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Abstract. Descartes’s rule of signs implies that the number of non-vanishing real zeroes
of a non-zero polynomial f in one variable with real coefficients is at most 2k, if k+1 is the
number of non-zero terms of f. In this paper the following non-archimedean analogue is
obtained. Let p be a prime number, L a field that is a finite extension of the field of p-adic
numbers, and k a positive integer. Then there exists a positive integer B = B(k, L) with
the following property: if f € L[X] has at most k+1 non-zero terms, and f # 0, then f has
at most B non-vanishing zeroes in L, counting multiplicities. For example, if L is the field
of 2-adic numbers, and k = 2, then one can take B = 6. As a consequence, it is shown that
for any three positive integers m, k, and d there exists a positive integer A = A(m, k, d)
with the following property. Suppose that K is an algebraic number field of degree at
most m over the field of rational numbers, that f € K[X] is a non-zero polynomial with
at most k+ 1 non-zero terms, and that g € K[X] is a factor of f such that each irreducible
factor of g has degree at most d and such that g(0) # 0. Then the degree of g is at most A.
The value for A given by the proof satisfies A(m, k,d) = O(k? - 2™ - md - log(2mdk)),
the O-constant being absolute and effectively computable.
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1. Introduction

Let Q denote the field of rational numbers, and for a ring R, write R[X] for the
ring of polynomials in one variable X over R.

Theorem 1. For any three positive integers m, k, and d there exists a positive
integer A = A(m, k, d) with the following property. Suppose that K is an algebraic
number field of degree at most m over Q, that f € K[X] is a non-zero polynomial
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with at most k + 1 non-zero terms, and that g € K[X] is a factor of f such that
each irreducible factor of g has degree at most d and such that g(0) # 0. Then the
degree of g is at most A.

Note that the bound A is independent of the coefficients and the degree of f.

With d = 1, the theorem implies a bound A = A([K : Q], k, 1) on the number of
non-vanishing zeroes in K of any non-zero polynomial in K[X| with at most £+ 1
non-zero terms. If K can be embedded in the field R of real numbers, then 2k is
such a bound, by Descartes’s rule of signs (see [10, Section 109]); in particular, one
can take A(1,k,1) = 2k. My proof in the general case, which is given in Section 5,
invokes the following non-archimedean analogue of Descartes’s rule of signs. For a
prime number p, let Q,, denote the field of p-adic numbers.

Theorem 2. For any positive integer k and any field L that is a finite extension
of Q, for some prime number p, there exists a positive integer B = B(k, L) with
the following property. Let f € L|X] be a non-zero polynomial with at most k+ 1
non-zero terms and with f(0) # 0. Then f has at most B zeroes in L, counted
with multiplicities.

B. Poonen [7] has shown that this result can be extended to fields of Laurent se-
ries over finite fields if the zeroes are not counted with multiplicities. I do not know
whether there exist generalizations to systems of equations in several variables, as
in [3].

The proof of Theorem 2 is given in Section 4. It depends on a result that is
even valid for algebraically closed fields. Let an exponential valuation on a field be
defined as in [11, Section 1-3].

Theorem 3. For every prime number p, every positive integer k, and every pos-
itive real number r there exists a positive integer C = C(p, k,r) with the follow-
ing property. Let E be a field of characteristic zero with an exponential valuation
v:E — RU{oo} satisfying v(p) = 1, and let f € E[X] be a non-zero polynomial
with at most k + 1 non-zero terms. Then f has at most C zeroes x € E with
v(z —1) > r, counted with multiplicities.

The theorem is reminiscent of the following observation of Hajds (see [2; 6,
Lemma 1]): if E is a field of characteristic zero, and f € E[X] is a non-zero
polynomial with at most k+ 1 non-zero terms, then no non-vanishing zero of f has
multiplicity greater than k. My proof of Theorem 3, which is given in Section 3,
may be viewed as a refinement of Hajés’s argument. It makes use of a property of
binomial coefficients that is proved in Section 2.

Hajés’s result easily implies a result analogous to Theorem 3 for fields with an
exponential valuation that have a residue class field of characteristic zero; in this
case one can take C' = k, and the condition v(z — 1) > r can simply be replaced
by v(xz — 1) > 0. In the case of Theorem 3, polynomials like X?" — 1 show that
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the bound C necessarily depends on r. I do not know a valid variant of Theorem 3
that applies to algebraically closed fields of non-zero characteristic.

In Section 6 we extend, by a specialization argument, Theorem 1 to a more
general class of fields and to polynomials in several variables.

Explicit values for A, B, and C are given in Propositions 8.1, 7.2, and 7.1,
respectively. They satisfy

A(m, k,d) = O(k*- 2" md - log(2mdk)),
B(k,L) = O(k* - p'* - ey - log(2eLk)),
k- log(k/(rlogp))>
rlogp

C(p k,r) = O(k+

where e7, and f; denote the ramification index and the residue class field degree
of L over Q,, respectively, and where the O-constants are absolute. These estimates
give a fair impression of the order of magnitude of the best bounds that may be
obtained by my method, for many values of the arguments; at the same time, my
bounds are certainly open to numerical improvement.

From Theorem 1 and the value for A just given one can deduce a lower bound
for the largest degree of an irreducible factor of f, and an upper bound for the
number of irreducible factors of f. These bounds depend only on k, on the degree
[K : Q] of K, and on the degree n of f. They are quite weak; in fact, for fixed &
and [K : Q] they are roughly proportional to logn and n/logn, respectively. On
the other hand, they are completely independent of the coefficients of f and the
discriminant of K.

It is an interesting problem to establish lower bounds for any values of A,
B, and C that make the conclusions of the theorems valid. Is the best value for
B(k, L) computable from k and reasonable data—such as a defining polynomial—
specifying L? It is not hard to show that the answer is affirmative if & = 1. For
the rest, I have not attempted to go beyond the case k = 2 and L = Qo, which is
treated in Section 9; it turns out that the largest number of non-vanishing zeroes
that a “trinomial” f € Q2[X] can have in Q2 equals 6 (see Proposition 9.2).

Cucker, Koiran, and Smale [1] exhibited a polynomial time algorithm that
computes all integer zeroes of a sparsely encoded polynomial f € Z[X], where
7 denotes the ring of integers. The present paper was originally inspired by one
of the problems that they raise, namely that of computing the rational zeroes
of f in polynomial time as well. This can indeed be done, and in fact there is a
polynomial time algorithm that determines all low degree irreducible factors of
a sparsely encoded polynomial in one variable with coefficients in an algebraic
number field. This result is obtained in [5], by means of techniques different from
those employed here.

Whenever, in the remainder of this paper, zeroes of a polynomial are counted,
then it is understood that they are counted with multiplicities. If p is a prime
number, then ord, denotes the unique exponential valuation Q — R U {0} for
which ord,p = 1. If R is a ring with 1, then R* denotes its group of units.
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If n is a non-negative integer, and ¢ belongs to some Q-algebra, then we write
(1) = H?;OI L=+ this equals 1 if n = 0.

n

2. Interpolating binomial coefficients

For two non-negative integers k and n, define di(n) to be the least common multi-
ple of all integers that can be written as the product of at most k pairwise distinct
positive integers that are at most n. Taking empty products to be 1, we have
di(n) =11if k=0 or n = 0. Clearly, di(n) divides n!, with equality if n < k. (In
fact, it is not hard to show that one has di(n) = n! if and only if n <2k +1, a
result that will not be needed.) We have

(2.1) m - di_1(m — 1) divides di(n) ifl1<m<n, k>1

This is immediate from the definition.

Proposition 2.2. Let k and n be non-negative integers, and let T C Z be a set
of cardinality k + 1. Then there exists a polynomial h € Z[X] such that for each
t €T one has h(t) = dp(n) - (!).
Remark. With di(n) replaced by n!?7 the conclusion of the proposition is triv-
ial. This trivial result is strong enough to imply Theorem 3 in the case that
r > 1/(p — 1), which suffices for the proofs of Theorems 2 and 1.

Proof. We proceed by induction on k. If k = 0 then T' = {t} for some integer ¢,
and the constant polynomial A = (/) has the required property, since do(n) = 1.
Next let k& > 0. Let an element u € T be chosen. The formal identity (1 + X)! =
(14 X)* (14 X)'“ shows that for each ¢ € Z we have

(-2 G0

m=0

Using that (t;“) = b, (t‘““l) for m > 0, we obtain

m m—1
t u 1 U t—u—1
- t—u)- Y — .
()= C) e 25 ()
Applying the induction hypothesis with k—1, m—1, and {t —u—1:t € T, t # u}
in the roles of k, n, and T, respectively, we find that for each m € {1,2, ..., n

there exists h,, € Z[X] such that for each t € T, ¢t # u, one has (", *") =
B (t —u — 1) /dg—1(m — 1). Therefore we have

()= )+ e X i (e

m=1
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for each ¢ € T; this time we can include ¢ = wu, because of the factor { — u.
Multiplying by dj,(n) we obtain dj,(n) - (}) = h(t) for each t € T, where

h = dy(n) - (Z) F (X —u)- Z —d’“—(”)——< “m>hm(x—u~ 1).

=m: di—1(m—1)\n —
By (2.1), the polynomial i belongs to Z[X]. This proves 2.2.

Corollary 2.3. Let k and n be non-negative integers with n >k, and let T C Z
be a set of cardinality k+ 1. Then there exist rational numbers cy, ¢1, ..., Ck such
that for each i the denominator of ¢; divides dy(n)/i! and such that for eacht € T

one has () = Z?:o ci(l).
Note that dj(n)/i! is actually an integer, for 0 <i < k < n.

Proof. Let h be as in Proposition 2.2. Replacing h by its remainder upon division
by [T, (X —1t), we may assume that degh < k. (In fact, if & has been recursively
constructed as in the proof of 2.2, then it already satisfies this condition.) Since
z'()f ) is an ith degree polynomial in Z[X] with leading coefficient 1, for each i > 0,
we can write h = Zf:o lii!()f) with I; € Z. Now the numbers ¢; = ;i!/dy(n) have
the required properties. This proves 2.3.

Proposition 2.4. Let p be a prime number, and let k, n be integers with k > 0
and n > 1. Then we have

log n}

ord, di(n) < k- [1ogp

where [x] denotes the largest integer not exceeding x.

Proof. From the definition of dy(n) one sees that the largest power of p dividing
di.(n) divides some product of at most k positive integers that are at most n. Each
of these integers has at most [log n/ log p] factors of p, so their product has at most
k - [log n/ log p] factors of p. This proves 2.4.

Algorithm. Let p be a prime number, and let k£ and n be non-negative integers.
To compute ord, dy(n), one determines the least non-negative integer j for which
[n/p"*1] < k; then one has

ord, dy,(n) = jk + ord,([n/p’]).

This computation is conveniently carried out in base p; then one obtains [n/p’] by
deleting the p-adically most significant j digits of n, and if s denotes the sum of the
remaining digits then one has ord, ([n/p’]!) = ([n/p’] —s)/(p—1). The elementary
correctness proof of this method is left to the reader.
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For example, with p = 2, k = 25, n = 181 one has in base 2:

k=11001, n=10110101, j=10(=p), [n/p’]=101101, s = 100,
ord,([n/p’]!) = 101001, ord, dy(n) = 10 - 11001 + 101001 = 1011011,

and the conclusion is that ords do5(181) = 91.

3. Zeroes close to 1

We prove Theorem 3. For p, k, and r as in the statement of the theorem, we define
C(p, k,r) = max{m >0 :mr — ord, dy(m) < max{ir —ord,(i!) : 0 < i < k}},

with d(m) as defined in Section 1. If p, k, and r are fixed, then max{ir —ord,, (i!) :
0 <i < k} is constant, and mr — ord, dj(m) tends to infinity with m; this follows
from 2.4 and the hypothesis that r > 0. Therefore C(p, k,r) is well-defined, and
we have C(p, k,r) > k since dy (k) = k!.

We shall, with p, k, and r as above, prove that C = C(p, k,r) satisfies the
conclusion of the theorem. To do this, let F, v, and f be as in the theorem.
Replacing F by an algebraic closure and extending v we may, without loss of
generality, assume that F is algebraically closed.

Write f = >, . a, X", where T is a set consisting of k+1 non-negative integers,
and a; € E for t € T. Define g € E[X] and b; € F, for i > 0, by

g=f1+X)=> bX"

i>0

bi:ZatC) for i > 0.

teT

Then we have

Since f # 0 we have g # 0, so not all b; vanish.

Denote by n the number of zeroes x of f in FE satisfying v(x — 1) > r. This
is the same as the number of zeroes y of g in F satisfying v(y) > r. Since E
is algebraically closed, that number can, by the theory of Newton polygons (see
[11, Section 3-1]), be expressed in terms of 7 and the valuations of the coefficients
b; of g, as follows:

n =max{m > 0: v(by,) +mr = min{v(b;) +ir : i > 0}}.
It follows that we have
v(by) +nr <wv(b;) +ir for all ¢ > 0.

Since not all b; vanish, this implies that v(b,,) # oco.
If n < k, then we have n < (', as required. Suppose next that n > k. By 2.3,
there are rational numbers ¢y, ¢1, ..., ¢, with the denominator of ¢; dividing
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dy(n)/i!, such that for each ¢ € T one has

()2 ()

Multiplying by a; and summing over t € T' we find that

k
bn = Z Cibi.
=0

Therefore we have
v(b,) > min{v(c;) +v(b;) : 0 <i < k}.

The bound on the denominator of ¢; and the normalization v(p) = 1 imply that
v(¢;) > ord,(i!) — ord, dy(n). Also, we have v(b;) > v(b,) + nr — ir. Therefore we
find that

v(b,) > min{ord, (i) — ord, dy(n) + v(b,) +nr —ir: 0 <i < k}.
Since v(by,) # oo, this implies that
nr — ord,, dj,(n) < max{ir —ord,(i!) : 0 <4 < k}.

Therefore we have n < C, as required. This proves Theorem 3.

Remark. If d;(n) is replaced by n! in this proof (cf. the Remark in Section 2),
then it is still valid for » > 1/(p — 1), but not for r < 1/(p — 1). This follows from
ord,(n!) =n/(p— 1) + o(n) for n — cc.

4. Local fields

We prove Theorem 2. Let L be as in the theorem. Then L has a discrete valuation v
with a finite residue class field. Let v be normalized such that v(p) = 1 for some
prime number p, and let e be the unique positive integer for which v(L*) = %Z.
We write O for the valuation ring {z € L : v(x) > 0}, and P for the maximal ideal
{zeL:v(x)>0}={reL:v(z)>1/e} of O. We denote by ¢ the cardinality
of the finite residue class field O/P. Let C = C(p,k,1/e) be as in Theorem 3. We
shall show that B =k - (¢ — 1) - C satisfies the conclusion of Theorem 2.

Let f € L[X] be any non-zero polynomial with at most k + 1 non-zero terms.
Theorem 3 implies that f has at most C' zeroes in 1 + P. Applying this result to
f(uX), for u € O*, we see that f has at most C zeroes in any coset u+P € (O/P)*.
Summing this over the ¢ — 1 elements of (O/P)*, we derive that f has at most
(¢—1) - C zeroes in O*. Applying this result to f(aX), for a € L*, we find that f
has at most (¢—1)-C zeroes in any coset aO* € L*/O*; or, equivalently, that f has
at most (¢ —1)-C zeroes x € L* for which v(z) assumes a given finite value. Since
by the theory of Newton polygons we have #{v(z) : x € L*, f(x) = 0} <k (sce
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also [8, Lemma 2.1]), we can now conclude that f has at most k- (¢ — 1) - C zeroes
in L*. If we restrict, as in Theorem 2, to polynomials with f(0) # 0, then this is
also an upper bound for the number of zeroes of f in L. This proves Theorem 2.

Remark. If the conclusion of Theorem 3 is available only for » > 1/(p — 1)
(cf. the Remark in Section 3), then the preceding proof still works if one replaces
the cosets u+ P € (O/P)* by u+ P' € (O/P")*, where l/e > 1/(p — 1); then the
factor ¢ — 1 needs to be replaced by the order (¢ — 1) - ¢/~ of (O/P')*, and the
conclusion is that one can take B(k,L) =k-(q—1) ¢! - C(p,k,1/e).

5. Number fields

We prove Theorem 1. Let m, k, and d be as in Theorem 1. Let p be any prime num-
ber, for example p = 2, and let Q, be an algebraic closure of Q,. By
[4, Chap. II, Prop. 14], the field Q, has only finitely many extensions of degree at
most dm in Q,. Let L be the composite of all these extensions; it is of finite degree
over Q,. We shall show that A = B(k, L) satisfies the conclusion of the theorem.

Let K, f, and g be as in Theorem 1. We may embed K as a subfield in Q,.
Then K - Q, has degree at most m over Q,,. Hence any zero of f in Q, that has
degree at most d over K lies in an extension of degree at most dm of Q,, and
therefore in L. Thus, the number of zeroes of f in Q; that have degree at most d
over K is bounded by B(k, L). This implies that the degree of g is at most B(k, L),
as required. This proves Theorem 1.

6. A generalization

For a ring R and a positive integer n, we denote by R[X7, ..., X,] the polynomial
ring in n variables Xy, ..., X,, over R. A polynomial in one variable is called
monic if it has leading coefficient 1.

Proposition 6.1. Let m, k, d be positive integers, and let A = A(m,k,d) be any
positive integer for which the conclusion of Theorem 1 is true. Suppose that K
s a field that is of degree at most m over a purely transcendental field extension
Ko of Q, that n is a positive integer, and that f € K[X1,...,X,] is a non-zero
polynomial with at most k+ 1 terms. Let g € K[Xy,...,X,] be a factor of f such
that for each i € {1, 2, ..., n}, every irreducible factor of g has degree at most d
in X;, and g is not divisible by X,;. Then, for each i € {1, 2, ..., n}, the degree
of g in X; is at most A.

Proof. We know the result to be true if Ko = Q and n = 1. We first extend
this to the case Ky = Q(t : t € T) for some collection 7' that is algebraically
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independent over Q, still for n = 1. Let Ky be such, let K = Ky(u) be of degree [
over Ko, and let f, g € K[X] be as in the statement of 6.1. Without loss of
generality we assume that f and g are monic. Let Ry C Ky be a subring of the
form Ry = Q[t : t € T|[1/r], where r € Q[t : t € T] is a non-zero element
that is chosen in such a manner that Ry contains the coefficients of the following
elements of K, when expressed on the Ky-basis (ui)ﬁ;é of K: the coefficients of f;
the coefficients of the monic irreducible factors of g; the inverse of g(0); and u'.
Then R = Zi;é Ry -u' is a subring of K that is isomorphic to Ro[U]/(h) for some
monic polynomial h = Zi:o hiU" € Ry[U], and one has f, g € R[X]. Next, one
chooses rational numbers aq, for t € T, such that (a;)er is not a zero of r, and
one defines ¢ : Ry — Q by substituting a; for t. Adjoining a zero of 3, ¢(h;)U",
one can extend ¢ to a ring homomorphism from R to some algebraic number field
K of degree at most | over Q. The induced map R[X| — K1[X] sending X to X
maps f to a monic polynomial f; € K;[X] with at most k+ 1 non-zero terms, and
g to a factor g; of fi that has the same degree as g, that can be written as the
product of polynomials of degree at most d, and that satisfies g1(0) # 0. Hence by
what we know about K, the degree of g is at most A. This proves the case n =1
of 6.1.

For general n, let the notation again be as in 6.1, and let i € {1, 2, ..., n}.
View f and g as polynomials in a single variable X; with coefficients in the field
K(X,|j # i) of fractions of the polynomial ring in the remaining variables; this field
is of degree at most m over the field Ko(X;|j # i), which is purely transcendental
over Q. In K (X;|j # i)[X;], the polynomial g is a product of polynomials of degree
at most d, and it is not divisible by X;. Hence by what we know about the case
n = 1, the degree of g is at most A. This proves 6.1.

7. Explicit bounds: the local case

Proposition 7.1. Let C(p, k,r) be as defined in Section 3, and write

expl ) ; . k:
Toxp 1) — 1 = max{i — (ord,(s! 0<i < - .
¢ (expl) —1° v {i (rp(l))/T 0<i<k}, w )
Then we have
-+ IOg(k/(T log p))
<c <c- k- o\ A TR
C(p,k,r)<c-(v+wlogw) <c-k (1 + - )

We note that ¢ = 1.58197671.

Proof. The last inequality follows from the fact that v < k. We prove the first
inequality. By the definition of C(p, k, ), it suffices to show that

—_— ord, di(m)

r

> v for all m > ¢ (v + wlogw).
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The function 1 — (logz)/x of a positive variable z assumes its minimum 1/c at
x = exp 1. Hence for all z > 0 we have x > (logz) + x/c. Now let m be an integer,
m > ¢ (v+wlogw); we have m > 1, since v > 1 and wlogw > — exp(—1). Taking
z =m/w and applying 2.4 we find that

wx m
m=w-x>w-logr+ — =wlogm — wlogw + —
c c

klogm to> ord, di(m) .

>wlogm+v = >
rlogp r

as required. This proves 7.1.

Let p be a prime number, and let L be a finite field extension of Q,. Denote by
er, and fy, the ramification index and the residue class field degree of L over Q,,
respectively. For a positive integer k we define

B(k,L) =k - (p™ —1)-C(p,k,1/er),

with C'(p, k,1/er) as defined in Section 3.

Proposition 7.2. With B(k,L) as just defined, the conclusion of Theorem 2 is
valid. Moreover, with ¢ as in 7.1 and er, and f1, as just defined, we have

(epk/logp) )

-1
B(k,L) <c-k*- (p/* —1)- (1 Lo oglogp

Proof. This is clear from Section 4 and 7.1.

Example: k& = 1. One can show that C(p,1,1/er) = sy, - e + 1, where s;, =
max{s € Z : s-e +1 > p°}, so one has B(1,L) = (p/t —1)- (s, - ey + 1). The
smallest value for B that makes the conclusion of Theorem 2 valid with k£ =1 is
equal to the number of roots of unity in L, which is of the form (p/t — 1) - p't,
where 7, is a non-negative integer for which (p — 1) - p"= ! divides ey,

8. Explicit bounds: the global case

For positive integers m, k, and d, we define

md
, 1
Almokyd) =k 3@ = 1) C(2 k),
where [z] denotes the greatest integer not exceeding z, and the function C' is as
defined in Section 3.
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Proposition 8.1. With A(m,k,d) as just defined, the conclusion of Theorem 1
1s valid. Moreover, we have
kmd>

C
A d k2. 10) - 2md+L ge( 2
(. ko d) < oo -k < (md +10) -2 0g<10g2

where ¢ is as in 7.1.

We note that ¢/log 2 = 2.28230995.

The proof of 8.1 requires a more refined approach than the one taken in Sec-
tion 5.

We denote by Qs an algebraic closure of the field Qo of 2-adic numbers, and
by v : Qs — QU {oo} the extension of the natural exponential valuation on Qy,
normalized so that v(2) = 1. We fix a group homomorphism Q — Q;, written
r — 27, with the property that 2! = 2; to construct such a group homomorphism,
one chooses inductively 2'/™ to be an nth root of 21/(n=1! "and one defines 2%/™
to be the ath power of 2'/™, for a € Z. We have v(2") = r for each r € Q. For
positive integers j and e, we define the subgroups U, and T} of Q; by

Ue={z:v(x—-1)>1/e}, Ty={¢:¢¥ =1}
We have U, C U if e < €, and T; C T if j divides j'.

Lemma 8.2. Let k, j, and e be positive integers, and let f € Qo[X] be a non-zero
polynomial having k+1 non-zero terms. Then f has at most k- (27 -1)-C(2,k,1/e)
zeroes in the subgroup 29 - T;-Ue of Q3.

Proof. This is done by a straightforward extension of the argument of Section 4:
one knows from Theorem 3 that f has at most C(2,k,1/e) zeroes in U, and one
deduces that the same is true for any coset of U,; next one observes that T; has
order 2/ — 1, and one derives that f has at most (27 — 1) - C(2,k,1/e) zeroes in
each coset 2" - T - U, of T, - U,; and one concludes the proof using the fact that
v assumes at most k different values r at the zeroes of f in Qj. This proves 8.2.

Lemma 8.3. Let n be a positive integer, and let L be an extension of Qa2 of degree
at most n inside Q. Then there exists an integer j € {1, 2, ..., n} such that
L* C 2Q -Tj . U[n/j]n

Proof. Let fr and ey, be as in Section 7, and put M = L(2'/¢#). We claim that
7 = far, the residue class field degree of M over Qo, has the stated properties.
To prove this, denote by ¢’ and f’ the ramification index and residue class field
degree of M over L. Then we have ¢’ f' = [M : L] < ey, and therefore

fu<ée -fu=é-ffo<er fo=I[L:Qs] <n.

This proves, first, that j = fy; does belong to {1, 2, ..., n}, and secondly, that
¢ < [n/fum] = [n/j]. Hence the ramification index ey of M over Qo satisfies
e = € e < [n/j]-n. Therefore each z € M with v(z — 1) > 0 belongs to
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Upp/jin- From j = fyr it follows that T; ¢ M*, and that T} is in fact a system of
representatives for the group of units of the residue class field of M (see [9, Chap. 2,
Prop. 8(iii)]). It follows that the kernel of v : M* — Q is contained in Tj - Uy, 1,
Now, in order to prove that L* C 22T} Upn)jln, let  belong to L*. Then v(z) = r
for some r € %Z, so the element z-27", which does belong to M ™, is in the kernel
of v. Therefore we have = € 2" - T} - Upy,j)n C 2Q .7 - Un/jn, as required. This
proves 8.3.

One can show that the integer e’ occurring in the proof above is a power of 2.
This observation may be used to improve our value for A(m, k,d), but it will not
change its order of magnitude.

We turn to the proof of 8.1. Let m, k, d be positive integers, and let K, f, g
be as in Theorem 1. We may assume that K is a subfield of Q,. Then every zero
of g in Qo lies in an extension of degree at most n = md of Qa, so by Lemma 8.3
also in U?zl(QQ “Tj - Upn/j)n)- From Lemma 8.2 it now follows that the number of

zeroes of ¢ in Qg is at most
> k(2 —1)-C(2,k,1/([n/fln)) = A(m, k,d).
=1

Hence A(m,k,d) is an upper bound for the degree of g. This proves the first
assertion of 8.1. We prove the second assertion. From 7.1 we obtain

nf - oIk 052
log 2

A(m,k,d)§c~k2-2(2j~1)~(1—1— ,
j=1

where we still write n = md. For [n/2] < j < n we have [n/j] = 1, and for

1 < j < [n/2] we have [n/j] < n and log([n/j]nk/log2) < 2log(nk/log2). This

leads to

gntl g gnt1 T log(nk/log 2) +2[n/2]+1,”2 - 2log(nk/ log 2))
log 2 log 2

(n +10) - log(nk/log 2)
log 2

A(m, k,d) < c«k:2~<

SC'k2'2n+l'

)

the second inequality being obtained by a routine argument. This proves 8.1.

9. Two-adic trinomials

In this section we determine how many zeroes a polynomial of the form
(9.1) f=a+bX"'+cX" with a € Q5, b,c€ Qq, t,u€Z, 0 <t <u,

may have in Qg; here we still count zeroes with their multiplicities. We let the
function C be as defined in Section 3, and we write v for the natural exponential
valuation on Q.
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According to the first assertion of 7.2, with k =2, p =2, L = Qq, er, = 1, and
fr = 1, an upper bound for the number of zeroes of any f as in (9.1) in Qg is
given by 2-C(2,2,1), which by a direct computation is found to be 8. (The second
assertion of 7.2 gives the upper bound 16.0018.) The following result shows that
the best upper bound is 6.

Proposition 9.2.

(a) Let f be as in (9.1). Then the number of zeroes of f in Qaz equals 0, 1, 2, 3,
4, or 6, and if it equals 4 or 6 then t and u are both even.

(b) For any n € {0,1,2,3,4,6} there exists f as in (9.1), with b # 0 and ¢ # 0,
such that the number of zeroes of f in Q2 equals n.

In the proof we use a variant of 2.2. We write Z,, for the ring of p-adic integers.

Proposition 9.3. Let p be a prime number, n a non-negative integer, and T a fi-
nite non-empty subset of Z. WriteT; = {t € T : (t mod p) = j} for each j € Z/pZ,
and put k = max{#7T}; : j € Z/pZ} — 1. Then there exists a polynomial h € 7, X]
such that for each t € T' one has h(t) = di(n) - (}).
Proof. Let j € Z/pZ be such that T} is non-empty, and put k(j) = #1; — 1.
Applying 2.2 to T}, we obtain a polynomial h; € Z[X] with the property that for
each t € T} one has h;(t) = di;(n) - (). Next define
X —u
=1 1- .
G =
J

w€eT, ugT;

We have g; € Z,[X], since none of the denominators ¢ — u is divisible by p. Also,
we have g;(t) =1fort € Tj and g;(u) =0forue T, u ¢ T;.
It is now straightforward to verify that the polynomial

h= Zgj “hj - di(n)/digj)(n)

has the properties stated in 9.3; note that for each j we have di(n)/dy;)(n) € Z,
since k(j) < k. This proves 9.3.

Proof of 9.2. (a) Let f be as in (9.1). Let it first be assumed that ¢ or u is odd; in
this case 9.2(a) asserts that f has at most 3 zeroes in Q2. To prove this, we observe
that T'= {0,t,u} contains integers of both parities, so when we apply 9.3 we can
take k = 1 (as opposed to k = 2 when we apply 2.2). With this improvement, the
argument given in Section 3 shows that the number of zeroes of f in Z5 = 14275 is
at most C'(2,1,1) = 2 (as opposed to C(2,2,1) = 4). If v assumes at most 1 value
at the set of zeroes of f in Qa, then the argument of Section 4 now implies that f
has at most 2 zeroes in Q3. Assume therefore that v assumes at least 2 values at
the zeroes of f in Qa. Let 7 and s be zeroes of f in Q2 with v(r) > v(s). By the
theory of Newton polygons, each zero of f in Qg is in r - Z3 or in s- Z3, and the
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polynomials f(rX) and f(sX) have the shape
frX)=(a +V X' +X")-d, with o', b €Z5, ¢ €22y, d €Q3,
f(sX)=(a" +V' X' +'X")-d’, with o’ € 2Zy, V", " € Z5, d" € Q5.

Each of these polynomials has 1 as a zero and has at most 2 zeroes in Z3. If ¢ is
odd, then 1 is a simple zero of the reduction of f(rX)/d" modulo 2, so by Hensel’s
lemma (see [11, Cor. 2-2-6]) it is the unique zero of f(rX) in Z5 = 1+ 2Z2. If t is
even then v is odd, and 1 is a simple zero of the reduction of f(sX)/d” modulo 2,
so by Hensel’s lemma it is the unique zero of f(sX) in Z3. In either case, one of
the two polynomials has a unique zero in Z3, and the other at most 2. Therefore
f has at most 3 zeroes in Q2, as asserted.

Next assume that ¢ and u are even. We can write ¢t = to2! and u = 12!, where
[ is a positive integer and tg or ug is odd. Then we have f = fO(le), where
fo=a+bX%+cX¥ and the zeroes of f are the 2'th roots of the zeroes of fy. By
the above, fy has at most 3 zeroes in Qz; and since Qg contains exactly 2 roots of
unity, each of these zeroes that has a 2'th root in Q2 has exactly 2 of them. Hence
the number of zeroes of f in Q, equals 0, 2, 4, or 6. This proves (a).

(b) One easily verifies that the polynomials

X2+ X+1, X*+X2-2 X?°-5X+4, X'-5X*+4
have exactly 0, 1, 2, 4 zeroes in Qa, respectively. (They have in fact the same
property over Q and R.) Next consider the polynomial
f=3X°+X -4

One has
F8X +1)
128

By Hensel’s lemma, f(8X +1) has two zeroes in Zo, so f has two zeroes in 1+ 8Zs.
Also, one has

= 768X° +480X* +120X°% + 15X? + X = X - (X — 1) mod 2.

fﬁ?:?)-ZS~X5+X—1EX—1mod8,
s0 f(4X) has a zero in Z, that is 1 mod 8, and f has a zero in 22 - (1 +8Z3). This
shows that f has at least 3 zeroes in Qa, and by (a) it has no others. Since each
element of 14 8Z, is a square in Q2, each of the 3 zeroes of f has two square roots
in Q,. Therefore the polynomial 3X'° 4 X2 — 4 has exactly 6 zeroes in Qa. This
proves 9.2.

Remark. The arguments used in the proof of 9.2 lead to the following general
result. Let the hypotheses and the notation be as in 7.2, and define

B'(k, L) =wr, - (p'" — 1) (1+ (k= 1)-C(p,k —1,1/er)),

where w;, denotes the number of roots of unity in L that have p-power order.
Then the conclusion of Theorem 2 is valid with B’(k, L) in the place of B(k, L).
For k = 1, we have B'(1,L) = wy, - (p/* — 1), which is the number of all roots of
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unity in L; it follows that for ¥ = 1 the bound B’(k, L) cannot be improved. If
k > 1, then one has B'(k, L) < B(k, L) for all L with wy = 1; but if wy, > 1, then
one has B'(k, L) > B(k, L) for all k exceeding a bound that depends on L.
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