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Let A;(L), A\;(L*) denote the successive minima of a lattice L and its reciprocal lattice L*, and
let [b1,...,bn] be a basis of L that is reduced in the sense of Korkin and Zolotarev. We prove that
[4/G + 3)A(L)? < [byf? < [+ 3)/4A(L)? and [b;[*A ;11 (L) < (6 +3)/4)[(n — i + 4)/4]732,
where v, = min{'yj :1 <37 < n} and k7] denotes Hermite’s constant. As a consequence the
inequalities 1 < A;(L)A, ;41 (L%) < n2/6 are obtained for n > 7. Given a basis B of a lattice L in
R™ of rank n and x € R™, we define polynomial time computable quantities A(B) and p(x, B) that
are lower bounds for A (L) and u(x, L), where u(x, L) is the Euclidean distance from x to the closest
vector in L. If in addition B is reciprocal to a Korkin-Zolotarev basis of L*, then A1(L) < 45 A(B)

and p(x, L)? < (L0, %) u(x, B):.

1. Introduction

The problem of selecting from all bases for a lattice a canonical basis with
desirable properties is called reduction theory. The classical question motivating
the invention of reduction theory is the determination of the minima of positive
definite integral quadratic forms. Lagrange (10] developed a reduction theory for
binary quadratic forms, and the general study of the higher dimensional case was
initiated by Hermite [6] in 1850 and Korkin and Zolotarev [9] in 1873. Several
distinct notions of reduction have been studied, including those associated to the
names Hermite, Korkin-Zolotarev, Minkowski and Venkov; see [19, 20, 22, 23].

Recently there has been renewed interest in reduction theory arising from the
problem of designing computationally efficient algorithms for finding a short vector
in a lattice. This was stimulated by a new method in integer programming [12]
and by Lovész’ lattice basis reduction algorithm, presented in [11], which has had
quite a few applications, see [4, 8, 11, 13]. From this computational perspective the
most natural of the classical reduction theories to consider is that of Korkin and
Zolotarev, because the computational problem of finding a basis of a general lattice
reduced in the sense of Korkin and Zolotarev is polynomial time equivalent to the
computational problem of finding a shortest non-zero vector in a lattice.

Our object in this paper is to prove inequalities bounding vectors in a Korkin-
Zolotarev reduced basis of a lattice L in terms of the successive minima of L and
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its reciprocal lattice L*. Our results can be viewed as giving various senses in
which a Korkin-Zolotarev basis of a lattice is nearly orthogonal. Roughly speaking
our bounds improve on classically known bounds by replacing certain constants
exponential in the rank n of the lattice involved by constants polynomial in n. In
particular we obtain for a lattice L of rank n the inequalities

1S MDD noin(L) S 307 forl<isn,
valid for n > 7.

We also study certain quantities A(B) and u(x, B) that are computable in poly-
nomial time given a basis B of a lattice L in R™ and a vector x in R™, which have
the properties that A(B) is a lower bound for the length of a shortest non-zero vector
in L and p(x, B) is a lower bound for the distance of x to any vector in L. We show
that these lower bounds are quite good when the basis B of L is reciprocal to a Ko-
rkin-Zolotarev basis of the reciprocal lattice L*. These results give some information
concerning the computational complexity of recognizing short vectors in a lattice.

2. Statement of results

Let m be a positive integer. We denote by (, ) the Euclidean inner product on
R™ and by | | the Euclidean norm; so |v|? = } 1= v? for v = (vy,...,vm) € R™.
A lattice is a discrete additive subgroup L of R™. Its rank is the dimension of the
R_subspace V(L) that it spans. Each lattice L of rank n has a basis, i. e. a sequence
{b1,...,by] of n elements of L that generate L as an abelian group. We define the
determinant d(L) of L by choosing any basis [by,...,by] of L and setting
1/2
d(L) = det[(b;, b)] 2 o, -
This does not depend on the choice of the basis. The i-th successive minimum A;(L)
of a lattice L (with respect to the Euclidean norm) is the smallest real number r such
that there are ¢ vectors in L of length at most r that are R-linearly independent.
The lattice L* reciprocal to L (also called the lattice polar or dual to L) is defined
as ,.
L*={weV({L):(w,v}eZlforallve L}.
We have L** = L and d(L*) = d(L)™!. For each basis B = [b,,...,by] of a lattice
L there is a unique basis B* = [b],...,b}] of L* such that
ey [1 ifiti=n+1,
(b, b3) 0 otherwise.
We call this the basis of L* reciprocal to B. Note that we numbered the elements of
B* in reverse order to what is customary.
Hermite’s constant -, is defined by

Y = sup{\(L)?d(L) /™ : L is a lattice of rank n}.
Its value is known exactly for n < 8, see [2, Appendix]. Minkowski’s convex body

theorem implies that v, < 47 7'T'(1+n/2)%/" (see (2, IX.7]), which yields v, < 2n/3
for all n > 2. It is known that

n n
— < < — 1
(1 +0(1) S < (1 +0(1)) a5 n— oo,
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see [18], and the upper bound has been further improved to (1 + o(1)) - 0.872n/(we)
by Kabatyanskii and Levenshtein, see {3, Ch. 9). It has never been proved that ~y,
is an increasing function of n, though this is very likely true, For convenience we
define
(1) 74 = max{y : 1< i <n}
to obtain a non-decreasing function of n. We have v < 2n/3 for all n > 2.

Given a basis B = [by, ..., by} of a lattice L in R™, we define the Gram-Schmidt
orthogonalization Bf = [b;',...,bil] of B by the Gram-Schmidt orthogonalization
process: let bI = by, and define b} recursively for 2 < ¢ < n by

1—1
= bl
bl =b; — ) bl
=1

where

b;,b!
p’l,]=<—1'if)- for15j<i5n-

Thus we have the Gram-Schmidt decomposition

i—1
(2) bi=b]+> pibl  for1<i<n.
Jj=1
It follows that d(L) = i, |b:| It is not difficult to prove that the Gram-Schmidt

orthogonalization B* = [b;T, ... ,bﬁ] of the reciprocal basis B* of L* is expressed
in Bf by

3) bl =bl/blP  for1<ig<n
We say that a basis [by,...,by] is reduced in the sense of Korkin and Zolotarev,

or that it is a Korkin-Zolotarev basis, if it satisfies the following recursive set of
conditions:

(4) b; is a shortest non-zero vector of L in the Euclidean norm;
6) g <1/2fr2<ism
(6) if L™=1 denotes the orthogonal projection of L on the orthogonal comple-

ment (Rb;)L of Rb;, then the projections b; — p; 1b; of by, ..., by yield a
Korkin-Zolotarev basis [by — p21by, ..., bp — i 1by] of L™~D.
The above definition is equivalent to the definition of Korkin and Zolotarev (9]. An
equivalent non-recursive definition can be given as follows.

Let B = [by,...,by] be a basis for a lattice L in R™. For i € {1,...,n}, denote
by 7;:R™ — (Rb, + ... + Rb;_,)L the orthogonal projection on the orthogonal
complement of Rb, + ...+ Rb;_,. Write L(»~*+) = r;(L); this is a lattice of rank
n—i+1 with basis [r;(b;), ..., m;(bs)]. In terms of the Gram-Schmidt decomposition
we have m;(b;) = b} + Zi;: ,uj,kb};, in particular w;(b;) = b!.

;- Unwinding the
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definition just given, we see that B is a Korkin-Zolotarev basis if and only if the
following two conditions are satisfied:
) bI is a shortest non-zero vector of L™~ *+Y) in the Euclidean norm, for
1<i<n

(8) lwijl <1/2for1<j<i<n.
It is known that the domain of all Korkin-Zolotarev bases of lattices of rank n
in the space of all bases of lattices of rank n in R™ can be specified by a finite
set of inequalities that are quadratic in the entries b;; of the n x n basis matrix
B = |by,...,b,]. These inequalities have been determined explicitly for n < 8, see
7).

We call a basis B of a lattice L a reciprocal Korkin-Zolotareuv basis if its reciprocal
basis B* is a Korkin-Zolotarev basis of L*.

In Section 3 of this paper we prove the following two theorems, which relate the
length of vectors in any Korkin-Zolotarev basis of L to the successive minima of L
and L*.

Theorem 2.1. If [by,...,by] is a Korkin-Zolotarev basis of a lattice L, then

4 i4+3 )
;:E)W(L)2 < [b* < TA,-(L)"’ for1 <i<n.

The upper bound in this theorem is essentially due to Mahler [14], cf. [2, V.4]. We
will give examples to show that the inequalities in Theorem 2.1 cannot be much
improved.

Theorem 2.2. If [by,...,by] is a Korkin-Zolotarev basis of a lattice L, then
i+3 n-itd

il An—is1(L¥)? < x4 3 n for1<i<mn,

where 7y, is as in (1).

Note that the upper bound is O(n?).
As consequences of these results we obtain the following two theorems, which
are also proved in Section 3.

Theorem 2.3. If [by,...,by] is a Korkin-Zolotarev basis of a lattice L, then

Tibal? < (42 TT 223 ary?
glzl_(vnil;ll )Ly

Note that v [ (i +3)/4 < n®*™/(4me? + 0(1))™ for n — oo. This theorem provides
an upper bound for the orthogonality defect (I];-, |b;|)/d(L) of a Korkin-Zolotarev
basis. Hermite’s inequality asserts that any basis has orthogonality defect at least 1,
with equality if and only if the basis is orthogonal.

Theorem 2.4. The successive minima of a lattice L of rank n and its reciprocal lattice
L* satisfy
i+3 n—i+4

1S XD Min LY S == —F—m
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for 1 < i< n, with v}, as in (1).
The lower bound is classical, see [2, VIIL.5, Theorem VI]. From Theorem 2.4 we see
that

1 < M(D)Ap—ig1(L7) < énz forn>7 1<i<n.

Previously known upper bounds were exponential in n, see [2, VIIL.5, Theorem VI].

A limit on the amount of improvement possible in Theorems 2.2 and 2.4 is
imposed by a result of Conway and Thompson, see [16, Ch. 1I, Theorem 9.5], which
asserts that there exist lattices Ly of rank n with L, = L}, for which

©) A(Ln) M (LE)? > (5%)2(1 +o(1)) asn— oo

In Section 4 we prove lower bounds for the Gram-Schmidt orthogonalizations of
Korkin-Zolotarev bases and reciprocal Korkin-Zolotarev bases. These include

[bh) 2 97 M (D)
for a reciprocal Korkin-Zolotarev basis and
[bh] > n=C+w8m/2. (L)

for a Korkin-Zolotarev basis, see Proposition 4.1 and 4.2. It is an interesting open

problem whether or not a bound of the form |b1L| > n@M (L) holds for all Korkin-
Zolotarev bases.

The covering radius p(L) is the smallest number r such that all vectors x € V(L)
are at distance at most r from a lattice vector. In Section 5 we prove the following
bounds for the covering radius.

Theorem 2.5. The covering radius u(L) of a lattice L of rank n satisfies

i < WL\ (L)

.hlr—‘

with 47 as in (1).
The lower bound is well known [2, X1.3]. From the upper bound it follows that
MM S 0

for all n > 1. The Conway-Thompson result (9) together with the obvious bound
(L) 2 A1(L)/2 imply that there exist lattices Ly of rank n with L, = L}, and

* n .
(L) (L}) > 4—7Te(1 +0(1)) as n — 0.

In Section 6 we obtain bounds for A;(L) and for the quantity p(x,L) that
measures the distance from a vector x to the closest vector in t}#e lattlc]f: L. Given a
basis B of a lattice L, with Gram-Schmidt orthogonalization [b by], we define

A(B) = min{[b]| : 1 < i < n}.
This quantity gives rise to the following bounds for A,(L).
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Theorem 2.6. For any basis B of a lattice L we have

M(L) 2 M(B).
If B is a reciprocal Korkin-Zolotarev basis of a lattice L of rank n, then we have
where v}, is as in (1).
Next we consider u(x,L). Let B be a basis of a lattice L, with Gram-Schmidt
orthogonalization [bI, e ,bL]. Let x € R™, and write x = x’ + x” with x’ € V(L)
and x” € V(L)+. It is not difficult to see that there exists a unique b € L such that
X -b=3%, vjb;r. for certain real numbers v; with —1/2 < v; < 1/2. Using this
representation, we define

 wo=x—b, w,=—bT+Zvat for1 <i<n,
J=t+1

W, B) = minflw] :0< i <n),  uxB) = (e, B + )

This quantity gives rise to the following bounds for u(x, L).

Theorem 2.7. For any basis B of a lattice L in R™ of rank n and any x € R™ we
have

u(x, L) 2 p(x, B).
If in addition B is a reciprocal Korkin-Zolotarev basis of L, then we have

u(x, L) < (Z ) - u(x, B’

with 'yJ’f as i (1).

In Section 7 we use Theorems 2.6 and 2.7 to bound the non-deterministic computa-
tional complexity of finding a provably short, or provably close, vector in a lattice.

In Section 8 we extend the bounds from Sections 3 and 5 to arbitrary symmetric
convex distance functions, i. e. functions F:R™ — R satisfying

F(x) >0, with equality if and only ifx=10
F(ax) = |a|F(x),  F(x+y) < F(x)+ F(y)

for all x, y € R™ and a € R. Such a function is determined by its unit ball
= {x : F(x) <€ 1}, which is a compact symmetric convex set containing 0 in
its interior. The reciprocal distance function F* is defined by

F*(x) = sup{(x,y)/F(y) : y € R", y # 0}..
The unit ball Q* of F* is given by
O ={x:|{x,y)| <1lforallyeQ}

For a lattice L C R™ we define the i-th successive minimum \;(L; Q) of L with respect
to §2 to be the smallest real number r such that r§) contains ¢ points of L that are
R.linearly independent. For background on the above notions we refer to [2, 5).
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Theorem 2.8. Let ) be the unit ball of a symmetric convez distance function in R™
and Q* the unit ball of its reciprocal distance function. Let L be a lattice of rank n
in R™ and let \;(L; Q) denote the i-th successive minimum of L with respect to Q.
Then we have
2 * *\2 i + 3 *2
MR MLS Q) Sne 22
and . ,
1< ML D AL Q)2 < - i+3 n-itd L2

for 1 <i < n, with v}, as in (1).
The last upper bound is a sharpening of the M. Riesz-K. Mahler theorem (15, 5, Ch.
2, sec. 14.2, Theorem 5, cf. 2, VIIL5], which gives n!* as the upper bound.

If © and L are as in the previous theorem, we write u(L; Q) for the covering
radius of L with respect to Q. Our final result is the following.

Theorem 2.9. With Q and L as in Theorem 2.8 we have
1 k1]
p(L; M (L507)? < an’)’;z,

where ;' is as in (1).

3. Korkin-Zolotarev bases and successive minima

Proof of Theorem 2.1. There are i linearly independent vectors of length at most
Ai(L) in L, and under the projection L — L‘""“J at least one of them maps to a
non-zero vector. Therefore we have A (L(*~*+1) < A;(L). Combining this with (7)

we find that lbzl < A;(L). Using (2) and (8} we obtain

Ibil? < [b][?+ £ Zlb*i? < \(L)? ZA (L) < it

This proves the right side of the inequality in Theorem 2.1. To prove the left side,
we first note that for 7 < ¢ we have

b2 = A (LMY < ()2 < [bif2,
since 7;(b;) is a non-zero element of L(®~J*+1), Hence for j < i we have
2 < ph2 15 te e JE30 12
sf < 6} + 3 3Bl < g
Therefore we have )

ML) < max{lb;? 1< 5 < i} < 2o
This proves Theorem 2.1. ]
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Remark 3.1. We give a few examples to show that the bounds in Theorem 2.1 cannot
be improved by more than a constant factor. By ey, ..., e, we denote the standard
orthonormal basis of R™.

First let 1 < i < n. Let L be the lattice in R™ that is spanned by B = [by, ..., by],
where b; = e; for j # iand b; = ei+z;;i e;/2. We have b;'- = e; for all j, and using
the first inequality in Theorem 2.6 one easily deduces that A;(L) = 1for1 < j < n-1,
and that B is a Korkin-Zolotarev basis for L. From |b;|*> = (z+3)/4 = (i+3)\(L)?/4
we see that the upper bound in Theorem 2.1 is sharp whenever i < n.

One can show that for ¢ = n > 1 the upper bound in Theorem 2.1 is not
sharp. We show that it is sharp up to a factor 3 + o(1), for n» — c0. Let n > 1,
and let L be the lattice in R™ that is spanned by by,...,by,, where b; = e; for
j < nand by, = v3e,/2 + L e;j/2. It is easy to check that [by,...,by] is a
Korkin-Zolotarev basis for L, and that Ap(L)? = min{3,(n + 2)/4} < 3. Therefore
[br|* = (n+ 2)/4 > (n + 2)M(L)?/12, which establishes our claim. A more
complicated example can be constructed in which |b,|? = (n + O(1))A,(L)?/4.

Next we consider the lower bound in Theorem 2.1. For i = 1 we clearly
have equality. Let 1 < i < n, and let L be the lattice in R™ that is spanned by

B = [by,...,by], where b; = e; for j <i—1, b;_; = e¢;_ 1+Z e i—1))ej,
b; =¢; and b; = ne; for j > 4, where (( )) denotes the distance to the nearest integer.
One easily proves that B is a Korkin—Zolotarev basis for L, that A;(L) =1 for j < ¢
and A;(L) = n for j > 4, and that

A(L)? = min{m? + f <<2-]{"'T>>2 .m e, m#0).
J=0

The inside sum depends only on ged(m,i — 1), so the minimum is assumed when
m is a divisor of i — 1. By means of a straightforward computation this leads to
Ai(L)? > (i+10)/12 = (i+10)|b;|2/12. This proves that the lower bound in Theorem
2.1 cannot be improved by more than a factor of 3.

Proof of Theorem 2.3. This follows immediately from Theorem 2.1 and Minkowski’s
theorem that [T*, A(L) < v%/%d(L), see [2, VIIL2]. .
Proposition 3.2. Let [by,...,by] be a Korkin-Zolotarev basis of a lattice L, and let
L* be its reciprocal lattice. Then we have

i+3
[bilf (L) < 2y

for 1 <i < n, where v} is as in (1).

Proof. It is easy to see that L("~J+1)* is a sublattice of L*, so we have A;(L*) <
A1 (LM™~3+1%) for each j. Combining this with

i—1

(10) |b'i|2 < |bI|2 + iz |b;|2 — (L(n 1+1) Z/\ (L(Tl—.7+l))2
j:l

we obtain
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’bilz/\l (L*)2 <\ (L(n—i+1))2)‘l(L(n—i+1)*)2 z A L(n—3+1))2/\ (L(n—J+1)*)2
j 1
For any lattice M of rank k we have by definition of Hermite’s constant
M(MPI (M) < - dMYTE - d(M™YE = o,
where we use that d(M*) = d(M)~'. So we ﬁnd that

z+3
b P (L") < 42 + Z hjr S M

This proves Proposition 3.2. (]
Proposition 3.3. For any lattice L of rank n with reciprocal lattice L* we have

i1+ 3
A(L) M (L") < T’Y;Z
for 1 < i< n, wherev;, is as in (1).

Proof. This follows from Proposition 3.2, since A;(L)* < max{|b;{* : 1 < j < 4}.
For 2 = 1 the bound in Proposition 3.3 is sharp up to a multiplicative constant,

by (9).
Proof of Theorem 2.2. We have A,_j(L*) < Ap_yyy (L®~7+D*) whenever j < 4,
since L(™~J+1* s a sublattice of L*. Combining this with (10) we obtain
[bif* A1 ()7 € ML) A0y (LOTHD%)?
R SN S
] =1
Applying Proposition 3.3 to each L™®~+1) we find that

n—i+4 n—z+4
‘bilz’\n——i+l(L*)2 L —F :,,2 i+1 + = Z *2—J+1

4
n—it+4 1+3 )
S—y 4 Yo' -
This proves Theorem 2.2. 1

Proof of Theorem 2.4. The lower bound is well known, see {2, VIIL5, Theorem VI].
We prove the upper bound. Interchanging L and L*, if necessary, we may assume
that 4 < (n+1)/2. Choosing a Korkin-Zolotarev basis [by,...,by,] of L and applying
Theorem 2.2 we obtain
ALY An—inn(L7)? < max{[b;[* : 1 < j <4} - Ay (LF)?
< max{[bj[PAn_j 1 (L)?: 1 < § < 4}
< max i+3 w "2:1<j<id
T4 4
i+3 n—it+4
1 x T
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This proves Theorem 2.4. |

4. Bounds for Gram-Schmidt orthogonalizations

Praposition 4.1. Let B be a reciprocal Korkin-Zolotarev basis of a lattice L, with
Gram-Schmidt orthogonalization Bt = [bJ{, - ,bL]. Then we have
7lb]] > (L)
for1<i<n.
Proof. By (3) and (4) we have

b}t = [b2f| = [b¥| = A\ (L*) < ¥/ 2d(L*) /" = 44/ 2d(L) Y/,

Multiplying this by A;(L) < ' “d(L)"/" we obtain the desired inequality for i = n.
For general ¢ we consider the sublattice L; with basis B; = [by,...,b;]. It is easy
to see that B; is a reciprocal Korkin-Zolotarev basis for L;. Hence the result just

proved implies that ’Yilbﬂ > Ai(L;). This is at least A;(L) because L; C L. This
proves Proposition 4.1. |

Proposition 4.2. Let B = [by,...,by,] be a Korkin-Zolotarev basis of a lattice L, with
Gram-Schmidt orthogonalization [bI, . ,b;r,]. Then we have
z'l+log’i|b3_"l2 > A (L)?
i2+]og‘i|b:'!"l2 > lbi|2
for1 <i<n.
Proof. By (7) we have

z 1/
|b:rt—j+1|2 /\1(L(-7))2 < v d(L(J) 2/j — =1 (H k1 )

and therefore

-1 1/(5—1)
le_Jle < ,YJ/J 1 (H 'bn o )

for 1 < j € n. By a straightforward mductwn on 7 this yields

z
b e <% (T /) b2
k=2

for 1 < i < n. Using that 74 < 2k/3 for k£ > 2 one readily derives that

Ib |2 < i1+]°gi|bil|2.

n—i+1
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With i = n we obtain the case i = n of the first inequality of Proposition 4.2. For
general ¢ one applies the same result to L; and uses that A;(L;) > A;(L). Further
we have

1 ,
Ib |2 < Ib Z lb i+1|2 < (1 + Z Zi1+logz)|hm2 < n2+lognlb1'l|2’
=2
which is the case i = n of the last inequality of Proposition 4.2. For general ¢ one
argues as before. This proves Proposition 4.2. ]

5. Bounds for the covering radius

Proof of Theorem 2.5. The easy lower bound u(L) > An(L)/2 (see [2, XI1.3])
combined with An(L)A;(L*) > 1 implies that u(L)A(L*) > 1 /2, which proves the
left inequality in Theorem 2.5.

We prove the right inequality in Theorem 2.5 by induction on n, the case n =1
being obvious. Let n > 1, let b; € L satisfy |b;] = A;(L), and denote by L' the

projection of L on (Rby)L. We first prove that
1
(11) w(L)? < 7M(L)* + u(L)”.

Let x € V(L). By definition of u(L'), there exists b’ € L such that the projection
x’ of x b’ on (Rb,;)* has length at most u(L’). If we write x — b’ = x’ 4+ x”, then
x” € Rby, so we can find b” € Zb, such that |x” — b”| < |b;|/2 = A\, (L)/2. Then
b = b’ +b” is an element of L satisfying

= b = [+~ B = [ [~ B < (L) A (LY
which proves (11).
Since L™ is a sublattice of L* we have A;(L*) < A\;(L/*). Hence (11), Proposition
3.3 and the induction hypothesis imply that
BEPA(ETY < PPN + WL (L)
n

as required. This proves Theorem 2.5. 1

1
< PR+ (TP M (L)

.hln—l

6. Lower bounds for shortest vector problems and closest vector problems

Proof of Theorem 2.6. Let B = [by,...,b,], and let b = E?zl m;b; be a non-zero
element of L, with m; € Z, Let i be maximal with m; # 0. Then b — m,-b:-r lies in
the subspace Z’ 1 Rb;. Since this subspace is orthogonal to b:.f , we find that

Ib] > [m;bl| > [bl| > A(B
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This proves the first assertion of Theorem 2.6.
Next assume that B is a reciprocal Korkin-Zolotarev basis. Then by 4.1 we have
(L) € min{ybl| : 1 < i <n} <¥EA(B),

as required. This proves Theorem 2.6.

Proof of Theorem 2.7. Let B = |by,...,by], and let x € R™. As in Section 2, we
consider the unique representation

n
. " __ nt "
x=x +x =b+ (Zv_,bj) +x
=1
withx' € V(L), be L, v; €R, —-1/2<v; <1/2, x" e V(L)1 Let ve L. To
prove the first inequality in Theorem 2.7 it suffices to show that |x' — v| > |w;| for

some i, 0 < i < n, where the w; are as in Section 2.
If v = b then X' — v = wo, and we can take i = 0. Suppose that v # b, and write

b-v= Z;:l m;b; with m; € Z m; #0. Then

X —V—ZmJb +Zva —y+(mz+vz)b + Z v]

j=1 J=i+1

for some y in the subspace spanned by by, ..., b;_,. This subspace is orthogonal to
each osz, can, b;fl, S0

n
I — v > (mi+ 0,7l + 3 fusbl 2 > [wif?,
J=t+1
where we use that |m; + v;| > 1/2. This proves the first inequality of Theorem 2.7.
Next suppose that B is a reciprocal Korkin-Zolotarev basis, let x € R™, and let

the notation be as above. To prove the second inequality of Theorem 2.7, it suffices
to prove that for each i € {0,1,...,n} there exists v € L such that

—vP < (Z ) twil?.

For i=0 one can take v=b, so let >0. Let L; be the lattice spanned by by, ..., b;,
and let z be the element of V(L;) defined by

1

z=ivjb;=x'—b— Z vjb;r..

j=1 J=i+l
Let v/ € L; be such that |z — v/| < u(L;). Then the element v = b + v/ of L satisfies

n

X —v=(z-v)+ Z vjb;-

F=i+1
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and therefore
n
[ =P < (L) + 3 Jobl P
J=1+1
By Theorem 2.5 we have

(2 ) ML)

From the fact that B* is a Korkin-Zolotarev basis for L* it follows easily that a
Korkin-Zolotarev basis for (L;)* is given by the orthogonal projections of b} _. 1!

., b}, on V(L;). The first of these projections is bnf_iﬂ, and its length is A; ((L;)*).
By (3) this implies that A, ((L;)*) = [b;fl_l. Putting everything together we obtain

n
X —v|? < (Z Db+ Y loblP

1= i+1
n
< (27;2)( b+ 3 bl )= ()il
j=1 J=i+1 Jj=1
as required. This proves Theorem 2.7. (]

7. Computational complexity of lattice problems

The following are two basic computational problems concerning lattices.

Finding shortest vector: given n and a basis B = [by,...,by] of a sublattice L
of Z™, find a shortest non-zero vector in L.

Finding closest vector: given n, a basis B = [by,...,bp] of a sublattice L of Z7,
and z € L™, find a vector b € L that minimizes |x — b|?.

It is not difficult to see that the first problem is polynomial time equivalent to
the problem of finding a Korkin-Zolotarev basis of an arbitrary integer lattice L. It
is suspected to be NP-hard, but this has never been proved. Van Emde Boas [24]
showed that the second problem is NP-hard.

The fastest algorithms known for the above two problems are due to R. Kannan
8], and require the exponential time O(n*®H®), where H is the length of the input
of the problem with the usual encoding in binary.

Several polynomial time algorithms are known for solving weaker versions of
these problems. Lovéasz’ lattice basis reduction algorithm [11] runs in time O(n®H?3)
and is guaranteed to find a short non-zero lattice vector b satisfying

|b|Z < 271X (L)2

Babai [1] observed that this algorithm can also be used to find, for given x, a close
lattice vector b satisfying
[x — b|® < 2™u(x, L)
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Schnorr [21] has given a hierarchy of polynomial time lattice basis reduction algo-
rithms, showing that for any positive ¢ there exists a polynomial time algorithm that
produces a non-zero lattice vector b satisfying

B2 < (1 + €)™\ (L)

It is of great interest to find practical polynomial time algorithms that determine a
non-zero vector b € L that is certified to satisfy

[bl* < f(n)Ai (L)

with f(n) as small as possible.

Even if a shortest, or closest, lattice vector b € L has been found, it is not clear
how to prove that it is indeed the shortest, or closest, lattice vector. No polynomial
length proofs (“certificates”) are known to exist for statements of the form “b is a
shortest non-zero vector in L” or “b is a closest vector in L to x”. In this context
the results of Section 6 imply that there is at least a polynomial length proof that b
is quite short, or quite close to x, respectively.

Theorem 7.1. There exists a non-deterministic polynomial time algorithm that given
a basis B of an integer lattice L C L™ of rank n produces a vector b in L and a proof
that

[b] < n2A,(L)2.

Furthermore, there exists a non-deterministic polynomial time algorithm that when
given in addition an element x € L™ produces a vector b in L and a proof that

|x —bJ* < nPu(x, L)%

Proof. We give only a sketch of the proof, leaving the details to the reader.

The first algorithm consists of non-deterministically guessing an element b € L
satisfying |b|? = A;(L)? as well as a Korkin-Zolotarev basis B* = [b},...,b}] of L*.
If we guess right, then by the second inequality of Theorem 2.6 we have

b|* < n?X(B)?,

where B is the basis of L reciprocal to B*. We can now verify this inequality directly,
since A(B)? is easy to compute. If in addition we check that B is indeed a basis of
L, then the first inequality of Theorem 2.6 implies that |b|> < n2X,(L)?, as required.

For the second algorithm one proceeds in a similar manner, replacing Theorem
2.6 by 2.7.

This proves Theorem 7.1. ]
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8. Symmetric convex distance functions

Proof of Theorem 2.8. For the last lower bound, see {2, VIIL.5, Theorem 6]. If
Q) is the standard unit sphere in R™, then the upper bounds in Proposition 3.3
and Theorem 2.4 are sharper by a factor of n than the upper bounds in Theorem
2.8. Applying a linear transformation we see that these sharper bounds are also
valid if @ is an ellipsoid. In the general case we use the theorem of John [7, 5,
Ch. 1, sec. 1.6], which asserts that for any  there exists an ellipsoid E centered
at 0 such that E C Q@ C y/nE. Then A\(L;Q) < X(L; E) for all ¢ and L, by
the definition of successive minima. Also (y/n)™'E* = (/rE)* C Q* C E*, so
Mi(L; ) € /A (L; E*). Hence the upper bounds in Theorem 2.8 are implied by
the sharper bounds that are valid for ellipsoids. This proves Theorem 2.8. ]

Proof of Theorem 2.9. This follows from Theorem 2.5 by the same argument as in
the previous proof. 1
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