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Let F be a finite field, and 4: F* + E a surjective group homomorphism from the 
multiplicative group F* of F to a non-trivial abelian group E. A theorem of 
McConnel (Acta Arith. 8 (1963) 127-151) describes the permutations e of F with 
the property that d(ux - uy) = d(x - y) for all X, j’ E F, .Y #J. We give a short proof 
of this theorem, based on an argument of Bruen and Levinger (Canad. J. Math. 25 
(1973), 1060-1065). In addition, we describe the permutations c of F for which 
there exists a permutation K of E with the property that &U-X - q) = K&X - 4’) for 
all X, ~2 E F, x # y. Finally, we prove a result about automorphisms of the norm 
form of an arbitrary finite extension of fields. ,(’ 1990 Academic PI~SS, IW 

1. IN-~RODUCTION 

Let F be a finite field, F* its multiplicative group, E a non-trivial abelian 
group, and 4: F* -+ E a surjective group homomorphism. In this paper we 
are concerned with three permutation groups of F. The first group, which 
we denote by N, consists of all permutations cr of F satisfying 

4(0x - oy) = 4(x - Y) for all x, y E F with x #I’. (1) 

Denote by D the kernel of 4. 

THEOREM 1. Let (r be a permutation of F. Then c belongs to N if and 
only [f there exist an element a E D, a field automorphism u of F with q&z = 4, 
and an element b E F, such that 

ax=a.ux+b for all x E F, (2) 

This theorem was first proved by McConnel [4]. The case that E is a 
group of order two is due to Carlitz [2]. Carlitz’s result immediately 
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implies an affirmative answer to the following question, which was asked 
by F. River0 [6]: let (r be an automorphism of the additive group of a 
finite field F of odd characteristic, and suppose that e maps the set of 
squares to itself and satisfies al = 1; does it follow that c is a field 
automorphism of F? 

In Section 2 we give a short proof of Theorem 1, which is based on an 
argument of Bruen and Levinger [i]. 

The second group that we consider, denoted by G, consists of all 
permutations g of F for which there exists a permutation K of E such that 

itax - OY) = ax - Y) for all x,yEF with x#y. (3) 

Denote by K the subfield of F generated by D. A K-semilinear 
automorphism of F is an automorphism /I of the additive group of F for 
which there exists a field automorphism y of K such that for all x E K, y E F 

one has B(xY) = (YxNPY). 

THEOREM 2. The group G is the normalizer of N in the group of all 
permutations of F. Also, $ o is a permutation of F, then a belongs to G if 
and only tf there exist a K-semilinear automorphism /3 of F and an element 
b E F, such that 

ax=px+b for all xeF. (4) 

The proof of Theorem 2 is given in Section 3. 
A permutation rc of E is called affine if there exist an element e, of E and 

a group automorphism x of E such that Ice = eO. Xe for all e E E. 
The third group that we consider is the group of those permutations a 

of F for which there exists an affine permutation K of E such that (3) holds. 
We denote this group by H. Clearly we have N c H c G. 

THEOREM 3. Let a be a permutation of F. Then a belongs to H if and 
only tf there exist an element aE F*, a field automorphism a of F, and an 
element b E F, such that 

ax=a.ax+b for all XEF. 

If K=F then we have H=G. 

The proof of Theorem 3 is given in Section 4. 
Theorem 3 extends results obtained by McConnel [4, Theorem 21 and 

Grundhijfer [3]. McConnel considers the case that there exists an element 
e, of E such that for each e E E one has rce = e,e, and Grundhijfer the case 
that Ice=e-’ for all eeE. 
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Our final result concerns arbitrary fields. It sharpens a lemma that was 
proved by Meyer and Perlis [S]. 

THEOREM 4. Let L be a field having more than 2 elements, and M, , M, 
field extensions of L of finite degree. Let ,$-: Mi + L denote the norm map, 
for i = 1, 2. Let further o: M, -+ M, be a surjective L-linear map. Then we 
have &a = J+‘; if and only if there exist an element a E Mz with ,@;a = 1 and 
a field isomorphism c(: M, + MS that is the identity on L, such that 

ox = a . cix for all REM,. 

The proof of Theorem 4 is given in Section 5. 
If L has cardinality two, then clearly (T satisfies .co = -4; if and only if 

it is bijective. It follows that in this case the conclusion of the theorem is 
still correct if M, has cardinality at most 4, but that it is wrong for 
larger M,. 

2. PROOF OF THEOREM 1 

The “if” part of Theorem 1 is trivial. We prove the “only if” part. Let 
N,={o~N:o0=0}; this is a subgroup of N. For bEF, let zh be the 
permutation of F that sends each x E F to x + b, and let T= (z,:b E F}. 
Clearly, T is a subgroup of N that is isomorphic to the additive group of 
F. Since T acts transitively on F we have N = TN, = N,,T. 

Let q= #F, and let Fr=FxFx ... x F be the q-dimensional F-vector 
space consisting of all functions F + F. We consider FF as a ring with 
componentwise ring operations; i.e., (gig,) x = (g,x)(g*x) for g,, g, E F’, 
xg F. The subring of constant functions is identified with F. Let ZE FF 
be the identity map F + F. The map from the polynomial ring F[X] 
to FF that sends each fe F[X] to f(z) induces a ring isomorphism 
F[X]/( P - X) F[ X] z FF. 

We define a left action of N on FF by (og) x = g(a - lx), for g E N, g E F’, 
x E F. For example, for each b E F we have zbz = z - b. Each 0 acts as a ring 
automorphism on FF. Also, the action is F-linear, so it makes FF into a left 
module over the group ring F[N]. 

Write d= #D, and let V be the sub-F[N]-module of Fr generated by zL/. 

LEMMA. For every g E V there exists f E: F[ X] such that 

degf<d, g=f(=). 

Also, z and zdP ’ belong to V. 
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Proof of the Lemma. Putting y = 0 in (1) we see that, for any G EN, 
and XE F*, we have &JX = q5x, so (ax)/x E D and (o~)~= xd; this holds for 
x = 0 as well. Therefore each 0 E No fixes the function zd. From N = TN, it 
thus follows that the orbit of zd under N is the same as the orbit of zd 
under T, which is {(z-~)~:~EF}. 

Since V is, as an F-vector space, spanned by the orbit of zd under N, we 
find that V exactly consists of the F-linear combinations of the elements 
(z - b)d, b E F. This immediately implies the first statement of the lemma. 

If m is a positive integer, we have CbsFbm = - 1 or 0, depending on 
whether m is divisible by q - 1 or not. Combining this with the binomial 
theorem we obtain 

c bY~d(z-b)d=(-l)ddz, c bY-2(z-b)d=dzd-1. 
bcF bsF 

Since d divides q - 1, we have d. 1 E F*, so z, zd- ’ belong to V. This proves 
the lemma. 

Let p EN,. By the lemma, there exist polynomialsf,, f2 E F[X] of degree 
at most d, such that pz=fi(z) and p(zd-‘)=f2(z). We have 

fi(Z)f2(Z) = pz . p(z”- ‘) = p(zd) = z”, 

so the polynomial f, f2 - Xd is divisible by Xq - X But from 2d < ( # E)d = 
q - 1 it follows that the degree of fif2 - Xd is less than q. Therefore 
fi fi = X”, so there exist a E F* and u E Z, 0 6 u 6 d, such that fi = aX”, i.e., 

pz = az’. 

Since p acts bijectively on FF we have u >.O. We claim that the map 
c(: F + F sending each x to x” is a field automorphism of F. To prove this, 
let y be any element of F. Then we have z _ .“pz = z _ y (az”) = a(z + y )“. On 
the other hand, rmYp = p’rb for some p’ EN, and b E F. Applying to p’ 
what we just proved for p we find that p’z = a’z”’ for some a’ E F* and 
u’ E Z, 0 -=z u’ Q d. Then r -,pz = @r&z = p’(z - b) = a’z”’ - b, which yields 

a(z + y)” = a’z” - b. 

Each side has degree less than q in z, so we actually have a(X+ y)” = 
a’.%?’ - b, and therefore u = u’, a = a’, ay” = - 6. It follows that (z + y)” = 
zU + y”, so (x + y)” = xU + yU for all x E F. This implies that c( is a field 
automorphism of F. 

Let now D be any element of N. Choose p E N, such that ap = zb for 
some be F. Let pz=az“, with a, u as above. Then a(az”) =z - b, so 
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g 
-1 Z= a?‘+ b. This means precisely that c~x=ax’+ b =a.ax+ b for all 

x E F, with c( as above. Putting x = 1, y = 0 in (1) we see that a E ker 4 = D. 
Next putting y = 0 in (1) we see that &x = 4. 

This proves Theorem 1. 
It follows from Theorem 1 that T is a normal subgroup of N, and that 

N is the semidirect product of T and N,. Likewise, N, is isomorphic to the 
semidirect product of D and the group of those automorphisms r of F for 
which q5c( = 4. 

3. PROOF OF THEOREM 2. 

Denote by J the normalizer of N in the group of all permutations of F. 
To prove Theorem 2, it suffices to prove the following three assertions: 

(i) for each K-semilinear automorphism fi of F and each b E F, the 
permutation CJ of F given by (4) belongs to G; 

(ii) GcJ; 

(iii) for each CJE J there exist a K-semilinear automorphism /? of F 
and an element b E: F such that (4) holds. 

Proof of (i). Let /?, b be as in (i). If x, y E F* belong to the same coset 
modulo D, then px= y(xy-i)(fly) for some automorphism y of K, and 
y(xy-‘)E yD = D; so fix, fly also belong to the same coset modulo D. 
Therefore /I induces a permutation of F*/D. But F*/D g E, so there is a 
permutation K of E such that &3x = X$X for all x E F*. This immediately 
implies that the permutation Q given by (4) satisfies (3). This proves (i). 

Proof of (ii). The surjectivity of C$ implies that the permutation K in (3) 
is uniquely determined by cr. Also, the map sending 0 to K is a group 
homomorphism from G to the group of all permutations of E, and the 
kernel is N. Therefore N is normal in G, so G c J. This proves (ii). 

Proof of (iii). We begin with two observations on N. Let T be as in 
Section 2. 

Denote by p the characteristic of F. Every non-identity element of T is 
of order p and without fixed points on F. We claim that, conversely, every 
element of N of order p without fixed points belongs to T. To prove this, 
consider the set U of all (z E N for which there exist an automorphism o! of 
p-power order of F and an element b E F such that for all x E F one has 
Rex = ax + b. This is a subgroup of N, and the order of U is the largest 
power of p dividing the order of N, so U is a Sylow-p-subgroup of N. Let 
now r E N be of order p and without fixed points on F. We wish to prove 
that z E T. Replacing z by a conjugate (which is allowed, since T is normal 
in N), we may assume that r E 6’. Let the automorphism c1 of F and the 
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element b E F be such that for all x E F one has zx = CLX + 6. If c( is the iden- 
tity, then z = zg E T, and we are done. Suppose therefore that CI is not the 
identity. Since the order of CI divides the order of z, it must be equal to p. 
An easy calculation shows that zpO = Tr b, where Tr denotes the trace from 
F to the field of invariants of ~1. But tP is the identity, so Tr b = 0. It is well 
known that this implies that there exists c E F with b = c - ac. Then c is a 
fixed point of z, contradicting the hypothesis. 

For a ED, let p0 be the element of N,, that sends every XE F to ax, and 
let pD be the subgroup {~~:a E D} of No. Clearly pLo is generated by an 
element of order d, where d = #D. We claim that every element of N, not 
in ,uLg has order less than d, so that ,uD is a characteristic subgroup of N,. 
To prove this, let p E N,, p .$P~, and let the element UE D and the 
automorphism tl of F be such that for every x E F one has px = a . LXX. Let 
h be the order of c( and F’ the field of invariants of tl. We write r = #F’, 
so that rh = q. From &x = 4 it follows that for each XE F* we have 
(ax)/x E D, so a(xd) = xd. This shows that Feds I;‘*. Consequently 
(q - 1 )/d divides I - 1, so e( q - 1 )/(r - 1) = d for some integer e. One easily 
checks that #x = (Ma) x for every x E F, where N denotes the norm from 
F to F’. We have JV,=&-‘)‘(~-‘), and since the order of a divides d the 
order of Na divides e. Therefore the order of p divides eh. This proves our 
claim, because eh < e cf:d ri = e(q - 1 )/(Y - 1) = d. 

WriteJ,=(aEJ:60=0}. ForeachoEJ,rET,r#l, theelementara-’ 
of N has order p and acts without fixed points on F, so by what we proved 
above about T we have ara-’ E T. This proves that T is normal in J. Since 
T is isomorphic to the additive group of F it follows that for each a E J 
there is an automorphism a* of the additive group of F such that for each 
UE F one has az,a-1 = r,*,. If in addition a’E Jo, then a*u= r,*,O= 
az,a-‘0 = au for each UE F, so a = a*. This proves that every a E Jo acts 
as an automorphism of the additive group of F. 

Denote by R the endomorphism ring of the additive group of F. For 
a E F, let pa be the element of R that sends each x E F to ax, and let 
,u~= {,u~ :a E F}; this is a subring of R that is isomorphic to F. By what we 
just proved, we may view Jo as a subgroup of the group of units of R. We 
proved above that pLo is a characteristic subgroup of N,, and iVO is normal 
in J,,, so pD is normal in Jo. Hence if R’ denotes the subring of R generated 
by Pi, then for all a E Jo and v E R’ one has aua- ’ E R’. But pD c pF, so we 
have R’= (P~:UE K}, with K as defined in the introduction, and R’ E K. It 
follows that for each a E Jo there exists a field automorphism y of K such 
that for each x E K one has apX = ~~,a; this means precisely that for every 
y E F one has a(xv) = (yx)(ay), so that a is a K-semilinear automorphism 
of F. Since J= TJ,,, this proves (iii). 

This proves Theorem 2. 
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4. PROOF OF THEOREM 3. 

The “if” part of Theorem 3 is trivial. We prove the “only if” part. 
Write II, = { CJ E H:aO = 0). Since we have H = TH, it suffices to prove 

that any r~ E H, can be written as CJ = pus for some a E F* and some field 
automorphism a of F, with pL, as in Section 3. Replacing (T by l;,‘o we 
may assume that 01 = 1. From H c G and Theorem 2 it follows that (r is 
additive and that there exists a field automorphism y of K such that for all 
XE K, ye F one has cr(xy) = (yx)(oy). Extending ;’ to an automorphism y* 
of F and replacing CJ by cry* - ’ we may assume that CJ is K-linear. Putting 
x = 1, y = 0 in (3) we see that ~1 = 1, so the affrne permutation K of 
E is actually a group automorphism of E. Hence for all x, y E F* we 
have ~a(x.~)=~~(xy)=(~~~)(~~y)=(~ax)(~ay1?)=~((ax)(ay)), so a(q)= 
u,.,.(ax)(a~~) for some u,,~ E D c K *. Since CJ is K-linear, we have u,.?. = 1 
whenever x E K*, y E I;*. Let now x, y E F*, x $ K*. Then 1, x are linearly 
independent over K, so the same is true for oy, (cT.Y)(~.v). Therefore from 

ay+a.,,.(a.u)(a.v)=(T),+a(;y??)=a((l +x)y, 

=U I + .,.A41 +-~))(cY) = UI + r..va?‘+ UI + Y.,.(ax)(aY) 

it follows that u,,.,. = 1. This proves that CJ is a field automorphism of F, as 
required. 

To prove the last assertion of Theorem 3, suppose that K = F, and let 
CI E G. Write CJ as in (4). Since p is an F-semilinear automorphism of F, 
there exist aE F* and an automorphism a of F such that we have 
px = a . ax for all x E F. Then c E H, as required. This proves Theorem 3. 

5. PROOF OF THEOREM 4. 

The “if” part of Theorem 4 is trivial. We prove the “only if” part. Let 
0: M, + h4, be an L-linear map with ,+;u = A’;. Then the element a = al 
satisfies M2a = 1. Replacing a by the map sending every x E M, to a-lax 
we may assume that al = 1. Then a is the identity on L. We wish to prove 
that a is a field isomorphism. 

First let L be finite. Since 0 is the only element of M, of norm 0, the 
map a is injective, so M, and M, have the same degree over L. We may 
therefore assume that M, = M,. Then the desired result follows from 
Theorem 1, with F = M, , E = L*, q5 = M, . 

Suppose now that L is infinite. For in { 1,2} and XE Mj, let f, E L[X] 
be the characteristic polynomial of the L-linear map M, -+ Mi sending each 
y to xy; this is a power of the irreducible polynomial of x over L. For all 
xfM,, ~GL we havef,(t)=.N;(t-x)=&a(r-x)=.4(?-ax)=f,,(t). 



40 H. W. LENSTRA. JR. 

Since L is infinite this implies that f, =f,,, so x and KY are conjugate over 
L. Hence if M’ denotes an algebraic closure of M, then for each XE M, 
there is an L-embedding z: M, + M’ with zx = OX. Writing V, = {X E M, : 
zx = ax} we find that M, = IJ, V,. Since a vector space over an infinite field 
cannot be written as the union of finitely many proper subspaces, this 
implies that there exists z with M, = V,. This means that o is a field 
isomorphism, as required. This proves Theorem 4. 
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