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ADDENDUM 

A. K. LENSTRA, H. W. LENSTRA, JR., M. S. MANASSE & J. M. POLLARD, 
The factorization of the ninth Fermat number, Math. Comp. 61 (1993), 
319-349. 

In Section 1 of this article we questioned the wisdom of using numbers ob- 
tained from the digits of Xr as test numbers for factoring algorithms. In this con- 
text it is of interest to observe that Gauss uses the number 314159265 = [1087r] 
to illustrate factoring methods (see [19, Art. 329]). This was pointed out by 
D. Shanks, who supplied the revised reference [44] as printed. Gauss uses also 
the number 43429448 = [ 108 / log 10] and its factors in his examples (see [19, 
Arts. 325, 328.I, 329]), as well as the numerator of a continued fraction approxi- 
mation to Xr (see [19, Art. 328.II]). Any reader who wishes to follow in Gauss's 
footsteps will find a plentiful supply of digits of Xr in our original reference 
[44]: 

D. Shanks and J. W. Wrench, Jr., Calculation of Xr to 100,000 decimals, 
Math. Comp. 16 (1962), 76-99. 

A. K. LENSTRA 
H. W. LENSTRA, JR. 

M. S. MANASSE 
J. M. POLLARD 
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