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Let k be a finite field and let E be an elliptic curve over k. In this paper we describe,
for each finite extension l of k, the structure of the group E(l) of points of E over l as a
module over the ring R of endomorphisms of E that are defined over k. If the Frobenius
endomorphism ? of E over k does not belong to the subring Z of R, then we find that
E(l)$R�R(?n&1), where n is the degree of l over k; and if ? does belong to Z then E(l)
is, as an R-module, characterized by E(l)�E(l )$R�R(?n&1). The arguments used in
the proof of these statements generalize to yield a description of the group of points of
an elliptic curve over an algebraically closed field as a module over suitable subrings of
the endomorphism ring of the curve. It is shown that straightforward generalizations
of the results of this paper to abelian varieties of dimension greater than 1 cannot be
expected to exist. � 1996 Academic Press, Inc.

1. Introduction

Let k be a field and let E be an elliptic curve over k. In this paper we describe
the structure of several groups of points of E as modules over suitable subrings
of the ring EndkE of endomorphisms of E over k. We shall view the ring Z of
integers as a subring of Endk E.

Our first result is concerned with the case of finite fields.

Theorem 1. Let k be a finite field, let E be an elliptic curve over k, and put
R=Endk E. Let ? # R be the Frobenius endomorphism of E. Further, let l be a
finite field extension of k, and denote by n=[l: k] its degree.

(a) Suppose that ? � Z. Then R has rank 2 over Z, and there is an
isomorphism E(l )$R�R(?n&1) of R-modules.

(b) Suppose that ? # Z. Then R has rank 4 over Z, we have
E(l)$Z�Z(?n&1)�Z�Z(?n&1) as abelian groups, and this group has, up to
isomorphism, exactly one left R-module structure. Furthermore, one has
E(l)�E(l )$R�R(?n&1) as R-modules.

This theorem is proved in Section 4, as a consequence of results obtained in
Sections 2 and 3. We note that E is supersingular if we are in case (b), but not
conversely.
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In our other results we take k to be algebraically closed, and we let R
be a subring of Endk E with the property that the abelian group
(Endk E)�R is torsion-free; for example, we can take R=Endk$ E if E is
actually defined over some subfield k$ of k (see 4.1). We shall give a com-
plete description of E(k) as a module over R. The following result expresses
that the torsion subgroup of E(k) is the only piece of interest. By Q we
denote the field of rational numbers.

Theorem 2. Let k be an algebraically closed field and let E be an elliptic
curve over k. Let R be a subring of Endk E for which the abelian group
(Endk E)�R is torsion-free. Denote by E(k)tor the torsion subgroup of E(k).
Then we have:

(a) the exact sequence 0 � E(k)tor � E(k) � E(k)�E(k)tor � 0 of
R-modules splits;

(b) if k is algebraic over a finite field, then E(k)�E(k)tor=0;

(c) if k is not algebraic over a finite field, then E(k)�E(k)tor is, as a left
R-module, isomorphic to the direct sum of *k copies of R�Z Q.

The proof is given in Section 5. It depends on the injectivity of E(k)tor

as a left R-module (Proposition 5.1).
The structure of E(k)tor as an abelian group is well-known (see

[13]). If the characteristic char k of k equals 0 then we have
E(k)tor $(Q�Z)� (Q�Z); if char k=p>0 and E is not supersingular, then
we have E(k)tor $(Q�Z)� (Z( p) �Z), where Z( p) denotes the localization of
Z at p; and finally, if char k=p>0 and E is supersingular, then
E(k)tor $(Z( p) �Z)� (Z( p) �Z).

The description of E(k)tor as an R-module requires some notation. There
is a ring homomorphism R � k that describes the action of the
endomorphisms in R on the tangent space of E at the zero point O of E(k)
(see [13, Chapter III, Theorem 5.2]). Let p denote the kernel of this map;
it consists of the zero map together with all inseparable isogenies E � E
that belong to R (see [13, Chapter II, Proposition 4.2(c)]). Clearly, char
k belongs to p, and if char k=0 then p=0. We view R as a subring of the
division ring R Q =R�Z Q, and we let Rp denote the sub-left-R-module of
RQ generated by [s&1: s # R, s � p]. If R is commutative then R p is just the
localization of R at p, and if char k=0 then Rp =RQ .

We now distinguish cases as to the value of [R: Z], the rank of the
additive group of R as a Z-module. By [13, Chapter III, Section 9], it
equals 1, 2, or 4. If [R: Z]=1 then we have R=Z, and the Z-module
structure was discussed above. The following result deals with the case that
[R: Z]=2.
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Theorem 3. Let k, E, R, and E(k)tor be as in Theorem 2, and suppose
that [R: Z]=2. Then there is an isomorphism E(k)tor $Rp �R of R-modules.

The proof of this theorem is given in Section 2. It uses��only implicitly,
in the presentation below��that the ring R is a Gorenstein ring if
[R: Z]=2 (see [2, Proposition (6.4)]). Rings of higher ranks need not be
Gorenstein, and this indicates that no straightforward generalization of
Theorem 3 to higher dimensional abelian varieties can be expected to exist.
Section 6 is devoted to the construction of counterexamples, in any charac-
teristic and in any dimension exceeding 1.

In the case that [R: Z]=4 we have the following result.

Theorem 4. Let k, E, R, and E(k)tor be as in Theorem 2, and suppose
that [R: Z]=4. Then the number p=char k is non-zero, the group E(k)tor

has, up to isomorphism, exactly one left R-module structure, and we have
E(k)tor �E(k)tor $R p�R as left R-modules.

This theorem is proved in Section 3. It follows in a straightforward way
from the observation that for any integer n that is not divisible by p the
ring R�Rn is isomorphic to the ring of 2_2 matrices over Z�Zn.

The results above can be reformulated in terms of the Tate module TE.
Let the assumptions be as in Theorem 2. For a positive integer n let
E[n]=[P # E(k): nP=O]. For each multiple mn of n there is a map
E[mn] � E[n] sending P to mP. With these maps, the collection of groups
E[n] forms a projective system, and TE is defined to be their projective
limit. As a profinite abelian group, the structure of TE is as follows. If char
k=0 then TE$Z� �Z� , where Z� is the projective limit of the groups
Z�Zn, n�1; if char k=p>0 and E is not supersingular, then TE$Z� �Z� $,
where Z� $ denotes the projective limit of the groups Z�Zn, with n now rang-
ing over the positive integers that are not divisible by p; and if char
k=p>0 and E is supersingular, then TE$Z� $�Z� $. To describe TE as a
profinite R-module in the case [R: Z]>1, we define R� $ to be the projective
limit of the R-modules R�a, where a ranges over the left ideals of R that are
not contained in p; for a/b, the map R�a � R�b is the natural one. Now
if [R: Z]=2, then we have TE$R� $ as a profinite R-module, and if
[R: Z]=4, then TE has, up to isomorphism, only one left R-module struc-
ture, and it satisfies TE�TE$R� $. This follows in a routine manner from
Theorems 3 and 4. We note that E(k)tor may be identified with the injective
limit of the groups TE�n } TE, where n ranges over the positive integers and
the map TE�n } TE � TE�mn } TE is induced by multiplication by m. Thus
the R-module structure of E(k)tor can be recovered from that of TE.

Rings are supposed to have unit elements in this paper, and modules are
left modules, unless stated otherwise. For a prime number p, we denote by
Fp the field Z�Zp.
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2. Rank Two

In this section k, E, and R are as in Theorem 3; in particular, k is
algebraically closed, and [R: Z]=2. In this situation R is commutative,
the division ring RQ =R�Q is an imaginary quadratic field extension of
Q, and R is an order in RQ (see [13, Chapter III, Section 9]). For s # R
we let E[s]=[P # E(k): sP=O].

Proposition 2.1. Let the notation and hypotheses be as above. Then for
every separable element s # R there is an isomorphism E[s]$R�Rs of
R-modules.

The proof depends on two lemmas. A module M over a ring A is called
faithful if aM{0 for each a # A, a{0. A minimal ideal or submodule is
understood to be a minimal non-zero one.

Lemma 2.2. Let A be a finite commutative ring. Then the following two
statements are equivalent:

(i) each faithful A-module M contains a submodule that is free of
rank 1 over A;

(ii) the number of maximal ideals of A is equal to the number of mini-
mal ideals of A.

Proof. (i) O (ii). Let M=Hom(A, Q�Z) be the dual of the additive
group of A. The A-module structure on A induces an A-module structure
on M. It is clear that M is faithful and that *M=*A, so by (i) we have
M$A. Hence the number of minimal ideals of A equals the number of
minimal submodules of M. By duality, the latter number equals the
number of maximal ideals of A.

(ii) O (i). Let M be a faithful A-module. We have A$>m Am , with
m ranging over the maximal ideals of A (see [1, Theorem 8.7]). It follows
that M$>m Mm , where each Mm is faithful as an Am -module. Each Am

has a unique maximal ideal, and clearly at least one minimal ideal; hence,
by (ii), each Am has a unique minimal ideal. Let a m be a non-zero element
of the unique minimal ideal of Am . Since Mm is faithful, there exists
xm # Mm with amxm {0. Then the annihilator of xm in Am does not con-
tain the unique minimal ideal of Am , so this annihilator is zero. Therefore
the submodule Am xm of Mm is isomorphic to Am The direct sum of the
modules Amx m is isomorphic to A, as required. This proves 2.2.

A finite commutative ring A satisfies (ii) if and only if it is a Gorenstein
ring, and if and only if it is a quasi-Frobenius ring (see [5, Chapter VIII,
Section 58]). This will not be used in the sequel.
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We use a circumflex to denote the canonical involution of Endk E; it
maps R to R, since s+ ŝ=deg (s+1)&deg s&1 # Z for all s # Endk E.

Lemma 2.3. Let s # R, s{0. Then R�Rs is a finite ring of cardinality sŝ,
and the number of maximal ideals of R�Rs is equal to the number of minimal
ideals of R�Rs.

Proof. The canonical involution is the restriction to R of the unique
non-trivial automorphism of RQ . One deduces that the determinant of the
Q-linear map RQ � RQ that sends every x to xs equals sŝ, so that
*R�Rs=sŝ<�.

Write A=R�Rs, and let q be a prime number dividing *A. To prove 2.3
it suffices to show that the number of maximal ideals m/A with Aq/m

is equal to the number of minimal ideals n/A with qn=0. Let
Aq=[a # A: qa=0]. Since A is finite, we have *Aq=*A�Aq, and since
R�Rq maps surjectively to A�Aq the number *A�Aq equals either q or q2.
If *Aq=*A�Aq=q, then the only m, n as above are m=Aq, n=Aq ,
so the number of m's and the number of n's are both equal to 1.
Suppose therefore that *Aq=*A�Aq=q2. Then the map R�Rq � A�Aq
is an isomorphism, so s=rq for some r # R. It follows that Aq=
(R & Rsq&1)�Rs=Rr�Rrq$R�Rq$A�Aq (as A-modules), and under this
isomorphism the minimal ideals n/Aq that we are counting map to the
minimal ideals of A�Aq. Thus it remains to prove that the ring A�Aq of car-
dinality q2 has equally many maximal and minimal ideals. If A�Aq has only
trivial ideals (so that it is a field) that is clear; and in the other case an
ideal is maximal if and only if it has cardinality q, and if and only if it is
minimal, so that the statement is again clear. This proves 2.3.

Proof of 2.1. We put A=R�Rs and M=E[s]. Clearly, M is an
A-module, and we claim that it is a faithful A-module; that is, any r # R
with rM=0 belongs to Rs. Namely, let r # R annihilate M=E[s]. Since s
is separable, the homomorphism theorem for elliptic curves (see [13, Chap-
ter III, Corollary 4.11]) implies that r=ts for some endomorphism t of E.
We have t } sŝ=rŝ # R, where sŝ is a positive integer. Since (Endk E)�R is
supposed to be torsion-free this implies that t # R, so that r # Rs, which
proves the claim. From 2.3 we see that A satisfies 2.2(ii). Applying 2.2 we
thus find that M contains a free A-module of rank 1. By [13, Chapter III,
Theorem 4.10(c) and Theorem 6.2(a)] we have *M=deg s=sŝ, which by
2.3 is equal to *A. Therefore M is free over A of rank 1. This proves 2.1.

It will be useful to have a similar result for inseparable s. To state such
a result, we assume without loss of generality that p=char k>0, and we
introduce some additional notation. We still assume that [R: Z]=2.
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For s # R, s{0, let degi s denote the inseparable degree of s (see [13,
Chapter II, Section 2]), which is a power of p. We put degi 0=�. From
the definition of degi it is clear that degi (st)=degi s } degi t for all s, t # R.
We also have degi (s+t)�min[degi s, degi t] for all s, t # R; this follows
easily from the fact that degi s is divisible by a given power q of p if and
only if s factors via the qth power Frobenius morphism E � E (q) (see [13,
Chapter II, Corollary 2.12]). It follows that there is an exponential p-adic
valuation v on RQ such that v(s)=log (degi s)�log p for all s # R. Let
V=[x # RQ : v(x)�0] be the valuation ring. Note that R/V.

Proposition 2.4. Let the notation and hypotheses be as above. Then for
every non-zero element s # R there is an isomorphism E[s]� (V�Vs)$R�Rs
of R-modules.

Proof. We first show that E[s]� (V�Vs) is faithful as an R�Rs-module.
Suppose that r # R annihilates both E[s] and V�Vs. Then degi r�degi s=q
(say), so if F denotes the qth power Frobenius morphism then r=r$F,
s=s$F for certain r$, s$: E (q) � E, with s$ separable. Now the homo-
morphism theorem for elliptic curves implies, as above, that r$=ts$ for
some t # EndkE. Then r=ts, and as above one finds that t # R, as desired.

From 2.2 and 2.3 it now follows that E[s]� (V�Vs) contains a sub-
module isomorphic to R�Rs. By 2.3 we have *R�Rs=sŝ, and by
[13, Chapter III, Theorem 4.10(a) and Theorem 6.2(a)] we have
*E[s]=sŝ�degi s. Hence we obtain *V�Vs�degi s, and to prove 2.4 it
suffices to show that we have equality. Since each of *V�Vs and degi s is
a constant power of pv(s) it suffices to prove equality for a single choice of
s with v(s){0. We choose s=p. Because V is contained in a two-dimen-
sional Q-vector space, we have *V�Vp�p2, which finishes the proof if
degi p=p2. Hence suppose that degi p<p2. Then degi p=p, and the p-adic
Tate module Tp E, which is the projective limit of the groups E[ pn]
(n�1), is free of rank 1 over Zp . The action of R on TpE induces a ring
homomorphism R � Zp , and therefore a Qp -algebra homomorphism
RQ � Qp . By elementary algebraic number theory, the existence of such a
homomorphism implies that p splits completely in RQ , so that p is a prime
element of V and the residue class field V�Vp has p elements. This com-
pletes the proof of 2.4.

Remark. From 2.4 and its proof it follows easily that there is a
Zp-algebra isomorphism R�Z Zp $V�Z Zp or R�Z Zp $Zp_Zp ,
according as degi p=p2 or degi p=p. This implies that the index of R in
the maximal order of RQ is not divisible by p, which is a result of Deuring.

We now prove Theorem 3. Let S=R&p be the set of separable endo-
morphisms in R. First we show that E(k)tor=�s # S E[s], the inclusion
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# being obvious. For the other inclusion, suppose that P # E(k)tor , and let
m # Z/R be the order of P. If m � p then s=m satisfies s # S and P # E[s].
If m # p, then p=char k{0, and any s # R for which s mod Rm maps to
(O, 1 mod Vm) under some isomorphism R�Rm$E[m]�V�Vm as in 2.4
is separable and annihilates P.

Reformulating 2.1, we see that for each s # S there is an isomorphism
E[s] [ Rs&1�R of R-modules; let Ws be the set of such isomorphisms. If
t divides s, then passing to the largest submodules annihilated by t we see
that any isomorphism E[s] [ Rs&1�R maps the submodule E[t] of E[s]
isomorphically to Rt&1�R, so there is a restriction map Ws � Wt . Since the
projective limit of a system of non-empty finite sets is non-empty (see [3,
Chapitre III, paragraphe 7.4, The� ore� me 1]), the projective limit of the sets
Ws is non-empty. Therefore we can make a simultaneous choice of
isomorphisms E[s] [ Rs&1�R that commute with the inclusions
E[t]/E[s], Rt&1�R/Rs&1�R. Taking the union over s, we conclude that
E(k)tor $Rp�R as R-modules. This proves Theorem 3.

3. Rank Four

In this section k, E, and R are as in Theorem 4; in particular, k is
algebraically closed, and [R: Z]=4. In this situation R is non-com-
mutative (see [13, Chapter III, Section 9]). Hence the ring homomorphism
R � k with kernel p that was defined in the introduction is not injective,
so p{0, and therefore char k=p{0. For n # Z we write E[n]=
[P # E(k): nP=O].

Proposition 3.1. Suppose that [R : Z]=4, and let n # Z, n � 0 mod p.
Then there is an isomorphism E[n]$Z�Zn�Z�Zn as abelian groups, and
this group has up to isomorphism exactly one left R-module structure.
Furthermore, one has E[n]�E[n]$R�Rn as left R-modules.

Proof. It is well-known that there is an isomorphism E[n]$

Z�Zn�Z�Zn (see [13, Chapter III, Corollary 6.4(b)]). The endomorphism
ring End E[n] of this abelian group is isomorphic to the ring M(2, Z�Zn)
of 2_2 matrices over Z�Zn, and has order n4.

As in the proof of 2.1 we see that E[n] is a faithful module over the ring
R�Rn, so the map R�Rn � End E[n] that describes the module structure is
injective. Since both rings have cardinality n4 this implies that it is an
isomorphism.

To prove that Z�Zn�Z�Zn has, up to isomorphism, only one left
R-module structure, it suffices to show that it has, up to isomorphism,
only one left module structure over the ring M(2, Z�Zn). By Morita
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equivalence (see [9, Section 3.12]), each left M(2, Z�Zn)-module P is
isomorphic to one of the form (Z�Zn�Z�Zn)�Z�Zn Q, where Q is a
Z�Zn-module that is uniquely determined by P, up to isomorphism
(namely, Q=F�M(2, Z�Zn) P, where F is the right M(2, Z�Zn)-module
Hom(Z�Zn�Z�Zn, Z�Zn)). In this situation, P and Q�Q are isomorphic
as abelian groups, and the statement to be proved is therefore equivalent
to the easily proven fact that Q�Q$Z�Zn�Z�Zn implies that Q$Z�Zn.

The final assertion of 3.1 is equivalent to the statement that M(2, Z�Zn)
is, as a left module over itself, isomorphic to (Z�Zn�Z�Zn)�

(Z�Zn�Z�Zn), which is obvious. This proves 3.1.

Remark. From the proof of 3.1 one easily derives that R�Z Zl $

M(2, Zl) for every prime number l{p. Using the map degi as in the pre-
vious section, one can show that R�Z Zp is the ``valuation ring'' of a non-
commutative division algebra of degree 4 over Qp . From these statements
it follows that R is a maximal order in the division algebra R�Z Q, a
result that is due to Deuring.

We now prove Theorem 4. Above we saw already that the characteristic
p of k is non-zero. By a theorem of Deuring (see [13, Chapter V, Theorem
3.1]) there are no elements of order p in E(k)tor , so E(k)tor=�n E[n],
with n ranging over Z&Zp. It also follows that for each non-zero s # R the
order sŝ�degi s of the subgroup [P # E(k): sP=O] of E(k)tor is not divisible
by p. Therefore an element s of R belongs to p if and only if the integer sŝ
is divisible by p. This implies that the group Rp defined in the introduction
is, as a sub-left-R-module of RQ , generated by [n&1: n # Z&Zp].

As in the proof of Theorem 3, the isomorphisms E[n]$

(Zn&1�Z)� (Zn&1�Z) and E[n]�E[n]$Rn&1�R can be glued together
to isomorphisms E(k)tor$(Z( p)�Z)� (Z( p) �Z) (as abelian groups) and
E(k)tor �E(k)tor $R p�R (as R-modules). Also, two R-module structures
on (Z( p) �Z)� (Z( p) �Z) give rise to two R-module structures on
(Zn&1�Z)� (Zn&1�Z) for each n, which by 3.1 are isomorphic; and again
by the projective limit argument from the proof of Theorem 3 such
isomorphisms can be glued together. This proves Theorem 4.

4. Finite Fields

In this section we prove Theorem 1. We let k, E, R, ?, l, and n be as in
Theorem 1; in particular, k is now a finite field, and R=Endk E. We choose
an algebraic closure k� of k containing l. We write R� =Endk� E, which is the
ring of endomorphisms of E defined over k� . A theorem of Deuring (see [13,
Chapter V, Theorem 3.1]) states that R� �Z Q is a definite quaternion
algebra if E is supersingular and an imaginary quadratic field otherwise.
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An endomorphism in R� belongs to R if and only if it commutes with the
action of the Frobenius automorphism. Since the latter acts in the same
way as ?, we have R=[r # R� : ?r=?r]. It also follows that the additive
group R� �R is torsion-free.

Let it now first be assumed that ? � Z. We have ? # R, so [R: Z]{1.
Since ? belongs to the center of R, we have [R: Z]{4. Therefore we have
[R: Z]=2.

To prove part (a) of Theorem 1, we note that E(l )=E[?n&1], in the
notation of 2.1; here ?n&1 is separable because ? # p. From 2.1, applied
with k� as the base field, it now follows that E(l )$R�R(?n&1) as
R-modules, as required.

Next suppose that ? # Z. From ?2=??̂=*k it follows that k has even
degree over its prime field, and that ?=\- *k. For each positive integer
m, the integer ?m&1 annihilates E(km), where km is the unique inter-
mediate field of k/k� with [km : k]=m. Since ?m&1 is coprime to p, it
follows that E(km) does not contain an element of order p, and the same
is then true for E(k� )=�m E(km). By a theorem of Deuring (see [13,
Chapter V, Theorem 3.1]) this implies that E is supersingular, so that R�
is an order in a definite quaternion algebra. From ? # Z we see that
R=[r # R� : ?r=?r]=R� . In particular, we have [R: Z]=4.

To prove part (b) of Theorem 1, it now suffices to note that
E(l )=E[?n&1] and to invoke Proposition 3.1. This proves Theorem 1.

4.1. Remark. The observation, in the proof above, that R� �R is torsion-
free, carries over to arbitrary base fields; that is, if E is an elliptic
curve over any field k, and l denotes any extension field of k, then
(Endl E)�(Endk E) is torsion-free. To prove this, it suffices to consider (i)
the case that l is Galois over k, and (ii) the case that every element of l that
is algebraic over k is purely inseparable over k. In the first case one uses,
as in the proof above, that Endk E consists of the elements of Endl E that
are fixed under the action of the Galois group. In the second case one has
in fact Endl E=Endk E (apply [10, Chapter II, Theorem 5], with B equal
to the graph of an endomorphism).

5. Algebraically Closed Fields

In this section we let k, E, R, and E(k)tor be as in Theorem 2.

Proposition 5.1. As a left R-module, E(k)tor is injective.

Proof. For background on injective and projective modules, see [9,
3.10 and 3.11]. We distinguish three cases, according to the value of
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[R: Z]. If [R: Z]=1 then R=Z, and in this case the injectivity of E(k)tor

follows from the fact that it is divisible as an abelian group.
Next suppose that [R: Z]=2. We first show that for any non-zero s # R

the ring R�Rs is injective as a module over itself. The category of finite
R�Rs-modules has a duality that sends any module M to Hom Z (M, Q�Z).
Since it is a duality, it interchanges injective and projective objects. From
2.2 and 2.3 it also follows that the dual of a free module of rank one is free
of rank one (cf. the proof of 2.2, (i) O (ii)), so that the dual of a projective
module is projective. Hence the projective and injective objects of this
category are the same. In particular, R�Rs is injective, also in the category
of all R�Rs-modules (by [9, Proposition 3.15]). The same applies to the
isomorphic module Rs&1�R.

We deduce that RQ �R is injective as an R-module. By [9, Proposition
3.15] it suffices to show that any R-linear map f from a non-zero R-ideal
a to RQ �R can be extended to a map R � RQ �R. Since RQ �R is torsion we
can find a non-zero element s # ker f. Then f induces an R�Rs-linear map
a�Rs � Rs&1�R, which by injectivity of Rs&1�R can be extended to an
R�Rs-linear map R�Rs � Rs&1�R. The latter map induces an extension of f
to a map R � RQ�R, as required.

If char k=0 then we have RQ =Rp , so Theorem 3 tells us that
E(k)tor $RQ�R. If char k>0 then 2.4 and the projective limit argument in
the proof of Theorem 3 show that E(k)tor � (RQ �V)$RQ �R as R-modules.
In both cases the injectivity of RQ�R implies that of E(k)tor .

The argument in the case that [R: Z]=4 is similar but simpler. If
n # Z, n{0, then as above one deduces from 2.2 that all finite projective
Z�Zn-modules are injective. By Morita equivalence, the same is true for
finite projective M(2, Z�Zn)-modules. As above it follows that RQ�R is
injective as a left R-module. Removing the p-primary part, which is a direct
summand, and applying the isomorphism E(k)tor �E(k)tor $Rp �R from
Theorem 4, one concludes that E(k)tor is injective as well. This proves 5.1.

We now prove Theorem 2. It is clear that 5.1 implies part (a) of the
theorem. From the divisibility of E(k) as an abelian group it follows that
the R-module E(k)�E(k)tor may be identified with the vector space
E(k)�Z Q over the division ring RQ . So to prove the remaining assertions
of Theorem 2 it suffices to show that dimRQ

�Z Q equals 0 or *k, accord-
ing as k is algebraic over a finite field or not.

First suppose that k is algebraic over a finite field. Then E is defined over
some finite subfield k$ of k, and E(k) is the union of the finite subgroups
E(l ), with l ranging over the finite subfields of k that contain k$. Therefore
E(k)�Z Q=0.

Now suppose that k is not algebraic over a finite field, and let k0 /k be
a subfield that is either Q or Fp (t) for some t that is transcendental over
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Fp . It is easy to see that *E(k)=*k, and for cardinality reasons it follows
that dimRQ

E(k)�Z Q is equal to *k if *k is uncountable, and at most
*k if k is countable. Therefore it suffices to show that E(k)�Z Q is not
finite dimensional over RQ , or over Q, which by dimQ RQ <� is the same.

Suppose that E(k)�Z Q is finite dimensional over Q, and choose finitely
many points Pi # E(k) that give a basis. Also, choose a finitely generated
subfield k1 of k, containing k0 , such that E can be defined over k1 and such
that the coordinates of the points Pi belong to k1 . Then the inclusion
E(k1)/E(k) induces an isomorphism E(k1)�Z Q$E(k)�Z Q. Hence, if
one first adjoins to k1 all the torsion points of E(k) and next the points
(1�m)Pi for all positive integers m and all i, then one obtains the field
k1(E(k)), which is the same as the algebraically closed field k. Looking at
the Galois groups of these extensions, and consulting the list of subgroups
of the group PSL2Fq (for q prime) (see [8, Kapitel II, 8.27]), one con-
cludes that the non-cyclic composition factors of any finite Galois group
over k1 are among the groups PSL2 Fq , for q�5 prime. Since the image of
the natural map of the absolute Galois group of k1 to the absolute Galois
group of k0 has finite index in the latter, it follows that the finite Galois
groups over k0 are built up from the same composition factors, plus
possibly finitely many additional simple groups. This is absurd, since k0 has
for each positive integer n a Galois extension with group isomorphic to the
full symmetric group of degree n (see [14, section 66] for k0=Q; the case
k0=Fp(t) can be done in a similar manner).

6. Abelian Varieties

In this section we show that straightforward generalizations of the results
of this paper to higher dimensional abelian varieties cannot be expected to
exist. We restrict attention to the situation of Theorem 3, in which
[R: Z]=2. It may not be obvious what the proper generalization of the
condition [R: Z]=2 to higher dimensional abelian varieties is; however,
any reasonable generalization would seem to include at least those abelian
varieties A over an algebraically closed field k that satisfy the following
conditions, in which we put g=dim A:

(6.1) if we put R=EndkA, then RQ =R�Z Q is a complex CM field
of degree 2g over Q;

(6.2) A is ordinary, i.e., if p=char k{0 then dimFp[P # A(k) :
pP=O]=g;

(6.3) A has a principal polarization.
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Condition (6.1) means that RQ is a number field that is a totally imaginary
quadratic extension of a totally real field of degree g over Q. For the notion
of a principal polarization, see [4, Chapters IV and V].

We show that even when we restrict to abelian varieties satisfying these
conditions the direct analogue of Proposition 2.1 is false.

Proposition 6.4. Let k be either the field C of complex numbers or, for
some prime number p, an algebraic closure of the field Fp . Let g be an
integer with g>1, and let Q be a finite set of prime numbers different from
char k. Then there exists an abelian variety A over k with dim A=g satis-
fying (6.1), (6.2), and (6.3), such that for each q # Q the R-modules
A[q]=[P # A(k): qP=O] and R�Rq are non-isomorphic; here we put
R=Endk A.

Proof. We give only a sketch of the proof.
Let it first be supposed that k=C. In [4, Chapter IV] one finds a

description of the category of abelian varieties over C in terms of lattices
(see also [11, Chapter 1]). In addition, one finds that both condition (6.3)
and the structure of A[q] as an R-module can be described in terms of the
corresponding lattice. Thus one can translate the entire problem into a
problem about lattices. Doing this, one finds that the conclusion of 6.4 is,
in the case k=C, equivalent to the existence of a totally real number field
K0 of degree g over Q, a totally imaginary quadratic extension K of K0 , a
set 8 of field embeddings K � C, an additive subgroup a/K that is free of
rank 2g, and an element ! # K, such that the following conditions are
satisfied:

(6.5) !� =&!{0, where the overhead bar denotes the non-trivial
automorphism of K over K0 ;

(6.6) 8 is the set of those field homomorphisms .: K � C for which
.(!) has positive imaginary part;

(6.7) if Tr denotes the trace function of K over Q, then
a=[x # K: Tr(!xy� ) # Z for all y # a];

(6.8) if R denotes the subring [x # K: xa/a] of K, then for each
q # Q one has a�aq$3 R�Rq as R-modules.

To construct such objects one starts from an arbitrary totally real
number field K0 of degree g over Q and an arbitrary totally imaginary
quadratic extension K of K0 . Next one lets : # K be an algebraic integer
satisfying :+:� # Z and K=Q(:); it is easy to show that such : exist (one
may, for the moment, even take :+:� =0). Now we put m=>q # Q q,
and
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A=Z[:]=Z+Z:+ } } } +Z:2g&1,

R=Z+Am=Z+Zm:+ } } } +Zm:2g&1,

a=(Z+Z:) g&1 } (Z+Zm: g)

=Z+Z:+ } } } +Z: g&1+Zm: g+ } } } +Zm:2g&1.

We have R/a/A, and R, A are rings, while a is an R-module. To define
!, we let f: K � Q be the Q-linear map defined by f (:i)=0 (0�i<2g&1),
f (:2g&1)=1�m. There is a unique element ! # K such that for all x # K one
has f (x)=Tr(!x). From :+:� # Z it follows that f (x)=&f (x� ) and hence
that !� = &!; this proves (6.5). Condition (6.6) is taken as the definition
of 8. The verification of (6.7) is straightforward. To show that R is
the same as the ring defined in (6.8), we note that the subring R$=
[x # K: xa/a] of K satisfies R/R$/a; the only such ring is R itself, so
R$=R. Suppose that for some q # Q one has a�aq$R�Rq as R-modules.
Then a=Ra+aq/Za+Aq for some a # a, so the image of a in A�Aq is at
most one-dimensional over Fq . However, inspection shows that it has
dimension equal to g, which contradicts our assumption that g>1. This
proves 6.4 in the case k=C.

Secondly, we consider the case that k is an algebraic closure of Fp , for
some prime number p. In [6] one finds a description of the category of
ordinary abelian varieties over finite fields in terms of lattices. Again, one
can describe the R-module structure of A[q] in terms of the lattice corre-
sponding to A, and the same applies to the existence of polarizations (see
[7, Section 4]). One finds that the conclusion of 6.4, in the present case,
is equivalent to the existence of K0 , K, 8, a, ! satisfying all the conditions
above, together with an element ? # R for which

(6.9) ??� =pn for some positive integer n, and K=Q(?m) for all
positive integers m;

(6.10) there is an exponential valuation v on C such that 8 consists
of those field homomorphisms .: K � C for which v(.?)>0.

(The valuation in (6.10) is, by (6.9), necessarily a p-adic one. Also, from
the fact that 8 consists of `half ' the embeddings K � C and (6.10) one
deduces that ? is, as an algebraic integer, coprime to ?� .)

For the construction of ? it is convenient to suppose that K0 and K are
chosen so that the following conditions are satisfied:

(6.11) p is totally ramified in the extension Q/K0 , and the prime of
K0 lying over p splits completely in the extension K0 /K;

(6.12) the Galois closure M of K over Q has degree 2 gg! over Q.

Note that the degree 2 gg! in (6.12) is largest possible, and that it is
achieved if and only if the Galois closure M0 of K0 over Q has the full
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symmetric group of degree g as its Galois group and [M: M0]=2 g. It is
easy to construct K and K0 such that (6.11) and (6.12) hold (cf. the techni-
que used in [12]). Also, we shall suppose that the algebraic integer : # K
chosen above satisfies

(6.13) the index (O: A) of A=Z[:] in the ring of integers O of K
is coprime to p,

in addition to the two conditions :+:� # Z and K=Q(:). This is, again,
easy to achieve, because of (6.11) (but if p=2 we cannot have :+:� =0 any
more).

Let A, R, a, !, and 8 now be chosen as above. From (6.11) it follows
that there is a prime ideal p of O such that p{p� and p g p� g=Op. Some
power of p g is principal, so we have O??� =Opn for some positive integer n
and some ? # O that is coprime to ?� . Replacing ? by ?pn�?� and n by 2n we
may in fact assume that ??� =pn. From (6.13) it follows that (O: R) is
coprime to ?, so there is some power of ? that is congruent to 1 modulo
O(O: R) and therefore belongs to R. If we replace ? by that power, and
n by its corresponding multiple, then we obtain an element ? # R that is
coprime to ?� and satisfies ??� =pn. For any positive integer m the subfield
Q(?m) of K is imaginary, and (6.12) implies that the only such subfield is
K itself. This proves (6.9).

From (6.12) it follows that all primes of M0 lying over p split completely
in the elementary abelian extension M0 /M of degree 2 g. Viewing M0 and
M as subfields of the field of complex numbers one deduces from this that
any p-adic valuation of M0 can be extended to a unique valuation v of M
such that v(.?)>0 for all . # 8. Extending v to C we then find that (6.10)
holds, since ? is coprime to ?� .

This completes the proof of Proposition 6.4.

In the situation of 6.4 the R-module A(k)tor cannot be embedded in
RQ �R, so that the higher-dimensional analogue of Theorem 3 breaks down.
Also, when char k{0, then we can replace k by a finite subfield over which
A can be defined, and take for l any finite extension of k over which all
points of A[q] are defined, for some q # Q. This yields counterexamples to
higher-dimensional analogues of Theorem 1(a).
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