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5.1.3 The Number Field Sieve (NFS)

The number field sieve is currently supposed to be the asymptotically

fastest known algorithm for factoring integers. It is conjectured to run
in time
1
Ln [5’ 0(1)] ’

but this has not been rigorously proven.

The initial idea of the number field sieve is due to John Pollard

(1988), who proposed it for the factorisation of a very special class of
numbers; the Cunningham numbers of the form r¢ & s, with r and s
small. The modifications necessary to make it applicable to general N
are due to Joe Buhler, Carl Pomerance, Hendrik W. Lenstra, Jr. and
L. Adleman [59, 3]. Like the several variations of the quadratic sieve .
algorithms, the number field sieve attempts to factor N by solving the
congruence
2 =y> mod N,
subject to z # #+y mod N. Namely then ged(x %y, N) is for each

choice of the sign possibly a non-trivial divisor of N.

As explained for the quadratic sieve algorithms one looks for solu-
tions

“square” = “smooth” mod N

instead of

“square” = “square” mod N.
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Using linear algebra over GF (2), one can multiply many solutions of
“square” = “smooth”

into one solution of “square = square”. Also a solution of
“smooth” = “smooth”

can be used (if z and y are smooth with 2 = y mod N, then z? =

zy mod N and ry is smooth as well).

The way factoring algorithms often generate smooth numbers is
to generate small numbers and exploit the fact that these are more
likely to be smooth than large ones. However, in any congruence
z =y mod N with z # y at least one of z, y is larger of equal to %N
in absolute value, so that z, y cannot both be very small. But this

problem can be circumvented by exploiting algebraic number fields.

For a suitable selection of the number field the degree of the number

field d is chosen approximately to be

J= 3log N 3
"~ \loglog N ) °
This means in practice d ~ 5 or 6 for integers with 100 to 200 digits.

Define m := [Nl/dj and write N in base m:

d
N = Z a;m'.

1=0
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This implies ag = 1, 0 < ag—; < d and all other a; < m. Define a

polynomial:

f(X)= zdj a: X' € Z[X].

=0

This can be supposed to be irreducible, otherwise a factorisation of n

is already found, which is very unlikely to happen.

Let a be a root of the polynomial f. Then the ring Z[a] is consid-
ered being a subring of the number field Q(a). The algorithm works

in the ring the elements of which can be thought of as vectors:
Zlal=2Z-1+Z -a+...+Z-o*..

The addition can be calculated componentwise and the multiplication

has to be reduced modulo f.

The following isomorphism is important for the design of the algo-
rithm: The ring Z [o] modulo the ideal (e — m), nothing more than
evaluating the polynomials in the ring at m is isomorphic to the inte-

gers modulo N:

Ze]/(a—=m)= ZINZ.

This isomorphism is used to collect equations of the type:
“small” = “small”
in the following way:

a+ba = a+ bm mod (a — m).
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The left hand side takes place in the abstract ring and the right hand

side in the integers modulo N.

What is the meaning of “small” for the number field? It is de-
termined by the size of the coefficients of the polynomial f and the

vector size of the elements considered.

Out of this understanding of “small”, the smoothness has to be
considered, according to the factorisations by ideals in the abstract
ring. This ring generally is not a unique factorisation domain, thus

the known techniques from the quadratic sieves cannot be applied.

The representation of elements of Z [a] as sequences of exponents
indexed by prime ideals is neither injective nor surjective. Especially
they are not sufficient for the recognition of squares. But this prob-
lem can be solved by the use of quadratic characters ([3]). Thus for
the NFS algorithm two different factor bases are needed, one for the

abstract ring and one for the integers modulo N.

The number field sieve is not only theoretically a very interest-
ing algorithm. It is remarkably fast in factoring very large integers
of a special kind. For integers, that can be represented as a small

polynomial with small coefficients, especially such of the form
r°+ s, with r, s small,

it is substantially faster than ppmpgs. However, these are only a small
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fraction of the entire set of integers and there is no method known for

determining when such a representation is possible.

What can be said about general integers? Based on the analysis
of norms that arise in the computation, it can be shown that the
crossover point for general integers with the ppmpgs is somewhere
between 140 and 150 digits. An implementation and running time
analysis on a variety of numbers between 30 and 90 digits has been
made. Extrapolation of this data confirms the theoretical crossover
estimate. Thus it is not unlikely that the number field sieve is better

than the ppmpgs for factoring numbers in the 512-bit range.

5.1.4 Exploiting. the Power of Distributed Computing

The three factorisation algorithms mentioned above can be imple-
mented straightforward on parallel computers. A very important point
is, that one can distribute a lot of tasks to different processors without
the need to receive all answers. Additionally it is very easy to prove

the correctness of these processor answers.

This makes these algorithms well suited for distributed computing,
allowing to collect idle-times of e.g. workstations not only of partic-
ipants in a local area network but distributed over a wide network,
possibly across the whole world. This was done with the factorisa-

tion of the ninth Fermat number and also for the 116 digit number




