Finding small degree factors
of lacunary polynomials

H.W. Lenstra, Jr.

To Andrzej Schinzel

Abstract. If K is an algebraic number field of degree at most m over the field Q of
rational numbers, and f € K[X] is a polynomial with at most k non-zero terms and with
£(0) # 0, then for any positive integer d the number of irreducible factors of f in K [X]
of degree at most d, counted with multiplicities, is bounded by a constant that depends
only on m, k, and d. This is proved in a companion paper (H.W. Lenstra, Jr., “On the
factorization of lacunary polynomials”). In the present paper an algorithm for actually
finding those factors is presented. The algorithm assumes that K is specified by means
of an irreducible polynomial h with integral coefficients and leading coefficient 1, such
that K = Q(c) for a zero « of h. Also, the polynomial f = Zi a; X" is supposed to be
given in its sparse representation, i.e., as the list of pairs (4, a;) for which a; #+ 0, each
a; being represented by means of its vector of coefficients on the vector space basis 1, «,

.., aldeg =1 o¢ [over Q. If I denotes the “length” of these input data, when written
out in binary, then the running time of the algorithm, measured in bit operations, is at
most (I + d)¢ for some absolute and effectively computable constant c. Taking K = Q
and d = 1, one deduces that all rational zeroes of a sparsely represented polynomial with
rational coefficients can be found in polynomial time. This answers a question raised by
F. Cucker, P. Koiran, and S. Smale.

1991 Mathematics Subject Classification: Primary 11R09, 11Y16.
Key words: lacunary polynomial, computational complexity.

Acknowledgements. The author was supported by NSF under grant No. DMS 92-24205.
He thanks J.A. Csirik, C.J. Smyth, and J.D. Vaaler for helpful assistance.

1. Introduction

F. Cucker, P. Koiran, and S. Smale [2] exhibited a polynomial time algorithm ac-
complishing the following. Suppose that a polynomial f =, a; X ? in one variable
with coefficients in the ring Z of integers is specified in its sparse representation,
i.e., by the list of pairs (i, a;) for which a; # 0. Then the algorithm finds all zeroes
of f in Z. One of the questions they raised is whether one can also find all rational
zeroes of f in polynomial time. In the present paper I show that this is indeed the

268 H.W. Lenstra, Jr.

case. Rational zeroes correspond to irreducible factors of degree 1 over the field Q
of rational numbers, and my result extends to finding irreducible factors of low
degrees over algebraic number fields.

For a ring R, let R[X] denote the ring of polynomials in one variable X over R.
A polynomial is monic if its leading coefficient is 1.

Theorem. There is a deterministic algorithm that, for some positive real num-
ber ¢, has the following property: given an algebraic number field K, a sparsely
represented non-zero polynomial f € K[X|, and a positive integer d, the algorithm
finds all monic irreducible factors of f in K[X] of degree at most d, as well as
their multiplicities, and it spends time at most (I + d)¢, where | denotes the length
of the input data.

The conventions in this theorem are as in [8, Section 2]. Rational numbers
are represented as fractions of integers. An algebraic number field K is supposed
to be specified by means of a monic irreducible polynomial h € Z[Y] such that
K = Q(«) for a zero « of h; an element of K, such as a coefficient of f, is then

represented by means of its vector of coefficients on the vector space basis (o’);-":—01

of K over Q, where m = degh. Here the polynomial h = Z;n:o h;Y7 is densely
represented, i.e., by means of the list of all pairs (j, h;), 0 < j < m, including those
for which h; = 0. The length (or the size) of the input data is defined in [8, 2.1]
(cf. [2, Sec. 1]); it may informally be thought of as the number of bits needed to
spell out the data in binary. The time taken by an algorithm is measured in bit
operations.

One way of finding the irreducible factors of f in K[X] is first to convert f
from its sparse to its dense representation and next to apply one of the well-
known polynomial time algorithms (see [4; 6]) for factoring densely represented
polynomials over algebraic number fields. This procedure, however, fails to satisfy
the time bound stated in the theorem. Consider, for example, the case in which
f = X" —1 for large n, with fixed d and K; then the length [of the data has
order of magnitude logn, and the length of the dense representation of f, which
is about n, is exponential in [, so it cannot be written down within time (I + d)°.

Our result is “uniform in K”: rather than having a separate algorithm for
each K, we have one single algorithm that accepts data specifying K as part of
the input; for fixed d, the running time is polynomially bounded in terms of the
length of these data and the data specifying f. For varying d, the running time
can still be said to be polynomially bounded in terms of the length of the input
data and the possible length of the output, since the polynomials produced by
the algorithm are densely represented and may have degree up to d. However, the
algorithm may spend time exponential in log d and still find no factors.

The number of different factors found by the algorithm is at most an absolute
constant times k? - 2" - n - log(2nk), where k is the number of non-zero terms
of fand n =d-[K : Q], by [9, Theorem 1]. This is an exponential bound, but
it is completely independent of the degree and the coefficients of f and of the
coefficients of the polynomial defining K.

Finding small degree factors of lacunary polynomials 269

The idea behind the algorithm is best illustrated on an easier problem. Suppose
that a sparsely represented polynomial f € Q[X] as well as a rational number x
are given. How does one test in polynomial time whether or not f(z) vanishes?
Just substituting z for X in f is not feasible, since if the degree of f is very large
then f(x) may be too large to write down, let alone to calculate. Fortunately, if it
is just a matter of testing whether f(z) vanishes, one can get away with a much
simpler procedure. Namely, excluding the easy cases * = +1, one proves that a
large degree polynomial with not many non-zero terms can vanish in x only if
it does so for obvious reasons, namely if there are “widely” spaced non-negative
integers u and “low” degree polynomials f, with f,(z) =0and f =" f. X"
The bounds that make this statement valid depend on the number of non-zero
terms of f and on the sizes of the numerators and denominators of its coefficients,
but they do not depend on z. Thus, to test whether f vanishes at a given rational
number z # +1, one “breaks” f into appropriate polynomials f, and one tests
whether they all vanish at x.

The algorithm underlying our theorem follows the same idea, and it is pre-
sented in Section 4. The basic result justifying the procedure (Proposition 2.3)
is formulated and proved in Section 2. Section 3 contains several auxiliary algo-
rithms, one of which finds the cyclotomic factors of f. The phenomenon that these
require separate treatment is familiar from Schinzel’s work on factors of lacunary
polynomials.

Should the need for finding small degree factors of sparse polynomials over
algebraic number fields ever arise, then a suitable variant of my method may very
well have practical value; however, as it stands it is designed only to lead to a valid
and efficient proof of the theorem.

Several results in this paper assert the existence of algorithms with certain
properties. In each case, such an algorithm is actually exhibited in the paper it-
self or in one of the references. All these algorithms are deterministic, and the
constants appearing in running time estimates are effectively computable. Polyno-
mials are densely represented in algorithms, unless it is explicitly stated that they
are sparsely represented.

By R we denote the field of real numbers, and by C the field of complex num-
bers. The degree of a field extension E C F is written [F' : E]. The multiplicative
group of non-zero elements of a field I is denoted by F™*.

2. Heights and lacunary polynomials

Let Q denote an algebraic closure of Q, and let K C Q be a finite extension of Q.
Write My¢ for the set of non-trivial prime divisors of K, and for each v € Mk, let
Il |l : & = R be a corresponding valuation; we assume that these valuations are
normalized as in [5, Chap. 2, Sec. 2]. This normalization is characterized by the
facts that the product formula

(2.1) H lx]]y =1 for all z € K*
vEMEK

270 H.W. Lenstra, Jr.

holds, and that the relative height function

Hx:K - R, Hg(w)= [[max{1, |z}
vEMg

(see [5, Chap. 3, Sec. 1]) satisfies Hy (k) = EIE:Ql for all positive integers k.
The absolute height function H : Q — R is defined by

H(z) = Hy ()1,

where K is such that z € K this is independent of the choice of K. For example,
for r, s € Z, s > 0, ged(r, s) = 1 one has H(r/s) = max{|r|, s}.
For a positive integer n, we define

2
n)=-——>- ifn>2

n- (log(?m))3

and ¢(1) = log 2. This is a decreasing function of n.

Proposition 2.2. Let n be a positive integer. Suppose that x € Q* is of degree at
most n over Q, and that log H(x) < c(n). Then x is a root of unity.

Proof. See [12, Corollary 2]. This proves 2.2.
If K is as above, then for v € My we extend || - ||, to a function K[X]| — R by
i A K:
I, a:X7||, = max; [ja; |, Define H : Q(X] — R by H(f) = IT,ear, £/,
where K is chosen such that f € K[X]; this is independent of the choice.

Proposition 2.3. Let k, t, u be non-negative integers, and let f € Q[X] be a
polynomial with at most k+ 1 non-zero terms. Suppose that n is a positive integer

with
log(k-H
w i Lol UDj
c(n)
and that f is written as the sum of two polynomials g, h € L[X| such that every
non-zero term of g has degree at most t and every non-zero term of h has degree
at least u. Then every zero of f in Q* that has degree at most n over Q and that
is not a root of unity is a common zero of g and h.

Proof. Let © € Q* be of degree at most n over Q, and suppose that f(z) = 0.
Then we have g(z) = —h(z). We shall assume that g(z) = —h(x) # 0, and prove
that z is a root of unity.

Let K be chosen such that x € K and f € K[X]. Then we have g, h € K[X].
Let v € Mg. From h(z) # 0 it follows that h has at least 1 non-zero term, and
since f has at most k + 1 non-zero terms it follows that g has at most & non-zero
terms. Thus g(x) is a sum of at most k terms a;2%, with |ja;||, < || f|lo and i <.
This leads to the estimate

lg(@)llo < max {1, |[Kllo} - [1fllo - ll2ll 3l > 1.

Finding small degree factors of lacunary polynomials 271

Likewise, h(z) is a sum of at most &k terms a;x’, with ||a;|l, < |/ f|l», and i > u, so

[h(@) [l < max{1, [|kl[o} - [fllo - ll2lly i flz], < 1.
We have [|g(2)||, = ||h(2)]],, so we can combine these two statements in
max{1, [zl }* ™" lg(@) [l < max{1, [&llo} - 1]l - I3

Raise this to the power 1/[K : Q] and take the product over v € Mg. Using the
fact that H (k) = k, and applying (2.1) to x and to g(z) (which are both supposed
to be non-zero), one finds that

H(z)"™" < k- H(f).

By hypothesis, we have k-H(f) < exp((u—t)c(n)). It follows that log H(x) < ¢(n),
so 2.2 implies that x is a root of unity. This proves 2.3.

Proposition 2.4. Let K C Q be a finite extension of Q, and let f € K[X]. Letr
be a positive integer such that all coefficients of rf are algebraic integers, and let
s be a positive real number with the property that for every field homomorphism
o : K — C and every coefficient a of f one has |oal < s. Then one has H(f) < rs.

Proof. First assume that » = 1. Then each coefficient of f is an algebraic integer,
so || f]lu < 1 for each non-archimedean v € M. Also, by definition of s we have
Ifll. < s for each real v € My, and ||f||, < s® for each complex v € M.
Collecting all v, one obtains H(f) < s, since the number of real v plus twice the
number of complex v equals [K : Q]. The case r > 1 is reduced to the case r =1
by the formula H(rf) = H(f), which follows from (2.1), applied to x = r. This
proves 2.4.

3. Auxiliary algorithms

Proposition 3.1. There is an algorithm that, for some positive constant ci, has
the following property: given an algebraic number field K and a densely represented
non-zero polynomial f € K[X], the algorithm finds the complete factorization of f
into monic irreducible factors in K[X], and it does so in time at most [°*, where
l denotes the length of the data.

For the proof of this proposition, and a description of the algorithm, we refer
to [4; 6]. It makes use of lattice basis reduction [7].

Let K be a field of characteristic zero. For f € K[X], we define the sparse
derivative flUI of f to be the ordinary derivative of f/X*, if X! is the highest
power of X dividing f, and we define it to be 0 if f = 0; the higher sparse
derivatives fl1 are defined inductively by fIl = (fli=1)[1] and for convenience we
set flO = f.If f £ 0, then clearly the number of non-zero terms of f (1 is one less
than the number of non-zero terms of f. It follows that fI! = 0 if and only if 7 is
greater than or equal to the number of non-zero terms of f.

272 H.W. Lenstra, Jr.

Proposition 3.2. Let K be a field of characteristic zero, let f € K[X] be a non-
zero polynomial, and let g € K[X] be an irreducible polynomial with g(0) # 0. Then
the number of factors of g in f is equal to min{i > 0 : g does not divide fm}, and
it is smaller than the number of non-zero terms of f.

Proof. The first assertion is proved in a routine manner by induction on the number
of factors of g in f. If f has exactly k 4+ 1 terms, then f (%] is a polynomial with
exactly one term, which is not divisible by g. Thus the second assertion follows
from the first. This proves 3.2.

The second assertion can also be derived from an observation of Hajés (see
[3; 11, Lemma 1]).

Proposition 3.3. There is an algorithm that, for some positive constant ca, has
the following property. Given an algebraic number field K and a sparsely repre-
sented non-zero polynomial f € K|[X|, the algorithm computes the sparse repre-
sentations of the sparse derwatives fU% for all i > 0 that are less than the number
of non-zero terms of f; and it does so in time at most 1°*, where | denotes the
length of the data.

J

Proof. This is obvious—one just computes the polynomials f [l directly from the
definition. This proves 3.3.

Proposition 3.4. There is an algorithm that, for some positive constant cs, has
the following property: given an algebraic number field K, a sparsely represented
non-zero polynomial f € K[X], and a positive integer r, the algorithm computes
the greatest common divisor of f and X" — 1 in K[X|, and it does so in time at
most (I +r)°, where | denotes the length of the data.

Proof. The algorithm runs as follows. Let f = 3. a; X", For each i, compute
the remainder wu(i) of ¢(i) upon division by r. Next compute the polynomial
h =%, aX u(’) and use the Euclidean algorithm for polynomials in order to
compute the greatest common divisor of i with X" — 1. This ged is the output of
the algorithm.

To prove the correctness, it suffices to remark that from t(:) = (i) modr,
for each 14, it follows that f = hmod X" — 1, and therefore ged(f, X" — 1) =
ged(h, X7 —1).

The running time estimate is proved in a completely straightforward way; note
that h is densely represented, and has degree less than r. For a running time
estimate of the Euclidean algorithm for polynomials, see [4, Cor. 1.8]. This proves
Proposition 3.4.

If K is a field, we call a polynomial g € K[X] cyclotomic if, for some positive

integer 7, it is a monic irreducible factor of X” — 1 in K[X].

Proposition 3.5. There is an algorithm that, for some positive constant cy, has
the following property: given an algebraic number field K, a sparsely represented

Finding small degree factors of lacunary polynomials 273

non-zero polynomial f € K[X], and a positive integer d, the algorithm computes
in time at most (I + d)* all cyclotomic factors g of [in K[X] that have degree
at most d, as well as, for each such g, the multiplicity m(g) of g as a factor of f;
here I denotes the length of the input data.

Proof. We claim that the following algorithm has the stated properties. It produces
a list of pairs g, m(g), which is initially supposed to be empty.

For each integer r = 1,2, ..., 2 (d-[K : Q])? in succession, do the following.
Compute ged(f, X" — 1) with the algorithm of 3.4, factor ged(f, X" — 1) into
irreducible factors in K[X] by means of the algorithm of 3.1, and discard those
irreducible factors that appear already on the list or have degree greater than d.
Adjoin the remaining irreducible factors g to the list, and for each of them compute
m(g) from the formula

m(g) = min{i: 1 <i <k, g does not divide ged(fl, X" — 1)},

where k is one less than the number of non-zero terms of f; here f [is computed
in its sparse representation by the algorithm of 3.3, and its ged with X" — 1 is
computed in its dense representation as in 3.4.

This completes the description of the algorithm.

The proof of the bound for the running time is straightforward, and left to the
reader. We prove that each cyclotomic factor g of f of degree at most d is found
by the algorithm, and that m(g) is its multiplicity. Let g be such a factor, let ¢ be
a zero of g in an extension field of K, and let r be the multiplicative order of (.
Denoting the Euler p-function by ¢, we have

e(r) =[Q(0): QI < [K(Q): QI =[K(¢): K] - [K : Q]
= (degg) - [K:Q]<d-[K:Q]

The elementary inequality ¢(r) > +/r/2 now implies that » < 2 (d - [K : Q])?.
Therefore g is indeed found by the algorithm. From Proposition 3.2 it follows that
m(g) equals the multiplicity of g as a factor of f. This proves 3.5.

The function H in the following result is as defined in Section 2, with Q equal to
an algebraic closure of Q that contains K.

Proposition 3.6. There is an algorithm that, for some positive constant cs, has
the following property: given an algebraic number field K and a sparsely represented
non-zero polynomial f € KI[X], the algorithm computes in time at most I a
positive integer b satisfying b > k - H(f); here k is 1 less than the number of
non-zero terms of f, and | denotes the length of the input data.

Proof. As in the introduction, it is assumed that K is specified by means of an
irreducible polynomial h = ZT:O h;Y? € Z[Y], with h,, = 1, with the property
that K = Q(«) for some zero « of h. Also, each coefficient a; of f is supposed to
be represented by a vector (qij);”:_()l with ¢;; € Q for which a; = Z;”;Ol gija’ . For
each field homomorphism o : K — C, the complex number o« is a zero of A and
therefore satisfies |oa| < B = Z;n;()l |h;]. Hence if r is a positive integer for which

274 H.W. Lenstra, Jr.

7 -q;; € Z for all 7 and j, then one has

m—1
lo(r-a)| < s =Y Ir-ayl B’
j=0
for all field homomorphisms ¢ : K — C and all 4. Thus, by 2.4 the number
b =k - max; s; is a positive integer satisfying b > k- H(f). One can compute b in
polynomial time in a straightforward way, taking for r the least common multiple
(or even the product) of the denominators of the ¢;;. This proves 3.6.

4. Proof of the theorem

The proof of the theorem stated in the introduction consists of three parts: the
description of the algorithm underlying the theorem, the proof of its correctness,
and the running time estimate.

To describe the algorithm, let an algebraic number field K, a sparsely rep-
resented non-zero polynomial f € K[X], and a positive integer d be given. The
algorithm produces a list of pairs g, m(g), which is initially supposed to be empty.

Step 1. Find the cyclotomic factors. Use the algorithm of 3.5 to find all cyclo-
tomic factors g of f in K[X], as well as their multiplicities m(g).

Step 2. Compute a bound for the gap width. Let k+1 be the number of non-zero
terms of f. Use the algorithm of 3.3 to compute f [l for 0 < i < k in their sparse
representations. Next, applying the algorithm of 3.6 to each f [l compute positive
integers b; satisfying

b > (k—i)-H(fMY fori=0,1,..., k-1
Finally, compute a positive integer b satisfying
b > max{logb; : 0 <14 < k}
- cld-[K:Q])
with the function c¢ as defined in Section 2. For the logarithms, one can use the
algorithms in [1]. (For the significance of b — 2, see [10, Sec. 1, end].)

Step 3. Split f at the big gaps. Let f =3, 1 a; X, where T is a set of k + 1
non-negative integers and a; € K* for each t € T. Ordering T, determine the
subset U = {u € T : there does not exist t € T with u —b < t < u} of T,
where b is as computed in Step 2. Next, for each u € U, determine the subset
Tw)={teT:u=max{v e U:v < t}} of T. (Then T is the disjoint union
of the sets T'(u), for u € U, and each T'(u) contains u.) To conclude this step,
compute the polynomials

fu= > X" (uel),

teT (u)

>b—2,

in their dense representations. (These polynomials satisfy f.,(0) # 0 and

f — EUEU fu . Xu.)

Finding small degree factors of lacunary polynomials 275

Step 4. Factor a dense polynomial. Using the Euclidean algorithm for polyno-
mials (see [4, Cor. 1.8]), compute h = ged,, ¢y fu. Factor A into monic irreducible
factors in K[X] by means of the algorithm of 3.1.

Step 5. Assemble the results. Discard each monic irreducible factor of h that
occurs already among the factors computed in Step 1 or has degree greater than d.
Adjoin each of the remaining monic irreducible factors g of h to the list, with m(g)
equal to the multiplicity of g as a factor of h. Finally, if 0 does not belong to the
set 1" of Step 3, adjoin g = X to the list, with m(X) equal to the smallest element
of T

This concludes the description of the algorithm.

We next prove the correctness. The parenthetical statements in Step 3 are
readily verified. The polynomial h divides each f,, so it divides f. One deduces
that the polynomials ¢ produced by the algorithm are indeed monic irreducible
factors of f in K[X] of degree at most d. Also, h is not divisible by X, since none
of the f,, is, so from Step 5 one sees that no g is produced twice.

Conversely, let g be a monic irreducible factor of f in K[X] of degree at most d.
We prove that g is produced by the algorithm, and that m(g) equals the multiplic-
ity of g as a factor of f. These statements are obvious if g is cyclotomic (Step 1)
and if g = X (Step 5). In the other case, let Q be an algebraic closure of Q con-
taining K, and let € Q be a zero of g. By hypothesis, x is not a root of unity,
and x # 0. The degree [Q(z) : Q] of z over Q satisfies

Q(z): QI < [K(2): Q] = [K(2) : K] [K : Q] = (degg) - [K: Q] < d - [K : Q].
For each u € U, we now apply 2.3 with n = d - [K : Q], and with

D, fo X' > fur X

vel, v<u velU,v>u

in the roles of g and h. From

log(k - H(f)) log bg
G Sed k)"

and the definitions of U and f, it follows that the inequality of 2.3 is satisfied.
Now 2.3 asserts that x is a zero of both polynomials just displayed. Since this is
the case for each v € U, one infers that f,(z) = 0 for all u € U, and therefore
that h(z) = 0. Hence ¢ is an irreducible factor of h, and it is produced by the
algorithm. To show that m(g) is the multiplicity of g in f, we repeat the argument
just given with fl/ in the role of f, for each i =1, 2, ..., k— 1. The representation
f = ,cv fuX" induces a similar representation of each f[!l. Thanks to the choice
of b we can still apply (2.3). Using 3.2, one deduces that z is a j-fold zero of f if
and only if it is a j-fold zero of each f,, the case j > k being vacuously correct.
Thus, the multiplicity of g as a factor of f is the same as the multiplicity m(g)
of g as a factor of h = ged,, f.,. This proves the correctness of the algorithm.

We prove the running time estimate. Since each b;, in Step 2, is computed by
a polynomial time algorithm, its logarithm is bounded by a constant power of the
length [of the data. Also, from the definition of ¢(n) in Section 2 one sees that

276 H.W. Lenstra, Jr.

1/¢(n) is bounded by a constant times n?. It follows that the bound b computed
in Step 2 is bounded by a constant power of [+d. Now let u € U. The definitions
of U and T'(u) imply that any two consecutive non-zero terms of f, have degrees
differing by at most b. Since f, has at most k + 1 non-zero terms, one of which
has degree 0, it follows that deg f, < k - b. Therefore the length of the dense
representation of f,, is bounded by a constant power of [+d. This implies that the
time taken by the polynomial time operations on the f, in Step 4 remains within
the bound stated in the theorem. It is a routine matter to prove that this also
applies to the time taken by the other steps of the algorithm.
This proves the theorem stated in the introduction.

References

[1] Brent, R.P., Fast multiple-precision evaluation of elementary functions. J. Assoc.
Comput. Mach. 23 (1976), 242-251.

[2] Cucker, F., Koiran, P., Smale, S., A polynomial time algorithm for diophantine
equations in one variable. J. Symbolic Comput., to appear.

[3] Hajés, G., [Solution to problem 41] (in Hungarian). Mat. Lapok 4 (1953), 40-41.

[4] Landau, S., Factoring polynomials over algebraic number fields. SIAM J. Comput.
14 (1985), 184-195.

[5] Lang, S., Fundamentals of diophantine geometry. Springer, New York 1983.

[6] Lenstra, A.K., Factoring polynomials over algebraic number fields. In: Computer
algebra (ed. by J.A. van Hulzen; Lecture Notes in Comput. Sci. 162), 245-254.
Springer, Berlin 1983.

[7] Lenstra, A.K., Lenstra, H-W., Jr., Lovész, L., Factoring polynomials with rational
coefficients. Math. Ann. 261 (1982), 515-534.

[8] Lenstra, H-W., Jr., Algorithms in algebraic number theory. Bull. Amer. Math. Soc.
(N.S.) 26 (1992), 211-244.
[9] — On the factorization of lacunary polynomials. This volume, 277-291.

[10] Lenstra, H.W., Jr., Pomerance, C., A rigorous time bound for factoring integers.
J. Amer. Math. Soc. 5 (1992), 483-516.

[11] Montgomery, H.L., Schinzel, A., Some arithmetic properties of polynomials in several
variables. In: Transcendence theory: advances and applications (ed. by A. Baker,
D.W. Masser), Chapter 13, 195-203. Academic Press, London 1977.

[12] Voutier, P., An effective lower bound for the height of algebraic numbers. Acta Arith.
74 (1996), 81-95.

