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 ABSTRACT

" Let E be an elliptic curve over a field &, given in Weierstrass form. As is well known, the set
E(k) of points of E over k forms an abelian group in a natural way, the point at infinity being
the zero element. It is often heard that the group structure on E(k) is “determined” by the
fact that three points of E(k) add up to zero if they lie on a line. In this paper we investigate
whether this statement is correct if taken literally. We find that it is not. In fact, we exhibit a
field k and two elliptic curves E , E over k for which E(k) and E' (k) are equal as subsets of
 the set of points of the projective plane over k, but have different group structures. Our main
result states that this is a rare phenomenon: it occurs if and only if k has characteristic 2 and
E(k) has order 5. We also encounter an elliptic curve E for which E(k) has a Z[1i]-module
structure for many fields &, even though E does not have complex multiplication by Z[i].
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1 INTRODUCTION

Let k be a field, and let E be an elliptic curve over k, given by a Weierstrass
equation ‘

y2+alxy+a3y = 2 +a2m2 +ag T+ ag
with coefficients a; ,a,,a3,a4 ,a4 in k and with a non-zero discriminant (see [6,
Chapter III, Section 1]). The set E(k) of points of E over k is the set of points (z,y)
in k x k satisfying the equation, together with a “point at infinity”, which is denoted
by O.

It is well known that E(k) forms, in a natural way, an abelian group which is written
additively, and which has the following properties: O is the zero element; three points

on E(k) that lie on a straight line add up to O. Here it is understood that the lines

passing through O are the vertical lines where « is constant.

In informal accounts of elliptic curves it is often implied that the properties just men-
tioned characterize the group addition on E(k). In the present paper we investigate
whether this statement is correct, if taken literally. It would imply that the group
structure on E(k) is determined by the set E(k), as a subset of (k x k) U {O}. The
difficulty is that over general fields the intersection multiplicity of a line with the:
curve at a point cannot be computed from the set E(k) alone, without reference to the
equation defining the curve.

The following example shows that the group structure in general is not determined by
the set of points. Let k = F,, be the field of two elements and let the elliptic curves
E and E’ over k be defined by

E: Py = 22+ z?
E: y2 +y = 22+z.
In this case we have E(k) = E'(k) = (k x k) U {O}. Each of E(k) and E'(k) is

a group of order 5 but the group structures are different: in E(k) one has (0,0) +
(0,0) =(1,1) whereas (0,0) + (0,0) = (1,0) in E'(k).

Our first result expresses that this example is typical.

1.1 Theorem Let k be a field and let E be an elliptic curve over k, given by a
Weierstrass equation. Then there exists an elliptic curve E' over k, given by a
Weierstrass equation, such that E(k) and E'(k) are equal as sets but not as groups,
if and only if E(k) has order 5 and k has characteristic 2. If E' exists, then its
Weierstrass equation is uniquely determined and E' is isomorphic to E.

The proof of Theorem 1.1 is given in Section 3.

Theorem 1.1 makes us wonder whether it often occurs, over fields of characteristic 2,
that the number of points of an elliptic curve equals 5. To address this question,
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we first give a precise description of elliptic curves with a subgroup of order 5.
We define a Weierstrass transformation to be a change of coordinates of the form
(z,y) — (r’z+u,ry+vz+w) where r,u,v,w € k withr 7 0. Suchachange
of coordinates preserves the Weierstrass form of equations defining elliptic curves.

1.2 Theorem Let kbe afieldandleta b,b’,c,d,d’ €k besuchthata #c,b# b

and d # d'. Then the following two assertions are equivalent:

(a) there exists a Weierstrass equation defining an elliptic curve E over k with the
property that {O,(a,b),(a,b’),(c,d), (c,d')} is a subgroup of order 5 of
E(k) with 2- (a,b) +(c,d) = O;

®) (c—a)®=(d —d)( —b) and t = (d' — d)/(t/ —b) satisfies t — t £ 11,

If a Weierstrass equation as in (a) exists, then it is unique and there is a Weierstrass
transformation transforming (a,b) , (a,¥'), (c,d), (c,d’) int0 (0,0),(0,1),(t,0),
(t,1%) respectively; letting t = (d' — d) /(b —b) the equation transforms into

P+A-tzy—ty = o —tx?.

~ This is proved by means of a well-known argument (see [6, Exercise 8.13]; cf. [2,
; Table 3, entry 13]) which is given in Section 2.

‘Next we discuss the situation that k has characteristic 2 and E(k) has order 5. The
~ following theorem summarizes what we know about this: the parameter ¢ in the
previous theorem is either equal to 1 or it is transcendental; both cases actually occur.

- 1.3 Theorem

(a) Let k be afield of characteristic 2, and let E be an elliptic curve over k, given by
a Weierstrass equation, such that E(k) has order 5. Then there is a Weierstrass
transformation that brings the equation for E in the form

P+ +t)ay+ty = 2°+ta?
. wheretekis equal to 1 or is transcendental over Fs .

) The Weierstrass equation y? +y = 23 + 22 defines an elliptic curve E over F»
for which E(k) has order 5 if k =¥, , ¥y or ¥g but not for any other algebraic
 extension of Fy. Also E(k) is of order 5 for any purely transcendental extension
kOng ,F4 ong.

Let k be any field and let t be transcendental over k. Then the Weierstrass
equation y? + (1 —t) zy —ty = 2 —t2? defines an elliptic curve E over k(t)
for which E(k(t)) has order 5.

he proof of this theorem is given in Section 4.

he curves occurring in Theorem 1.2 have a curious property which is formulated in
final result. We denote by Z[4] the ring of Gaussian integers, with 1% = —1.
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1.4 Theorem Let k be a field, o an automorphism of k with 0® = idy,, and t an
element of k satisfying t- ot = —1 with t + ot # 11. Then the equation

3 2

P+A-tay—ty = 2°—tz
defines an elliptic curve E over k for which the group E(k) has a module structure ‘
over Z[i], but that does not have complex multiplication by Z[i] unless t = ot or
(t+ot—9)?% =5, ,

This is proved in Section 2.

2 POINTS OF ORDER FIVE

In this section we prove Theorem 1.2 and Theorem 1.4. We begin with the implication k
(a)=-(b) of Theorem 1.2.

Proof Assume that (a) of Theorem 1.2 holds. Applying a Weierstrass transformation
we may replace the points (a,b),(a,b’),(c,d),(c,d’) by (0,0),(0,%),(t,0),
(t,rt) respectively, where t = (¢ —a)®/(b' —b)? and 7 = (d’' —d)/(b’ —b). Let
the Weierstrass equation be

y2+a1xy+a3y = x3+a2x2+a4x+a6.

The line passing through (0,0) and (¢,0) is given by y = 0. Now the condition
2-(0,0) + (t,0) = O expresses that this line is tangent to the curve in (0,0) and
that it also intersects the curve in (¢, 0). This means that upon substitution of y = 0
the Weierstrass equation reduces to the equation 0 = x? (x — t). Therefore we have
a; = —t and a; = ag = 0. Since (0, ) lies on the curve we have az = —t.

Because (0,0) and (0,¢) have the same z-coordinate, we have (0,%) = —(0,0) in
the group E(k). From (a) it thus follows that 2 (¢,0) + (0,¢) = —5 - (0,0) = O.
This implies that the line « 4+ y = ¢, which meets the curve in (0,%) and (¢,0),
is tangent to it in the latter point. Therefore the Weierstrass equation reduces to
x(z —t)? = 0 upon substitution of y=1t—x. This leads to a; = 1 —¢, so that
the Weierstrass equation is as in the statement of the theorem. Because (t,7t) lies
on the curve, we have ¢t = r = (d' — d)/() —b), so (c—a)® = (d' —d)(t —b).
The discriminant of the Weierstrass equation is found to be 6 (£ — ¢! — 11) (cf. [6,
Chapter ITI, Section 1] and [2, Table 3, entry 13]). It is non-zero, so ¢t — ¢t~ #11.
This proves (b) and the uniqueness statement of the theorem is also proved.

The proof that (b) implies (a) is now straightforward, since we know which equation
we have to try. This proves Theorem 1.2. O

Proof Theorem 1.4 arises from the observation that multiplication by 2 is an auto-
morphism of any additive group of order 5. In the situation of Theorem 1.2, this
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automorphism maps (a,b),(a,?), (c,d),(c,d’) to (c,d),(c,d), (a,b),(a,b)
respectively, so (a) holds for a,b,b, c,d,d’ if and only if it holds for ¢,d’,d,a,b,
b’. Then by the uniqueness statement of Theorem 1.2 the two elliptic curves are the
same. Note that the permutation changes ¢ into —¢~*. Therefore there is not only a
Weierstrass transformation that transforms the equation for the curve into

VP+(Q—tay—ty = o° —tz
and the points (a,b) , (a,b’), (c,d), (c,d') into (0,0),(0,¢),(t,0), (t,*) respect-
ively, but there is also a Weierstrass transformation that transforms the equation for
the curve into

2

PArQrt Doy rtly = o3 4112

and the points (a,b), (a,b), (c,d), (c,d’) into (—t71,0), (=t 71, ¢72),(0,—t1),
(0,0) respectively. Composing the inverse of the first Weierstrass transformation
with the second we obtain a transformation of the first equation into the second. Let
now o be asin Theorem 1.4. Then o interchanges t and —t ™!, so the solution sets of
the two equations are mapped to each other by o(z,y) = (ox,0y). With 0O = O
this is actually a group isomorphism. Composing the Weierstrass transformation that
links the two equations with o one finds a group automorphism ¢ of E(k), where £
is the curve given by the first equation. Explicitly, one has

i(z,y) = (o(@)t®+t, —o(x)t® —o(y)t®).

We claim that 42 = —1. This can either be verified by an explicit computation, or one
~ can argue as follows. From o2 = idy, it follows that 7% belongs to the automorphism
 group of the curve. Suppose first that ¢ is transcendental over the prime field of k.
~ Then the j-invariant of £, which is given by

(t* —12#% +14¢%2 + 12t +1)3
o2 —-11t—1)

i(E)

is transcendental as well. Therefore E has no complex multiplication, and its only
automorphisms are 1 and —1, so that i =41, Checking the action of 7 on the given

~ points of order 5 one finds that 52 = —1. This is, by specialization, then also true if
- tisnottranscendental. Hence E(k) has a module structure over the ring of Gaussian
- 1ntegers

. If E has complex multiplication by Z[7] then one has j(E) = 1728 . From

(t% +1)% (t* — 18¢% + 742 418t 4 1)?

i(E) — 1728
i(E) B2 —11t—1)

one finds that this is equivalent to ¢t = ot or (¢ + ot —9)? = 5. This proves
[ Theorem 1.4. O

We remark that 4 — 18¢3 + 742 + 18t +1 =0 defines, in characteristic zero, a
unit in the ring Z[Co0 + Cop ] and that t* —12¢% + 1442 + 12t + 1 = 0 likewise

deﬁnes aunit of Z[(y5 + (g5 ] here ¢, denotes a primitive rm-th root of unity.
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2.1 Remark Theorem 1.2 shows that pairs consisting of an elliptic curve and a point
of order 5 on it can be parameterized with a single parameter ¢. This reflects the fact
that the modular curve X (5) is rational. The cusps of X (5) correspondto ¢ =0,
t =00 and ¢t — 1/t = 11. The transformation ¢ — —1/¢ is the “diamond operator”
(2) on X,(5).

3 EQUAL SETS OF POINTS WITH DIFFERENT GROUP
STRUCTURES

In this section we prove Theorem 1.1.

Proof We begin with the “if”” part. Suppose that F is an elliptic curve over a field &
of characteristic 2, and that F(k) has order 5. Then E(k) = {O,P,—P,Q,—-Q}
for certain P, Q. Applying a Weierstrass transformation we may assume that P =
(0,0). Then —P also has z-coordinate equal to O and the z-coordinate of @ is
different from 0. Therefore there is a unique Weierstrass transformation of the type
(z,y) — (z,y+tx) (with ¢t € k) that maps Q to —Q and fixes P and —P. Since
the characteristic of k equals 2 this Weierstrass transformation has order 2, so it
maps —@ to Q. Therefore it transforms the equation for E into the equation for an
isomorphic elliptic curve E’ for which E'(k) = {O,P,—P,Q, —Q} as well. The
isomorphism E(k) — E’(k) fixes P and —P and interchanges @ and —). This is
not a group automorphism of E(k), so the group structures on E(k) and E’(k) are
different.

Next we prove the “only if” part. Let it be supposed that £ and E” are elliptic curves
over a field k, given by Weierstrass equations

E: y2+a1:cy+a3y = x3+a2z2+a4z+a6
E y2+a'1xy+a§y = m3+al2x2—l—af1x+aé.

We assume that F(k) = E’(k) and that the group structures on E(k) and E’(k) are
different.

The map E(k) — E(k) sending P to —P can be described as follows. If P = O
then —P = O. Nextlet P = (z,y) # O. Then there exists at most one other
Q € E(k) with the same z-coordinate as P; if it exists then —P = ) otherwise
—P = P. This description is entirely in terms of the set E(k). Therefore the map is
the same as the map E’(k) — E’(k) sending P to —P. In particular, the two groups
E(k) and E’(k) do not only have the same zero element but also the same elements
of order two.

It is easy to see that a given set of cardinality at most four has at most one group
structure for which the zero element and the elements of order two are prescribed.
Hence what we just proved implies that the set E(k) = E’(k) has at least 5 elements.
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There are at most two points different from O on E(k) with a given z-coordinate, so
at least two different z-coordinates occur. Let P = (a,b), Q = (c,d) € E(k) be
chosen such that a # c. Then the point —P, which is the same for E(k) and E'(k),
is of the form (a,b’) and we have both b+’ = —a; a—ay and b+b' = —aja—aj .
Likewise, we have —Q = (c,d’), where d +d’' = —a; ¢ — a3 = —aj ¢ — a3. From

aya+ay = aja+al and ajctag = ajc+az with a#c

it clearly follows that a; = a} and a4 = aj. Since P and Q satisfy both the equation
for E and the equation for £’ we have now

aya®+agatag = dya’+aja+tay and aycPtagctag = ahci+ayctap .

Hence the quadratic polynomial (ay — a}) 22 + (ay — a}) = + (ag — ag) vanishes in
z =a andin z = c. If a third z-coordinate e would occur among the z-coordinates
of the points in E(k), then the polynomial would vanish in e as well, so it would
be identically zero. In that case E and E’ would be given by the same equation,
contradicting that E(k) and E’(k) have different group structures. We conclude that
there is no third coordinate, so E(k) = E'(k) = {O,P,—P,Q,—Q} . It follows
that the order is equal to 5, and that P # —P and Q # —Q).

On E(k), we have 2P = Q or 2P = —Q. Interchanging d and d’ if necessary,
we may assume that the latter alternative holds. Then we are in the situation of
Theorem 1.2, so (¢ —a)® = (d’ — d)(¥ —b). On E'(k) we must have 2P = Q
~ or the group structure would be the same. Thus from Theorem 1.2, with d and d’
~ interchanged, we find that (¢ — a)® = (d — d')(b' — b). Therefore (d' —d)(b' —b) =
(d — d')(b' — b), which implies that the characteristic of k equals 2. This proves the
- “only if”” part of Theorem 1.1.

 The uniqueness of E’, given E, follows from Theorem 1.2. As we saw in the proof
_ of the “if” part, the ¢urve E’ is isomorphic to E. This completes the proof of
- Theorem 1.1. -

4 FIVE POINTS IN CHARACTERISTIC TWO
. In thxs section we prove Theorem 1.3.

Proof (a) Let k be a field of characteristic 2, and let E be an elliptic curve over &k
uch that E/(k) has order 5. By Theorem 1.2, we can bring the equation for E in the
m

. Y4+ Q4+t ay+ty = a®+ta?

for some‘t € k. Suppose that t # 1 and that ¢ is algebraic over Fy. Then the field
B(t), being finite, is perfect so ¢ has a squareroot in F5(¢) . This gives rise to a point
Y(L+2),¢2/(1+ Vt)?) of order two in the group E(k), which is impossible since
(k) has order 5. This contradiction proves (a).

b_j/‘\
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(b) By Theorem 1.2, the Weierstrass equation y2 +y= 23 + 22 defines an elliptic
curve Eover Fy. Sinceall (z,y) € F, x F satisfy the equation, we have E(R) =
(F x F;) U {O}, which is of order 5. From the fact that the coefficient a; in the
Weierstrass equation vanishes one deduces that £(L) does not have a point of order 2
for any extension field L of Fy . Hence if E(Fy) or E(Fy) would have order greater
than 5, it would have order at least 15, which contradicts Hasse’s estimate

(Vi-1?* < #E(F,) < (Va+1)?

(see [6, Chapter V, Theorem 1.1]) since 15 > (v/8 + 1)2. This proves that F(Fy)

and E(Fs) have order 5. For ¢ > 16 one has (vVa— 1)2 > 5, so Hasse’s estimate
implies that E(k) has order greater than 5 for any algebraic extension k of Fy of
degree at least 4. )

To prove the last statement of (b), it suffices to remark that for any elliptic curve E
over any field k one has E(k(u)) = E(k) when u is transcendental over k. In fact,
any point in E(k(v)) that is not in E(k) would give an embedding of the function
field of E over k into k(w), contradicting Liiroth’s theorem. This proves (b).

(c) Let ¢ be transcendental over a field k. Then by Theorem 1.2 the equation Y+
(1 —t)zy —ty = 2 — t2? defines an elliptic curve over k(t) for which (k(t))
has a subgroup of order 5. To prove that there are no other points in E(k(t)) we
may clearly assume that k is algebraically closed. We can form the elliptic surface
S over k associated with E, as described in [5, Section 1]. The function field of S
is the field of fractions of the ring k[z,y,t]/(v* + (1 —t)zy —ty — 2 +t3?),
which is just the rational function field k(z,y). Therefore S is a rational elliptic
surface, as defined in [5, Section 10]. The Mordell-Weil groups of rational elliptic
surfaces over algebraically closed fields have been completely determined by Oguiso
and Shioda [4]. Inspecting their list of the possible groups ([4, Corollary 2.1]) we see
that if there is a subgroup of order 5, then that is the whole group.

This completes the proof of Theorem 1.3. o
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