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Explicit Construction of Universal Deformation Rings

B. de Smit and H. W. Lenstra, Jr.

Abstract. Let V be an absolutely irreducible representation of
a profinite group G over the residue field k of a noetherian local
ring O. For local complete O-algebras A with residue field k the
representations of G over A that reduce to V over k are given
by O-algebra homomorphisms R → A, where R is the universal
deformation ring of V . We show this with an explicit construction
of R. The ring R is noetherian if and only if H1(G, Endk(V )) has
finite dimension over k.

1. Introduction
Let G be a profinite group and let k be a field. By a k-representation of G
we mean a finite dimensional vector space over k with the discrete topology,
equipped with a continuous k-linear action of G. If V is a k-representation
of G and A is a complete local ring with residue field k, then a deformation
of V in A is an isomorphism class of continuous representations of G over
A that reduce to V modulo the maximal ideal of A; precise definitions are
given in Section 2. We denote by Def(V,A) the set of such deformations.

Let V be an absolutely irreducible k-representation of G. The object
of this chapter is to give a straight-forward construction of a ring R, the
universal deformation ring, which represents the functor Def(V,−). In
a purely algebraic setting, without considerations of continuity, a similar
construction was already given by Procesi in the seventies [9, Chap. IV,
Lemma 1.7; 10]. The existence of R in the present context was deduced
first by Mazur [8] with Schlessinger’s criteria for pro-representability [12].
An alternative construction was given recently by Faltings (see [5] and
Section 7 below).

The main result of this chapter, formulated below as Theorem (2.3), is
actually a little more general than Mazur’s. Following Schlessinger, Mazur
works only with noetherian rings, and this forces him to assume at the
outset that a certain cohomology group is finite. For our argument, the
noetherian condition is a hindrance, and we find it more convenient to
follow Grothendieck [6] and work with not necessarily noetherian rings
that are projective limits of artinian rings. This allows us to drop Mazur’s
cohomological condition; it reappears only at the end, as a necessary and
sufficient condition for R to be noetherian.
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2 Explicit Construction of Universal Deformation Rings

Our construction of R proceeds in three steps. First we let G be finite,
and we consider the functor that assigns to A a certain set of homomor-
phisms G → GLn(A). Proving that this functor is representable is very
easy: one just defines the corresponding ‘universal’ ring by generators and
relations. Next, we take a projective limit and obtain a similar result for
arbitrary profinite G (Proposition (2.5)). To conclude the construction, we
pass to the closed subring generated by the traces of the elements of G; the
proof that this ring has the required properties makes use of an argument
of Serre [3, Théorème 2].

It is in the last step of the construction that the absolute irreducibility
of V is crucially used. In Wiles’s proof of Fermat’s Last Theorem the
existence of deformation rings is only needed for such V . Wiles also uses
the fact that such deformation rings are generated by traces [13, pp. 509–
512], so the approach above is particularly suitable for Wiles’s applications.
It is, however, of interest to observe that the universal deformation ring
also exists when V , instead of being absolutely irreducible, satisfies the
weaker condition Endk[G](V ) = k. In the noetherian case this was shown by
Ramakrishna [11], as a consequence of Schlessinger’s criteria. The general
case is proved in Section 7. Instead of taking the subring generated by the
traces we pass to the subring generated by a larger collection of elements,
as suggested by an argument due to Faltings [5, Section 2.6]. We do not
know whether a similar result holds in Procesi’s purely algebraic setting.

Following Ramakrishna [11] we indicate in Section 6 how one can im-
pose additional conditions on the deformations to obtain “ordinary” and
“flat” deformation rings.

2. Main results
We denote the maximal ideal of a local ring A by mA.

(2.1) Local complete rings. Let O be a noetherian local ring with
residue field k. We denote by C the category of local topological O-algebras
A that satisfy the following two conditions: the natural map O → A/mA

is surjective (so that k is also the residue field of A), and the map from
A to the projective limit of its discrete artinian quotients is a topological
isomorphism. Equivalently, the second condition asserts that A is complete
and that its topology can be given by a collection of open ideals a for which
A/a is artinian. Morphisms in C are continuousO-algebra homomorphisms.

(2.2) Deformations. Let O and k be as above, let A be a ring in C,
and let G be a topological group. A representation of G over A, or an
A-representation of G, is a finitely generated free A-module M with a
continuous A-linear action of G; here we give M the product topology via
an A-module isomorphism M ∼=A An, a topology that is independent of
the choice of the isomorphism. Two A-representations M and M ′ are said
to be isomorphic if there is an A[G]-module isomorphism M

∼−→M ′, and
we denote this by M ∼=A[G] M ′.
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Let V be a k-representation of G. By a deformation of V in A
we mean an isomorphism class of A-representations W of G for which
W ⊗A k ∼=k[G] V . The set of such deformations is denoted by Def(V,A). A
morphism f :A → A′ in C gives rise to a map f∗: Def(V,A) → Def(V,A′)
that sends the class of a representation W over A to the class of W ⊗A A′.

Throughout the paper V is a representation of a profinite group G over
the residue field k (with the discrete topology) of a noetherian local ring
O, and C is as above.

(2.3) Theorem. If V is absolutely irreducible then
(1) there is a ring R in C and a deformation D ∈ Def(V,R) such that for

all rings A in C we have a bijection HomC(R,A) ∼−→ Def(V,A) given
by f 7→ f∗(D);

(2) the pair (R,D) is determined up to unique C-isomorphism by the prop-
erty in (1);

(3) the ring R is noetherian if and only if dimk H1(G, Endk(V )) <∞;
(4) if R is noetherian then the following hold: R is mR-adically complete

and for each A in C we have a well-defined bijection

HomO-Alg(R,A) ∼−→ Def(V,A)

given by f 7→ f∗(D).

Recall that V is absolutely irreducible if V ⊗k K is a simple K[G]-module
for every field extension K of k. The H1 in (3) denotes the continuous
cohomology group of the discrete G-module Endk(V ), on which the G-
action is given by (gϕ)(v) = gϕ(g−1v) for ϕ ∈ Endk(V ) and v ∈ V . By
“HomO-Alg” we denote the set of O-algebra homomorphisms.

Statement (2) of the theorem follows from (1) by the standard unique-
ness argument for universal objects. Statement (4) will follow immediately
from (1) and the following proposition.

(2.4) Proposition. Suppose A is a noetherian ring in C. Then the topol-
ogy on A is equal to the mA-adic topology, and A is mA-adically complete.
Furthermore, every O-algebra homomorphism A → A′ with A′ in C is
continuous.

The proof of (2.4) and the proof of part (3) of (2.3) are postponed to
Section 5. By (2.4), the category C′ whose objects are complete noetherian
local O-algebras with residue field k and whose morphisms are O-algebra
homomorphisms is a full subcategory of C. We will use later that a closed
sub-O-algebra A′ of a ring A in C is again in C, which follows from the fact
that a sub-O-algebra of an artinian ring in C is again an artinian ring in C.
However, if A is in C′ then A′ need not be in C′.

We will show (1) by an explicit construction, which starts by repre-
senting an easier functor. For this we will write representations as homo-
morphisms to matrix groups. Let V be any k-representation of G. If one
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chooses a k-basis v1, . . . , vn for V , then the G-action on V is given by a con-
tinuous homomorphism ρ:G→ GLn(k). Now let W be a representation of
G over some A in C such that W/mAW = W⊗Ak ∼=k[G] V . By Nakayama’s
lemma elements w1, . . . , wn ∈W such that wi 7→ vi form an A-basis of W .
The G-action on W is then given by a continuous group homomorphism
ρ:G → GLn(A) such that the composite map G → GLn(A) → GLn(k)
is ρ. We denote the set of such maps ρ by CHomρ(G, GLn(A)). Here
“CHom” denotes the set of continuous homomorphisms, and the subscript
ρ expresses the condition that the homomorphisms considered reduce to ρ
over the residue field k of A.

(2.5) Proposition. There are a ring Rb in C and a map

ρb ∈ CHomρ(G, GLn(Rb))

such that for each A in C we have a bijection

HomC(Rb, A) ∼−→ CHomρ(G, GLn(A))

that sends a C-morphism f to the composite map

G
ρb−→ GLn(Rb)

f−→ GLn(A).

The pair (Rb, ρb) is determined up to unique isomorphism by this property.

The ring Rb will be constructed in Section 3 as a projective limit over the
discrete quotients of G of complete O-algebras that are explicitly defined
by generators and relations. The map ρb defines a representation Wb = Rn

b

of G in Rb such that Wb ⊗Rb
k ∼=k[G] V . We now let R be the smallest

closed sub-O-algebra of Rb that contains the traces of all matrices ρb(g)
with g ∈ G. Note that R is in C again. The following result asserts that
we can define the representation Wb of G over the subring R. We let D be
the R[G]-isomorphism class of this R-representation.

(2.6) Proposition. Let W be a representation of G over some ring A in
C and let A′ ⊂ A be an inclusion of rings in C so that A′ has the induced
topology of A. Suppose that A′ contains the traces of all endomorphisms of
W that are given by multiplication with an element of G, and suppose that
W ⊗A A/mA is absolutely irreducible. Then there is an A′-representation
W ′ of G such that W ′ ⊗A′ A ∼=A[G] W .

Proposition (2.6) is a variation of results due to Serre [3, Théorème 2] and
Mazur [8, Proposition 4]. See Section 4 for a proof.

Let us assume (2.6) for the moment and prove that the pair (R,D)
satisfies statement (1) of the theorem. Let W be a representation of G over
a ring A in C for which W ⊗A k ∼=k[G] V . Choosing a basis of W as in the
argument before (2.5), one can give the G-action on W by a continuous
homomorphism ρ ∈ CHomρ(G, GLn(A)). By (2.5) there is a C-morphism
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fb:Rb → A such that the composite map G
ρb−→ GLn(R)

fb−→ GLn(A)
is equal to ρ. Then the restriction f :R → A of fb has the property that
f∗(D) is the A[G]-isomorphism class of W .

The trace of an element of G in some representation of G depends
only on the representation up to isomorphism. Given f∗(D) the map f is
therefore uniquely determined on the traces of ρb(g) for all g ∈ G. But the
O-algebra generated by these traces is dense in R, and f is continuous, so
f is uniquely determined. This proves the universal property (1) in (2.3)
once we know (2.5) and (2.6).

3. Lifting homomorphisms to matrix groups
In this section we prove (2.5). The last statement in (2.5) follows by the
usual uniqueness argument.

Suppose first that G is finite, and denote its identity element by e. We
define O[G, n] to be the commutative O-algebra given by

generators: Xg
ij for g ∈ G and 1 ≤ i, j ≤ n;

relations: Xe
ij =

{
1
0

if i = j,
if i 6= j;

Xgh
ij =

n∑
l=1

Xg
ilX

h
lj for g, h ∈ G and 1 ≤ i, j ≤ n.

For example, O[G, 1] is just the group ring of the largest abelian quotient
of G over O.

For every O-algebra A we have a canonical bijection

(3.1) HomO-Alg(O[G, n], A) ∼= Hom(G, GLn(A)),

where an O-algebra homomorphism f :O[G, n] → A corresponds to the
group homomorphism ρf that sends g ∈ G to the matrix (f(Xg

ij))i,j .
By (3.1) the homomorphism ρ:G→ GLn(k) gives rise to an O-algebra

homomorphismO[G, n]→ k. Its kernel is a maximal ideal, which we denote
by mρ. Now let Rb be the completion of O[G, n] at mρ. Certainly Rb is
noetherian and lies in C. The canonical map O[G, n] → Rb gives by (3.1)
a map ρb:G→ GLn(Rb) such that the diagram

G
ρb−→ GLn(Rb)∥∥∥ y

G
ρ−→ GLn(k)

commutes.
To prove that the map in (2.5) is a bijection, let A be a ring in C

and let ρ ∈ CHomρ(G, GLn(A)). By (3.1), there is a unique O-algebra
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homomorphism f :O[G, n]→ A such that ρf = ρ. The fact that ρf reduces
to ρ modulo mA implies that f(mρ) ⊂ mA. The topology on A is given by
open ideals a for which A/a is artinian, and the map O[G, n]→ A→ A/a
is continuous for the mρ-adic topology on O[G, n] for each such a. We
therefore obtain a continuous O-algebra homomorphism f̂ :Rb → A for
which the diagram

G
ρb−→ GLn(Rb)∥∥∥ yf̂

G
ρ−→ GLn(A)

commutes. Since the elements f̂(Xg
ij) are determined by ρ, and the Xg

ij

generate a dense sub-O-algebra of Rb, the map f̂ is uniquely determined
by the conditions that it be continuous and that the diagram commute.
This finishes the proof of (2.5) in the case that G is finite.

For the general case, write G as G = lim←−H, with H ranging over those

discrete quotients of G for which the representation ρ:G→ GLn(k) factors
through a map ρH :H → GLn(k). Each H is finite, so the construction
above produces a ring RH in C with a group homomorphism H → GLn(RH)
that reduces to ρH :H → GLn(k). Using (2.5) for each H we get a projective
system (RH)H in C.

Now let Rb = lim←−RH . We have a continuous map ρb:G → GLn(Rb)

induced by the composite maps G → H → GLn(RH). For fixed H, the
images of the defining generators of O[H,n] generate each discrete artinian
quotient of RH over O. But these images are contained in the image of
Rb, so Rb surjects to each discrete artinian quotient of RH . Moreover, each
discrete artinian quotient of Rb arises in this way. In particular it follows
that Rb lies in C.

Let A = lim←−Ai be a ring in C written as a projective limit of its
discrete artinian quotients. We now have canonical isomorphisms

CHomρ(G, GLn(A)) ∼= lim←−
i

CHomρ(G, GLn(Ai))

∼= lim←−
i

lim−→
H

HomρH
(H,GLn(Ai))

∼= lim←−
i

lim−→
H

HomC(RH , Ai)

(∗)∼= lim←−
i

HomC(Rb, Ai)

∼= HomC(Rb, A).

For (∗) we use that a continuous homomorphism Rb → Ai factors over some
artinian quotient R′ of Rb, and that R′ can be chosen to be an artinian
quotient of some RH . This proves (2.5).
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4. The condition of absolute irreducibility

In this section we show (2.6). Let V = W ⊗A k. The G-action on V gives
an O-algebra homomorphism ρ: k[G] → Endk(V ). The irreducibility of V
implies that D = Endk[G](V ) is a division ring, and since V is absolutely
irreducible, the tensor product D ⊗k K = EndK[G](V ⊗k K) is also a
division ring for any field extension K of k. This implies that D = k. By
Wedderburn’s theorem [7, chap. XVII, 3.5] one then deduces that k[ρ(G)] =
Endk(V ).

Choosing a k-basis of V we may identify the k-algebra Endk(V ) with
the ring Mn(k) of n × n-matrices over k. Let ē1, . . . , ēn2 be a k-basis
of Endk(V ) for which each matrix ēi has exactly one non-zero entry. We
denote the trace of an endomorphism f of a finitely generated free module
over a ring R by TrR(f). An easy computation shows that the determinant
of the matrix (Trk(ēiēj))i,j ∈Mn2(k) does not vanish.

Let B be the sub-A′-algebra of EndA(W ) generated by the image of G.
Denote the natural map EndA(W )→ Endk(V ) by ϕ. Then we have ϕ(B) =
k[ρ(G)] = Endk(V ), so we can choose ei ∈ B such that ϕ(ei) = ēi. Since
ϕ induces an isomorphism EndA(W ) ⊗A k

∼−→ Endk(V ), it follows from
Nakayama’s lemma that the ei form an A-basis of EndA(W ). We claim
that they also form an A′-basis of B. Indeed, if we write an element b ∈ B
on this basis as b =

∑
i aiei with ai ∈ A, then we have

n2∑
i=1

ai TrA(eiej) = TrA(bej) ∈ A′,

because TrA(B) ⊂ A′. The coefficient matrix (TrA(eiej))i,j ∈ Mn2(A′) is
invertible, because it is invertible modulo mA′ . Therefore all ai lie in A′,
which proves our claim. It follows that B ⊗A′ A = EndA(W ).

Choose an idempotent η̄ in the ring Endk(V ) that generates a minimal
left-ideal; e.g., take a matrix with one diagonal entry equal to 1 and all other
entries equal to 0. We claim that there exists η ∈ B such that η2 = η and
ϕ(η) = η̄. If x ∈ B and l ≥ 1 are such that x ≡ x2 modml

A′B, then it
is easy to check that f(x) = 3x2 − 2x3 satisfies f(x) ≡ xmodml

A′B and
f(x)2 ≡ f(x) modm2l

A′B. Now choose any η0 ∈ B with ϕ(η0) = η̄ and
consider the sequence η0, f(η0), f(f(η0)), · · ·. This is clearly a Cauchy
sequence for the mA′ -adic topology on B. But A′ is a projective limit of
artinian rings, so its mA′ -adic topology is at least as strong as the given
topology on A′, for which it is complete. This means that the sequence is a
Cauchy sequence for the product topology on the free A′-module B, so that
the sequence converges to a limit η in B. This η satisfies our conditions.

We have Bη ⊕ B(1 − η) = B, and B is a free A′-module. It follows
that the B-module W ′ = Bη is also free over A′, and from ϕ(η) = η̄
we see that its rank over A′ equals dimk(Endk(V )η̄) = n. Choose an
element w0 of W whose image v0 in V satisfies η̄v0 6= 0. Then we have
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Endk(V )η̄v0 = V , so Nakayama’s lemma implies that the EndA(W )-linear
map W ′ ⊗A′ A = EndA(W )η → W sending σ to σw0 is surjective. By
checking A-ranks one sees that it is an isomorphism. It follows that W
and W ′ ⊗A′ A are isomorphic over B ⊗A′ A, and in particular they are
A[G]-isomorphic. It also follows that the G-action on W ′ is continuous. �

The following result will be needed for the proof of part (3) of (2.3).

(4.1) Lemma. Let A be a local ring with residue field k and let G be
a group. Let ρ:G → GLn(k) be a group homomorphism that makes kn

into an absolutely irreducible k[G]-module. Then two elements ρ, ρ′ ∈
Homρ(G, GLn(A)) define isomorphic A[G]-module structures on An if and
only if there is a matrix M ∈ GLn(A) reducing to the identity matrix in
GLn(k) such that ρ(g) = Mρ′(g)M−1 for all g ∈ G.

Proof. The only non-trivial point is the following: if there exists M ∈
GLn(A) such that ρ(g) = Mρ′(g)M−1 for all g ∈ G, then M can be chosen
so that its reduction M ∈ GLn(k) is the identity matrix. Note that M lies
in Autk[G](kn), which by the first paragraph of the proof above is just k∗.
But the scalar matrix M can then be lifted to a scalar matrix T in GLn(A),
and we can now replace M by MT−1. �

5. Projective limits

In this section we show (2.4) and statement (3) of (2.3).
Let A be a ring in C which is given as a projective limit lim←−Ai of a

collection of discrete artinian quotients, where i ranges over some directed
index set. We let m and mi be the maximal ideals of A and Ai.

(5.1) Lemma. Suppose that we have a sequence of projective systems

(M1
i )→ (M2

i )→ (M3
i )

which for each i is an exact sequence of finitely generated Ai-modules.
Assume also that for each i′ ≤ i and j = 1, 2, 3, the transition map
M j

i →M j
i′ is Ai-linear. Then the induced sequence

lim←−
i

M1
i −→ lim←−

i

M2
i

ϕ−→ lim←−
i

M3
i

is an exact sequence of A-modules.

Proof. The projective limits are A-modules by the condition on the tran-
sition maps. It is clear that the maps between them are A-linear, and that
the composition of the two maps is zero.

Suppose that (xi)i is an element in the kernel of ϕ. Let

Ei = {x ∈M1
i : x 7→ xi}.
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We need to show that lim←−Ei is non-empty. In the case that k is finite

one can see this by remarking that
∏

i Ei is compact, and that lim←−Ei is
the intersection of a collection of closed subsets with the property that any
finite subcollection has a non-empty intersection.

For the general case the reader is referred to the criterion for projective
limits to be non-empty given in Bourbaki [2, III.7.4, Théorème 1]. To apply
this criterion one lets Si be the set of subsets of Ei of the form x + N ,
where x ∈ Ei and where N is a sub-Ai-module of the kernel of the map
M1

i →M2
i (see also [2, loc. cit., Example II]). �

(5.2) Remark. With a similar argument we will show the following,
which will be used in Section 6. If X is a collection of open ideals I of A
which is closed under taking finite intersections, then the canonical map
ϕ: A→ A′ = lim←− I∈X

A/I induces a topological isomorphism A/F
∼−→A′,

where F =
⋂

I∈X I. Clearly, ϕ is continuous, and Kerϕ = F . Suppose first
that k is finite. Then A and A′ are compact and ϕ(A) is a dense compact
subset of A′, so ϕ is surjective. A continuous bijection between compact
Hausdorff spaces is a homeomorphism, so our claim follows.

Let us sketch the argument for general k. For I ∈ X let AI
i be the

cokernel of the map I → Ai. Since Ai is artinian, it surjects to lim←− I
AI

i ,

and by (5.1) the ring A surjects to lim←− i
lim←− I

AI
i = lim←− I

lim←− i
AI

i . Since

I is open we have lim←− i
AI

i = A/I, and it follows that ϕ is surjective. In

the same way one shows that the image in A′ of any open ideal a of A is
lim←− I

(a + I)/I, which is open in A′ because by (5.1) it is the kernel of the

continuous map from A′ to the discrete ring lim←− I
A/(a+ I). Thus, ϕ is an

open map, and the map A/F → A′ is a homeomorphism.

(5.3) Proposition. The following two statements are equivalent:

(1) A is noetherian;

(2) dimk(mi/m2
i ) is a bounded function of i.

If they hold, then the following are also true:

(3) ma = lim←−ma
i for all a ≥ 0;

(4) the topology on A is the m-adic topology.

This proposition implies (2.4). To obtain the last statement of (2.4), write
A′ = lim←−A′

i with A′
i artinian and note that for each i the map A →

A′ → A′
i is continuous in the m-adic topology on A. We already used this

argument to show (2.5) in the case that G is finite.

Proof. Suppose that A is noetherian. Then m can be generated as an
A-ideal by a finite number d of elements of m. Since m surjects to mi we
have dimk(mi/m2

i ) ≤ d for each i, so (1) implies (2).
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Now assume that (2) holds. We need to show (1), (3) and (4). We
start with (3). The statement is trivial for a = 0, and we will proceed
by induction on a. Assume (3) holds for a and consider the sequence of
projective systems

0 −→ ma+1
i −→ ma

i −→ ma
i /ma+1

i −→ 0.

Assumption (2) implies that ma
i /ma+1

i also has bounded dimension, so the
system on the right stabilizes, i.e., all transition maps for j ≥ i are isomor-
phisms if i is large enough. This implies that its limit is a finite dimensional
k-vector space N . By (5.1) and the induction hypothesis we have a short
exact sequence

(∗) 0 −→ lim←−
i

ma+1
i −→ ma −→ N −→ 0.

Choose elements b1, . . . , bl of ma whose images in N form a basis of N
over k. For each i we have a surjection Al

i → ma
i , sending (x1, . . . , xl) to

x1b1 + · · · + xlbl. Taking limits we deduce from (5.1) and the induction
hypothesis that ma is generated by b1, . . . , bl as an A-ideal. We now have
l ≥ dimk(ma/ma+1) ≥ dimk(N) = l, so ma+1 is equal to the kernel of the
map ma → N . By the sequence (∗) above, this gives the induction step.
This shows (3).

Applying (5.1) to the sequence

0 −→ ma
i −→ Ai −→ Ai/ma

i −→ 0

and using (3) we get A/ma = lim←−Ai/ma
i . Again with (2) one sees that this

system stabilizes. But this means that the map A→ A/ma factors through
Ai for some i, so that ma is open in A. We already mentioned in Section 4
that the m-adic topology on a ring in C is at least as strong as the given
topology, so in this case the two topologies coincide. This shows (4).

We now know that A is m-adically complete, and that m is a finitely
generated A-ideal. To prove that A is noetherian we use a standard ar-
gument, which also goes into the proof that a completion of a noetherian
ring is noetherian. The graded ring G(A) =

⊕
m≥0 mm/mm+1 is a finitely

generated k-algebra, which is noetherian by Hilbert’s basis theorem. By
[1, (10.25)] this implies that A is noetherian. This shows (1). �

Proof of part (3) of (2.3). We consider deformations of V in the ring
A = k[ε] with ε2 = 0. Write R as a projective limit of its discrete artinian
quotients Ri. Let mi be the maximal ideal of Ri. One easily sees that

HomC(R, k[ε]) = lim−→
i

HomO-Alg(Ri, k[ε])

= lim−→
i

Homk(mi/(m2
i + mORi), k).
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Let us denote the rightmost set by T , and note that T is a vector space
over k. Recall that O is noetherian, so that the k-dimension d of mO/m2

O
is finite. Clearly dimk(mi/(m2

i + mORi)) and dimk(mi/m2
i ) differ by at

most d. Since the transition maps in the injective limit are injective, the
dimension of T is finite if and only if the dimension of mi/m2

i is bounded,
which by (5.3) is equivalent to R being noetherian.

By part (1) of (2.3) the set Def(V, k[ε]) can be identified with T , so
after choosing a basis of V over k one gets a surjection

CHomρ(G, GLn(k[ε]))→ T.

We have GLn(k[ε]) = GLn(k) ⊕Mn(k)ε, and one easily checks that the
homomorphisms on the left are exactly the maps g 7→ (1 + c(g)ε)ρ(g) for
which c:G → Mn(k) is a continuous 1-cocycle. Moreover, it follows from
(4.1) that two 1-cocycles give the same deformation in k[ε] if and only if they
differ by a coboundary, so that we get a bijection H1(G, Endk(V )) ∼−→T .
In the case that k is finite, statement (3) follows at once. For the general
case one checks that this bijection is k-linear, so that the same conclusion
holds. �

6. Restrictions on deformations
In this section a class of additional properties of deformations is identified
for which one gets a representable sub-functor of the deformation functor.

Suppose that for each ring A in C a subset S(A) of Def(V,A) is given
such that for each A in C and D ∈ Def(V,A) the following hold:
(1) we have D ∈ S(A) if and only if D/aD ∈ S(A/a) for all open ideals

a 6= A in A;
(2) if a and b are open ideals 6= A of A such that D/aD ∈ S(A/a) and

D/bD ∈ S(A/b), then D/(a ∩ b)D ∈ S(A/(a ∩ b));
(3) if A ⊂ A′ is an inclusion of artinian rings in C, then D ∈ S(A) if and

only if D ⊗A A′ ∈ S(A′).

(6.1) Proposition. For any C-morphism f :A → A′ we have f∗(S(A)) ⊂
S(A′). If V is absolutely irreducible, then there is a closed ideal a of the
universal deformation ring R such that the map HomC(R,A) ∼−→ Def(V,A)
in (2.3) induces a bijection HomC(R/a, A) ∼−→S(A).

Proof. Let A be a ring in C and D ∈ Def(V,A). Using (5.2) one deduces
from conditions (1) and (2) above that there is a unique closed ideal aD

S of
A such that for every open ideal a of A we have D/aD ∈ S(A/a) if and
only a ⊃ aD

S . By condition (1) we have D ∈ S(A) if and only if aD
S = 0.

Now let f :A → A′ be a C-morphism and put D′ = D ⊗A A′, where
the tensor product is taken via f . Let a′ be an open A′-ideal and write
a = f−1(a′). By condition (3) we have D′/a′D′ ∈ S(A′/a′) if and only
if D/aD ∈ S(A/a). Therefore, aD′

S ⊂ a′ if and only if f(aD
S ) ⊂ a′. In

particular, D′ ∈ S(A′) if and only if Ker f contains aD
S .
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The first statement of the proposition now follows at once, and by
taking a = aD

S ⊂ R, where D is the universal deformation, we obtain the
second statement. �

(6.2) Ordinary deformations. Suppose that I is a closed subgroup of G.
A 2-dimensional representation W of G over a ring A in C is said to be
ordinary if the sub-A-module W I of I-invariants is a direct summand of
W of A-rank 1 (cf. [8, 1.7]). Suppose that V is 2-dimensional, absolutely
irreducible, and ordinary. We want to show that the ordinary deformations
form a representable functor on C.

Using the fact that V is ordinary one can see that D ∈ Def(V,A) is
ordinary if and only if the I-action on D is given by matrices

(
1
0
∗
∗
)

on
a suitable A-basis of D, and if and only if DI contains an element z not
mapping to 0 in V . Now choose an element g0 ∈ I that does not act
trivially on V . Then one checks that D is ordinary if and only if D is
annihilated by the elements (g − 1)(g0 − detD(g0)) ∈ A[G] with g ∈ I (for
the if-part, choose z = (g0 − detD(g0))y for suitable y). It is easy to verify
that conditions (1)–(3) hold for this latter property.

(6.3) Flat deformations. Assume that k is a finite field of character-
istic p. Let K be finite field extension of the field Qp of p-adic numbers,
let OK be its ring of integers, and let G = Gal(K/K), where K is an
algebraic closure of K. We say that a Z[G]-module of finite cardinality
is flat if it is G-isomorphic to the group of points in K of a finite flat
group scheme over OK . The flatness property is preserved under pass-
ing to finite products, submodules, and quotients [11; 4]. Let us sketch
the argument. For products it is clear. Suppose that X ′ ⊂ X are Z[G]-
modules and that X = G(K) for a finite flat group scheme G = Spec A
over OK . Let I be the kernel of the map A →

∏
x∈X′ K. The comulti-

plication m∗: A → A ⊗ A induces a comultiplication on A′ = A/I and
on A′′ = {x ∈ A: m∗(x) ≡ x ⊗ 1 modA ⊗ I}. Then G′ = Spec A′ and
G′′ = Spec A′′ are finite flat group schemes over OK and one checks that
G′(K) ∼= X ′ and G′′(K) ∼= X/X ′.

A deformation of V in an artinian ring A in C is said to be flat if it is
flat as a Z[G]-module. Use condition (1) to define flatness for deformations
to arbitrary rings A in C. Then one easily checks (2) and (3). For (3) one
notes that D′ contains D as a sub-Z[G]-module, and that D′ is a quotient
of a finite product of copies of D. Thus, the flat deformation functor on C
is representable if V is absolutely irreducible and flat.
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7. Relaxing the absolute irreducibility condition

In this section we will show that our main result already holds when
Endk[G](V ) = k. We saw in Section 4 that this is a weaker condition
on V than absolute irreducibility. This improved result will not be needed
in the rest of this book.

(7.1) Proposition. If Endk[G](V ) = k then statements (1)–(4) of (2.3)
hold.

Proof. We will use the same construction as before, but we need to pass
to a different subring of Rb: we may need more elements than the traces
of the actions of the group elements. In order to describe a suitable set of
elements we explain Faltings’s notion of “well-placed” representations.

We choose a basis for V over k, so that the G-action on V is given by
a continuous group homomorphism ρ: G→ GLn(k). Since Mn(k) is finite-
dimensional over k, we can choose a finite number of elements g1, . . . , gr in
G such that the only matrices in Mn(k) commuting with all ρ(gi) are the
scalar matrices. Let a lift Ei ∈Mn(O) of each ρ(gi) be chosen. For any ring
A in C we let M0

n(A) be the matrix ring Mn(A) modulo scalars; this is a
free A-module of rank n2−1. By Nakayama’s lemma one sees that we have
a split injection iA: M0

n(A) → Mn(A)r given by M 7→ (MEi − EiM)r
i=1.

We now choose a splitting πO of iO once and for all. We have a canonical
isomorphism M0

n(A) ∼= M0
n(O) ⊗O A, and πA = πO ⊗ idA is a splitting of

iA. Consider the composite map

(7.2)
CHomρ(G, GLn(A)) −→ Mn(A)r πA−→ M0

n(A).

ρ 7→ (ρ(gi))r
i=1

We say that ρ is well-placed if its image in M0
n(A) is πO(E1, . . . , Er)⊗ 1.

(7.3) Lemma (Faltings). For every ρ ∈ CHomρ(G, GLn(A)) there is
a matrix M ∈ GLn(A) reducing to 1 ∈ GLn(k) so that MρM−1 is well-
placed. This matrix M is determined uniquely modulo 1 + mA.

Proof. Put m = mA. By induction on m we first show the lemma under
the hypothesis that mm = 0. For m = 1 this is clear. To make the induction
step for m ≥ 2 we can assume by the induction hypothesis that ρ is well-
placed modulo mm−1. We are done if we show that (1 + M)ρ(1 + M)−1 is
well-placed for a unique M ∈M0

n(mm−1) = mm−1M0
n(A), and this follows

from the fact that the maps in (7.2) respect suitable actions of M0
n(mm−1):

we let M ∈M0
n(mm−1) act by conjugation with 1 + M on the leftmost set,

by translation with iA(M) on the middle group, and by translation with
M on M0

n(A).
To obtain the general case one refines the conjugating matrix mod-

ulo increasing powers of m (recall that an m-adic Cauchy sequence in A
converges to a unique limit in A even if A has a coarser topology). �
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We apply the lemma to the deformation ρb of Proposition (2.5), and we
let ρ be the well-placed conjugate of ρb. Define R to be the smallest closed
sub-O-algebra of Rb that contains all entries of ρ(g) for all g ∈ G. Then ρ
defines a deformation D of V in R, and we claim that properties (1)–(4)
of Theorem (2.3) now hold. The map HomC(R,A) → Def(V,A) in (1) is
again surjective. To see injectivity, suppose that for f1, f2 ∈ HomC(R,A)
the well-placed composite maps

ρ1, ρ2: G
ρ−→ GLn(R)

f1,f2−→ GLn(A)

give the same deformation of V in A. By the argument of (4.1) together
with the uniqueness statement in (7.3) it follows that ρ1 = ρ2, and by the
definition of R this implies that f1 = f2. The proofs of (2) and (4) are as
before. For (3) we just remark that the argument at the end of Section 5
showing that H1(G, Endk(V )) ∼= T , only uses that Endk[G](V ) = k. This
proves (7.1). �
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