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It is shown that there is an efficient algorithm for computing quadratic residue
symbols in algebraic number fields.

1. INTRODUCTION
The Jacobi symbol or quadratic residue symbol (%) is defined for integers a and
b, with b odd and positive. It extends the Legendre symbol, which is only
defined if b is prime, by means of the rule (bl_abg') = (ﬁ) (%) It is well-known
that there exists an efficient algorithm for calculating the Jacobi symbol (cf. [7,
Exercise 4.5.4.23]). The main ingredients of this algorithm are the reciprocity
law for the Jacobi symbol and the Euclidean division algorithm.

Let K be an algebraic number field, with ring of integers A. There is again
a quadratic residue symbol (%), which is defined for @ € A and for b an ideal of
A of odd norm (see [4, Exercise 1, with m = 2], and Section 3 below). It does
satisfy a reciprocity law, but the latter is restricted to principal ideals b and
it involves the norm residue symbol (see [4, Exercise 2]). Since the Euclidean
division algorithm in general algebraic number fields leaves also something to
be desired, we find that the tools that enable us to calculate (§) efficiently in
the case that K is the field of rational numbers are lacking for general K. In
the present paper I exhibit an efficient algorithm that works in general.

THEOREM. There is a deterministic polynomial time algorithm that, given an
algebraic number field K, an order A in K, an element a € A, and an ideal
b C A of odd index in A, computes (%)

What it means for K, A, a, b to be “given” is explained in [9, Section 2].
Imprecisely speaking, it means that numerical data specifying K, A, a, b form
the input to the algorithm. In particular, the polynomial bound for the run
time of the algorithm is not just valid for a fixed number field K, but it holds
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uniformly for all number fields. For the definition of orders and Jacobi symbols
for orders I refer to Section 3.

My algorithm, as described in 3.2, may not be immediately digestible by an
electronic computer, but there is no doubt that it can be turned into a practical
method for computing (%), should the need ever arise.

The cardinality of a set S is denoted by #S. Rings are supposed to be
commutative with 1. We write Z for the ring of integers.

2. SIGNS OF ENDOMORPHISMS

In this section we denote by M a finite abelian group of odd order. It will
be written additively. For any endomorphism ¢ of M, we define the symbol
(e, M) € {0,1,~1} as follows. If ¢ is not an automorphism of M, then we let
(e, M) = 0. Suppose next that ¢ is an automorphism. Then we put (¢, M) =1
if £ is even as a permutation of the underlying set of M, and (¢, M) = —1if it is
odd. Clearly, we have (162, M) = (g1, M) (g2, M) for any two endomorphisms
€1, €9 of M.

PROPOSITION 2.1. Let 0 — M' 5 M L, M = 0 be a short ezact sequence,
and let € be an endomorphism of M. Suppose that € induces endomorphisms
¢ and " of M' and M", in the sense that ei = ie' and ¢"f = fe. Then we
have (e, M) = (¢, M")(¢", M").

PROOF. It is easy to show that & is an automorphism of M if and only if
¢’ is an automorphism of M’ and &” is an automorphism of M". Thus the
formula is true if one of the symbols equals 0. Let it now be assumed that
we have three automorphisms. Using that M’ has no elements of order 2,
one easily constructs a right inverse g: M — M to f with the property that
g(—2) = —g(z) for all 2 € M". Then any x € M has a unique representation
= i(y) + g(2), with y € M’, = € M". Define permutations p, o of M
by p(i(y) + 9(2)) = i(e'y) + g(2) and o(i(y) + 9(2)) = i(y) + g(¢"2); these
are not necessarily automorphisms of M, but they do commute with the map
—1: M — M sending = to —z. Hence the permutation 7 of M for which ¢ = por
commutes with —1 as well.

The permutation p acts on M in the same way as ' acts on the union of
#M" disjoint copies of M'. Since #M" is odd, this implies that p and ¢’ have
the same sign. Likewise, o and ¢” have the same sign. Thus, to finish the proof
of 2.1 it suffices to show that 7 is even.

By construction, 7 induces the identity permutations of both M’ and M .
That is, 7 is the identity on the set M’ = f~'0, and for each z € M" it
permutes the set f =1z = iM’+g(z). Since 7 commutes with —1, its actions on
f~'zand on f~!(—2) are isomorphic, so its action on the union flzuf—(=2)
is even, for each z € M", z # 0. Hence 7 is even. This proves 2.1. a

PROPOSITION 2.2. Let k be a finite field of odd characteristic, and let a € k.
Denote by €, the endomorphism of the additive group of k that is defined by
ta(z) = az. Then we have (g4, k) = a'#*=1/2 where we consider {0,1, -1} as
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a subset of k.

PROOF. For a = 0 the formula is clear. Next let a be a generator of the
multiplicative group k* of k. Then ¢, is, as a permutation, the product of a
cycle of length 1 and a cycle of even length #k — 1. Hence ¢, is odd, and
(€a,k) = —1. Also, a(#*=1)/2 has order 2 in k*, so a#k=1/2 — _1 This
proves the formula if a generates k*. To prove the formula for general a € k*
it suffices to remark that each element of k* can be written as a power of a
generator. This proves 2.2. O

If M = (Z/nZ)* for some positive integers n and ¢, then each endomorphism &
of M can be written as a t x t matrix with coefficients in Z/nZ. In this situation
we define the determinant dete of € to be the determinant of that matrix; so
dete € Z/nZ. The Jacobi symbol in the following result is the traditional one.

PROPOSITION 2.3. Suppose that M = (Z/nZ)" for some positive integers n
and t, with n odd. Then for each endomorphism e of M the symbol (¢, M)
equals the Jacobi symbol (L£).

PROOF. Assume first that n = p is prime. For ¢t = 1 the formula follows from
2.2, with k = Z/pZ. If ¢ is given by an upper or lower triangular matrix, then
one uses 2.1 to prove the formula by induction on ¢. Since any square matrix
over a field is a product of finitely many upper and lower triangular matrices
we obtain the formula for all €.

For general n we argue by induction on the number u of prime factors of
n, counted with multiplicities. For u = 0 the formula is trivial, and for v =1
we just proved it. Suppose that u > 2, and choose a non-trivial factorization
n =n'n". With M’ = (Z/n'Z)" and M" = (Z/n"7Z)" we have a short exact
sequence 0 — M' 5 M RN V. 0, where f is the natural map and ¢ is
induced by multiplication by n”. If the entries of the matrix giving & are
reduced modulo n’ and n”, respectively, then one obtains matrices that give
endomorphisms ¢’ and €” of M’ and M" as in 2.1. Hence 2.1 and the induction
hypothesis imply that

, dete"\ [dete” dete) [dete dete
(&, M) = (&, MO, M) = ( n/ >< n' ) N < n' )( n' ) N < n >’

as required. This proves 2.3. d

We shall now give a formula for (g, M) that applies to general M. Since M is
a finite abelian group of odd order, there are positive odd integers ni, na, ...,
n; such that with m; = []},_, ns we have an isomorphism M = ®._(Z/miZ);
moreover, the n; are uniquely determined by M if we also require that ny >
1. Choose such an isomorphism, and denote by e; the element of M that
corresponds to the ith unit vector in @'_, (Z/m;Z). Let € be an endomorphism
of M. Then e(e;) = 22:1 a;;je; for certain integers a;j, uniquely determined
modulo m;; a given system of integers a;; corresponds to an endomorphism of
M if and only if a;; = 0 mod m;/m; whenever j > i.
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PROPOSITION 2.4. Let M be a finite abelian group of odd order, and let € be an
endomorphism of M. Suppose that the pair M, € is specified, as just described,
by a sequence ni, no, ..., ny and at x t matric (a;j). Then we have

t
(e.0) =] (d_et_(_a_zﬁl_sf_%
h=1 Nh

PROOF. The proof is by induction on ¢, the case ¢ = 0 being trivial. Let
t > 0. The isomorphism M = @!_,(Z/m;Z) induces isomorphisms n;M =
@._,(Z/(mi/n1)Z) and M/n1M = (Z/n1Z)". We apply 2.1 to the short exact
sequence 0 — nyM — M — M/niM — 0, with £” given by the ¢ x { ma-
trix (a;;)1<ij<¢ and € by the (¢ — 1) x (t — 1) matrix (a;;)2<i,j<¢- We find
that (e, M) = (¢/,nyM)(¢", M/nyM). Applying the induction hypothesis to
(¢/,n1 M) and 2.3 to (¢, M /n1M) we obtain 2.4. O

Determinants of integer matrices can be computed in polynomial time (see [10,
Corollary 3.3a]), and the same applies to Jacobi symbols (as in [7, Exercise
4.5.4.23]). Tt follows that the formula in 2.4 can be evaluated in polynomial
time.

3. JACOBI SYMBOLS

Let A be a ring. For an element a € A and an ideal b C A for which #(A/b) is
finite and odd we define the Jacobi symbol (£) € {0,1,—1} as follows. If b =m
is a maximal ideal, then ( ) is the unique element of {0, 1, —1} that is congruent

to a#(A/m=1)/2 modulo m. For general b, one puts (&) =[], (& )l m(A4/0) , where
m ranges over all maximal ideals of A with 2 ¢ m, and I (A/b) denotes the
number of composition factors of the A-module A/b that are isomorphic to
A/m (cf. [3, Section 7]); equivalently, l(A/b) equals the length of the module
A /by over the local ring Ay, (cf. [1]). We have I (A/b) = 0 for almost all m,
so the infinite product makes sense (with 0° = 1).

For A = Z and b = bZ, with b a positive odd integer, the Jacobi symbol (a)
defined above is clearly equal to the traditional Jacobi symbol ( ) If A is the
ring of integers of an algebraic number field K, then the Jacobi symbol defined
above is equal to the traditional quadratic residue symbol in K.

The connection with the symbol from the previous section is as follows.

PROPOSITION 3.1. Let A be a ring, let a € A, and let b C A be an ideal
for which #(A/b) is finite and odd. Denote by €, the endomorphism of A/b
defined by e,(x) = ax. Then we have (&) = (cq, A/b).

PROOF. We prove the following more general formula. Let M be a finite A-

module of 0dd cardinality. Then for any a € A we have (¢4, M) =[], (m)l n(M)
where m ranges over all maximal ideals of A, and ¢, and [, (M) are defined
as in the case M = A/b. The proof is by induction on #M. If M = 0 then
the formula is trivial, and if M = A/n for some maximal ideal n of A then it

b
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suffices to apply 2.2. In all other cases M has a non-trivial submodule M’, and
one can use 2.1 and the induction hypothesis to finish the proof. This proves
3.1. |

3.2 Computing the Jacobi symbol
Let K be an algebraic number field, and denote by d its degree over the field
of rational numbers. An order in K is a subring A of K of which the additive
group is isomorphic to Z¢. Let an order A in an algebraic number field be given
(in the sense of [9, Section 2]), along with an element a € A and a non-zero
ideal b C A for which #(A/b) is odd. Suppose that one wishes to compute (£).
By 3.1, one can apply the formula of 2.4 for this purpose, provided that one
knows integers ny, na, ..., n; and a t x ¢ matrix (a,;) that specify the abelian
group A/b and its endomorphism ¢, in the way indicated in Section 2. One
can compute such n; and a;; by means of standard techniques of linear algebra
over Z (see [2, Section 5] and [5, Chapter 2]).

One verifies in a straightforward way that the algorithm for computing (%)
that we just described runs in polynomial time. This proves the theorem stated
in the introduction.

3.3 The mth power residue symbol

Our definition of the symbol (¢, M) depends on the notion of parity of per-
mutations, so that it may not be obvious how to define a generalization that
applies to higher power residue symbols. One can proceed in the following way.
Let m be an integer, m > 1, and let ¢ be a primitive mth root of unity in some
extension field of the field of rational numbers. Instead of finite abelian groups
of odd order, one now considers finite modules M over the ring Z[(] for which
ged(m, #M) = 1. Let M be such a module. Write (¢) for the multiplicative
group generated by (; it is cyclic of order m. One can show that there is a
set S of non-zero elements of M such that every non-zero element of M has
a unique expression of the form ns with n € (¢), s € S; in particular, one
has #M = 1 mod m. Let € be an endomorphism of M, or, more generally,
any map M — M that commutes with the map sending x to (x. Then one
defines the symbol (g, M),, € {0} U (¢) as follows. If ¢ is not bijective, one
puts (¢, M),, = 0. Next suppose that ¢ is bijective. For each s € S, let 1(s)
be the unique element of (¢) for which (s)n(s)™! belongs to S. Then one puts
(e, M)y, = [,egn(s). Note the similarity with the definition of the transfer
map in group theory (see [6, Kapitel IV, Abschnitt 1]). One readily verifies
that the definition is independent of the choice of S, and that for m = 2 one re-
covers the symbol (g, M). All results that we obtained for (e, M) generalize to
(€, M), although with different proofs. The algorithms in 2.4 and 3.2 do not
generalize completely; all one finds is that the computation of the mth power
residue symbol (&) . where a belongs to a Z[(]-algebra A that is an order in
a number field, and b is a non-zero ideal of A with ged(m,#(A/b)) =1, can
be reduced to the case that A = Z[¢]. This suggests that for fixed m there
is a polynomial time algorithm for calculating the mth power residue symbol
in algebraic number fields containing ¢. It would be of interest to prove the
same result for variable m, and to find efficient algorithms for computing norm
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residue symbols and Artin symbols as well.
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