Automorphisms of Finite Fields

H. W. LENSTRA. JR.

Department of Mathematics, University of California, Berkeley, California 94720

Communicated by K. A. Ribet

Received September 29, 1988; revised March 14, 1989

Let F be a finite field, and $\phi: F^* \to E$ a surjective group homomorphism from the multiplicative group F^* of F to a non-trivial abelian group E. A theorem of McConnel (Acta Arith. 8 (1963), 127-151) describes the permutations σ of F with the property that $\phi(\sigma x - \sigma y) = \phi(x - y)$ for all $x, y \in F$, $x \neq y$. We give a short proof of this theorem, based on an argument of Bruen and Levinger (Canad. J. Math. 25 (1973), 1060-1065). In addition, we describe the permutations σ of F for which there exists a permutation κ of E with the property that $\phi(\sigma x - \sigma y) = \kappa \phi(x - y)$ for all $x, y \in F$, $x \neq y$. Finally, we prove a result about automorphisms of the norm form of an arbitrary finite extension of fields.

1. Introduction

Let F be a finite field, F^* its multiplicative group, E a non-trivial abelian group, and $\phi: F^* \to E$ a surjective group homomorphism. In this paper we are concerned with three permutation groups of F. The first group, which we denote by N, consists of all permutations σ of F satisfying

$$\phi(\sigma x - \sigma y) = \phi(x - y)$$
 for all $x, y \in F$ with $x \neq y$. (1)

Denote by D the kernel of ϕ .

THEOREM 1. Let σ be a permutation of F. Then σ belongs to N if and only if there exist an element $a \in D$, a field automorphism α of F with $\phi \alpha = \phi$, and an element $b \in F$, such that

$$\sigma x = a \cdot \alpha x + b$$
 for all $x \in F$. (2)

This theorem was first proved by McConnel [4]. The case that E is a group of order two is due to Carlitz [2]. Carlitz's result immediately

implies an affirmative answer to the following question, which was asked by F. Rivero [6]: let σ be an automorphism of the additive group of a finite field F of odd characteristic, and suppose that σ maps the set of squares to itself and satisfies $\sigma 1 = 1$; does it follow that σ is a field automorphism of F?

In Section 2 we give a short proof of Theorem 1, which is based on an argument of Bruen and Levinger [1].

The second group that we consider, denoted by G, consists of all permutations σ of F for which there exists a permutation κ of E such that

$$\phi(\sigma x - \sigma y) = \kappa \phi(x - y) \qquad \text{for all} \quad x, y \in F \text{ with } x \neq y. \tag{3}$$

Denote by K the subfield of F generated by D. A K-semilinear automorphism of F is an automorphism β of the additive group of F for which there exists a field automorphism γ of K such that for all $x \in K$, $y \in F$ one has $\beta(xy) = (\gamma x)(\beta y)$.

THEOREM 2. The group G is the normalizer of N in the group of all permutations of F. Also, if σ is a permutation of F, then σ belongs to G if and only if there exist a K-semilinear automorphism β of F and an element $b \in F$, such that

$$\sigma x = \beta x + b \qquad \text{for all} \quad x \in F. \tag{4}$$

The proof of Theorem 2 is given in Section 3.

A permutation κ of E is called *affine* if there exist an element e_0 of E and a group automorphism χ of E such that $\kappa e = e_0 \cdot \chi e$ for all $e \in E$.

The third group that we consider is the group of those permutations σ of F for which there exists an affine permutation κ of E such that (3) holds. We denote this group by H. Clearly we have $N \subset H \subset G$.

THEOREM 3. Let σ be a permutation of F. Then σ belongs to H if and only if there exist an element $a \in F^*$, a field automorphism α of F, and an element $b \in F$, such that

$$\sigma x = a \cdot \alpha x + b$$
 for all $x \in F$.

If K = F then we have H = G.

The proof of Theorem 3 is given in Section 4.

Theorem 3 extends results obtained by McConnel [4, Theorem 2] and Grundhöfer [3]. McConnel considers the case that there exists an element e_0 of E such that for each $e \in E$ one has $\kappa e = e_0 e$, and Grundhöfer the case that $\kappa e = e^{-1}$ for all $e \in E$.

Our final result concerns arbitrary fields. It sharpens a lemma that was proved by Meyer and Perlis [5].

THEOREM 4. Let L be a field having more than 2 elements, and M_1 , M_2 field extensions of L of finite degree. Let $\mathcal{N}_i \colon M_i \to L$ denote the norm map, for i=1,2. Let further $\sigma \colon M_1 \to M_2$ be a surjective L-linear map. Then we have $\mathcal{N}_2\sigma = \mathcal{N}_1$ if and only if there exist an element $a \in M_2$ with $\mathcal{N}_2a = 1$ and a field isomorphism $\alpha \colon M_1 \to M_2$ that is the identity on L, such that

$$\sigma x = a \cdot \alpha x$$
 for all $x \in M_1$.

The proof of Theorem 4 is given in Section 5.

If L has cardinality two, then clearly σ satisfies $\mathcal{N}_2 \sigma = \mathcal{N}_1$ if and only if it is bijective. It follows that in this case the conclusion of the theorem is still correct if M_2 has cardinality at most 4, but that it is wrong for larger M_2 .

2. Proof of Theorem 1

The "if" part of Theorem 1 is trivial. We prove the "only if" part. Let $N_0 = \{\sigma \in N : \sigma 0 = 0\}$; this is a subgroup of N. For $b \in F$, let τ_b be the permutation of F that sends each $x \in F$ to x + b, and let $T = \{\tau_b : b \in F\}$. Clearly, T is a subgroup of N that is isomorphic to the additive group of F. Since T acts transitively on F we have $N = TN_0 = N_0T$.

Let q = #F, and let $F^F = F \times F \times \cdots \times F$ be the q-dimensional F-vector space consisting of all functions $F \to F$. We consider F^F as a ring with componentwise ring operations; i.e., $(g_1g_2) x = (g_1x)(g_2x)$ for $g_1, g_2 \in F^F$, $x \in F$. The subring of constant functions is identified with F. Let $z \in F^F$ be the identity map $F \to F$. The map from the polynomial ring F[X] to F^F that sends each $f \in F[X]$ to f(z) induces a ring isomorphism $F[X]/(X^q - X) F[X] \cong F^F$.

We define a left action of N on F^F by (σg) $x = g(\sigma^{-1}x)$, for $\sigma \in N$, $g \in F^F$, $x \in F$. For example, for each $b \in F$ we have $\tau_b z = z - b$. Each σ acts as a ring automorphism on F^F . Also, the action is F-linear, so it makes F^F into a left module over the group ring F[N].

Write d = #D, and let V be the sub-F[N]-module of F^F generated by z^d .

LEMMA. For every $g \in V$ there exists $f \in F[X]$ such that

$$\deg f \leqslant d, \qquad g = f(z).$$

Also, z and z^{d-1} belong to V.

Proof of the Lemma. Putting y = 0 in (1) we see that, for any $\sigma \in N_0$ and $x \in F^*$, we have $\phi \sigma x = \phi x$, so $(\sigma x)/x \in D$ and $(\sigma x)^d = x^d$; this holds for x = 0 as well. Therefore each $\sigma \in N_0$ fixes the function z^d . From $N = TN_0$ it thus follows that the orbit of z^d under N is the same as the orbit of z^d under T, which is $\{(z-b)^d : b \in F\}$.

Since V is, as an F-vector space, spanned by the orbit of z^d under N, we find that V exactly consists of the F-linear combinations of the elements $(z-b)^d$, $b \in F$. This immediately implies the first statement of the lemma.

If m is a positive integer, we have $\sum_{b \in F} b^m = -1$ or 0, depending on whether m is divisible by q-1 or not. Combining this with the binomial theorem we obtain

$$\sum_{b \in F} b^{q-d} (z-b)^d = (-1)^d dz, \qquad \sum_{b \in F} b^{q-2} (z-b)^d = dz^{d-1}.$$

Since d divides q-1, we have $d \cdot 1 \in F^*$, so z, z^{d-1} belong to V. This proves the lemma.

Let $\rho \in N_0$. By the lemma, there exist polynomials $f_1, f_2 \in F[X]$ of degree at most d, such that $\rho z = f_1(z)$ and $\rho(z^{d-1}) = f_2(z)$. We have

$$f_1(z) f_2(z) = \rho z \cdot \rho(z^{d-1}) = \rho(z^d) = z^d,$$

so the polynomial $f_1 f_2 - X^d$ is divisible by $X^q - X$. But from $2d \le (\#E)d = q-1$ it follows that the degree of $f_1 f_2 - X^d$ is less than q. Therefore $f_1 f_2 = X^d$, so there exist $a \in F^*$ and $u \in \mathbb{Z}$, $0 \le u \le d$, such that $f_1 = aX^u$, i.e.,

$$\rho z = az^u$$

Since ρ acts bijectively on F^F we have u>0. We claim that the map $\alpha: F \to F$ sending each x to x^u is a field automorphism of F. To prove this, let y be any element of F. Then we have $\tau_{-y}\rho z = \tau_{-y}(az^u) = a(z+y)^u$. On the other hand, $\tau_{-y}\rho = \rho'\tau_b$ for some $\rho' \in N_0$ and $b \in F$. Applying to ρ' what we just proved for ρ we find that $\rho'z = a'z^{u'}$ for some $a' \in F^*$ and $u' \in \mathbb{Z}$, $0 < u' \le d$. Then $\tau_{-y}\rho z = \rho'\tau_b z = \rho'(z-b) = a'z^{u'} - b$, which yields

$$a(z+y)^{u} = a'z^{u'} - b.$$

Each side has degree less than q in z, so we actually have $a(X+y)^u = a'X^{u'} - b$, and therefore u = u', a = a', $ay^u = -b$. It follows that $(z+y)^u = z^u + y^u$, so $(x+y)^u = x^u + y^u$ for all $x \in F$. This implies that α is a field automorphism of F.

Let now σ be any element of N. Choose $\rho \in N_0$ such that $\sigma \rho = \tau_b$ for some $b \in F$. Let $\rho z = az^u$, with a, u as above. Then $\sigma(az^u) = z - b$, so

 $\sigma^{-1}z = az^u + b$. This means precisely that $\sigma x = ax^u + b = a \cdot \alpha x + b$ for all $x \in F$, with α as above. Putting x = 1, y = 0 in (1) we see that $a \in \ker \phi = D$. Next putting y = 0 in (1) we see that $\phi \alpha = \phi$.

This proves Theorem 1.

It follows from Theorem 1 that T is a *normal* subgroup of N, and that N is the semidirect product of T and N_0 . Likewise, N_0 is isomorphic to the semidirect product of D and the group of those automorphisms α of F for which $\phi \alpha = \phi$.

3. Proof of Theorem 2.

Denote by J the normalizer of N in the group of all permutations of F. To prove Theorem 2, it suffices to prove the following three assertions:

- (i) for each K-semilinear automorphism β of F and each $b \in F$, the permutation σ of F given by (4) belongs to G;
 - (ii) $G \subset J$:
- (iii) for each $\sigma \in J$ there exist a K-semilinear automorphism β of F and an element $b \in F$ such that (4) holds.
- Proof of (i). Let β , b be as in (i). If $x, y \in F^*$ belong to the same coset modulo D, then $\beta x = \gamma(xy^{-1})(\beta y)$ for some automorphism γ of K, and $\gamma(xy^{-1}) \in \gamma D = D$; so βx , βy also belong to the same coset modulo D. Therefore β induces a permutation of F^*/D . But $F^*/D \cong E$, so there is a permutation κ of E such that $\phi\beta x = \kappa\phi x$ for all $x \in F^*$. This immediately implies that the permutation σ given by (4) satisfies (3). This proves (i).
- **Proof** of (ii). The surjectivity of ϕ implies that the permutation κ in (3) is uniquely determined by σ . Also, the map sending σ to κ is a group homomorphism from G to the group of all permutations of E, and the kernel is N. Therefore N is normal in G, so $G \subset J$. This proves (ii).

Proof of (iii). We begin with two observations on N. Let T be as in Section 2.

Denote by p the characteristic of F. Every non-identity element of T is of order p and without fixed points on F. We claim that, conversely, every element of N of order p without fixed points belongs to T. To prove this, consider the set U of all $\sigma \in N$ for which there exist an automorphism α of p-power order of F and an element $b \in F$ such that for all $x \in F$ one has $\sigma x = \alpha x + b$. This is a subgroup of N, and the order of U is the largest power of P dividing the order of P, so P is a Sylow-P-subgroup of P. Let now P be of order P and without fixed points on P. We wish to prove that P is normal in P0, we may assume that P0. Let the automorphism P0 of P1 and the

element $b \in F$ be such that for all $x \in F$ one has $\tau x = \alpha x + b$. If α is the identity, then $\tau = \tau_b \in T$, and we are done. Suppose therefore that α is not the identity. Since the order of α divides the order of τ , it must be equal to p. An easy calculation shows that $\tau^p 0 = \operatorname{Tr} b$, where Tr denotes the trace from F to the field of invariants of α . But τ^p is the identity, so $\operatorname{Tr} b = 0$. It is well known that this implies that there exists $c \in F$ with $b = c - \alpha c$. Then c is a fixed point of τ , contradicting the hypothesis.

Write $J_0 = \{\sigma \in J : \sigma 0 = 0\}$. For each $\sigma \in J$, $\tau \in T$, $\tau \neq 1$, the element $\sigma \tau \sigma^{-1}$ of N has order p and acts without fixed points on F, so by what we proved above about T we have $\sigma \tau \sigma^{-1} \in T$. This proves that T is normal in J. Since T is isomorphic to the additive group of F it follows that for each $\sigma \in J$ there is an automorphism σ^* of the additive group of F such that for each $a \in F$ one has $\sigma \tau_a \sigma^{-1} = \tau_{\sigma^* a}$. If in addition $\sigma \in J_0$, then $\sigma^* a = \tau_{\sigma^* a} 0 = \sigma \tau_a \sigma^{-1} 0 = \sigma a$ for each $a \in F$, so $\sigma = \sigma^*$. This proves that every $\sigma \in J_0$ acts as an automorphism of the additive group of F.

Denote by R the endomorphism ring of the additive group of F. For $a \in F$, let μ_a be the element of R that sends each $x \in F$ to ax, and let $\mu_F = \{\mu_a : a \in F\}$; this is a subring of R that is isomorphic to F. By what we just proved, we may view J_0 as a subgroup of the group of units of R. We proved above that μ_D is a characteristic subgroup of N_0 , and N_0 is normal in J_0 , so μ_D is normal in J_0 . Hence if R' denotes the subring of R generated by μ_D , then for all $\sigma \in J_0$ and $v \in R'$ one has $\sigma v \sigma^{-1} \in R'$. But $\mu_D \subset \mu_F$, so we have $R' = \{\mu_a : a \in K\}$, with K as defined in the introduction, and $R' \cong K$. It follows that for each $\sigma \in J_0$ there exists a field automorphism γ of K such that for each $x \in K$ one has $\sigma \mu_x = \mu_{\gamma x} \sigma$; this means precisely that for every $\gamma \in F$ one has $\sigma(x\gamma) = (\gamma x)(\sigma \gamma)$, so that σ is a K-semilinear automorphism of F. Since $J = TJ_0$, this proves (iii).

This proves Theorem 2.

4. Proof of Theorem 3.

The "if" part of Theorem 3 is trivial. We prove the "only if" part.

Write $H_0 = \{\sigma \in H : \sigma 0 = 0\}$. Since we have $H = TH_0$ it suffices to prove that any $\sigma \in H_0$ can be written as $\sigma = \mu_a \alpha$ for some $a \in F^*$ and some field automorphism α of F, with μ_a as in Section 3. Replacing σ by $\mu_{\sigma 1}^{-1} \sigma$ we may assume that $\sigma 1 = 1$. From $H \subset G$ and Theorem 2 it follows that σ is additive and that there exists a field automorphism γ of K such that for all $x \in K$, $y \in F$ one has $\sigma(xy) = (\gamma x)(\sigma y)$. Extending γ to an automorphism γ^* of F and replacing σ by $\sigma \gamma^{*-1}$ we may assume that σ is K-linear. Putting x = 1, y = 0 in (3) we see that $\kappa 1 = 1$, so the affine permutation κ of E is actually a group automorphism of E. Hence for all $x, y \in F^*$ we have $\phi \sigma(xy) = \kappa \phi(xy) = (\kappa \phi x)(\kappa \phi y) = (\phi \sigma x)(\phi \sigma y) = \phi((\sigma x)(\sigma y))$, so $\sigma(xy) = u_{x,y}(\sigma x)(\sigma y)$ for some $u_{x,y} \in D \subset K^*$. Since σ is K-linear, we have $u_{x,y} = 1$ whenever $x \in K^*$, $y \in F^*$. Let now $x, y \in F^*$, $x \notin K^*$. Then 1, x are linearly independent over K, so the same is true for σy , $(\sigma x)(\sigma y)$. Therefore from

$$\sigma y + u_{x,y}(\sigma x)(\sigma y) = \sigma y + \sigma(xy) = \sigma((1+x)y)$$

= $u_{1+x,y}(\sigma(1+x))(\sigma y) = u_{1+x,y}(\sigma y) + u_{1+x,y}(\sigma x)(\sigma y)$

it follows that $u_{x,y} = 1$. This proves that σ is a field automorphism of F, as required.

To prove the last assertion of Theorem 3, suppose that K = F, and let $\sigma \in G$. Write σ as in (4). Since β is an F-semilinear automorphism of F, there exist $a \in F^*$ and an automorphism α of F such that we have $\beta x = a \cdot \alpha x$ for all $x \in F$. Then $\sigma \in H$, as required. This proves Theorem 3.

5. Proof of Theorem 4.

The "if" part of Theorem 4 is trivial. We prove the "only if" part. Let $\sigma: M_1 \to M_2$ be an L-linear map with $\mathcal{N}_2 \sigma = \mathcal{N}_1$. Then the element $a = \sigma 1$ satisfies $\mathcal{N}_2 a = 1$. Replacing σ by the map sending every $x \in M_1$ to $a^{-1}\sigma x$ we may assume that $\sigma 1 = 1$. Then σ is the identity on L. We wish to prove that σ is a field isomorphism.

First let L be finite. Since 0 is the only element of M_1 of norm 0, the map σ is injective, so M_1 and M_2 have the same degree over L. We may therefore assume that $M_1 = M_2$. Then the desired result follows from Theorem 1, with $F = M_1$, $E = L^*$, $\phi = \mathcal{N}_1$.

Suppose now that L is infinite. For $i \in \{1, 2\}$ and $x \in M_i$, let $f_x \in L[X]$ be the characteristic polynomial of the L-linear map $M_i \to M_i$ sending each y to xy; this is a power of the irreducible polynomial of x over L. For all $x \in M_1$, $t \in L$ we have $f_x(t) = \mathcal{N}_1(t-x) = \mathcal{N}_2\sigma(t-x) = \mathcal{N}_2(t-\sigma x) = f_{\sigma x}(t)$.

Since L is infinite this implies that $f_x = f_{\sigma x}$, so x and σx are conjugate over L. Hence if M' denotes an algebraic closure of M_2 then for each $x \in M_1$ there is an L-embedding $\tau \colon M_1 \to M'$ with $\tau x = \sigma x$. Writing $V_\tau = \{x \in M_1 \colon \tau x = \sigma x\}$ we find that $M_1 = \bigcup_\tau V_\tau$. Since a vector space over an infinite field cannot be written as the union of finitely many proper subspaces, this implies that there exists τ with $M_1 = V_\tau$. This means that σ is a field isomorphism, as required. This proves Theorem 4.

ACKNOWLEDGMENT

The author was supported by NSF contract DMS 87-06176.

REFERENCES

- A. Bruen and B. Levinger, A theorem on permutations of a finite field, Canad. J. Math. 25 (1973), 1060-1065.
- L. CARLITZ, A theorem on permutations in a finite field, Proc. Amer. Math. Soc. 11 (1960), 456–459.
- 3. T. Grundhöfer, Über Abbildungen mit eingeschränktem Differenzenprodukt auf einem endlichem Körper, Arch. Math. 37 (1981), 59-62.
- 4. R. McConnel, Pseudo-ordered polynomials over a finite field, *Acta Arith.* 8 (1963), 127–151.
- 5. W. MEYER AND R. PERLIS, On the genus of norm forms, Math. Ann. 246 (1980), 117-119.
- F. RIVERO, "Group Actions on Minimal Functions over Finite Fields," Dissertation, Louisiana State University, 1987.