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Abstract. Among all public-key cryptosystems that depend on the knapsack 
problem, the system proposed by Chor and Rivest (IEEE Trans. Inform. Theory 
34 (1988), 9017909 ) is one of the few that have not been broken. The main difficulty 
in implementing their system is the computation of discrete logarithms in large 
finite fields. In this note we describe the "powerline system," which is a modification 
of the Chor-Rivest system that does not have this shortcoming. The powerline 
system, which is not a knapsack system, is at least as secure as the original 
Chor-Rivest system. 

Key words. Public-key cryptosystem, Finite field. 

1. Introduction 

Among all public-key cryptosystems that depend on the knapsack problem, the 
system proposed by Chor and Rivest [2], [3] is one of the few that have not been 
broken [1]. The Chor-Rivest system is based on arithmetic in finite fields. It has 
the curious feature that its security does not depend on the apparent hardness of 
any weU-known computational problem, such as the discrete logarithm problem. 
Paradoxically, if the discrete logarithm problem in large finite fields would become 
tractable, then this would improve the system: it would make it easier to generate, 
but apparently not easier to break. 

In this note we describe the powerline system, which is a modification of the 
Chor-Rivest system. The powerline system is not a knapsack system. It works 
directly in the multiplicative group of a finite field, without passing to discrete 
logarithms. The system depends on a collection of elements that all lie on the same 
line, and that are all raised to the same power. The powerline system achieves the 
same improvement in system generation that a solution of the discrete logarithm 
problem would bring about for the Chor-Rivest system. 

The powerline system is at least as secure as the Chor-Rivest system, and if the 
discrete logarithm problem would become tractable then the two systems would be 

1 Date received: May 14, 1990. Date revised: January 7, 1991. The author was supported by NSF 
under Grant Nos. DMS 87-06176 and DMS 90-02939, and by NSA/MSP under Grant No. MDA90- 
I-I-4043. 
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equally secure. In fact, the fastest method for breaking the powerline system that 
we know is first applying a discrete logarithm algorithm to reduce it to the Chor-  
Rivest system, and next breaking the latter system by means of the attack of Brickell 
[3, Section VIII. 

Thus we see that the powerline system has a less paradoxical relation to the 
discrete logarithm problem than the Chor-Rivest system: the discrete logarithm 
problem does not enter into the system generation, but it does enter into algorithms 
for breaking the system. 

The main advantage of the powerline system over the Chor-Rivest system is the 
greater freedom it allows in choosing the system parameters, since there is no need 
to restrict to finite fields for which the discrete logarithm problem is feasible. Using 
finite fields for which the discrete logarithm problem is not feasible might in fact 
add to the security of the powerline system. There is also a disadvantage: encryption 
in the powerline system is somewhat slower than in the Chor-Rivest system. 

The reader is encouraged to examine the powerline system for possible weak- 
nesses, and to find a feasible method for breaking it. 

In Section 2 we describe the powerline system. In Section 3 the Chor-Rivest 
system, with a few inessential changes, is described. In Section 4 we prove that the 
powerline system is at least as secure as the Chor-Rivest system. We also compare 
the performance of the two versions. Section 5 contains the little we know about 
attacks on the powerline system. 

2. Description of the Powerline System 

(2.1) System Generation. (a) Choose a prime number p. Write Fp for the prime field 
of p elements. The elements of Fp can be represented by the integers 0, 1, . . . ,  p - 1, 
the arithmetic operations being defined modulo p. 

(b) Choose a positive integer n, and generate an irreducible polynomial f e Fp IX] 
of degree n. This can be done as in [4]. Write q for p" and Fq for the field 
F p [ X ] / f F p [ X ] .  The elements of F~ can be represented as vectors (xi)72~ over Fp, 
with ,-1 (xi)i~o standing for the element (~i%-g x~ X~ mod f )  of F~. The arithmetic 
operations in F~ are performed modulo f. 

(c) Choose a positive integer h, and generate an irreducible polynomial g e F~ [ Y] 
of degree h, as in [4]. Write Fq~ for the field Fq[ Y]/gF~ [ Y]. The elements of Fq~ can 

h-1 F~, with h-I be represented as vectors (Yi)i=o over (Y~)i=o standing for the element 
(~h--01 Yi Y~ mod g) of Fq~. The arithmetic operations in F~ are performed modulo g. 

(d) Choose a random element t ~ F~ satisfying F~h = F~(t). This can be done by 
selecting random elements t e Fq, until one is found for which Fq~ = Fq(t). Notice 
that Fqh = F~(t) if and only if the system 1, t . . . . .  t h-1 is linearly independent over 
Fq, and if and only if t ~j~" # t for each prime number p' dividing h. 

(e) Choose a random element u e F~h with u # 0. 
(f) Choose a random integer k satisfying 1 < k < qh _ 1, gcd(k, qh _ 1) = 1. 
(g) Choose a positive integer s < q. Write S = { 1, 2 . . . . .  s}. 
(h) Choose a random injective map rr: S ~ Fq. 
(i) For each i ~ S, calculate the element v~ = (ut - u"  7~(i)) k of Fq~. 
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(2.2) Public Key .  The following information is to be made public: p, n, f ,  h, and g, 
so that  the used models for Fq and Fq~ are publicly available; the integer s, and the 
s elements vl, v2 . . . . .  v, of Fq,. 

(2.3) Private  Key .  The  following are kept  secret: t, u, k, and n. 

(2.4) Message .  A message is by definition a sequence m = (m~, m 2 . . . . .  m,) of 
nonnegat ive integers satisfying ~7=1 rn~ = h. To  transform convent ional  messages 
to this form we can apply an algori thm similar to that in Section IV.B of [3]. 

(2.5) Encryption.  To  encrypt  a message m = (m 1, m2 . . . . .  ms), calculate the ele- 
ment  e(m) = I-I~=l vm' of Fqh. This element is to be sent over the insecure channel. 

(2.6) Decryption.  Given e(m), we calculate m as follows, using the secret informa- 
tion. Steps (j), (k), and (1) can be done once and for all at system generation. 

(j) Express the elements (Y mod  #) and t h of Fqh in the basis 1, t . . . . .  t h-1 of  Fqh 
over  Fq. This can be done by solving two linear systems over Fq. Once it is done, 

h - 1  i we can use Homer ' s  scheme to express any element (~i=o Yi Y mod  0) of Fq, in the 
basis 1, t . . . . .  t h-~ by performing h - 1 addit ions and h - 1 multiplications modulo  
the irreducible polynomial  of t over Fq: 

h - 1  

Yi Yi = (( '"((Yh-~ Y + Yh-2) Y + Yh-3 )Y  + ""  + Y2)Y + Y~)Y + Yo- 
i = 0  

The irreducible polynomial  o f t  is obtained from the expression of t  h in 1, t . . . .  , t h-1. 
(k) Calculate the element u-h of  Fq,. 
(1) Calculate a positive integer I satisfying kl -= 1 rood ( q h  - -  l), using the extended 

Euclidean algorithm. 
(m) Calculate e (m) l ' u -h  _ t h, and express it in the basis 1, t . . . . .  t h-1 of Fqh over 

Fq, using the me thod  described in (j): 

h - 1  

e(m)t.u-h __ t h = ~ w i t  i ,  W i �9 Fq. 
i=O 

(n) For  each i �9 S, the number  m~ can now be computed  as the multiplicity of rt(i) 
as a zero of  the polynomial  Z h + ~ih=-~ wi Zi  �9 Fq[Z].  To  prove this, it suffices to 
show that  the elements w~ �9 Fq defined by 

h - 1  

I-] (Z - 7z(i)) m' = Z h + E w~Z' 
i t s  i=O 

satisfy w~ = w~. Indeed, we have 

e(m) z" u-h  -- th = -- th + u-h" I-I V~ il = -- th + U-h" I-I (ut -- U" re(i)) k~mi 
i t s  i t s  

h-1  

= --th + u-h" I-I (u t - -u ' r t ( i ) )  . . . .  th + I-I (t -- It(i)) mi = ~ wt,_: i 
i t s  i~S  i=O 

and w; = w i now follows from the linear independence of 1, t . . . . .  t h-1 over Fq. 
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3. The Chor-Rivest System 

For comparison, we present here the Chor-Rivest  system. 

(3.1) S y s t e m  Genera t ion .  (a) Perform steps (a), (b), (c) (with h > 1), and (d) of 
Section 2. This provides us with explicit models for the fields Fq and F~, and with 
an element t e F~ for which F~, = Fa(t). 

(b) Perform steps (g) and (h) of Section 2. This provides us with a positive integer 
s < q and an injective map rr: S = {1, 2 . . . .  , s} ~ Fq. (In [3] only the case s = q was 
considered. See Section 5.) 

(c) Determine a generator r of the multiplicative group of Fq,, and for each i E S 
calculate the integer b~ mod (qh __ 1) for which r b' = t --  7r(i). This amounts to the 
solution of s discrete logarithm problems, which is computationally feasible only 
for special choices of q and h, see the discussion in [3]. 

(d) Choose an integer d mod (qh _ 1) at random, and calculate, for each i ~ S, the 
integer c i defined by ci = bi + d mod (qh _ 1), 0 < ci < qh _ 1. 

(3.2) P u b l i c  K e y .  The following information is to be made public: q, h, s, cl, 
C2, � 9  C s. 

(3.3) P r i v a t e  K e y .  The following are kept secret: t, x, r, and d. 

(3.4) M e s s a g e .  As in (2.4). (Following [1], we drop the requirement m~ E {0, 1} of 

E3].) 

(3.5) E n c r y p t i o n .  To encrypt a message m = (m 1, m 2 . . . . .  ms) , compute the integer 
e ' (m)  defined by e ' (m)  = ~ i ~ s m i c i  mod (qh _ 1), 0 < e ' (m)  < qh _ 1. This number 
is to be sent over the insecure channel. 

(3.6) Decryp t ion .  Given e'(m), we calculate m as follows, using the secret in- 
formation. 

(e) Perform step (j) of Section 2. This step can be done once, at system generation. 
It enables us to express elements of Fqh in the basis 1, t . . . . .  t h-1 of Fah over F~. 

(f) Compute the element r e ' t - ~ - h d -  t h of Fqh, and express it in the basis 1, 
t . . . . .  t h-1 of Fqh over Fq: 

h - 1  

re'(ra)-hd - -  th = E Wi t i '  Wi ~ F q .  
i = 0  

For each i ~ S, the number m i can now be computed as the multiplicity of rr(i) as a 
x-'h-lw Z i Fq[Z]. This follows from zero of the polynomial Z h +/_,~=o i 

re'(m)-hd ____ r ( ~i.sraicl) -hd ~_ r ~i.srnlb~ 

= 1-'[ (rb') " '  = I-[ (t --  n(i))",  
i~S ieS  

as in (2.6) (n). 
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4. Comparison 

(4.1) Securi ty .  The powerline system is at least as secure as the Chor-Rivest  
system. In other words, any algorithm that given the public information (2.2) and 
the encrypted message e(m) of the powerline system finds m, can be transformed 
into an almost equally efficient algorithm that performs the same function for the 
Chor-Rivest  system. 

To prove this statement, suppose that the public key q, h, s, cl, c2 . . . . .  cs from 
(3.2) and the encrypted form e'(m) of a message m as in (3.5) are given, and that an 
algorithm for breaking the powerline system is available. Then m can be recovered 
as follows. 

(a) Construct fields Fq c Fq~ as in (2.1) (b) and (c). 
(b) Determine a generator z of the multiplicative group of F~,; since q, h are the 

parameters of an instance of the Chor-Rivest  scheme, this is supposed to be feasible 
(see (3. i)(c)). 

(c) Let vi = z c' for 1 < i _< s, and compute z e'{'~). It is proved below that the models 
of F~ and F~ constructed in (a), together with the number s from (3.1) (b) and vl, 
v2 . . . . .  vs, constitute the public key for an instance of the powerline system (see (2.2)), 
with e(m) = z ~'~'). Hence the algorithm for breaking that system that is supposed 
to be available can now be used to recover m. 

To prove the assertion just made we may, by the uniqueness of finite fields, choose 
an identification of the finite fields F~ c F~h used in (3.1) and the finite fields Fq ~ Fq, 
constructed in (4.1) (a). Modulo this identification, let t in (2.1) (d) be the same as 
the element t used in (3.1). Let u in (2.1) (e) be defined by u = r a, with r, d as in 
(3.1) (c) and (d). Let k in (2.1) (f) be such that z = r k, and let n in (2.1) (h) be the same 
as in (3.1) (b). Then the elements calculated in (2.1) (i) are found to be 

(ut - u" n(i)) k = uk ' ( t  - 7r(i)) k = rdkr Oik = r e t k  = gci, 

and the encrypted form of the message in (2.5) is 

e(m) = ]-I ( Zc')m' = ze'(m)" 
i t s  

This finishes the proof. 

(4.2) S y s t e m  Per formance .  S y s t e m  generation.  Once q, h, and s have been chosen, 
the finite fields that both systems need can be constructed by means of a random 
algorithm of which the expected running time is polynomial in log q and h. For the 
rest, the running time is dominated by step (2.1)0) for the powerline system, and 
step (3.1)(c) for the Chor-Rivest  system. Step (2.1)0) can be done by performing 
O(sh log q) arithmetic operations in Fq~. With the standard algorithms this takes 
time O(s(h log q)3), and with fast multiplication techniques O(s(h log q)2+~) for any 
e > 0. The time required by step (3.1)(c) will, even in favorable cases, be much more 
than this. How much more depends on how efficiently we can compute discrete 
logarithms in Fq~. The algorithm used in [3-] runs in time s(h log q)O~l} times the 
square root of the largest prime factor of qh _ 1. We conclude that generally the 
powerline system is easier to generate than the Chor-Rivest  system. 



154 H . W .  Lenst ra ,  Jr. 

Key size. The public key consists of about sh(log q)/log 2 bits for both systems. 
The same is true for the private key. This grows by only a constant factor if the 
precomputed information from steps (2.6)(j), (k), and (1) and (3.6)(e) is also taken 
into account. 

Encryption. In the Chor-Rivest  system, encryption amounts to adding h in- 
tegers modulo qh _ 1, which can be done in time O(h 2 log q). In the powerline 
system, encryption amounts to multiplying h elements of F~. With the standard 
algorithms this can be done in time O(ha(log q)2). With fast multiplication tech- 
niques this can be reduced to O(h2§ q)l§ for any e > 0. Hence the Chor-Rivest  
system is somewhat faster. Note that the model for F~ that we use is not secret. 
Therefore it may be chosen so as to optimize the speed of arithmetic operations. 

Decryption. It is not difficult to see that essentially the same operations have to 
be performed in both systems. The main difference is that the powerline system must 
calculate e(m) z where the Chor-Rivest  system calculates r e't'~. The latter computa- 
tion can be made slightly faster if suitable powers of r have been precomputed. 

Information rate. This is the same for both systems, namely 

55/ 

(4.3) Choice of Parameters. Chor and Rivest recommend taking s = q ~ 200 and 
h ~ 25 in their system [3]. Larger prameters make their system difficult to imple- 
ment (see (4.2)), and smaller parameters affect the security. In the powerline system 
we do have the freedom to choose larger parameters, or perhaps even smaller ones, 
provided the discrete logarithm problem is infeasible. At the end of Section 5 we 
indicate why, for both systems, it may be wise to choose s somewhat smaller than q. 

5. Breaking the System 

We saw in the previous section that the powerline system is at least as secure as the 
Chor-Rivest  system. From the proof of this assertion it is not difficult to see that 
the two versions of the system are actually equally secure if q, h are such that the 
discrete logarithm problem is tractable for F~. In fact, the fastest method for 
breaking the powerline system that we know is first applying a discrete logarithm 
algorithm to reduce it to the Chor-Rivest  system, and next breaking the Ch o r -  
Rivest system by means of the attack of Brickell [3, Section VIII. 

The problem of breaking the powerline system can be formulated as follows. We 
are given s elements v 1,/)2, �9 �9 �9 ,/-Js of an explicitly given finite field Fq,, and in addition 
we are supplied with the information that there exists a positive integer l, coprime 
t o  qh _ 1, such that the lth powers of these elements lie on a straight Fq-line, i.e., a 
set of the form uFq + ut, with u, t ~ Fq,, u ~ 0. The problem is to determine such an 
integer I. (The additional restriction that Fq, = Fq(t) is equivalent to Fqh = F~(vi/vj) 
for all i # j, which can be verified directly.) 

Note that any solution I gives another solution when multiplied by p (mod qh _ 1), 
so that there exist at least nh solutions (mod qh _ 1); here q = p~. 
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If we choose s = q in (2.1)(g), then {v]" 1 ~ i ~ q} is equal to a straight line, which 
is equivalent to 

I~I ( z  - vl) = Z q -  a Z  - b 
i = !  

in the polynomial  ring Fqh[Z], for certain a, b ~ Fqh. It is conceivable that  this 
information represents a weakness, so that it would be advisable to choose s 
somewhat  smaller than q. 

References 

[1] E. F. Brickell, A. M. Odlyzko, Cryptanalysis: a survey of recent results, Proc. IEEE 76 (1988), 
578-593. 

[2] B.-Z. Chor, Two Issues in Public Key Cryptography, RSA Bit Security and a New Knapsack Type 
System, MIT Press, Cambridge, Mass., 1986. 

[3] B. Chor, R. L. Rivest, A knapsack-type public key cryptosystem based on arithmetic in finite fields, 
IEEE Trans. Inform. Theory 34 (1988), 901-909. 

[4] A.K. Lenstra, Factorization of polynomials, in: H. W. Lenstra, Jr., and R. Tijdeman (eds), Computa- 
tional Methods in Number Theory, pp. 169-198, Mathematical Centre Tracts 154/155, Mathe- 
matisch Centrum, Amsterdam, 1982. 


