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FORMS IN ODD DEGREE EXTENSIONS AND SELF-DUAL 
NORMAL BASES 

By E. BAYER-FLUCKIGER and H. W. LENSTRA, JR. 

Introduction. Let K be a field. Springer has proved that an ani- 
sotropic quadratic form over K is also anisotropic over any odd degree 
extension of K (see [31], [14]). If the characteristic of K is not 2, this 
implies that two nonsingular quadratic forms that become isomorphic 
over an extension of odd degree of K are already isomorphic over K 
(see [31]). In [27], Serre reformulated the latter statement as follows: 
if 0 is an orthogonal group over K, then the canonical map of Galois 
cohomology sets 

H'(K, 0) -- H'(L, 0) 

is injective provided the degree of the field extension LIK is odd. He 
also asked whether a similar statement holds for other linear algebraic 
groups (see [27], p. 67, Question 2). 

In the present paper we prove the following (see Section 2 for a 
precise statement): 

THEOREM. Let K be a field of characteristic not 2. Let N be the 
norm-one-group of a finite dimensional K-algebra with a K-linear in- 
volution. Then, for any extension L of odd degree of K, the canonical 
map 

H'(K, N) -- H'(L, N) 

is injective. 
This result has several applications: 

THEOREM (see (3.2)). If two systems of bilinear forms over afield 
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K of characteristic not 2 become isomorphic over an extension of odd 
degree of K, then they are already isomorphic over K. 

The second application concerns the existence of self-dual normal 
bases. Let L be a Galois extension of finite degree of K, and let 

T:L x L--> K 

T(x, y) = TrL,K(xy) 

be the trace form. A basis (e1, . . , en) of the K-vector space L is said 
to be self-dual if T(ej, ej) = 8ij. Let G = Gal (LIK). There exists x E 

G such that the elements g(x), g E G, form a basis for L as a vector 
space over K (see [21], [9]). Such a basis is called a normal basis. Conner 
and Perlis proved that if K = Q and the degree of L over Q is odd, 
then L has a self-dual normal basis over Q (see [7], (V.3.3)). They asked 
which ground fields K have the property that any Galois extension of 
odd degree has a self-dual normal basis. The following result is a con- 
sequence of (2.1): 

THEOREM (see (5.6)). Any finite Galois extension of odd degree of 
a field of characteristic not 2 has a self-dual normal basis. 

It would be interesting to know whether this holds for fields of 
characteristic 2 as well. The following theorem implies that this is the 
case for abelian extensions. The proof of this result (see Section 6) can 
be read independently from the rest of the paper. 

THEOREM (see (6.1)). Let LIK be an abelian extension of degree 
n and group G. 

(a) If char (K) =A 2, then L has a self-dual normal basis over K if 
and only if n is odd. 

(b) If char(K) = 2, then L has a self-dual normal basis over K if 
and only if the exponent of G is not divisible by 4. 

For finite fields this is proved in [17]. 

1. Witt groups of algebras. This section contains some results on 
Witt groups that are needed in the proof of the main theorem (see 
(2.1)). It is based on W. Scharlau's paper [25], especially on Section 5. 
We begin by recalling some definitions and basic results about hermitian 
and symmetric forms (see also [26] and [15]). 
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Let K be a field and let A be a K-algebra with a K-linear involution 
J: A -* A. Let M be a finitely generated left A-module. A map h: 
M x M -> A is called a sesquilinear form if it is biadditive and satisfies 
h(am, bn) = ah(n, m)J(b) for all a, b in A and all m, n in M. Let E = 

1 or -1. A sesquilinear form (M, h) is said to be E-hermitian if J[h(m, 
n)] = Eh(n, m) for all m and n in M. Set M* = HomA(M, A). Given 
an E-hermitian form (M, h), we associate to any m in M an element Hm 
of M* defined by Hm(n) = h(n, m). We say that (M, h) is nonsingular 
if the map 

(1.1) H:M M* 

m y-> Hm 

is bijective. This map is A-linear if (a.f)(m) = f(m)J(a) for all a E A, 
f E M* and m E M. A morphism from (M, h) to (M', h') is a homo- 
morphism of left A-modules f: M -* M' such that h'(fm, fn) = h(m, 
n) for all m, n in M. The unitary group U(M, h) is the group of all 
automorphisms of (M, h). An E-hermitian form (M, h) is called metabolic 
if M has an A-submodule N that is equal to its orthogonal (i.e. h(n, m) 
= 0 for all n in N if and only if n E N). Let El stand for orthogonal 
sum. The Witt group Wf(A, J) is the quotient of the Grothendieck group 
(with respect to El) of the isomorphism classes of nonsingular E-her- 
mitian forms by the subgroup generated by the metabolic forms. For 
any nonsingular e-hermitian form (M, h), the form (M, h) MI (M, - h) 
is metabolic (take for N the diagonal). This implies that two E-hermitian 
forms (M, h) and (M', h') are in the same Witt class if and only if there 
exist metabolic forms (N, g) and (N', g') such that 

(M, h) W (N, g) (M', h') W1 (N', g'). 

If A = K and E = 1 then we obtain the Witt group W(K) of the 
field K. It is well known that the tensor product of forms induces a ring 
structure on W(K) (see for instance [26], Chapter 2, Section 1). As 
Scharlau points out ([25], Section 5), one can take the tensor product 
of a K-valued form with an A-valued form -and thereby obtain a left 
W(K)-module structure on We(A, J). 

If LIK is a field extension, we extend the involution J to an invo- 
lution JL of AL = A ?K L. For any E-hermitian form (M, h), set ML = 
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M 0K L and let hL: ML X ML -- AL be the extension of h to ML. We 
obtain a canonical homomorphism 

r* : W(A, J) -- WE(AL, JL) 

(M, h) 4 (ML, hL) = (M, h) 0K L. 

PROPOSITION 1.2. If L is a finite extension of odd degree of K, then 
the homomorphism 

r* : W(A, J) -- WE(AL, JL) 

is injective. 

Proof. Let s: L - K be a nonzero K-linear homomorphism. We 
extend s to an A-linear homomorphism SA: AL -- A and we obtain a 
group homomorphism 

s*: WE(AL, JL) -- WE(A, J) 

defined by sending (M, h) to (M, sAh). Likewise, we have 

s*: W(L) -- W(K)- 

An easy computation shows that 

(1.3) s*[b 0 r*(h)] = s*(b) 0 h 

for all b in W(L) and h in WE(A, J). 
It suffices to prove the proposition in the case where L is a simple 

extension, say L = K(a). Following Scharlau [24] define a K-linear 
homomorphism s: L -- K by s(l) l- 1 and s(a') = 0 for i =1,..., 
n - 1 where n is the degree of L over K. Set b = 1 in (1.3). As n 
is odd, it is easy to check (see [24] or [26], Chapter 2, (5.8)), that 
s*(1) = 1 in W(K). So s*[r*(h)] = h for all h in WE(A, J), which shows 
that r* is injective. 

We say that two E-hermitian forms (M, h) and (M', h') become 
isomorphic over an extension L of K if (ML, hL) and (ML, h2) are 
isomorphic over AL. 
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COROLLARY 1.4. Assume that the characteristic of K is not 2 and 
that A is a skew field. Let L be a finite extension of odd degree of K. If 
two nonsingular E-hermitian forms become isomorphic over L, then they 
are isomorphic. 

Proof. Let (M, h) and (M', h') be two nonsingular E-hermitian 
forms that become isomorphic over L. Let w be the Witt class of 
(M, h) ii (M', -h'). Then r*(w) = 0, so by Proposition 1.2, we have 
w = 0. Therefore there exist metabolic forms (N, g) and (N', g') such 
that 

(1.5) (M, h) E (N, g) (M', h') E (N', g'). 

Since N and N' are A-vector spaces of the same dimension, they 
are isomorphic. It is well known that the metabolic forms (N, g) and 
(N', g') are then also isomorphic. We give a proof of this fact for the 
convenience of the reader. Let G: N -* N* be the isomorphism asso- 
ciated to g as in (1.1). Since (N, g) is metabolic, there exists a sub-A- 
vector space P of N that is equal to its orthogonal. Let Gp: N -P* 
be the composition of G with the projection of N* onto P*. The kernel 
of Gp is P. Therefore dimA(P) = 1/2 dimA(N). Let P' be a direct com- 
plement of P in N. As P is totally isotropic, G(P) is contained in P'*. 
The map G is injective and dimA(P) = dimA(P'), hence G: P -P* 

is an isomorphism. The restriction of g to P' defines a (possibly singular) 
E-hermitian form k: P' x P' -* A. Let F: P' -P* be the map 

corresponding to -1/2.k: P' x P' -* A as defined in (1.1). Set f = 

G o F: P' -> P. Let Q be the sub-A-vector space of N given by 

Q = {(f(p'), p') IP' E P'}. 

Then N = P E Q, and an easy computation shows that g(Q, Q) = 0. 
The form g is given by the duality between P and Q. Such a form is 
completely determined by dimA(P). 

Hence (N, g) and (N', g') are isomorphic. By (1.5) and Witt's 
cancellation theorem (see e.g. [4], Section 4, n? 3, Theoreme 1, or [26], 
Chapter 7, Theorem 9.1) this implies that (M, h) -(M', h'), so the 
corollary is proved. 

2. Forms in odd degree extensions. Let K be a field of charac- 
teristic not 2. Let A be a finite dimensional K-algebra together with a 
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K-linear involution J: A A. Let the algebraic group N be the norm- 
one-group of A, i.e. 

N(L) = {a E AL I aJL(a) = 1} 

for any field extension L of K. Let K, be a separable closure of K. We 
use the standard notation H1(K, N) = H1(Gal(KsIK), N(Ks)). For any 
field extension LIK, we obtain a canonical map H1(K, N) -- H1(L, N), 
see for instance [10], Section 2. 

THEOREM 2.1. If L is a finite extension of odd degree of K, then 
the canonical map 

H 1(K, N) -*H 1(L, N) 

is injective. 
We say that N is a general linear group if there exist a skew field 

D and an integer n such that N(L) -GLn(D ?K L) for all field extensions 
LIK (functorially in L). The group N is called a unitary group if there 
exist a skew field D, a K-linear involution I: D -* D, a finite dimensional 
left D-vector space W, an element E = 1 or -1, and a nonsingular E- 

hermitian form h: W x W -* D such that likewise N(L) U(WL, hL), 
the group of automorphisms of the form (WL, hL)- 

LEMMA 2.2. If N is a general linear group, then H1(K, N) = 0. 

Proof. See for instance [28], Chapter X, Section 1, Exercise 2, or 
[32], Appendix. In terms of "forms" (see [28], Chapter X, Section 2 or 
[29], Chapter III, Section 1) this means that if D is a skew field and n 
a positive integer, then there exists a unique isomorphism class of n- 
dimensional left D-vector spaces. 

LEMMA 2.3. Let L be a finite extension of odd degree of K. If N is 
a unitary group, then the canonical map 

F: H1(K, N) -* H1(L, N) 

is injective. 

Proof. Let D, W, h and E be such that N is the unitary group of 
(W, h). Then H1(K, N) is in one-to-one correspondence with the set of 
isomorphism classes of nonsingular E-hermitian forms g: W x W-- D 
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that become isomorphic to (W, h) over K, (see [28], Chapter X, Section 
2 or [29], Chapter III, Section 1). Let (W, g) and (W, g') be two such 
forms. Then they have the same image under Fif and only if they become 
isomorphic over L. By Corollary 1.4 this implies that they are iso- 
morphic. Therefore F is injective. 

Proof of Theorem 2.1. There exists an exact sequence of algebraic 
groups 

1 > U-> N N1 x X. X Nr 1 

where U is a split unipotent group, and Ni is either a unitary group or 
a general linear group (see [1], Section 1 and Wagner [33], Lemma 6). 
This induces a map 

H1(K, N) H-> H1(K, Nr) X .. H1(K, Nr). 

As U is split unipotent, this map is bijective ([23], Lemme 1.13). There- 
fore the theorem follows from the two preceding lemmas. 

Remark 2.4. Sansuc proved (2.1) for number fields ([23], Corol- 
laire 4.6). 

3. Systems of bilinear forms. Let K be a field, and let V be a 
finite dimensional K-vector space. Let I be a set, and let S = {b,} be a 
system of K-bilinear forms bi: V x V -> K, i E I. The system S is said 
to be isotropic if there exists a nonzero x in V such that bi(x, x) = 0 
for all i. Let S' = {b'} be a system of K-bilinear forms b': V' x 
V' -> K, i E I, where V' is a finite dimensional K-vector space. An 
isomorphism between S and S' is a K-linear isomorphism f: V -> V' 
such that b'(fx, fy) = bi(x, y) for all x, y in V and all i. 

Let us recall a well-known result of Springer: 

THEOREM 3.1 (Springer, [34]). 

(a) If a quadratic form becomes isotropic over a finite extension of 
odd degree, then it is isotropic. 

(b) Assume that the characteristic of K is not 2. Then, if two non- 
singular quadratic forms become isomorphic over a finite extension of 
odd degree, they are isomorphic. 

Part (a) generalizes only to pairs of quadratic forms (see Brumer 
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[5]) but not to systems of at least 3 quadratic forms (Cassels [6], Coray 
[8]). On the other hand, we now show that part (b) generalizes to all 
systems: 

THEOREM 3.2. Suppose that the characteristic of K is not 2. If two 
systems of bilinear forms become isomorphic over a finite extension of 
odd degree, then they are isomorphic. 

Proof. Let S = {bj} be a system of K-bilinear forms. Following 
[1], set 

As= {(f, g) E End(V) x End(V) I b(fx, y) = b(x, gy) and b(x, fy) 

= b(gx, y) for all x, y in V and all b in S}. 

Let us give As a structure of K-algebra by setting (f, g) + (f', g') = 
(f + f', g + g') and (f, g)(f', g') = (ff', g'g). Define a K-linear 
involution J: As -* As by J(f, g) = (g, f). Sending f to (f, f 1) defines 
an isomorphism between the group of automorphisms of S and the norm- 
one-group N of As (see [1]). Let L be a finite extension of odd degree 
of K. The set of isomorphism classes of K-bilinear forms that become 
isomorphic to S over L is in bijection with the kernel of the canonical 
map of pointed sets H'(K, N) -> H'(L, N). By Theorem 2.1 this kernel 
is trivial, so the theorem is proved. 

Remark 3.3. Theorem 3.2 and its proof can be generalized to 
systems of sesquilinear forms over algebras with involution, to systems 
of equivariant forms (see Section 4) and even to systems of hermitian 
forms in an additive category in the sense of Quebbemann, Scharlau 
and Schulte (see [22] or [26], Chapter 7, [2]) provided that the rings of 
endomorphisms of the objects are finite dimensional vector spaces over 
a field of characteristic not 2. 

4. Equivariant forms. Let K be a field of characteristic not 2, let 
G be a group and let K[G] be the group ring. Let M be a left K[G]- 
module that is a finite dimensional K-vector space. An equivariant form 
is a K-bilinear form b: M x M -> K such that b(gm, gn) = b(m, n) 
for all g in G and all m, n in M. 

THEOREM 4.1. If two equivariant forms become isomorphic over a 
finite extension of odd degree, then they are isomorphic. 
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Proof. The proof is similar to the proof of Theorem 3.2. Let (M, 
b) be an equivariant form. As in the preceding section, one associates 
to this form a subalgebra with involution of EndK[GJ(M) x EndK[G](M) 
such that the group of automorphisms of (M, b) is the norm-one-group 
of this algebra. The result now follows from Theorem 2.1. 

5. Self-dual normal bases. Let K be a field, and let L be a sep- 
arable extension of finite degree n of K. The trace form 

T: L x L->K 

T(x, y) = TrL,K(xy) 

is a nonsingular, symmetric K-bilinear form on the K-vector space L. 
A K-basis (e1, . . . , en) of L is said to be self-dual if T(ej, ej) = 8ij for 
all i, j. A field extension has a self-dual basis if and only if the trace 
form is isomorphic to the standard form (1, . . . , 1). 

At least part (b) of the following proposition is well known (see 
for instance [7], (1.6.5)): 

PROPOSITION 5.1. 

(a) Any finite separable extension of a field of characteristic 2 has a 
self-dual basis. 

(b) Any finite Galois extension of odd degree of a field of charac- 
teristic not 2 has a self-dual basis. 

Proof. 

(a) Assume that char(K) = 2. Let (L, T) -(V1, 1) WE (V2, 1), 
where (V1, 1) is a diagonal form. Suppose that r = dimK(Vl) is maximal 
with the above property. This implies that T(v, v) = 0 for all v in V2 
(see for instance [19], Chapter 1, (3.5)). Notice that 

(5.2) T(x, x) = TrL,K(x2) = [TrL,K(X)]2 for all x in L. 

There exists an x in L such that TrL,K(X) = T(x, x) = 1, therefore r =? 
0. Let (e1, . . , er) be a K-basis of V1 such that T(ej, ej) = -aij for all 
i, j. Set bi = TrL,K(ei) and fi = (1/bi)ej. Then (5.2) shows that T(fi, fj) 
= Bij, so (V1, 1) is the standard form. Set x = el and let U be the sub 
K-vector space of V1 with basis (el, . . . , er). Suppose that V2 =? 0, and 
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let y be a nonzero vector of V2. As (V2, T) is nonsingular, there exists 
z in V2 such that T(y, z) = 1. Let W be the sub K-vector space of L 
spanned by x, y and z. Then (W, 1) is the standard form: (x + y, x + 
z, x + y + z) is an orthonormal basis. Hence (U, T) El (W, 7) is a 
diagonal orthogonal summand of (L, 1) of dimension r + 2. This con- 
tradicts the maximality of r. Therefore V2 = 0, and (L, I) = (V1, 7) 
is the standard form. 

(b) It is easy to see that (L, T) becomes isomorphic to the standard 
form over L. Indeed, L (K L-L x ... x L, and the extended trace 
form TL is the orthogonal sum of the trace forms of the factors (see for 
instance [7], (1.5.4)). By Springer's theorem (3.1) b) this implies that 
(L, 7) is isomorphic to the standard form. 

Remark 5.3. If char(K) =, 2 and if L is a quadratic extension of 
K, then L does not have any self-dual basis over K. Indeed, the dis- 
criminant of T is the discriminant of the field extension. As the latter 
is not a square, T is not isomorphic to the standard form. More results 
about the existence of self-dual bases can be found in Serre [30] and 
Kahn [12], [13]. 

Assume moreover that L is a Galois extension of K with group G. 
The normal basis theorem says that there exists x in L such that the set 
@g(x) I g E G} is a basis for L as a vector space over K (see [21], [9]). 
Equivalently, L is free with one generator as a left K[G]-module. 

Observe that T is a G-equivariant form: T(gx, gy) = T(x, y) for 
all g in G and x, y in L. Therefore the dual of a normal basis is also 
normal. So it is natural to ask whether L has a self-dual normal basis. 
This question has been studied in [3], [7] Chapter V, [11], [16], [17], 
[18] Chapter 4, Section 9 and [20]. 

Let - be the K-linear involution of K[G] defined by g = g' for all 
g in G. Let pi: K[G] -* K be the K-linear homomorphism such that 
p1(g) = 8g,1 for all g E G. We denote by t the standard G-equivariant 
form on K[G]: 

t: K[G] x K[G] -* K 

t(x, y) = pi(xy). 

LEMMA 5.4. There exists a self-dual normal basis of L over K if 
and only if (L, 1) and (K[G], t) are isomorphic as G-equivariant forms. 
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Proof. This is clear. 

LEMMA 5.5 (Conner-Perlis, [7], (V.3)). The G-equivariant forms 
(L, I) and (K[G], t) become isomorphic over L. 

Proof. Let 

f : L0KL L[G] 

a Db> E: g -'(a) b.g. 
gEG 

It is easy to check that f is an isometry between (L, I) OK L and 
(K[G], t) OK L. See [7], pp. 227-228 for details. 

THEOREM 5.6. Any finite Galois extension of odd degree of a field 
of characteristic not 2 has a self-dual normal basis. 

Proof. Apply (5.5), (4.1) and (5.4). 

6. Self-dual normal bases for abelian extensions. This section can 
be read independently from the rest of the paper. Theorem 6.1 below 
is partly a special case of (5.6). The proof given here-for abelian ex- 
tensions-is much simpler than the earlier proof of (5.6). 

THEOREM 6.1. Let L be a Galois extension of finite degree n of K, 
and let G = Gal(L/K). Suppose that G is abelian. 

(a) Assume that char(K) # 2. Then there exists a self-dual normal 
basis of L over K if and only if n is odd. 

(b) Assume that char(K) = 2. Then there exists a self-dual normal 
basis of L over K if and only if the exponent of G is not divisible by 4. 

Proof of the nonexistence part. If L has a self-dual normal basis 
over K, then so has any subfield that is Galois over K. To see this, it 
suffices to take the trace of an element of a self-dual normal basis. 
Therefore it suffices to show the following two assertions: 

(i) If char(K) =? 2 and n = 2, then L does not have any self-dual 
normal basis over K. 

(ii) If G is cyclic of order 4, then L does not have any self-dual 
normal basis over K. 

Proof of (i). Let G = {1, g} and assume that a E L generates a 
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self-dual normal basis. Then 0 = TrL,K[ag(a)] = 2ag(a). This implies 
that a = 0, which is a contradiction. For another proof, see Remark 
5.3. 

Proof of (ii). Let g be a generator of G and assume that B = (a, 
g(a), g2(a), g3(a)) is a self-dual K-basis of L. We have 

0 = TrL,K[ag(a)] = [a + g2(a)][g(a) + g3(a)]. 

As the second factor of this product is the image under g of the first 
one, both have to be zero. This implies that a = -g2(a), contradicting 
that B is a basis. 

PROPOSITION 6.2. Any abelian extension of odd degree has a self- 
dual normal basis. 

For fields of characteristic not 2 this is a special case of (5.6). Before 
proving the proposition, we use it to complete the proof of (6.1). 

Proof of the existence part. If char(K) # 2, then the assertion 
follows from (6.2). Assume that char(K) = 2. Then L is a composite 
of linearly disjoint extensions Li such that [Li: K] = 2 or is odd. In the 
second case (6.2) implies that Li has a self-dual normal basis over K. If 
Li is a quadratic extension of K, then by (5.2) it is easy to see that any 
element of trace 1 generates a self-dual normal basis. Therefore all the 
Li's have self-dual normal bases over K. Multiplying out one obtains a 
self-dual normal basis of L over K, and (6.1) is proved. 

_Recall that for any group G we denote by K[G] the group ring and 
by : K[G] -* K[G] the K-linear involution that sends g to g-1 for all 
g in G. 

LEMMA 6.3. Let G be a finite abelian group and let u be a unit of 
K[G]. Let L be a finite extension of odd degree n of K. Suppose that 
there exists y in L[G] with u = yy. Then there also exists x in K[G] such 
that u = xx. 

Proof. As G is commutative, and L[G] is free over K[G], we have 
a norm map N = NL[G]IK[G]: L[G] -> K[G]. Then Un = N(u) = N(-y) 
= N(y)N(y). Set x = N(y)Iu( 'l'2. It is easy to check that xx = u, so 
the lemma is proved. 

Let L be a finite Galois extension of K with group G. Then T(ga, 
b) = T(a, g-'b) for all g in G and a, b in L. Therefore 
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(6.4) T(xa, b) = T(a, xb) for all x in K[G] and all a, b in L. 

If a E L is an element of a normal basis, we denote by a* the 
element of the dual normal basis satisfying T(a, a*) = 1. For all b E 
L there exists x E K[G] such that b = xa. Moreover, b belongs to a 
normal basis if and only if x is a unit. 

Let a be an element of a normal basis of L over K, and let u be 
the unit of K[G] such that a* = ua. 

LEMMA 6.5. The extension L has a self-dual normal basis over K 
if and only if there exists a unit x of K[G] such that u = xx. 

Proof. Let x be a unit of K[G]. Using (6.4) we see that (xa)* = 

(x)la* = (x)-'ua. Therefore (xa)* = xa if and only if u = xx. 

LEMMA 6.6. There exists a unit y of L[G] such that u = yy. 

Proof. The proof of (5.5) shows that L 0K L has a self-dual normal 
basis over L. Therefore the argument leading to (6.5) proves the exis- 
tence of y with the desired property. 

Proof of 6.2. The proposition follows from (6.6), (6.3) and (6.5). 

Remark 6.7. The only step in the proof of Proposition (6.2) where 
we use that the extension is abelian is Lemma 6.3. We do not know 
whether (6.3) is true for noncommutative groups G if char(K) = 2. If 
the characteristic of K is not 2 and G is any finite group, then one can 
deduce (6.3) from Theorem 2.1. In this application of (2.1) the algebraic 
group N is given by N(L) = Ix E L[G] I xx = 1} for all field extensions 
L of K. 
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Added in proofs. Theorem 5.6 can be generalized to fields of 
characteristic 2 (see E. Bayer-Fluckiger, Indag. Math., 51 (1989), 379- 
383). In other words, every Galois extension of odd degree has a self- 
dual normal basis. This answers a question raised in the introduction. 
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