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For a prime number p, the first case of Fermat’s last theorem for expo-
nent p asserts that for any three integers z, y, 2 with zP + yP + 22 = 0,
' at least one of z, y, z is divisible by p. In the present chapter we use
class field theory to prove several classical results concerning the first case.
~ Our treatment is based on Hasse’s exposition [6, Section 22|, but whereas
 Hasse applied explicit reciprocity laws, our proofs depend only on general
" properties of power and norm residue symbols.

Theorem 1. The ﬁrét case of Fermat’s last theorem with exponent p 18
' correct for each prime number p for which 2p + 1 is prime.

This theorem is due to Sophie Germain (1823).

For a positive integer k, we define N = 1L, (14 n+¥), the product
ranging over all kth roots of unity 7 and 9 in an algebraic closure of the
field Q of rational numbers. It is easy to see that Ni is a rational integer

for each k, and that Ny vanishes if and only if k is divisible by 3.

Theorem 2. Let p be a prime number, and suppose that there exists a
positive integer k not divisible by p for which kp+1is a prime number not
dividing Ni. Then the first case of Fermat’s last theorem with exponent p
s correct.

This result, which is similar to a theorem of Wendt (1894), is taken
from [1]. The integer k is necessarily even and not divisible by 3.

Let k be a positive integer, and let T} be the set of odd primes p for
which p divides k or kp + 1 is a prime factor of Nx. By Theorem 2, the
first case of Fermat’s last theorem is correct for exponent p if p is a prime
number not in T} for which kp + 1 is prime. When k is not divisible by 3,
the estimate |Ni| < 3% shows that the exceptional set Tj has cardinality
at most k% + logk.

In 1985, Adleman, Heath-Brown, and Fouvry [1, 4] deduced from Theo-
 rem 2 that the first case is valid for infinitely many p, as follows. Using sieve

~ methods, Fouvry showed that there exists ¢ > 0 with the following prop-
erty: for all sufficiently large ¢, there are at least ¢t/ logt prime numbers
q < t with ¢ = 2 mod 3 for which g — 1 has a prime factor p > t0-6687  Each
pair g, p gives rise to an integer k = (¢ — 1)/p that is less than u = £0-3313,
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The inequality c- ¢/logt > u - (u?® + logu), which is valid when ¢ is large
enough, shows that some value of k must arise for more than k2 + logk
pairs ¢, p. For at least one of these pairs the number p is outside Ty, so
that the first case holds for p.

From Ny = —3 one finds that 7% is empty, so Theorem 1 follows from
Theorem 2, with k = 2. In general, when k is a given positive integer that
is not divisible by 3, then it is usually easy to deduce from Theorem 2 that
the first case of Fermat’s last theorem is correct for each prime exponent P
for which kp + 1 is prime. For example, from

Ny = -3-5% Ng = —37.5%.173, Ny = —3-119.313

one finds Ty = Ty = 0 and Typ = {3,5}. Since Theorem 1 applies top =3
and to p = 5, one concludes that the first case is true for p if 4p + 1,
8p+1, or 10p+ 1 is a prime number. This result is due to Legendre (1823)
Exceptlonal primes p that may arise for other values of k are generall
easily dealt with by means of the following theorem.

Theorem 3. Let p be a prime number, and suppose that the first case o
Fermat’s last theorem for exponent p is false. Then we have o
(a) 2P~' =1 mod p?,
(b) 377! =1 mod p?.

These two results are due to Wieferich (1909) and Mirimanoff (1910)
respectively.
There is an efficient algorithm that for a given prime number p te
the validity of (a) and (b). It is believed that there is not a single prim
satisfying both (a) and (b), so that this algorithm, combined with Th
3, could be used to prove the first case of Fermat’s last theorem for
given prime exponent. This belief is borne out by numerical experi
In fact, of all primes for which (a) has ever been tested—and this
all primes less than 4-10? (see [3])—only p = 1093 and p = 3511 sa
and neither of these primes satisfies (b). (The only primes p < 232 ~
satisfying (b) are p = 11 and p = 1,006,003, see [8].)
It is an amusing consequence of (a) that the first case of Ferma
theorem holds for exponents that are Mersenne or Fermat primes A
Several mathematicians proved, with the same hypotheses as

3, that for various other small prime numbers g one has g l=1
The best result of this nature, prior to the work of Wiles and Ta
obtained by Granville and Monagan [5], who covered all prime
g < 89. If it had been possible to replace 89 by an expression th
sufficiently rapidly to infinity with p, such as 4 - (log p)?, then the
of Fermat’s last theorem would have followed for all p, by [7]; but t
apparently not be achieved by the method of [5]. However, by
Gunderson (1948) the bound 89 is good enough to imply the fir
all p up to the limit in the title of [5]. Tanner and Wagstaff
upon Gunderson’s work and raised the limit to 156,442,236, 847,24



Crass FIELD THEORY 501

the proofs, we let p be a prime number, and we let ¢ be a primitive
th root of unity in an extension field of Q. We denote by (—) the pth
ower residue symbol for the cyclotomic field Q(¢), and by p = (C—1)
he unique prime of Q(¢) lying over p. The properties of power and norm
esidue symbols that we use can all be found in (2, pp. 348-353].

Let it now be supposed that z, y, z are integers not divisible by p
hat satisfy zP + yP + 2P = 0. Clearly, p is odd. Removing a greatest
ommon divisor, we may assume that z, y, z are pairwise coprime. We
ave Hf;ol (z + y¢*) = aP 4+ yP? = —2P, and from ged(z,y) = ged(p, 2) = 1
t follows that the factors z + yC* are pairwise coprime. Hence each factor
-enerates an ideal that is a pth ideal power.

emma 1. Let n be an integer that is coprime to p and z. Then we have
) = (£ ”y/z, where the exponent —y/z is computed modulo p. .

Proof. With o = (z + y¢)C¥/*, the assertion reads (%) = 1. Note that ()
s a pth ideal power that is coprime to n, so the definition of the power
esidue symbol gives (g) = 1. The general power reciprocity law (see [2, p.

52, Exercise 2.10]) asserts in this case that (£) (g)—l equals the p-adic pth
ower norm residue symbol (n, a),. Hence it suffices to prove (n,a)p = 1.
We do this by a computation in the ring of integers of the local field at p.
The units of that ring taken modulo p? are of the form a + b(¢ — 1), where
a, b e Z/pZ, a # 0. They form a group of order (p — 1)p, which is the
direct product of a group of order p — 1, consisting of the elements with
=0, and a group of order p, consisting of the elements with a = 1; the
atter group is generated by (, since ¢ =1+b(¢~—1)mod (¢ - 1)2. A
general element a + b(¢ — 1) is decomposed as a - ¢b/e. Applying this to
£+ y¢ (mod p2), which has a = x4y = —z mod p and b = y, we find that
 the (¢)-component of z +y¢ (mod p?) equals (7¥/#. The other component
" must then be (z + y¢)/¢"¥/#* = a. Therefore the order of o (mod p?)
divides p — 1, and a1 = 1 — 3 with 8 € p*. Also, nP~! is of the form
1—~, with v € (p) = p*~'. From By € pPT! it follows that 1 — By = 67
 for some non-zero § in the p-adic field (cf. [2, p. 353, Exercise 2.12]).
- Using the bimultiplicativity of the norm residue symbol and the fact that
(1=7,7)p =1 we find

(naa)P = ‘(np—l’ap—l)l-'l = (1 e b 1- /B)p = (1 -7 (1 - ﬂ)V)p = 1:

the last step because (1 —7) + (1 — B)y = 6 (see [2, p. 351, Exercise 2.5]).
This proves Lemma 1.

From Lemma 1, we obtain the following result of Furtwéngler (1912).

Lemma 2. We have ¢¢~! = 1mod p? for every prime number q that
satisfies one of the following conditions:
(i) q divides z, y, or z;
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(i) one of the differences c —y, y— %, 2 =T is divisible by q but not by p.

Proof. Suppose first that ¢ is a prime number dividing y. Then g does not

divide p or z, so we can apply Lemma 1 with n = ¢ to find (%) = (f-'%ﬁ) =

(%)_y/z‘ As (%) is a Calois-invariant pth root of unity, it equals 1. Also

—y/z # 0 mod p, so we have (%) = 1. The formula (—g) — (@ -1/P from
2, p. 349, Exercise 1.6] now implies ¢*~' =1 mod p°.

Next, suppose that ¢ is a prime number dividing = — y, and that z —y is
not divisible by p. Clearly, we may assume that ¢ does not divide z. From
the equality (—’”—J‘;qu—(*) = (14—:;5) it follows, by another application of Lemma 1,

-y/z —z/
that (%) and (%)
modulo p, this implies (%) — 1. As before, we obtain ' = 1 mod p.
This proves Lemma 2.

* are equal. As —y/z and —z/z are not congruent

We derive Theorem 3 from Lemma 2. By the assumption of the theorem,
there exist z, y, z as above. As one of z, y, z is even, condition (i) holds
for ¢ = 2. This yields (a). To prove (b), we first note that by (a) we have
p # 3. It suffices to show that one of the conditions in Lemma 2 is met by
q = 3. If 3 divides one of z, y, 2, then (i) holds. Otherwise, the congruence
zP +yP 4 2P = 0mod 3 shows that 3 divides all differences & =¥, ¥ — 2,
z — z; but from 3zP # 0 mod p it follows that these differences are not all
divisible by p, so (ii) holds. This completes the proof of Theorem 3.

We next prove Theorem 2. Let k be a positive integer for which g = kp+1
is prime. It suffices to show that if =, y, z are as above, then p divides k or
g divides Ni. We distinguish two cases. First suppose that one of z,y, z1s
divisible by ¢. From Lemma 9 it follows that gt =1mod p?, so we have
l+kp=q=¢* =01+ kp)? = 1 mod p?. Thus, in this case p divides k.
Next, suppose that none of z, y, 2 is divisible by ¢. From p = (¢ — 1)/k
we see that each of =P, y¥, 2P, when taken modulo g, is a kth root of unity
in the finite field Z/qZ. Hence there are, in the ring of g-adic integers,
kth roots of unity €, €n, €U (say) that are congruent to xz, y¥, and 2P,
respectively, modulo ¢. From z? + 9 + P =0wefind 1+n+9=0 mod g,
so that now ¢ divides Ni. This proves Theorem 2.

Above we saw already that Theorem 1 follows from Theorem 2.
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