of orbits of their directed union, N.
Now every w-element orbit of G$ is an orbit of N (S); taking any element χ in such an orbit, we see
that N(S) meets exactly m left cosets of Gx. But Gx acts on X with orbits of cardinality < n,
hence N(S) acts on X with orbits of cardinality < mn, giving the needed bound. |

Curiously, knowing the above result, we can use it to get a better bound on [N:Hr\N] than the one
obtained in the proof. For observe that if S is a strong set, Gs < N(S) < N, so N(S) is, like G 5 and
W, commensurable with H. Thus [N: N (S)] < <*>, hence there can be no infinite chain of groups between
N(S) and N. So, äs W is the union of the directed System of groups of the form N(S), it must equal
one of these groups. Now we have noted that such a group has an orbit of cardinality m, but by
normality of N, all its orbits have the same cardinality. Hence this cardinality is m; that is,
[N:HnN] = m< n.

In contrast, the index [H: H n N], for N constructed äs in the above proof, cannot be bounded
uniformly in terms of n. For example, let r be a positive integer, and let X be the set Z2 x Z r , which
we picture äs a disjoint union of r 2-element sets. Let GQ be the group of permutations of X which
carry each of these subsets into itself, isomorphic äs a group to (Z2)r, and let G be the group generated
by G0 and the cyclic shift of order r; i.e., the wreath product Z2 wrZ r . Then X can be identified äs a
G-set with G/H, where H is the stabilizer of a single point of X, a subgroup of index 2 in GQ.
Clearly, this stabilizer acts on X with orbits of cardinality < 2. The least value of the function m(S)
defined in the proof of the Theorem 3 is l, achieved when S meets all r copies of Z2, so the
subgroup /v" given by that proof is the trivial subgroup, whose index in H, 2r~ , does not admit a
uniform bound in terms of n = 2.

But in the case of the above example, we know from Theorem l that there is a normal subgroup N
much closer to H. (Indeed, N = GQ satisfies the conditions of that Theorem.) We shall now prove by a
compactness argument that in the context of Theorem 3 one can always get an N (possibly different from
the one constructed in the proof of that Theorem) satisfying a bound on [H:Hr\N] uniform in «.

THEOREM 4. For G, H, n äs in condition (i) of Theorem 3, the N of condition (ii) can be chosen so
that [N:Hr\N]<n and [H:Hr\N] < c(n) for some c(n) depending only on n.

Proof. Let n be fixed throughout the proof. We know that for any pair of groups G, H
satisfying (i),
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(3) There exists N< G such that [N:Hr*N] <, n and [H:Hr\N] < e».

We Claim that such an N can be chosen so äs to contain an intersection of finitely many conjugates of
H. Indeed, given any N äs in (3), let N+ denote the intersection of all the conjugates of the group HN.
Thus N+ is a normal subgroup of G lying between N and HN. Hence HN+ = HN. Now the two
indices bounded in (3) can be written [HN:H] and [HN:N], so the corresponding expressions with N+

in place of N also satisfy these bounds. In particular, since [HN:N+] = [HN+:N+] < oo we see that the
lattice of groups between N+ and HN has finite length. Hence, äs N+ is the intersection of all the
conjugates of HN, it can be written äs an intersection of finitely many of these conjugates; hence it
contains an intersection of finitely many conjugates of //, äs claimed. Note that the latter finite
intersection, being commensurable with H, will have finite index in N+.

Now for any groups G £ H and positive integers i and j , let Pij(G, //) denote the Statement that
there exists a family of < i conjugates of H such that the union of some family of :< j right cosets of
the intersection of these conjugates forms a normal subgroup N of G, with [N:Hr\N] < n. One
verifies easily that each Pi · is equivalent to a first-order sentence about the pair (G, H), and the System
of these sentences is directed under implication, since P-v j is weaker, the larger i and j are. We have
just seen that every pair which satisfies (i) of Theorem 3 for our given n (a first-order condition) also
satisfies some /*,·.·. Hence by a Standard application of the Compactness Theorem [l, Corollary V.5.6,
p.213], there must be some />,·/„) .·(„) satisfied simultaneously by all such pairs of groups. (Concretely,
if this were not so, an appropriate'ultraproduct of counterexamples would satisfy no Pi j.) Now for each

(G,H), the N whose existence is asserted by Pi(n),j(n)^G'H^ s a t i s f i e s [H:HnN] < ni(-n\ the desired
bound. |

Such a compactness argument only gives the existence of a bound c(n). Can we modify the proof of
Theorem 3 so äs to get an explicit bound? Let us return to the beginning of that proof, and for each
integer m < n, let A(m) be defined äs the least cardinality of a finite nonempty subset S ς: Χ such that
all orbits of Gs have cardinality < m, or äs <*> if there is no such set S. Thus,

(4) l = A(/i) < A(rt-l) < ... < A(l) < oc.

In the proof of Theorem 3 we used the least m such that A(m) was finite; but we have seen that this
greatest finite value of A(m) can be arbitrarily large. But if, instead, we look for the least h(m) such
that A(m-l) is "inuch bigger" than A(m) in some specific sense, then it should be possible to bound
this value. So assame we have an m such that A(m-l) is "much" larger than A(m), in a sense to be
specified äs the need arises. Consider chains of subsets of X,

(5) Sl e ... e 5 r

suchthat (i) m(Si) = m for each /, (ii) c a rd^ ) = A(m), (iii) each S i+1 is of the form S,· u $,·£,· for
some £/e-G, and (iv) the corresponding chain of groups N(S^) S ... < N(Sr) is strictly increasing. Note

that [N(Sr):Hr\N(Sr)] < mn< n2, and [H:HnN(S^] £ nh(-m\ by the arguments used in the proof of
Theorem 3. It follows that

(6) [N(S.):N(S,)] < nA(OT)+2.

This yields a bound on the length of chains (5), hence we can take a maximal such chain. Now if we try
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to adjoin to this chain another term, S r+1 = S r u grSr, we must either get m(Sr+1) < m or
. By assuming h(m-V) sufficiently large relative to h(m), we can exclude the first alternative

(details below); thus we can assume we have the second alternative for all choices of gr. This means that
for aU geG, N(Sr) = N(Sr vgSr) Z N(gSr) = gN(Sr)g~l. Hence N(Sr) is normal, and gives the
desired subgroup.

Now, how big must h(m-V) be compared with A(m) to exclude the possibility m(Sr+1) < m
above? Observe that in a chain (5), each set S,-+1 has at most twice the cardinality of S^ while each
group N(Si+i~) has at least twice the order of 7V(S,·). Hence the ratio of the cardinalities of Sr and S1

is bounded by (6), and we see that the condition A(/w-l) > 2/iA^m^+2/i(m) will work. One can bound in
terms of n the least value of h(m) such that this condition is satisfied, and thus bound [H:Hr\N(Sr)].

The resulting value for c(ri) (äs in Theorem 4) is on the order of an w-times iterated exponential; we
shall not work out a precise bound here (nor try to optimize every step of the above argument) because

n
Peter Neumann has shown us a construction giving the much better bound c(n) = n (personal
communication, result to appear). Roughly, where we show that whenever h(ni) makes a large Jump, the
group we have called N(S), which clearly satisfles [N:Hr\N] < m and contains G$, is normal,
Neumann's proof shows that if A(m) makes a more modest Jump, the normal subgroup generated by G$
satisfies [N:Hr\N} < n.

3 . ÄT-NORMALIZING SUBGROUPS

We shall now give versions of the results of the preceding sections in which the conjugating elements
are restricted to a subgroup K S G. We remark that if H < K, such results may be obtained äs
immediate consequences of the earlier results, by putting K in place of G, while they are trivial if
K < H (or even if K is contained in the normalizer of //); so the case of interest is that in which
neither inclusion holds.

THEOREM 5. Let G be a group, and H, K subgroups of G. Then
(i) [H:Hr>kHk~l}<2 for all k&K if and only if G has a subgroup N normalized by K, such that
either H < N and [N:H] <2, or N <H and [H:N] < 2.
(ii) / / p is a prime number and {[H:Hr\kHk~l] \ keK} ={!,/>}, then G has a subgroup N
normalized by K, such that either H <> N and [N:H] = p, or N <H and N contains the kernel of a
transitive permutation representation of H on a set of p elements.
(iii) The set of indices {[H: H n kHk~l] \ keK} has a finite upper bound n if and only if H is
commensurable with a subgroup N < G normalized by K.
(iv) In the implication =* of (iii), N can be chosen so that [N: H n N] < n, and [H: H n N] < c(n) for
some c(«) depending only on n.

Proof. Let X = G/H, and let Υ c X denote the image in X of K £ G. Thus we now have not
merely a transitive G-set, but one with a distinguished subset Y. Restrictions on the set of indices
{[H:Hr\km~l] j keK} translate to the same restrictions on the set of cardinalities of orbits (Gx)y
where χ and y both come from Y; but observe that these orbits themselves need not lie wholly in F.

Happily, the greater part of the proofs of Theorems 1-4 can be adapted unchanged to this context if we
take the elements named in these proofs, x, y etc., and likewise the named sets, S, T etc., to come
from Y, but keep in mind the above observation about their orbits.

Here are details. We skip (i), since it will clearly follow from (ii). Under the hypothesis of (ii) we
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note, äs in the proof of Theorem 2, that two elements of Υ either have the same stabilizer, or eise the
image of each under the stabilizer of the other has cardinality p, and for xe Υ we deduce äs before that
either the pointwise stabilizer subgroup in Gx of (Gx)y is the same for all elements yeY having
stabilizers different from that of x, or the orbit (Gy)x is the same for all such y. In the first case, the
common subgroup of Gx is the kernel of the action of that group on the /?-element set (Gx)y, and is
contained in the pointwise stabilizer N of Y, a AT-normalized subgroup of Gx. This N thus satisfies
the second alternative conclusion of (ii). Now assume on the contrary that we have two elements y and z
for which the above pointwise stabilizers of orbits are different. As in the proof of Theorem 2, we wish to
show that 5 = (Gy)x is invariant under the stabilizers of all points of Y. By what we have said, S is
invariant under all such stabilizers that differ from Gx, but the argument by which we concluded in the
proof of Theorem 2 that it was invariant under Gx no longer works - it only shows invariance under
G-.nJf. However, note that äs in the proof of Theorem 2, we have (Gr)z c (6v)z, hence by (2) (with

•Λ· Λ Jr

the roles of χ and y reversed) we get (Gy)(Gz) 2 Gx, so since S is invariant under Gy and Gz, it
is also invariant under Gx, äs desired. We can now conclude äs before that the group generated by the
stabilizers of all elements of y, which is normalized by K, contains Gx with index card(S) = p. (We
cannot say, however, that Gx acts trivially on 5 = (Gy)x, since it may move in orbits of cardinality < p
some points of S outside of Y; hence we cannot, äs in Theorem 2, assert that Gx is normal in N.)

The proof of (iii) follows that of Theorem 3 exactly, subject only to the general changes noted above.
In proving (i v), the bound [N: H n N] < m < n for the N constructed in the proof of (iii) is obtained

äs before. The next part of the argument needs modification, because N need not normalize H, hence
HN need not be a group. Nevertheless, let us form the intersection of all conjugates of the set HN by
members of K, calling this intersection M, and consider the group N+ = [geG \ Mg = M}. We see
that N+ is contained in HN and contains N, hence it satisfies [N+:Hr>N+] < [N:Hr\N] < n and
[/ / : / /n A7+] £ [H:Hr\N] < oo, and it is clearly normalized by K.

Now the set HN from which we started is a union of < « right cosets of H. Thus we can formulate
a family of first-order sentences P}(G, H, K), saying that there exists a family of £ n right cosets of H
such that, on taking the intersection M of all /T-conjugates of their union, and forming the group N -
{geG \Mg-M}, this satisfies [H:Hr\N]<j. (We don't need a separate condition bounding
[N:Hr\N], which will automatically be < n.) The Compactness Theorem again teils us that some P · ^
must hold for all (G,H,K) satisfying the left band side of (iii), and this completes the proof of (iv). One
can also, äs before, get an explicit bound by a more careful choice of m in the proof of (iii). |

4. STRIKING A BALANCE

In preceding sections we have gölten strong bounds on [N: H n N], but very weak bounds on
[H:Hr\N]. We shall now prove some resulls giving normal subgroups satisfying bounds of the reverse
sorts. Our proofs will call on a couple of results in the group-theoretic literature; we are indebted to
P. M. Neumann for pointing these out to us, and thus considerably shortening our arguments. The results of
this section also rely on those of Sections l and 2.

THEOREM 6. Let G be α group and H a subgroup such that the set of indices {[H:Hr\ gHg~l] \
geG} has a finite upper bound n. Let N be a normal subgroup of G commensurable with H (which
exists by Theorem 3). Then there exists a normal subgroup M < G containing N, such that
[H: H n M] <, n, and [M:Hr\M] < oo (equivalently, [M: N] < oo).

Proof. Dividing out by N, we are reduced to the case where N is trivial and H a finite subgroup of
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G. In this Situation let M be the least normal subgroup of G containing all elements of H which have
only finitely many conjugates in G. Dietzmann's Lemma [3, §53] says that a finite union of finite
conjugacy classes of elements of finite order in a group generates a finite subgroup; thus M is finite,
which gives the final inequality. If we now divide out by M, we are reduced to showing that if H is a
finite subgroup of a group G, such that all nonidentity elements of H have infmitely many conjugates,
and H meets every conjugate of itself in a subgroup of index < n, then H must have order < n. To
get this, we let G act by conjugation on the set of all conjugates of nonidentity elements of H, and
apply [2, Theorem 1], which says that given a G-set X in which all elements have infinite orbits, and a
finite subset S c X, there exists g e G such that S n g S = 0 . We conclude that H has a conjugate
g/ig"1 which has trivial intersection with H. The inequality [H\Hr\gHg~ ] < n now gives the desired
bound on the order of H. l

The above result, together with Theorem 4, which allows one to choose N so that [N \Hr\N] < n,
mean, roughly, that the property of H of staying near its conjugates "splits" into three parts: The image
of H in G/M is near its conjugates because it and they are groups of small order, Hr\ N is likewise
near its conjugates because it and they have small index in the normal subgroup N, while the interesting
part of the behavior, the proximity of Hr\M/Hr\N^ HNr\M/N to its conjugates in G/N, is captured
within the finite normal subgroup M/N < G/N.

Under certain conditions, the numerical behavior of the indices [H: H n g//g -1] "splits up" in a quite
precise fashion:

PROPOSITION 7. Suppose, in the Situation of Theorem 6, that N < H. Let n be the maximum of the
indices [H: H n gHg ] (geG). Let M be constructed äs in the proof of Theorem 6, let n\ =
[H:Hr\M], and let n2 be the maximum of the indices [HC(M:(Hr\M) r> g(HnM)g~l] =
|7/nM://ng//g~1nM] (geG). Then n = nln2.

Proof. For g e G maximizing [H: H n gHg ], we have

n= [H:HngHg~l] < [H:Hr>M][Hr\M:HngHg~lr\M] < nln2.

To get the reverse inequality, let us now choose a g e G suchthat [Hr\M:Hr\gHg r\M] assumes
it maximum value, n2. We recall that M/N is finite, while all nonidentity elements of the image of H
in G/M have infinite orbits under the action of G induced by conjugation. Thus if we let G0 denote
the subgroup of G consisting of those elements whose action induced by conjugation fixes all elements of
M/N, then GQ has finite index in G, hence nonidentity elements of the image of H in G/M still
have infinite orbits under this subgroup. Now applying the result from [2] quoted in the proof of
Theorem 6 (or more conveniently in this case, [2, Theorem 2]), we can find an AeG0, conjugation by
which takes the set of nonidentity elements of the image of g/ig"1 in G/M to a set disjoint from the
nonidentity elements of the image of H. It follows that

the last step because h acts trivially on M/N and we have assumed that H contains N. Now

n Z [H:Hn(hg)H(hgrl] = [//://nM] [H n M: / /n gHg"1 nM] = «j n2. l
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COROLLARY 8. Suppose G is a group, H a subgroup, and p a prime, suchthat {[H:Hr\gHg ] \
ge G} = {l, p}. Lei N < G be a subgroup with the properties given in Theorem 2, and M the subgroup
constructed using this N äs in the proof of Theorem 6. Then exactly one of the following holds:
(a) H ä N = M. and [N:H] = p ,
(b) NZHZM,
(c) N = M < H, and [H:M] - p .

Proof. If case (a) of Theorem 2 applies, then H < N. It is easy to see that in this case the
construction of Theorem 6 gives M = N. If case (b) of Theorem 2 applies, then N < H, so we can apply
Proposition 7, and conclude that either «j = l, which gives (b) above, or MJ = p , n^-\, The last
equation means that Hr\M is normal in G; but the construction of Theorem 6 is such that M is the
normal closure of Hr\M, so M<H. This makes H/N an extension of M/N by the group H/M of
order p . But by Theorem 2 H/N is representable by permutations of a p-element set, and such a
permutation group cannot have a nontrivial normal subgroup of index p (consider the common cardinality
of the orbits of such a subgroup); hence M/N must be trivial, so M = N, giving us case (c) above. |

Thus, H is either very close to a normal subgroup below it, or very close to a normal subgroup above
it, or sandwiched between two normal subgroups a finite distance apart. (When p = 2 one of the first two
of these Statements in fact holds, by Theorem 1.)

Note that (b) is the only case of the Corollary in which H can act other than äs a cyclic group of
order p on its p-element orbits in X - G/H. This case is divided into two subcases by a well-known
result of Burnside's [4, Theorem 7.3], which says that a transitive permutation group on a set of p
elements is either doubly transitive, or is a subgroup of the p(p-l)-element group of affine transformations
in one variable over the field of p elements. Let us now show that in the doubly transitive case we can,
except when p = 2, exactly determine the index [M:H], Indeed, we have a more general result:

PROPOSITION 9. Let G be a group, H a subgroup, and n > 2 an integer such that
{[H:Hr\gHg~ ] | geG} = {!,«}. Suppose that H acts doubly transitively on each of its n-element
orbits in X = G/H, and let M < G be the least normal subgroup of G containing H. Then [M:H] =
n+l, and M acts triply transitively on each of its orbits.

Proof. Our hypothesis implies that every orbit of a stabilizer subgroup, (Gx)y (x,yeX) has
cardinality n or l, and Gx acts doubly transitively thereon. By definition, M is the group generated
by all the stabilizers Gx ( je X).

Let us define a "packet" ίο mean an («+l)-element subset P c X such that for each y e P , the set
P-{y} is an orbit of G ,̂. We shall show that the packets are precisely the orbits of X under M, giving
the first conclusion. Triple transitivity of M on each packet follows immediately.

We Claim first that every «-element orbit of a stabilizer subgroup, (G_)y, is contained in a packet.
For by double transitivity of Gx on this orbit, we see that G^nG,, is transitive on (Gx)y-{y}, hence
this set äs contained in an w-element orbit of G.,, which we shall write (Gx)y-{y} u {r}. Let P be the
(n+l)-element set (G;c)yu{z}.

By construction, P-{y} is an orbit of Gy. Also, given distinct elements «,ve (Gx)>>-{>>}, we
observe that by double transitivity, some element of Gxr\Gu carries v to y, and some element of
Gvr>GM carries v to z. It is easily deduced that the n-element set P-{u} is an orbit of GM. Thus for
every w e P except z we have shown P-{w} to be an orbit of Gw. But it follows from the last case
we proved that y and z are in the same orbit of a stabilizer GM, and that P is invariant under this
stabilizer, hence the property proved for y and P implies the same property for z and P, completing
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the proof that P is a packet.
We see from the definition that a packet is uniquely determined by any two of its elements; thus two

packets that have at least two elements in common coincide. We shall now show that two packets cannot
have just one element in common; i.e., that the packets partition X. This will imply that a packet must
coaiaiü any orbit set (Gx)y that it meets in even one point, and from this and the definition of a packet it
foliows immediately that the packets are the orbits of M.

So suppose two packets P and β intersect in a singleton {x}. From double transitivity of Gx on
/*-{*}, it foliows that the intersections G x n G äs p runs over P-W are all distinct, so clearly they
cannot all be the same äs all the intersections Gxr\G„ äs q runs over Q-{x}, Say Gxr\G *
Gxr\Gq. Thus the two sides of this inequality cannot both equal G_ n G„; say GxnGp * Gp n G .
The left-hand side is of index « in Gp (because P is Ά packet), and the right-hand side is of mdex at
most n, hence the latter is not properly contained in the former, so we can find # e G _ n G „ not
belonging to Gxr\Gp. Since # e G „ , this means g&Gx, i.e., g moves x. But äs a member of G„
it must move χ within the packet /*, while äs a member of G_ it must move χ within the packet Q.
Since P and Q are disjoint except for x, we have a contradiction, completing the proof of the
Proposition. §

(The conclusion of the above result is false for « = 2, äs shown by the example where G is a
dihedral group and H z noncentral 2-element subgroup.)

We have not investigated systematically the non-doubly-transitive case of Corollary 8(b); but the only
values of [M;Hr\M] we have found in examples of this case (see next section) are p+1 and 2(p+l).
We remark that in all cases of Corollary 8(b) that we know of, [M:N] < (p+1)! and H has exacüy p+1
distinct conjugates in G.

We leave to the interested reader further investigation of these questions, including the problems of
finding explicit bounds on [M:Hr\M] in the context of Theorem 6, of whether Proposition 7 can be
extended to the Situation where N is not necessarily contained in H (perhaps defining «j äs in that
Proposition, n^ to be the maximum value of [NHr>M:NHrigNHg~ r\M] (geG), and «3 =
[N-Hr\N]~), and of whether results like Theorem 6 can be proved in the "iT-nonnalized" context.

5. EXAMPLES

We shall note here some relevant examples, leaving straightforward verifications of their properties to
the reader.

We begin with examples illustrating the trichotomy described in Corollary 8 for {[H: H n gHg'1] |
ge G} = {l, p} (cf. sentence following the proof of that Corollary).

Example 1. H "very close to" a normal subgroup above it, but not to any normal subgroup below it:
Let V be a vector space of large (possibly infinite) dimension over the field of p elements, let H be a
subspace of codimension l, let A be a group of automorphisms of V large enough so that the
intersection in V of the orbit of H under A has "large" codimension, and let G be the semidirect
product determined by the action of A on V. The hypothesis of Corollary 8 is easily verified; the "N"
of conclusion (a) is the vector space V, in which H has index p. Any normal subgroup of G
contained in H, on the other hand, has large index therein, by choice of A.

Example 2. H "very close to" a normal subgroup below it, but not to any normal subgroup above it:
Let G be a simple group, infinite or of large finite order, having a cyclic subgroup H of order p. Here
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Example 3. The "sandwiched" case. Let G be the Symmetrie group S + 1 and H the stabilizer of
l eX = {l p+1}. In this case, the N of Theorem 2 is the trivial subgroup and the M of Theorem 6 is
all of G. Note that H is doubly transitive on its orbits, so Proposition 9 applies.

We can inflate this example by taking the direct product with the regulär permutation representation of
an arbitrary group F, so that G is the group Ä + 1 x F acting on X= {l, ...,/>+!} x F , and H the
stabilizer of (l, e); in this Version one has more than one "packet", and the stabilizer subgroup of a
point has many orbits of order p and many orbits of order l.

Note that in the above example, we could replace S_+1 by any doubly transitive subgroup thereof. If
this group is triply transitive, then the stabilizers Gx of points of X are doubly transitive on their orbits.
However, whether or not this is so, these examples satisfy [M:H] = p+1. The next example notes some
cases where stabilizers act non-doubly-transitively and [M:H] = 2(p+l).

Example 4. For the simplest case, replace {l,..., p+1} and Sp+l in Example 3 (either the original or
inflated version) by the 12-element vertex-set of an icosahedron, and its füll symmetry group A5 x Z2 .

D. Goldschmidt has pointed out a family of examples with similar properties for an arbitrary prime
p > 5: Let G = PGL(2, p) x Z2 , and let H £ G be the graph of the unique homomorphism from the
"upper triangulär" subgroup of PGL(2, p) (a semidirect product of Ζρ_λ and Zp) onto Z 2 .

Example 5. By taking a direct product of a case of Example l, a case of Example 2, and a case of
Example 3 or Example 4, we get a pair H = Ηλ x H2 x #3 C G = Gl x G 2 x G 3 such that for N, U
äs in Theorems 3 and 6, H/Hr\M, Hr\M/Hr\N and N/Hr\N are all nontrivial.

Turning to our "tf-normalizing" results, observe that in Theorem 5(ii), the two alternative inclusions
both lack the normality condition of the corresponding inclusions in Theorem 2. The next two example?
show that these normality conditions cannot always be attained.

Example 6. Let F be a nontrivial eroup, p>2 a prime, X = {l, ...,p} x p, and G the group of
permutations of X generated by (Spy acting on the F-tuple of copies of {l , . . . ,p}, and F acting by
translation on the second coordinates. (Note that in contrast to Example 3, the Symmetrie groups here act
independently on the several p-element sets.) Thus, G is a wreath product of the Symmetrie group S
by F. Let Υ = {1} x F c X (a "section" of the projection to F), let H be the stabilizer of a point of
Y, and let K be the group of elements of G carrying Υ into itself. Although H has one
(p-l)-element orbit in X, this orbit is disjoint from Y. All its other nontrivial orbits have cardinality p,
so the hypothe&is of Theorem 5 (ii) is satisfied. The only possibility for the N of that result is
(Sp)

F x {e} > //, and we see that H is not normal Hierein. (If we take F infinite, then N is the only
/T-normalized subgroup of G commensurable with //.)

Example 7. Let p > 2 be prime, and let X be the tree (nonempty connected acyclic graph) with p
edges meeting at every vertex. (The tree with this property is unique up to isomorphism.) Let G be the
füll autcmorphism group of the tree X, let H be the stabilizer of a vertex xeX, let Y = {x,y} be an
edge containing x, and let K be the group of all geG carrying Y into itself. An N satisfying the
conditions of Theorem 5 (ii) is given by the pointwise stabilizer of Y, which has index p in H and 2
in K. But no subgroup N that is normalized by H äs well äs K can be commensurable with //; for
H and K together generate G, hence a subgroup normalized by both of them must be normal, and so
must either be trivial or have all orbits infinite.

Note that in the last example, the set of stabilizer subgroups of elements of Y distinct from Gx is a
singleton {Gv}, hence the relations [x] and <x> used in the proof of Theorem 5(ii) are both indiscrete;
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yei. only one of the two alternative conclusions of Theorem 5 (ii) holds. This shows that in the proof of
ihat result, the use of the assumption of non-indiscreteness of the relation [x] in obtaining the first
alternative conclusion (a feature in which the proof differs from that of Theorem 2) is unavoidable.

Rowever, the behavior illustrated by this example may be special to the case where there are exactly
f̂ /p distinct stabilizer subgroups of elements of Υ (equivalently, where, writing E for the normalizer of
H In G, we have [K:Kr\E] = 2). Indeed, suppose there are > 2 distinct stabilizers and that [x] is
indiskrete. Let us write L(x~) for the common value of the pointwise stabilizers of (Gx)y in Gx, äs y
~v*ijgps over the elements of Υ with Gy # Gx. We may now consider two subcases, according to whether
<x> is or is not indiscrete. The case which formally most resembles Example 7 is that in which it is
MeMscrete. In this case, taking x, y, z e 7 with distinct stabilizers, it is easy to verify that the pointwise
f. abilizers of (Gy)x = (Gz)x in Gy and in Gz respectively coincide, i.e., that L(v) = L(z), and to
deduce that this will be a normal subgroup of H normalized by K, contrary to the behavior of the above
example. In the case where <x> is not indiscrete, on the other band, we do not know whether L(x) is
iudependent of xe 7; i.e. is normalized by K.

It is not hard to see that several of the above classes of examples can be modified to yield cases where
JH;Hr>gHg~l] \ geG} = {l,n} for n composite. We record one case that is not so obvious, a variant
of the example of Goldschmidt given in Example 4,

Example 8. Let G = PGL(2, p) x Zp_j (p a prime > 5), identify the second factor with the
commutator-factor group of the "upper triangulär" subgroup of the first factor, and let H < G be the
graph of the canonical homomorphism from this upper triangulär subgroup onto this factor group. One can
show that, via an appropriate change of basis, any distinct conjugate of the upper triangulär subgroup of
PGL(2, p) can be assumed to be the lower triangulär subgroup. By comparing the maps of these two
subgroups into Zp_it one can deduce that {[H:Hr\gHg~l] j geG} = {l, p(p-l)/2}.
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