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Groups with finitely many non-normal subgroups 

By 

N. S. HEKSTER and H. W. LENSTRA, JR. 

1. Introduction. In this paper we describe all groups that have only finitely many 
non-normal subgroups. Examples of such groups are, of course, groups that do not have 
any non-normal subgroups at all. It is well-known that the latter groups can be complete- 
ly described, as follows. 

Theorem 1. Let G be a group. Then all subgroups of G are normal if and only if G 
satisfies one of the following two conditions: 

(i) G is abelian; 
(ii) there exist groups A, B such that 

(a) G ~- A x Q x B, where Q denotes the quaternion group of order 8; 
(b) A is an abelian group with the property that every x ~ A has finite odd order; 
(c) B is an abelian group with x 2 = 1 for all x ~ B. 

For the proof, see [1, Theorem 12.5.4]. A group G is called hamiltonian if it satisfies 
condition (ii) of Theorem 1. 

For a prime number p, denote by Cp~ a multiplicatively written group that is isomor- 
phic to the group of complex roots of unity of p-power order. Our main result is as 
follows. 

Theorem 2. Let G be a group. Then the number of non-normal subgroups of G is finite 
if and only if G satisfies one of the following three conditions: 

(i) G is abelian or hamiltonian; 
(ii) G is finite; 

(iii) there exist a prime number p and groups A, B such that 

(a) G ~- A x B; 
(b) A is a finite group of order not divisible by p, and it is abelian or hamiltonian; 
(c) B has a normal subgroup C, contained in the centre of B, for which B/C is a finite 

abelian p-group and C ~- Cp~. 

For the proof we refer to Section 4. 
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We can give a formula for the number of non-normal subgroups of the groups occur- 
ring in Theorem 2 (iii). Let G, p, A, B, C be as in Theorem 2 (iii). By [,] we denote the map 
B/C x B/C ~ C that is induced by the map B x B ~ C sending (g, h) to g-1 h-1 gh. If 
J1, J2 are subgroups of B/C, then we denote by [J1, J2] the subgroup of C generated by 
the image of J1 x J2 under [,]. Finally, ifD is a finite p-group, we write lpD for the number 
of factors p in the order of D; so lpD = (log ~ D)/log p. 

Proposition 3. Let the notation be as just defined, and let k denote the number of 
subgroups of A. Then the number of non-normal subgroups of G equals 

k . • (lp [B/C, J] - lp [J, J])- # J, 
J 

where J ranges over the set of subgroups of B/C. 

The proof is given in Section 2. 
It is easy to see from Proposition 3 that a group G as in Theorem 2 (iii) does not have 

non-normal subgroups at all if and only ifB is abelian; this also follows from Theorem 1. 
The sum appearing in Proposition 3 is clearly divisible by p. Assuming that B is not 

abelian one can, more precisely, show the following. If C equals the centre of B, then the 
sum is congruent to p rood pZ, and at least p(p + 1); and if C is properly contained in the 
centre of B, then the sum is congruent to 0 rood p2, and at least p2 (p _}_ 2). In particular, 
any infinite group that has non-normal subgroups at all has at least 6 of them; equality 
occurs only for the unique non-abelian group containing C2~ as a central subgroup of 
index 4. 

Another consequence is the following. If the number of non-normal subgroups of a 
group is a prime number, or the square or the cube of a prime number, then the group 
is finite. 

Let G be a group and a an automorphism of G. If H is a subgroup of G, we say that 
a fixes H if aH= H. The following result is needed in the proof of Theorem 2. 

Proposition 4. Let G be a group. Then the following two assertions are equivalent: 

(i) G is an infinite abelian group, and it has an automorphism that fixes almost all 
but not all subgroups of G; 

(ii) there exist a prime number p and groups A, D such that 

(a) G~AxCp~xD; 
(b) A is a finite abelian group of order not divisible by p; 
(c) D is a non-trivial finite abelian p-group. 

The same is true if both in (i) and in (ii) (b) "abelian" is replaced by "hamiltonian". 

The proof is given in Section 3. 

2. Proof of Proposition 3. Let the notation be as in Proposition 3. 
Any subgroup of G equals a subgroup of A times a subgroup of B, so the proof of 

Proposition 3 immediately reduces to the case that G = B, which we now assume. We 
write G = G/C. 
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Let H be a subgroup of G, and/7 its image in G. Clearly we have [H, H] c H c~ C, and 
H is normal in G if and only if [G, H] ~ H c~ C. 

It follows that the number of non-normal subgroups of G equals ~ nj, o, where the 
J,D 

sum ranges over all pairs of subgroups J c G, D c C for which [J, J] ~ D, [G, J] r D, 
and where ns, o is the number of subgroups H of G wi th /7  = J and H c~ C = D. 

For each J, the number of possible D equals lp [G, J] - lp [J, J]. Now fix J and D. Since 
D is characteristic in C it is normal in G. Hence ns, D equals the number of subgroups of 
G/D that map isomorphically to J under the natural map G/D -+ G/C. Since D contains 
[J, J] ,  the inverse image of J in G/D is abelian. From C/D ~- Cp= it follows that this 
inverse image is isomorphic to Cp= x J. Thus ns, o is the number of subgroups of Cp~ x J 
mapping isomorphically to J, and this number equals # Hom (J, Cp=) = # J. 

We conclude that ~ n j, n = Z # J = • (Ip [G, J] - lp [J, J ] ) .  # J, as required. This 
J,D J,D J 

proves Proposition 3. 

3. Proof of Proposition 4. 

Lemma 5. Let G be an infinite group, and suppose that G is written as the union of a finite 
set and a finite collection of subgroups. Then the finite set can be omitted from this union. 

P r o o f. This is an immediate consequence of a lemma of B. H. Neumann, which 
asserts the following. If a group is written as the union of finitely many cosets of 
subgroups, then the cosets occurring in that union belonging to subgroups of infinite 
index can be omitted. For a proof of this lemma, see [2, (4.4); 3, Lemma 4.17]. This proves 
Lemma 5. 

Lemma 6. Let G be a group and a an automorphism of G that fixes almost all subgroups 
of G. Then a fixes every infinite subgroup of G. 

P r o o f. Let H c G be an infinite subgroup. For every x ~H - GH, the subgroup ( x )  
generated by x dearly belongs to the finite collection of subgroups C of G with a C + C. 
Since for every C there are only finitely many x e G with C = (x ) ,  it follows that H - o-H 
is finite. Lemma 5 now implies that H c~ aH= H, so H is contained in all. (This can also 
be seen without Lemma 5.) Likewise H is contained in a-1 H, so H = o-H, as required. 
This proves Lemma 6. 

Lemma 7. Let G be an abelian group that has an element of infinite order, and ~ an 
automorphism of G that fixes almost all subgroups of G. Then a fixes all subgroups of G. 

P r o o f. Let T be the subgroup of G consisting of all elements of finite order. By 
Lemma 6, one has ax = x +-1 for every x ~ G - T. Since G/T is not the union of two 
proper subgroups the sign is independent of x. But G - T generates G, so either a is the 
identity on G or a maps each x ~ G to x -  1. This implies Lemma 7. 

Lemma 8. Let G be an abelian group that contains a subgroup of the form Cp= • Cv=, 
where p is a prime number, Let ~ be an automorphism of G that fixes almost all subgroups 
of G. Then a fixes all subgroups of G. 

15" 
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P r o o f. By Lemma 6, it suffices to prove that a H = H for every finite subgroup H 
of G. We may clearly assume that H is cyclic. Then it is easy to see that there 
exist subgroups C 1 and Cz of Cv=xCp=, both isomorphic to Cv~, such that 
cl ~ Hn(C.=• and Cl nC2 = {1}. The infinite subgroups CIH, C2H of G are 
fixed by a, by Lemma 6, so the same is true for (C 1 H)c~ (C2 H) = H. This proves 
Lemma 8. 

We now prove Proposition 4. We treat the "abelian" and the "hamiltonian" case 
simultaneously. 

To prove that (ii) implies (i), let G = A x Cp~ x D as in Proposition 4 (ii). It is clear that 
G is an infinite group that is abelian or hamiltonian, as the case may be. Let q~ be any 
non-trivial homomorphism D --* Cv~. We prove that the automorphism a of G given by 
a(a, c, d) = (a, cO(d), d) fixes almost all but not all subgroups of G. 

If d e D is such that q~ (d) + 1, then clearly the subgroup of G generated by (1, 1, d) 
is not fixed by a. It remains to prove that a fixes almost all subgroups of G. Let pn be 
the exponent of D. Since Cp~ has only finitely many elements of order at most p2,, 
almost any subgroup H of G has an element (a, c, d) with order (c) > p2,. Taking the p"-th 
power, we see that any such H also contains an element (1, c', 1) with c' r q~D. Then 
{1} x q~D x {1} c ((1, c', 1)) c H, and since a acts modulo {1} x q~D x {1} as the identity 
this implies that • fixes H. This proves that (ii) implies (i). 

To prove that (i) implies (ii), let G be an infinite abelian or hamiltonian group, and let 
a be an automorphism of G that fixes almost all but not all subgroups of G. 

For a prime number l, let G~ be the subset of G consisting of all elements of finite/-power 
order. Since G is abelian or hamiltonian, each Gz is a subgroup of G, and it is clearly fixed 
by a. Using Lemma 7 we see that G may be identified with the direct sum of all G~. For 
any set ~ of primes, let G~ be the direct sum of all G~ with I ~ ~. 

Let ~ be a set of primes, and 7r' its complement, so that G = G~ x G~,. Each subgroup 
of G is the direct sum of a subgroup of G~ and a subgroup of G~,. It follows that at least 
one of G~, G~, has a subgroup that is not fixed by tr; say this is H ~ G~. Then H x G~, is 
not fixed by a, so Lemma 6 implies that G~, is finite. 

This proves that, for any set ~ of primes, one of G~, G~, has a subgroup not fixed by 
~r and the other one is finite. 

If Gz is non-trivial for infinitely many l, then we can choose ~ such that both lr and n' 
contain infinitely many such l, contradicting what we just proved. It follows that almost 
all G~ are trivial. Likewise we obtain a contradiction if Gz is infinite for two distinct primes 
l. Hence there exists a unique prime p such that @ is infinite, and this Gp has a subgroup 
not fixed by m For this prime the group A = G~p~, is finite, it is either abelian or hamil- 
tonian, and we have G = A x G v. 

We now first prove that @ is abelian. If this is not the case, then we have p = 2 
and G v ~ Q x B, where B is an abelian group of exponent 2. In this group, two 
elements generate the same subgroup if and only if they are conjugate. Hence the 
hypothesis that a fixes almost all subgroups implies that G v is the union of a finite set 
F and ~ {x e @:  ax  = ~b x}, with q~ ranging over the inner automorphisms of G v. Since 

there are only finitely many q~'s, Lemma 5 implies that the finite set F can be omitted 
from the union. Hence a <x) = ( x )  for every x e Gv, so tr H = H for every subgroup 
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H of Gp, which is a contradiction. This proves that Gp is abelian. In particular, A is abelian 
if and only if G is abelian, and A is hamiltonian if and only if G is hamiltonian. 

For a non-negative integer m, denote by G (m) the subgroup of all elements of Gp of 
order dividing p". We prove that each G (m) is finite. Suppose that this is not the case. 
Then we can choose m so large that G (m) is infinite and contains an element x with 
~ ( x )  ~e (x ) .  The hypothesis that ~r fixes almost all subgroups of G implies 
that G(m) is the union of a finite set F and U {x s G(m): crx = xa}, with a ranging over 

a 

the integers mod pm that are not divisible by p. Lemma 5 now implies that the finite set 
F can be omitted from the union. Hence G ( x )  = ( x )  for every x e G(m), contradicting 
the choice of m. This proves that all G (m) are finite. 

For each m, let C (m) be the subgroup 0 G (m + n) p" of G (m). Since G (m) is finite, 
n__>0 

we have C(m) = G(m + n) p" for all n exceeding a bound depending on m. This implies 

that C(m + 1) p = C(m) for all m, which readily yields that the set C = U C(m) is a 
m 

subgroup of Gp that is isomorphic to the direct sum of t copies of Cp~, for some 
non-negative integer t. Because Cp~ is divisible we have Gp ~- C x D for some subgroup 
O of Gp. If n is such that C(I) = G(1 + n) p", then D p" = {1}, so D c G(n) and therefore 
D is finite. But Gp is infinite, so we must have t > 0. By Lemma 8 we have t < 2. Therefore 
t = l ,  a n d C ~ C p ~ .  

Since Gp has a subgroup not fixed by o-, not every subgroup of Gp is characteristic. 
Hence Gp 4= C, and D is non-trivial. 

This proves Proposition 4. 

4. Proof of Theorem 2. The/f-part  of Theorem 2 is clear in the cases (i) and (ii), and 
in case (iii) it suffices to refer to Proposition 3. 

Before we prove the only/f-part we derive a series of auxiliary results. 

Lemma 9. Let G be a group with only finitely many non-normal subgroups. Then every 
infinite subgroup of G is normal. 

P r o o f. This follows from Lemma 6, applied to inner automorphisms of G. 

Lemma 10. Let G be a group that has only finitely many non-normal subgroups, and p 
a prime number. Suppose that G contains a normal subgroup C isomorphic to Cp= for which 
G/C is a finite cyclic group. Then G is abelian. 

P r o o f. For almost all x in a generating coset of G modulo C the subgroup ( x )  is 
normal in G. Choose such an x. Then the natural map C ~ G/(x) is surjective, so G/(x) 
is abelian. Therefore the commutator subgroup G' of G is contained in (x ) ,  so G' is finite. 
But G' is the homomorphic image C ~-1 of C, so it is divisible as well. Hence G' = {1}. 
This proves Lemma 10. 

Lemma 11. Let G be a group that has only finitely many non-normal subgroups, and p 
a prime number. Suppose that G contains a subgroup C of finite index that is isomorphic 
to Cp~. Then C is contained in the centre of G. 
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P r o o f. By Lemma 9 the subgroup C is normal. Now apply Lemma 10 to subgroups 
generated by C and a single element of G. This proves Lemma 11. 

Lemma 12. Let G be a group that has only finitely many non-normal subgroups, and p 
a prime number. Suppose that G contains a normal subgroup C that is isomorphic to Cpo~ for 
which G/C is a finite p-group. Then G/C is abelian. 

P r o o f. By Lemma 9 we can choose a positive integer m such that every non-normal 
subgroup of G has order less than p~. Denote by C (m) the unique subgroup of C of order 
p~. Then every subgroup of G containing C(m) is normal, so G/C(m) is abelian or 
hamiltonian. But the orders of the elements of G/C (m) are exactly all powers of p, so 
G/C (m) is not hamiltonian. Therefore G/C (m) is abelian, and it follows that G/C is abelian 
as well. This proves Lemma 12. 

Lemma 13. Let G be an infinite group that has only finitely many non-normal subgroups, 
and that is neither abelian nor hamiltonian. Then G has a normal subgroup F of finite index 
that is abelian or hamiltonian, and that contains a subgroup H that is non-normal in G. 

P r o o f. We construct a sequence of non-normal subgroups H 1, H 2 ,  . . .  , of G and a 
sequence of normal subgroups F 1, Fz, . . . ,  of finite index in G with H i c Fi in the follow- 
ing way. 

Let H 1 be any non-normal subgroup of G, and F1 its normalizer in G. All conjugates 
of H~ are non-normal in G, so they are finite in number. Hence F1 is of finite index in G, 
and by Lemma 9 it is normal. 

Suppose, inductively, that Hi, Fi have been constructed. If Fi is abelian or hamiltonian, 
then the construction stops, and F = F i, H = H i satisfy the conclusion of the lemma. If 
Fi is not abelian or hamiltonian, we let Hi + ~ be any non-normal subgroup of F~, and Fi + 
its normalizer in Fi. Then F,+ ~ is normal of finite index in G. 

To prove that the process stops, it suffices to show that H i + Hj for j > i. But H, is 
normal in F i, whereas Hj is not even normal in the subgroup Fj_ 1 of F i. This proves 
Lemma 13. 

We now prove the only/f-part of Theorem 2. 
Let G be a group that has only finitely many non-normal subgroups, and that is not 

as in (i) or (ii) of Theorem 2; i.e., G is infinite, and neither abelian nor hamiltonian. Let 
F, H be chosen as in Lemma 13, and let q5 be an inner automorphism of G with q5 H :t= H. 
Then F is an infinite group that is abelian or hamiltonian, and the restriction of q~ to F 
is an automorphism of F that fixes almost all but not all subgroups of F. Applying 
Proposition 4 to F we see that F has a subgroup C of finite index that is isomorphic to 
Cp=. Then C is of finite index in G, so by Lemma 9 each subgroup of G containing C is 
normal. Therefore G/C is abelian or hamiltonian, and we can write G/C = A x D, where 
D is a finite p-group and A is a finite group of order not divisible by p that is abelian or 
hamiltonian. Also, C is contained in the centre of G, by Lemma 11. 

Let E be the unique subgroup of G for which A = E/C, and let a be the order of A. Since 
C is uniquely divisible by a, the cohomology group Ha(A, C) vanishes, so E can be 
identified with A x C. From A = {x ~ E: x a =  1} we see that A is characteristic in E, 



Vol. 54, 1990 Groups with finitely many non-normal subgroups 231 

and therefore normal in G. The subgroup B of G with D = B/C is also normal in G, and 
it follows that G -- A x B. Finally, applying Lemma 12 with B in the role of G we see that 
B/C is abelian. 

This completes the proof of Theorem 2. 
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