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Mathematisch Instituut, Unï ersiteit Utrecht, Budapestlaan 6, 3508 TA Utrecht,
The Netherlands

and

Yuri G. Zarhin‡

Department of Mathematics, The Pennsyl̈ ania State Unï ersity, Unï ersity Park,
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Let K be a field and let X be an abelian variety over K. The group Aut X of
K-automorphisms of X acts in a natural way on the set of abelian subvarieties of X
that are defined over K. In this paper it is proved that the number of orbits is
finite. The proof makes use of a finiteness result about semisimple algebras.
Q 1996 Academic Press, Inc.

Let K be a field. All abelian varieties and morphisms between them
occurring below are assumed to be defined over K. We shall prove the
following result.

THEOREM. Let K be a field, let X be an abelian ¨ariety defined o¨er K,
and denote by Aut X the group of automorphisms of X. Then the number of
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orbits of the set of abelian sub¨arieties of X under the natural action of Aut X
is finite.

It clearly follows that for each abelian variety X there are, up to
isomorphism, only finitely many abelian varieties that admit an embedding
in X as an abelian subvariety. In the case that K is algebraically closed

wand of characteristic zero, this assertion is due to Bertrand 1, Section 2,
xLemma 2 , and if K is finite it follows from a finiteness theorem for

w xabelian varieties of given dimension over K ; see 7, 4.1 . Our theorem
generalizes several other finiteness results for abelian subvarieties that can

Ž w Ž .be found in the literature see 2, Section 1.3, Proposition 1 ii ; 5, Theorem
x.18.7; 4, Proposition 2 .

The proof of the theorem is given below. It depends on a consequence
of the Jordan]Zassenhaus theorem.

By ‘‘ring’’ we mean ‘‘ring with 1’’. A ring is called semisimple if it is the
sum of its minimal nonzero right ideals. We denote by Z the ring of
integers and by Q the field of rational numbers. If L is an abelian group,
then we write L s L m Q. By a lattice in a finite dimensional Q-vectorQ Z
space V we mean a finitely generated subgroup L of the additive group of
V for which the natural map L ª V is an isomorphism. A Q-algebra is aQ
ring F provided with a ring homomorphism from Q to the center of F. If
F is a Q-algebra, then we denote the dimension of F as a vector space

w xover Q by F: Q .

w xPROPOSITION. Let F be a semisimple Q-algebra with F: Q - `, let M
be a finitely generated right F-module, and let L be a lattice in M. Denote by
G the group of those automorphisms s of the F-module M for which
s L s L. Then the number of orbits of the set of F-submodules of M under the
natural action of G is finite.

Proof. We recall that an order in F is a lattice in F that is a subring of
F. Let A be an order in F that is maximal in the sense that it is not

wcontained in a larger order; the existence of such an order is proved in 6,
xSection 10 .

Let L9 be the A-submodule of M generated by L. This is a lattice in M
that contains L as a sublattice of finite index; denote this index by n.
Write G9 for the group of all automorphisms s of the F-module M for
which s L9 s L9. Clearly, G is a subgroup of G9. One easily checks that G

Ž .contains the kernel of the natural map G9 ª Aut L9rnL9 , and since the
latter group is finite this implies that G is of finite index in G9. Hence it
will suffice to prove the proposition with G replaced by G9, that is, with L
replaced by L9. In other words, we may assume without loss of generality
that L is an A-submodule of M.
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Ž w Ž .x.The Jordan]Zassenhaus theorem see 6, Theorem 26.4 asserts that
for any non-negative integer t there are, up to isomorphism, only finitely
many right A-modules whose additive group is isomorphic to Z t. Hence
the set S of pairs of isomorphism types of right A-modules L , L for1 2
which L [ L ( L is finite.1 2 A

Let N be an F-submodule of M, and put L s N l L and L s LrL .1 2 1
Ž wSince A is a maximal order, L is projective as an A-module see 6,2

Ž .x.Corollary 21.5 , so that there is an isomorphism L ( L [ L that isA 1 2
the identity on L . This shows that there is a well-defined map from the1

Žset of F-submodules of M to S that sends N to the pair L , L up to1 2
.isomorphism . To prove the proposition it will suffice to show that if two

F-submodules N, N9 of M have the same image in S, then there exists
s g G such that s N s N9. Thus, assume that there are isomorphisms

Ž . Ž .N l L ª N9 l L and Lr N l L ª Lr N9 l L of A-modules. Taking
the direct sum we obtain an A-isomorphism L ª L that extends the
isomorphism N l L ª N9 l L. Tensoring with Q we find an F-automor-
phism s of M with s L s L and s N s N9, as required. This proves the
proposition.

An alternative proof can be derived from a result of Borel and Harish-
w xChandra 3, Theorem 6.9 .

Let K and X be as in the theorem. We write R for the ring of
endomorphisms of X, and R* for the group of units of R; so we have
R* s Aut X. It is known that the Q-algebra R is semisimple, thatQ
w x Ž wR : Q - `, and that R may be viewed as a lattice in R see 5, SectionQ Q

x.12 .
Ž . � 4For an abelian subvariety Y ; X we write I Y s r g R: rX ; Y . This

is a right ideal of R.

LEMMA. Suppose that Y, Y 9 are abelian sub¨arieties of X, and that
Ž . Ž .u g R* s Aut X is such that uI Y s I Y 9 . Then we ha¨e uY s Y 9.Q Q

Ž . Ž .Proof. Since we clearly have uI Y s I uY , the proof immediately
reduces to the case u s 1, which we now assume.

w xBy the theorem of Poincare]Weil 5, Proposition 12.1 there is an´
abelian subvariety Z of X such that the natural map Y = Z ª X is an
isogeny. Hence there is a surjective morphism X ª Y, so rX s Y for some

Ž . Ž . Ž . Ž .r g I Y . The hypothesis I Y s I Y 9 implies that nr g I Y 9 forQ Q
some positive integer n. Since multiplication by n is a surjective morphism
Y ª Y, we now obtain Y s nY s nrX ; Y 9. By symmetry we have Y 9 ; Y.
This proves the lemma.

We now prove the theorem. By the lemma, the orbit space of the set of
abelian subvarieties of X under the action of Aut X maps injectively to
the orbit space of the set of right ideals of R under the action of R*Q
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Ž .acting by left multiplication . To see that the latter orbit space is finite, it
Žsuffices to apply the proposition to F s R , M s F viewed as a rightQ

.F-module , and L s R; note that the group G appearing in the proposi-
tion can then be identified with R*. This completes the proof of the
theorem.
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