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We exhibit a deterministic algorithm for factoring polynomials in one variable over
"nite "elds. It is e$cient only if a positive integer k is known for which '

k
(p) is built up

from small prime factors; here '
k
denotes the kth cyclotomic polynomial, and p is the

characteristic of the "eld. In the case k"1, when '
k
(p)"p!1, such an algorithm

was known, and its analysis required the generalized Riemann hypothesis. Our
algorithm depends on a similar, but weaker, assumption; speci"cally, the algorithm
requires the availability of an irreducible polynomial of degree r over Z/pZ for each
prime number r for which '

k
(p) has a prime factor l with l,1 mod r. An auxiliary

procedure is devoted to the construction of roots of unity by means of Gauss sums.
We do not claim that our algorithm has any practical value. ( 2000 Academic Press
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6 BACH, VON ZUR GATHEN, AND LENSTRA
1. INTRODUCTION

We present a theoretical result on the deterministic complexity of factoring
polynomials over large "nite "elds. Let p be a prime number, k a positive
integer, and q"pk. We denote by F

q
a "nite "eld of cardinality q, and by '

k
the kth cyclotomic polynomial. Let S (q) be the set of prime numbers dividing
'

k
(p), and s(q) the largest element of S (q), with s(2)"1. We let R(q)"Mr : r is

prime, and r divides l!1 for some prime number l3S(q)N.

THEOREM 1. ¹here is a deterministic algorithm that, for some positive real
number c, has the following property : given a prime number p, positive integers
n and k, explicit data for F

pn, a non-zero polynomial f3F
pn[X], and for each

prime number r3R(pk) that does not divide n an irreducible polynomial g
r
of

degree r in F
p
[X], the algorithm ,nds in time at most (s(pk)#deg f#n log p)c

the factorization of f into irreducible factors in F
pn[X].

The number k in Theorem 1 has no relation to n or f, and its role is purely
auxiliary. It enters the run time estimate only through the number s(pk),
which by (6.1) is at least k/2. For the de"nition of explicit data we refer to
[12]. Time is measured in bit operations. Elements of explicitly given "nite
"elds*such as the coe$cients of f and its factors, in Theorem 1*are required
to be represented in the given model. Our proof of Theorem 1 is not merely
existential, but allows for the e!ective construction of an algorithm with the
listed properties.

COROLLARY. ¹here is a deterministic polynomial-time algorithm that fac-
tors polynomials in one variable over ,nite ,elds whose characteristic is
a Fermat prime or a Mersenne prime.

To deduce this from Theorem 1, we take k"1 if p"2m#1 is a Fermat
prime and k"2 if p"2m!1 is a Mersenne prime; then we have
'

k
(p)"pG1"2m and S(pk)"M2N, so that R(pk) is empty, and the result

follows.
Generally, Theorem 1 establishes a relation between the deterministic

complexity of the following two problems. The "rst is the problem of
constructing an irreducible polynomial of given degree over a given "nite
"eld. The second is the problem of factoring polynomials over "nite "elds.
V. Shoup [18] has shown that there is a deterministic polynomial-time
&&Turing'' reduction of the "rst problem to the second. Theorem 1 shows that
there is a similar reduction of the second problem to the "rst, provided that
the characteristic p of the "nite "eld has a special property; namely, a positive
integer k should be available for which '

k
(p) is built up from small prime

factors. The same condition has been encountered in di!erent circumstances
(see [4; 13]), and not much is known about the distribution of prime numbers
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p for which a suitable k exists. The data of C. Pomerance and J. Sorenson [15]
suggest that for large p and k"1 or 2, the number '

k
(p) is built up from small

prime factors with roughly the same probability as a random number of the
same size.

If the generalized Riemann hypothesis (GRH) is true, then Theorem
1 remains true even if the polynomials g

r
are not given, since these can in that

case be constructed by a deterministic polynomial-time algorithm [1]. Thus,
Theorem 1 adds to the long list of special cases in which factoring poly-
nomials over "nite "elds can be done deterministically in polynomial time, if
GRH is granted; see [5, Notes on 7.8].

The case k"1 of our result, with the g
r
replaced by the assumption of

GRH, was obtained by the second author [8] and independently by M.
Mignotte and C. Schnorr [14]. Their method makes use of an F

p
-algebra all

of whose units have order dividing '
1
(p)"p!1, and those units are con-

trolled by the availability*guaranteed through GRH*of lth power non-
residues in F

p
, for each prime number l dividing p!1. In extending this

method to a proof of Theorem 1 one encounters several problems. The "rst is
that one now needs to construct, for general k, a su$cient supply of units of
order dividing '

k
(p), in some algebra over F

p
. We solve this problem by

means of a pretty formula, which is given in Proposition (5.2). Secondly, there
is the problem of constructing the analogues of lth power non-residues. The
natural way of doing this (cf. [9]) would require an irreducible rth degree
polynomial g

r
3F

p
[X] to be known for each prime number r dividing the

product <m50 um('
k
(p)), where um denotes the mth iterate of the Euler u-

function; this includes the primes in R(pk), which all divide u('
k
(p)). The fact

that Theorem 1 economizes on the g
r
, and requires them only for r3R(pk),

makes the construction somewhat laborious. Two auxiliary results that we
need in this context can be formulated as follows.

THEOREM 2. ¹here is a deterministic algorithm that, for some positive real
number c, has the following property: given two prime numbers p and l, a positive
integer h for which ph,1 mod l, explicit data for Fph, and, for each prime
number r dividing l!1 but not dividing h, an irreducible polynomial g

r
of degree

r in F
p
[X], the algorithm constructs in time at most (l#h log p)c a primitive lth

root of unity in F
ph.

The proof of Theorem 2 makes use of Gauss sums in a certain algebra over
Fph.

THEOREM 3. ¹here is a deterministic algorithm that, for some positive real
number c, has the following property : given a prime number p, a positive integer
k, explicit data for F

pk, and, for each l3S (pk), a primitive lth root of unity in F
pk,

the algorithm constructs, in time at most (s(pk)#k log p)c, for each l3S (pk) an
element of F

pk that is not an lth power in F
pk.
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The case k"1 of Theorem 3 is due to L. RoH nyai [16]. Our proof of the
general case depends, again, on our method of constructing elements of order
dividing '

k
(p) in certain algebras.

In Section 2 we assemble a few theoretical and algorithmic results about
roots of unity in rings. Section 3 is devoted to Gauss sums and Jacobi sums.
In Sections 4, 5, and 6 we prove Theorems 2, 3, and 1, respectively.

At several points in the paper we shall refer to Berlekamp1s algorithm. By
this we shall always mean an algorithm that factors any non-zero f in F

q
[X]

in time (p#deg f#log q)O(1), see [6; 5, Exercise 7.17]. Berlekamp's algo-
rithm shows that Theorem 1 is of interest only for &&large'' p.

Whenever we assert that an algorithm with certain properties exists, such
an algorithm is actually exhibited, explicitly or implicitly, in the paper itself or
in the papers that we refer to. Any algorithmic choices and recommendations
that we make are inspired by the desire to give a valid and quick proof of our
results, and no e!ort has been made to optimize the e$ciency of the algo-
rithms; in fact, we would be surprised if our results had any implication for
the practical problem of factoring polynomials over "nite "elds.

Rings are supposed to be commutative with 1, and the unit element is
supposed to be preserved by ring homomorphisms. The group of units of
a ring R is denoted by R*, and for u3R* we write SuT for the subgroup of R*
generated by u. If K is a "eld, a K-algebra is a ring R equipped with a ring
homomorphism KPR.

2. STRICT ROOTS OF UNITY

Let R be a ring. If n is a positive integer, then we call an element f3R
a strict nth root of unity if fn"1 and fn@r!13R* for each prime number
r dividing n. Obviously, if R is a "eld, then a strict nth root of unity is the same
as a primitive nth root of unity.

PROPOSITION (2.1). Suppose that f3R is a strict nth root of unity. ¹hen we
have:

(a) if R is non-zero, then f has multiplicative order n;
(b) if f : RPR@ is a ring homomorphism, then f (f) is a strict nth root of

unity in R@;
(c) fi!fj3R* whenever i, j are integers with iIj mod n;
(d) <n~1

i/0
(X!fi)"Xn!1 in the polynomial ring R[X];

(e) if n@ is a positive integer all of whose prime factors divide n, and e3R
satis,es en@

"f, then e is a strict n@nth root of unity;
(f ) if n@ is a positive integer with gcd(n@, n)"1, and e3R is a strict n@th

root of unity, then ef is a strict n@nth root of unity;
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(g) fi is a strict n/gcd(n, i)th root of unity for each integer i;
(h) if lLSfT is any subgroup of order greater than 1, then + e3l e"0.

Proof. Parts (a) and (b) are obvious.
(c) The image f1 of f in the ring RM "R/(fi!fj)R satis"es f1 i"f1 j and has

therefore order less than n. By (b), it is a strict nth root of unity, so (a) implies
that RM is the zero ring. Therefore we have fi!fj3R*.

(d) If R is a "eld, and a polynomial f3R[X] has pairwise distinct zeroes
a
i
3R, then f is divisible by <

i
(X!a

i
) (see [10, Chap. IV, Theorem 1.4 and

proof]). The same proof shows that this remains true if R is a ring and
a
i
!a

j
3R* for all iOj. Applying this to f"Xn!1 and a

i
"fi one obtains

(d).
Part (e) is immediate from the de"nition, and (f) and (g) are easy conse-

quences of (c).
(h) Let g3l, gO1. We have gl"l, so the sum + e3l e is unchanged

under multiplication by g, and therefore annihilated by g!1. Since the latter
element is a unit, this implies that the sum vanishes.

This proves (2.1). j

PROPOSITION (2.2). ¸et f3R, and let n be a positive integer. ¹hen f is
a strict nth root of unity in R if and only if '

n
(f)"0 and n ) 13R*.

Proof. If. Suppose that '
n
(f)"0 and n ) 13R*. Since '

n
divides Xn!1

in Z[X] we have fn"1. Next let r be a prime number dividing n. Since '
n

divides the polynomial (Xn!1)/(Xn@r!1)"+ r~1
i/0

Xin@r, we have +r~1
i/0

fin@r
"0. Take this modulo fn@r!1; by fin@r,1 mod (fn@r!1) this gives r ) 1,0
mod (fn@r!1), and therefore n ) 1,0 mod (fn@r!1). Since n ) 1 is a unit, this
implies that fn@r!1 is a unit as well.

Only if. Suppose that f is a strict nth root of unity in R. Since Xn!1
divides '

n
)<

r
(Xn@r!1), the product ranging over the primes r dividing n, we

have '
n
(f) ) <

r
(fn@r!1)"0. The factors fn@r!1 are units, so it follows that

'
n
(f)"0. Dividing the identity in (2.1)(d) by X!1 (which is not a zero-

divisor in R[X]) and substituting 1 for X we "nd that <n~1
i/1

(1!fi)"n ) 1.
By (2.1)(c), this shows that n ) 13R*. This proves (2.2). j

An element e3R is called an idempotent if e2"e. An idempotent e is said
to be trivial if e"0 or e"1.

PROPOSITION (2.3). Suppose that f3R is a strict nth root of unity, and that
a3R satis,es an"1. ¹hen there is a non-trivial idempotent in R or there exists
i (mod n) with a"fi.

Proof. Substituting a for X in the identity from (2.1)(d) we "nd that
<n~1

i/0
(a!fi)"0. Hence, if we put I

i
"(a!fi)R, then the product of the
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ideals I
i
is zero. Also, the I

i
are pairwise coprime, since I

i
#I

j
contains the

element !(a!fi)#(a!fj)"fi!fj, which by (2.1)(c) is a unit if iOj. The
Chinese remainder theorem [3, Proposition 1.10] now implies that the
natural map RP<n~1

i/0
R/I

i
is an isomorphism. If at least two of the rings

R/I
i
are non-zero*one of which is R/I

h
, say*then the unique element e3R

that is congruent to 1 modulo I
h
and to 0 modulo all other I

i
is a non-trivial

idempotent. If at most one of the rings R/I
i
is non-zero, then all but at most

one of the a!fi are units; in that case the a!fi that was excluded is zero.
This proves (2.3). j

PROPOSITION (2.4). ¸et m and n be positive integers, and let a, c3R.
Suppose that am"1 and that cm is a strict nth root of unity. ¹hen there exists
b3R* with bn"a.

Proof. Write m"m@n@, where m@ is the largest divisor of m that is coprime
to n. Then each prime dividing n@ divides n, so (2.1)(e) implies that cm@ is a strict
n@nth root of unity and (2.1)(g) that cm{n is a strict n@th root of unity. By (2.1)(d)
we have <

n@!1

i/0
(X!cim@n)"Xn@

!1. Substituting am@ for X we "nd that
<

n@!1

i/0
(am@

!cim@n)"0. Thus, if we now put I
i
"(am@

!cim@n)R, then as in the
proof of (2.3) we deduce that the natural map RP<

n@!1

i/0
R/I

i
is an isomor-

phism. Let d be the element of R that maps to (cim@)
i
3<

n@!1

i/0
R/I

i
. Since

am@
,cim@n mod I

i
it follows that am@

"dn. To "nish the proof, let u, v be integers
satisfying um@#vn"1, and put b"duav; then we have bn"dunavn"

aum{`vn"a, as required. This proves (2.4). j

The proofs of (2.3) and (2.4) provide fairly explicit constructions of the
elements that are asserted to exist. However, for algorithmic purposes the
product over all n or n@ values of i may be too large. Thus, in the algorithmic
versions of (2.3) and (2.4) that follow, we replace n and n@ by a prime factor,
and we proceed recursively.

Let p be a prime number, and let R be an F
p
-algebra of "nite vector space

dimension d over F
p
; then the order of R equals pd. By explicit data for R we

mean a system (a
hij

)14h,i, j4d of d3 elements of F
p

such that for some vector
space basis (e

i
)d
i/1

of R over F
p

one has e
h
e
i
"+

j
a
hij

e
j
for all h, i; when R is

given by means of explicit data, then elements of R are supposed to be
speci"ed by means of their coe$cients on the same basis, these coe$cients as
well as the a

hij
being represented as integers modulo p in the conventional

way (cf. [12, Sect. 2; 7, Sect. 2]).

PROPOSITION (2.5). ¹here is a deterministic algorithm that, for some positive
real number c, has the following property: given a prime number p, explicit data
for a non-zero F

p
-algebra R of order pd, an integer n'1, and elements a, f3R

as in (2.3), the algorithm computes in time at most (s#d log p)c either a non-
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trivial idempotent e3R or an integer i (mod n) with a"fi; here s denotes the
largest prime factor of n.

Proof. The algorithm begins by factoring n completely, which can be
done in time (s#log n)O(1); note that, since R contains a strict nth root of
unity, we have n(dR and therefore log n(d log p. Once n is factored, one
proceeds in the following recursive fashion, replacing n by a proper divisor in
every step.

If n"1 then one can clearly take i"0. Suppose now that n'1, and let
r be a prime factor of n. As in the proof of (2.3), with an@r, fn@r, and r in the roles
of a, f, and n, one has < r~1

i/0
(an@r!fin@r)"0. With I

i
"(an@r!fin@r)R, the

natural map RP< r~1
i/0

R/I
i
is an isomorphism. Using linear algebra over

F
p
one determines which of the elements an@r!fin@r are non-units or, equiva-

lently, which of the rings R/I
i
are non-zero. This occurs for at least one of the

rings, say for R/I
h
. If it occurs for at least one other ring R/I

i
, then one uses

linear algebra to determine the unique element e3R with e,1 mod I
h
and

e,0 mod I
i
for all iOh; this is a non-trivial idempotent, and the algorithm

stops in this case. If R/I
h
is the only non-zero ring among the R/I

i
, then one

actually has R"R/I
h
, so I

h
"M0N and an@r"fhn@r. In this case one calls the

algorithm recursively on af~h, fr, and n/r in the roles of a, f, and n. Then one
obtains either a non-trivial idempotent e in R or an integer j (mod n/r) with
af~h"fjr; in the latter case one computes i"jr#h, which does satisfy
a"fi, and the algorithm stops.

It is clear that this algorithm has the stated properties. This proves (2.5). j

PROPOSITION (2.6). ¹here is a deterministic algorithm that, for some positive
real number c, has the following property: given a prime number p, explicit data
for a non-zero F

p
-algebra R of order pd, integers m'0 and n'1, and elements

a, c3R as in (2.4), the algorithm computes in time at most (s#log m#d log p)c
an element b3R* with bn"a; here s denotes the largest prime factor of n.

Proof. Again, one starts by factoring n completely. Next, one proceeds
recursively, replacing m by a proper divisor in every step.

If m is divisible by none of the primes dividing n, then one computes v
with vn,1 mod m, and one puts b"av; we have indeed bn"a, since am"1.
In the other case, let r be a prime factor of n that divides m. Then we have
<r~1

i/0
(am@r!cimn@r)"0. With I

i
"(am@r!cimn@r)R, the natural map RP

<r~1
i/0

R/I
i
is an isomorphism, so using linear algebra over F

p
one can "nd the

unique element d3R that for each i"0, 1,2 , r!1 satis"es d,ci mod I
i
;

then we have am@r"dnm@r, so for a8 "a/dn and mJ "m/r we have a8 mJ "1. Now
one calls the algorithm recursively on a8 , mJ , and c8 "cr. Then one "nds bI 3R
with bI n"a8 , and one puts b"bI d.

Again, the veri"cation that the algorithm just described has the asserted
properties is completely straightforward. This proves (2.6). j
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The algorithm of (2.6) can, in substance, be found in [7, Proposition 7]. It
can also be used for other rings that are su$ciently explicitly given (cf. [11,
Section 2]).

3. GAUSS SUMS

In this section we let K be a "eld.

(3.1) ¹he ¹eichmuK ller Subgroup. Let r be a prime number di!erent from
the characteristic of K. We write K[f

r
] for the ring K[X]/(+r~1

i/0
Xi), and we

let f
r

denote the residue class of X. For each a3F*
r
, the ring K[f

r
] has

a unique automorphism o
a

that is the identity on K and satis"es o
a
f
r
"fa

r
.

The set of all o
a
's forms a group, which we denote by *

r
; the map assigning

o
a

to a establishes a group isomorphism F*
r
:*

r
, so *

r
is cyclic with

generator o
g
, where g is a primitive root modulo r. Denote by Z

r
the ring of

r-adic integers, and de"ne the ¹eichmuK ller character u :F*
r
PZ*

r
by u(b mod r)"

lim
k?=

brk. Following [12, Section 4], we de"ne the ¹eichmuK ller subgroup ¹
r
of

K[f
r
]* to be the set of those e3K[f

r
]* that have r-power order and satisfy

o
a
e"eu(a) for all a3F*

r
. We have f

r
3¹

r
.

PROPOSITION (3.2). (a) Every ,nite subgroup of ¹
r
is cyclic.

(b) Every non-trivial subgroup of ¹
r
contains f

r
.

(c) Every e3¹
r
is a strict nth root of unity, for n"order e.

(d) Suppose that K is ,nite, of order q, and let m
r
be the multiplicative

order of (q mod r) in F*
r
. ¹hen each element of K[f

r
]* has order dividing

qm
r!1, and ¹

r
is cyclic of order equal to the largest power of r dividing qm

r!1.

Proof. For (a), see [12, (4.2)]. Every non-trivial subgroup of ¹
r

has
a subgroup of order r, and since ¹

r
has at most one subgroup of order r, by (a),

it must be Sf
r
T. This proves (b). From (2.2) it follows that f

r
is a strict rth root

of unity. By (2.1)(g), the other elements of Sf
r
T are strict roots of unity as well,

and by (b) and (2.1)(e) the same is true for all e3¹
r
. This proves (c). If K is

"nite of order q, then the ring homomorphism from K[f
r
] to itself that raises

each element to the power qm
r is the identity both on K and on Sf

r
T, so it is the

identity; hence each u3K[f
r
]* has order dividing qm

r!1. The last assertion
of (d) is in [12, (5.1)]. This proves (3.2). j

The following technical lemma will be needed later.

LEMMA (3.3). ¸et g be a primitive root modulo r. ¹hen the element

a"(1!r)~1 )
r~2
+
i/1

iu(g)io~i~1
g

of the group ring Z
r
[*

r
] satis,es a ) (o

g
!u(g))2"o

g
!u(g).
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Remark. This lemma expresses in an explicit manner the existence of an
idempotent a ) (o

g
!u(g)) in Z

r
[*

r
] that generates the kernel of the ring

homomorphism Z
r
[*

r
]PZ

r
induced by u.

Proof. The element u(g)3Z
r
is a zero of the polynomial f

0
"Xr~1!1,

and if we write f
0
"f

1 )
(X!u(g)) then we have f

1
(u (g))"f @

0
(u(g))"

(r!1)u(g)r~2"(r!1)u(g)~1. Hence we can perform a division with
remainder (*) f

1
"f

2 )
(X!u (g))#(r!1)u(g)~1, and an explicit long

division shows that f
2
"+r~2

i/1
iu (g)i~1Xr~2~i. Multiplying (*) by

(1!r)~1 )u(g) ) (X!u(g)) we "nd that

(1!r)~1 )u(g) ) f2 )
(X!u(g))2,X!u(g) mod (Xr~1!1).

Substituting o
g

for X we obtain the lemma. j

(3.4) A ¸arger Ring. In the rest of this section, we let l be a prime number,
and we suppose that K contains a primitive lth root of unity g; then it
contains l!1 of them. We make the further assumptions that l!1 is not
divisible by the characteristic of K and that for each prime number r dividing
l!1 the group ¹

r
contains a subgroup of order equal to the largest power of

r dividing l!1; we write k
(r)

for this subgroup. By (3.2)(c), all elements of
k
(r)

are strict roots of unity.
We write A for the tensor product, over K, of the rings K[f

r
], with

r ranging over the primes dividing l!1. Explicitly, if these primes are
r
1
,2 , r

t
(without repetition), then A is the ring K[X

1
,2 , X

t
]/

(+ r
1
!1

i"0 Xi
1
,2 , + r

t
!1

i"0 Xi
t
); as a vector space over K, it has dimension

< t
i/1

(r
i
!1). Each of the rings K[f

r
] embeds in a natural way in A. The

groups k
(r)

generate a subgroup of A*, which we denote by k; it is cyclic of
order l!1, and it is, by (2.1)(f), generated by a strict (l!1)th root of unity.
Thus from (2.1)(h) we obtain

+
e3l

e"0 for each subgroup lOM1N of k, (3.5)

a fact that will be used repeatedly below.

(3.6) Jacobi Sums and Gauss Sums. We denote by ( the group of group
homomorphisms F*

l
Pk; then ( is cyclic of order l!1. We denote the unit

element of ( simply by 1. For s, t3(, we de"ne the Jacobi sum j (s, t)3A by

j(s, t)"G
!+x, y3F*

l
,x#y"1s (x)t(y)

s(!1) ) l

1

if sO1, tO1, stO1,

if sO1, st"1,

if s"1 or t"1.
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For s3( and a primitive lth root of unity g3K, we de"ne the Gauss sum
q(s, g)3A by

q(s, g)"! +
x3F*

l

s (x)gx.

We list the basic properties of these sums that we shall need.

PROPOSITION (3.7). ¸et g3K be a primitive lth root of unity. ¹hen we have:

(a) q(1, g)"1;
(b) q(s, g)q (t, g)"j(s, t)q (st, g) for all s, t3(;
(c) j (s, t)3A*, q (s, g)3A* for all s, t3(;
(d) g"(1!l )~1 +s3( q (s, g);
(e) q (s, gy)"s (y)~1q(s, g) for all s3( and y3F*

l
;

(f ) if r is a prime dividing l!1, and s3( has r-power order, then q (s, g)
belongs to the subring K[f

r
] of A, and one has o

a
(q(s, g))"q(su(a), g) for all

a3F*
r
.

Proof. (a) We have q(1, g)"!+ l~1
i/1

gi"1.
(b) This is clear from (a) if s"1 or t"1. Next suppose that sO1 and

tO1. We have

q(s, g)q(t, g)" +
x, y3F*

l

s(x)t (y)gx`y" +
z3F

l
A +

x, y3F*
l
, x#y"z

s (x)t (y)Bgz

" +
x, y3F*

l
,x#y"0

s (x)t (y)# +
z3F*

l
A +

x, y3F*
l
,x#y"1

s(xz)t (yz)B gz

"s (!1) +
y3F*

l

st(y)!A +
x, y3F*

l
, x#y"1

s (x)t (y)B q (st, g).

If stO1 then from (3.5), with l equal to the image of st, we see that
+y3F*

l
st(y)"0. In that case we obtain (b), as required. If st"1, then we "nd

that

q(s, g)q(t, g)"s(!1)(l!1)!A +
x3F*

l
, xO1

s (x/(1!x))Bq(1, g)

"s (!1)(l!1)! +
z3F*

l
, zO!1

s (z)"s(!1)(l!1)#s (!1)

"s (!1) ) l"j (s, t),

where we use that +z3F*
l
s (z)"0, which again follows from (3.5).
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(c) Since l is not divisible by the characteristic of K, it is a unit in A, so
j(s, t)3A* whenever at least one of s, t, and st equals 1. Applying (b) to
t"s~1 we now see, using (a), that q(s, g)3A* for all s. Next we see from (b)
that j (s, t)3A* for all s, t.

(d) We have +s3( q(s, g)"+x3F*
l
(!+s3( s(x))gx. By (3.5), the sum in

parentheses vanishes for every xO1, and we are left with the contribution for
x"1, which is (1!l )g.

(e) We have s(y)q(s, gy)"!+x3F*
l
s (yx)gyx"q(s, g), using yx as a new

summation variable.
(f ) Under the hypotheses of (f ), the image of s is in k

(r)
, so that

q(s, g)3K[f
r
]. The equality in (f ) follows from the fact that o

a
"xes the

elements gx of K and raises the elements s (x) of ¹
r
to the power u (a).

This proves (3.7). j

The following lemma will be our main tool in computing Gauss sums.

LEMMA (3.8). ¸et r be a prime number dividing l!1, let t be a non-negative
integer, let g be a primitive root modulo r, and let G be a positive integer that is
congruent to u(g) modulo rt. Suppose that s3(, sO1, is of order rt, and that
v3K[f

r
] is such that vrt

"q (s, g)rt for some primitive lth root of unity g3K.
De,ne

e"
vG

o
g
(v)

)
q (sG, g)

q (s, g)G
, 0"

r~2
<
i/1

o~i~1
g

(e)iGi(1!rt )/(1!r) .

¹hen there exists a primitive lth root of unity g@3K such that 0 ) v"q (s, g@).

Remark. The following may serve to explain what is happening in this
lemma and its proof. If the rtth root of unity d with dv"q (s, g) belongs to
¹
r
*which occurs, for example, if K[f

r
] is a "eld*then (3.7)(e) readily implies

that v itself is of the form q(s, g@); in this case, one has e"1 and 0"1. In
general, d must be replaced by its projection d/0 to ¹

r
, which is to be

computed with the help of the idempotent a ) (o
g
!u(g)) from Lemma (3.3).

However, since d is just as unavailable as q(s, g), the required computation
cannot be done directly, and this necessitates the detour over e.

Proof. The action of *
r
on K[f

r
]* makes the latter group into a module

over the group ring Z[*
r
]. We write the action of this group ring exponenti-

ally. For example, in this notation we can rewrite the de"nition of e as
e"vG!o

g ) q(s, g)og
!G (applying (3.7)(f ) to a"g).

From q(s, g)3K[f
r
]* and vrt

"q (s, g)rt we "nd that dv"q(s, g) for some
d3K[f

r
]* with drt

"1. Applying o
g
!G we "nd that

do
g
!G

"vG!o
g ) q (s, g)og

!G
"e.
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This shows that ert
"1, so that both d and e belong to the group of elements of

K[f
r
]* of r-power order. That group is a Z

r
[*

r
]-module. In the de"nition of

0, the exponent iGi(1!rt)/(1!r) matters only modulo rt, so we may rewrite
that de"nition as 0"ea, where a3Z

r
[*

r
] is as in Lemma (3.3). Using (3.3)

and applying a (o
g
!u(g)) to the equality do

g
!u(g)

"e we now "nd that

do
g
!u(g)

"da(o
g
!u (g))2

"ea(o
g
!u(g))

"0o
g
!u (g).

Therefore the element d/0, which has order dividing rt, satis"es o
g
(d/0)"

(d/0)u(g). Since g generates F*
r

it follows, by the de"nition of ¹
r
, that d/0

belongs to ¹
r
. In fact, it belongs to the image s(F*

l
) of s; to prove this, it

su$ces to observe that ¹
r
is cyclic and that the order of d/0 divides the order

rt of the subgroup s (F*
l
) of ¹

r
. Thus we can write d/0"s (y), with y3F*

l
. Now

we have

0 ) v"(0/d) ) q(s, g)"s (y)~1q (s, g)"q(s, gy),

using (3.7)(e). This proves (3.8), with g@"gy. j

LEMMA (3.9). ¸et s
1
,2 , s

t
3( be characters whose orders are pairwise

relatively prime, and let g
1
,2 , g

t
3K be primitive lth roots of unity. ¹hen there

exists a primitive lth root of unity g3K such that for each i"1,2 , t one has
q(s

i
, g)"q (s

i
, g

i
).

Proof. We may assume that t'0. Write g
i
"gz(i)

1
for each i, with z(i)3F*

l
(and z(1)"1). Since the orders of the s

i
are pairwise coprime, the Chinese

remainder theorem implies that the map F*
l
P< t

i/1
s
i
(F*

l
) sending y to

(s
i
(y))t

i/1
is surjective. Choose y3F*

l
mapping to (s

i
(z(i)))t

i/1
. By (3.7)(e), we

have

q(s
i
, gy

1
)"s

i
(y)~1 ) q (s

i
, g

1
)"s

i
(z(i))~1 ) q (s

i
, g

1
)"q(s

i
, gz(i)

1
)"q(s

i
, g

i
)

for each i"1,2 , t, which proves the lemma, with g"gy
1
. j

4. CONSTRUCTING ROOTS OF UNITY

In this section we describe the algorithm that proves Theorem 2.
We are given two prime numbers p and l, a positive integer h for which

l divides ph!1, explicit data for Fph, and for each prime number r dividing
l!1 but not dividing h, an irreducible polynomial g

r
of degree r in F

p
[X]. It

is our purpose to construct a primitive lth root of unity in F
ph , in time

(l#h log p)O(1).
If p divides l!1, then it su$ces to apply Berlekamp's algorithm (see Sect.

1) for "nding a zero of + l~1
i/0

Xi in Fph . Each zero is a primitive lth root of unity.
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Note that Berlekamp's algorithm is fast enough for our purpose if p divides
l!1. Let it henceforth be assumed that p does not divide l!1, and write

l!1"<
r

ra(r),

with r ranging over the prime numbers dividing l!1 and each a(r) being
a positive integer. We shall construct a primitive lth root of unity by means of
formula (3.7)(d). For this we construct the objects from the previous section
one after the other.

(4.1) ¹he Field K. For the "eld K we shall take a "eld extension F
q
of

F
ph

satisfying the conditions stated in (3.4). The "rst condition, that K contain
a primitive lth root of unity, is satis"ed by any extension of Fph , since ph,1
mod l. We just took care of the second condition, that l!1 not be divisible
by p. The third condition is that for each prime number r dividing l!1 the
group ¹

r
has an element of order ra(r); by (3.2)(d), this is equivalent to the

requirement that qm
r,1 mod ra(r), where m

r
denotes the multiplicative order

of q modulo r.
Let m@

r
be the multiplicative order of ph modulo r, and let b(r) be the

multiplicative order of phm@
r modulo ra(r); from phm@

r,1 mod r it follows that
b(r) divides ra(r)~1. Now one readily veri"es that the number

q"ph<
r
b(r),

with r ranging over the primes dividing l!1, has the required properties (and
in fact, that it is the least power of ph having these properties). To construct F

q
,

it su$ces to construct an extension of Fph of degree <
r
b(r). By [12, Theorem

(9.1)], this can be done within the time bound stated in Theorem 2, provided
that for each r with b(r)'1 and r not dividing h, an rth degree irreducible
polynomial in Fph[X] is available; and this is indeed the case, since the given
irreducible polynomials g

r
in F

p
[X] remain irreducible over Fph.

(4.2) ¹he Ring A. We shall work in the ring A constructed in (3.4), with
K"F

q
, and in the subrings F

q
[f

r
] of A. The <

r
(r!1) elements <

r
fi(r)
r

, with
04i(r)(r!1, form a basis of A over F

q
, the products ranging over the

primes dividing l!1. Elements of A are represented on this basis. To
multiply two basis elements one uses the relations +r~1

i/0
fi
r
"0 (and fr

r
"1).

The F
q
-dimension of A is at most l!1, and the degree of F

q
over F

p
divides

h(l!1); so arithmetic in A can be done within the time bound stated in
Theorem 2, and the same is true for its subrings F

q
[f

r
] and for F

q
itself.

(4.3) ¹he ¹eichmuK ller Groups ¹
r
. For every prime number r dividing

l!1, one uses [12, Theorem (9.1)] and our hypothesis on the g
r
to construct,
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as above, a "eld extension of F
q
of degree r ; having this "eld extension, one

applies [12, Theorem (5.2)] (with E"F
q
) in order to "nd a generator of ¹

r
.

We shall denote it by c
r
; by (3.2), it is a strict root of unity of order equal to the

largest power of r that divides qm
r!1.

(4.4) ¹he Group k. Raising c
r
to a suitable power one "nds an element of

¹
r
of order ra(r), for each r. Taking the product over r one obtains a strict

(l!1)th root of unity f3A*. It generates the group that in (3.4) was denoted
by k.

(4.5) ¹he Characters s. One next computes an (l!1)](l!1) table that
for each s3( and each x3F*

l
gives the value of s (x); so each entry in the

table belongs to k. To do this, one "rst determines, by trial and error,
a primitive root d modulo l; then the characters s can be numbered by the
integers j modulo l!1, the value of the jth character at di being fij, with f as
computed in (4.4).

(4.6) ¹he Jacobi Sums j(s, t). One computes a second (l!1)](l!1)
table, giving the Jacobi sums j (s, t) as elements of A for all s, t3(. This
table is computed directly from the de"nition of Jacobi sums.

(4.7) Products of Gauss Sums. It is, naturally, not possible to compute the
Gauss sums directly from their de"nition, since g is not available. Instead one
proceeds in several steps. In each of these steps one will need to compute
certain expressions of the form

<
s3(

q (s, g)n (s),

where the n (s) are integers satisfying <s sn (s)
"1 (in (). We claim that each

such expression can be computed by means of O(+s,n(s)O0 log( Dn (s)D#1))
table look-ups and multiplications and divisions in A* and (. To prove this,
we "rst show how to compute an expression of the form q (s, g)n/q(sn, g),
where n is an integer. If n"0 or 1 this equals 1. If n is greater than 1, one sets
m"xn/2y and uses the formula

q(s, g)n

q(sn, g)
"j (sm, sn~m) )

q(s, g)m

q(sm, g)
)
q (s, g)n~m

q (sn~m, g)

(which, as all formulas in (4.7), is obtained from (3.7)(b)) to proceed by
recursion. To deal with negative n one uses that

q(s, g)n

q(sn, g)
)
q (s, g)~n

q (s~n, g)
"j(sn, s~n)~1.
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A general product <s3( q (s, g)n(s) with <
s

sn(s)
"1 is now computed from

<
s3(

q(s, g)n(s)
"A <

s3(

q(s, g)n(s)

q(sn(s), g)B ) <
s3(

q(sn(s), g),

the value of the last product being obtained from the formula

t
<
i/1

q (s
i
, g)"

t
<
i/2

j(s
12

s
i~1

, s
i
),

which is valid whenever < t
i/1

s
i
"1.

The computation shows that the computed products are independent of
the choice of g. This can be seen directly from (3.7)(e).

(4.8) Gauss Sums for Characters of Prime Power Order. Let s3( be
a character of order rt, where r is a prime number and t is a positive integer.
We describe how one can compute an element of F

q
[f

r
] that is of the form

q(s, g@), with g@3F
q
a primitive lth root of unity.

First one computes the element q(s, g)rt of F
q
[f

r
] using the method of (4.7),

which applies because srt
"1. We note that rt divides ra(r), which in turn

divides qm
r!1. One now applies the algorithm from (2.6) to the element

a"q (s, g)rt of the ring R"F
q
[f

r
], with m"(qm

r!1)/rt and n"rt, and with
c equal to the generator c

r
of ¹

r
constructed in (4.3). The condition am"1

from (2.4) is satis"ed because of (3.7)(f ) and (3.2)(d); and to verify the condition
that cm be a strict nth root of unity we combine (2.1)(g) with the fact that the
order of c

r
is the largest power of r dividing qm

r!1. Thus, from the algorithm
of (2.6) one obtains an element v3F

q
[f

r
]* with vrt

"q (s, g)rt. Next one
computes the element e de"ned in (3.8); one can take G to be the least positive
integer with G,grt~1 mod rt, and the factor q (sG, g)/q(s, g)G in the de"nition
of e can be obtained from (4.7). Using e, one computes the element 0 from (3.8)
as well; as was noted in the proof of (3.8), the exponents in the de"nition of
0 can be taken modulo rt. By (3.8), the element 0 ) v is now of the desired form
q(s, g@).

(4.9) ¹he Gauss Sums q(s, g). For each prime r dividing l!1, choose
s
r
3( of order ra(r), and use (4.8) to compute an element of F

q
[f

r
] of the form

q(s
r
, g); in principle g may depend on r, but Lemma (3.9) shows that there

exists a single g that works for all r. Next one puts s
0
"<

r
s
r
, and one

computes q (s
0
, g) from <

r
q(s

r
, g) by observing that the quotient of these two

expressions is computable from (4.7). Starting from q(s
0
, g) one computes

q(si
0
, g) for all i (modulo l!1) in succession, using that

q(si
0
, g)"

q(si~1
0

, g) ) q(s
0
, g)

j(si~1
0

, s
0
)

.

Since s
0

has order <
r
ra(r)"l!1, this gives q (s, g) for all s and a single g.
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(4.10) ¹he Primitive lth Root of ;nity g. To conclude the algorithm, one
adds up the q(s, g), for s3(, and divides the result by 1!l. By (3.7)(d), that
gives g. It belongs to the sub"eld Fph of F

q
, because l divides ph!1.

This completes our description of the algorithm. The correctness of the
algorithm has been proved along the way, and it is straightforward to show
that the run time is (l#h log p)O(1). This proves Theorem 2.

5. CONSTRUCTING NON-RESIDUES

In the present section we construct, under suitable conditions, elements of
given "nite "elds that do not belong to certain multiplicative subgroups. In
particular, we shall prove Theorem 3. We shall make use of the following
result, which is similar to Theorem 3 but much easier to prove.

THEOREM (5.1). ¹here is a deterministic algorithm that, for some positive
real number c, has the following property: given two prime numbers p and l,
a positive integer k, explicit data for Fpk, a primitive lth root of unity g in Fpk, and
if l does not divide k, an irreducible polynomial g

l
of degree l in F

p
[X], the

algorithm constructs, in time at most (l#k log p)c, an element of Fpk that is not
an lth power in Fpk.

Proof. We shall write q"pk. As in (4.1), we can use the hypothesis on
g
l
and [12, Theorem (9.1)] to construct a "eld extension F of F

q
of degree l.

The F
q
-linear map f :FPF de"ned by f (x)"+ l~1

i/0
g~ixqi is non-zero, since

f (x) may be viewed as a polynomial of degree (dF)/q in x. Hence, trying the
elements of a vector space basis of F over F

q
one by one, one can "nd an

element a3F with f (a)O0. A direct computation shows that f (a)q"g ) f (a).
This is di!erent from f (a), so we have f (a) N F

q
and F"F

q
( f (a)). The element

b"f (a)l satis"es bq"glb"b, so b3F
q
. Thus, adjoining the lth root f (a) of

b to F
q
one obtains the lth degree extension F of F

q
. This implies that Xl!b is

irreducible over F
q
, so that b is not an lth power in F

q
. This proves (5.1). j

The rest of this section is devoted to the proof of Theorem 3. Note the
di!erence between Theorem 3 and Theorem (5.1): in Theorem 3 no poly-
nomial g

l
is supposed to be given; instead, one requires a primitive lth root of

unity in Fpk to be given not just for a single l, but for all primes l dividing '
k
(p);

and the largest of these enters the run time estimate, even when a non-lth
power is constructed only for the smallest.

An important role will be played by elements of order dividing '
k
(p) in

certain algebras. We begin with a method for constructing such elements,
which will also be used in Section 6.

PROPOSITION (5.2). ¸et p be a prime number and let k be a positive integer.
¸et R be an F

p
-algebra with the property that the F

p
-algebra homomorphism
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p :RPR that raises every element of R to the power p satis,es pk"id
R
. For

each squarefree divisor d of k, write p
d
"< r Dd pk@r, the product being computed

in the group of automorphisms of R, and r ranging over the primes dividing d.
Denote by k the MoK bius function. ¹hen for each c3R* the element

d"c<
r
(1!pk@r),

the product ranging over the squarefree divisors of k, satis,es d'
k
(p)
"1.

Proof. The de"nition of d can be rewritten as

d"c<
r
(1!pk@r),

the product ranging over the primes dividing k. Since '
k
(p) <

r
(1!pk@r) is

divisible by pk!1 it follows that d'
k
(p) is a power of cpk!1, which equals

pk(c)/c"1. This proves (5.2). j

Remark. The condition pk"id
R

in (5.2) is satis"ed if R is the product of
a collection of "elds of cardinality pk. One can show that, in that case,
conversely every d3R with d'

k
(p)
"1 is given by the formula in (5.2), for some

c3R*.

We describe the algorithm that proves Theorem 3. Let p be a prime
number, k a positive integer, and write q"pk. We suppose that explicit data
for F

q
are given, and that for each prime number l dividing '

k
(p) a primitive

lth root of unity g
l
3F

q
is given. Next we let l be one of these prime numbers. It

is our purpose to construct an element of F
q
that is not an lth power in F

q
. If

l divides k then we can do this by Theorem (5.1). Let it henceforth be assumed
that l does not divide k. We claim that in the notation of (5.2) we have

<
d

p
d
(g

l
)k(d)O1. (5.3)

As we saw in the proof of (5.2), this is the same as saying that the
<

r
(1!pk@r)th power of g

l
is di!erent from 1, i.e., that <

r
(1!pk@r) is not

divisible by l. Indeed, from '
k
(p),0 mod l and kI0 mod l we see, using

(2.2), that (p mod l) is a strict kth root of unity in F
l
, so that <

r
(1!pk@r)I0

mod l. This proves (5.3).

(5.4) A Reduction. An element a3F*
q

is an lth power in F
q
if and only if

a(q~1)@l"1. We claim that it su$ces to describe an algorithm that given an
element a3F*

q
with a(q~1)@l"1 computes an lth root of a in F

q
, within time

(s(q)#log q)O(1). Namely, if starting from g
l
we repeatedly take lth roots, we

will, after O(log q) steps, "nd a root of unity in F
q
whose order is the largest
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power of l dividing q!1, and this root of unity is not an lth power in F
q
.

Thus, for the rest of the algorithm, we assume that an element a3F
q

with
a(q~1)@l"1 is given. It is our purpose to "nd an lth root of a in F

q
.

We shall denote by k@ the number of squarefree divisors of k; obviously, we
have 14k@4k. If p(k@l then Berlekamp's algorithm for "nding a zero of
Xl!a is fast enough. Let it now be assumed that p5k@l.

(5.5) ¹he Ring R. We shall work in the ring R"F
q
[X]/(Xl!a). Let

a3R denote the residue class of X, so that the elements 1, a,2 , al~1 form an
F
q
-basis for R, and al"a. We have aq~1"a(q~1)@l"1, so the map RPR

that maps each x to xq is the identity on both F
q
and a, and is therefore the

identity; that is, R satis"es the hypothesis of (5.2). Hence all elements of R*
have order dividing q!1.

The ring R has a unique automorphism that is the identity on F
q
and maps

a to g
l
a; we denote this automorphism by q. We have ql"id

R
, and q com-

mutes with the pth power map p from (5.2) and its powers p
d
. For c3R*,

write cq~1"q(c)/c. For example, we have aq~1"g
l
. We claim that:

if c3R* is such that cq~13F*
q
, then cq~13Sg

l
T. (5.6)

This follows from (cq~1)l"< l~1
i/0

cq~1"< l~1
i/0

qi(cq~1)"ql(c)/c"1.

(5.7) A Special Element of R. The next step is to construct an element
b3R that is either a zero-divisor or satis"es

b'
k
(p)
"1, bq~1 NF*

q
. (5.8)

If k"1 one can take b"1#a, as a simple computation shows. In the
general case one "nds b by means of a search procedure. First one tests
whether there is a zero-divisor among the elements a#i, i"1, 2,2 , k@l!1,
of R. If so, one is done, so suppose not. Then all these elements are units, and
one tries the elements <

d
p
d
(a#i)k(d) for the same values of i, the product

being as in (5.2). All of these elements have order dividing '
k
(p), by (5.2), and

we claim that at least one of them satis"es the second condition in (5.8).
Suppose not. Then by (5.6) we have

<
d
A
p
d
(qa)#i

p
d
(a)#i B

lk(d)
"1

for all these values of i. Apply the ring homomorphism RPF
q
that maps a to

some lth root b of a; it commutes with the pth power map p and its powers, so
we "nd that the rational function

f"<
d
A
p
d
(g

l
b)#>

p
d
(b)#> B

k(d)
3F

q
(>)
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satis"es f (i)l"1 for 14i(k@l, and the same is in fact true for i"0. Since f l

is a quotient of two monic polynomials of degree k@l, and since all these values
of i are pairwise distinct in F

p
, it follows that f l"1 in F

q
(>), so f is constant.

However, we have f (R)"1 and f (0)O1, by (5.3). This contradiction proves
that the search procedure will be successful.

(5.9) An Auxiliary Procedure. We claim that one can construct a zero-
divisor in R if an element c3R* is known for which the order of cq~1 is
a prime l@ dividing '

k
(p), but cq~1NSg

l
T; notice that the latter condition is

automatic if l@Ol.
To do this, one applies the algorithm of Proposition (2.5) with cq~1 and

g
l{

in the roles of a and f, and n"l@. This algorithm cannot give rise to an
integer i with cq~1"gi

l{
, since cq~1 does by (5.6) not belong to F

q
; hence one

obtains a non-trivial idempotent e in R, which is the desired zero-divisor.

(5.10) Constructing a Zero-Divisor. If in (5.7) one has not yet been success-
ful in constructing a zero-divisor in R, then one constructs one now. From
(5.7) one knows an element b3R* as in (5.8). We have (bq~1)'k

(p)
"1, and

since the prime factors of '
k
(p) are known one can determine the order of

bq~1. If it is divisible by some prime l@Ol, then one "nds a suitable power c of
b for which cq~1 has order l@, and one applies (5.9) in order to "nd a zero-
divisor. Hence assume that bq~1 has order lm for some integer m50. By (5.8)
we have mO0, and if m"1 then by (5.8) one can apply (5.9) to c"b. Now let
m52. In this case, one computes m"(bq~1)lm~2; this is an element of order l2,
and one has m"dq~1 with d"blm~2. We may assume that ml3Sg

l
T, since

otherwise one can apply (5.9) to c"dl. From ml3Sg
l
T we see that e"mq~1

satis"es el"1, so again by (5.9) we may assume that e3Sg
l
TLF

q
. From

q(d)"md, q (m)"em, and q (e)"e one obtains qi (d)"e( i
2
)mid by induction on i.

Since q has order l it follows that d"ql (d)"e ( l
2
)mld, so ml"e!( l

2
). By mlO1

and e3Sg
l
T this implies that l"2 and e"g

2
"!1. Therefore we have

m2"!1 and q (m)"!m.
Since all elements of R* have order dividing q!1, and m has order 4, we

have pk"q,1 mod 4. We assumed that k is not divisible by l, and l"2, so
k is odd and we have p,pk,1 mod 4. Hence one can use Schoof 's
algorithm [17] to "nd 03F*

p
with 02"!1. Now (m!0 ) (m#0 )"0, and by

q(m)"!m neither factor is 0. Thus m!0 is a zero-divisor in R.

(5.11) An lth Root of a. Let + l~1
i/0

c
i
ai, with c

i
3F

q
, be a zero-divisor in R,

as computed in (5.7) or in (5.10). Then one applies Euclid's algorithm to
compute g"gcd(+ l~1

i/0
c
i
Xi, Xl!a) in F

q
[X], which is a polynomial of

degree n for some n with 0(n(l. Each root of g is an lth root of a, so their
product, which equals (!1)n g(0), is an lth root of an. Since l is prime, one can
"nd integers u, v with un#vl"1, and then ((!1)ng (0))uav is an lth root of
a in F

q
.
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This concludes the description of the algorithm underlying Theorem 3. The
correctness has been proved along the way, and it is straightforward to prove
the run time bound asserted in the statement of the theorem. This proves
Theorem 3.

6. FACTORING POLYNOMIALS

In this section we prove Theorem 1. We begin with three auxiliary results.
Let p be a prime number and k a positive integer. We write q"pk.

LEMMA (6.1). ¹he number '
k
(p) has a prime divisor l with l,1 mod k,

unless one is in one of the following cases:

p"2, and k"1 or 6;

p"2m!1 for some integer m52, and k"2.

In all cases one has s(pk)5k/2.

Proof. If k"1 then '
k
(p)"p!1, and if k"2 then '

k
(p)"p#1; in

both cases the lemma is easy to check. Next let k'2. If we except the single
case p"2, k"6, then by [2, Sect. 1, Corollary 2] there is a prime number
l dividing pk!1 but not dividing pi!1 for any positive integer i(k. Then
l divides '

k
(p), and since the multiplicative order of p (mod l ) equals k, the

order l!1 of the group F*
l

is divisible by k. The "rst statement follows, and
the second is an immediate consequence. This proves (6.1). j

In the proof of the following lemma, and in (6.3), we let p
d
be as de"ned in

Proposition (5.2), with R"F
q
; the order of p

d
in the automorphism group

G of F
q
equals d. By k we denote the MoK bius function.

LEMMA (6.2). Any vector space basis of F
q

over F
p

contains an element
a with F

q
"F

p
(a).

Proof. Consider the F
p
-linear map g : F

q
PF

q
de"ned by g(x)"

+
d
k(d)p

d
(x), with d ranging over the squarefree divisors of k. If x belongs to

a normal basis of F
q
over F

p
, then g(x)O0, since the p

d
are pairwise distinct.

Hence g is non-zero, and any basis of F
q
over F

p
contains an element a with

g(a)O0. We can write g(a)"(<
r
(1!p

r
))a, with r ranging over the prime

divisors of k; the product belongs to the group ring F
p
[G], which naturally

acts on the additive group of F
q
. Since 1!p

r
annihilates the sub"eld Fpk@r of

F
q
, and any proper sub"eld is contained in one of the Fpk@r , the product

<
r
(1!p

r
) annihilates all proper sub"elds. Hence from g (a)O0 it follows

that a does not belong to any proper sub"eld of F
q
, so that F

q
"F

p
(a). This

proves (6.2). j
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The expression used in the proof of (6.2) is the additive analogue of the
expression that appears in (5.2).

One can prove, more precisely, that any basis of F
q
over F

p
contains at least

u(k) elements a with F
q
"F

p
(a), where u denotes the Euler function, and that

there is a basis containing exactly u (k) such a1s.

LEMMA (6.3). ¸et a3F
q
be such that F

q
"F

p
(a), and let t, u3F

p
. Suppose

that in the ,eld F
q
(>) of rational functions one has

<
d

(p
d
(a)>#t)k(d)"<

d

(p
d
(a)>#u)k(d),

with d ranging over the squarefree divisors of k. ¹hen we have t"u.

Proof. If both t and u are 0 we are done. So suppose that tO0. We have

A <
d,k (d )"1

(p
d
(a)>#t)B ) A <

d,k(d )"!1

(p
d
(a)>#u)B

"A <
d,k (d )"1

(p
d
(a)>#u)B ) A <

d,k (d )"!1

(p
d
(a)>#t)B.

By unique factorization in F
q
[>], the factor a>#t on the left is proportional

to one of the factors on the right. From F
q
"F

p
(a) it follows that the elements

p
d
(a) are pairwise distinct, so a>#t is not proportional to any of the factors

p
d
(a)>#t with k(d )"!1. Hence there exists d with k (d)"1 such that

a>#t is proportional to p
d
(a)>#u, so that p

d
(a)"(u/t)a. Applying p

d
we

see that p2
d
(a)"(u/t)p

d
(a). Also the factor p

d
(a)>#t on the left is propor-

tional to a factor on the right, so the same argument shows that there exists d@
with k (d@)"1 and pd@(a)"(u/t)p

d
(a). Then we have pd@"p2

d
. Since pd@ and p

d
have orders d@ and d, respectively, it follows that d@"d/gcd(d, 2). If d is even
then we have d"2d@, which contradicts k(d )"k(d@)"1. Hence d is odd, and
we have d@"d. From pd@(a)"(u/t)p

d
(a) we now see that u"t. This proves

(6.3). j

We turn to the description of the algorithm that proves Theorem 1. Let, for
some prime number p and positive integers n and k, a polynomial f over Fpn be
given, as well as an irreducible rth degree polynomial g

r
in F

p
[X] for each

r3R(pk) that does not divide n. It is our purpose to factor f into irreducible
factors in Fpn[X].

The algorithm starts by factoring '
k
(p) completely by means of trial

division. From '
k
(p)(pk and (6.1) it follows that this can be done in time

(s(pk)#log p)O(1).
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(6.4) Preliminary Reductions. Using [5, Sect. 7.5 and Theorem 7.8.1], one
reduces to the case in which f is known to be a product of deg f pairwise
distinct linear factors in F

p
[X], with deg f'1. We shall assume that this is

the case, so that Xp,X mod f. Also, we assume that f is monic. Then the
coe$cients of f and of all of its monic factors belong to F

p
.

As in (5.4), we denote by k@ the number of squarefree divisors of k. If p(k@
or p"2 then Berlekamp's algorithm is fast enough. We shall assume that
p5k@ and that pO2.

The algorithm that we describe "nds a non-trivial factor of f. Applying the
algorithm recursively one obtains the complete factorization of f.

(6.5) ¹he Field F
q
. Let q"pk. If we have k"2 and p"2m!1 for some

integer m52, then F
p
[X]/(X2#1) is an explicit model for F

q
. In the other

case one constructs F
q
as follows. Since explicit data for Fpn are given, one can

use [12, Theorem (9.1)] (with E"F
p
) to compute an irreducible rth degree

polynomial g
r
3F

p
[X] for each prime divisor r of n. Then one knows, with the

g
r
that were given, an rth degree irreducible polynomial g

r
3F

p
[X] for each

r3R (pk). From the de"nition of R (pk) (see Sect. 1) and Lemma (6.1) it follows
that each prime dividing k belongs to R(pk). By [12, Theorem (9.1)] one can
use the g

r
with r dividing k to construct explicit data for F

q
.

(6.6) Special Elements of F
q
. One constructs an element a3F

q
with

F
q
"F

p
(a). Such an element may be a byproduct of the construction of F

q
in

(6.5) (cf. [12, Theorem (9.1)(b)]); but in any case one can be found among the
elements of a basis of F

q
over F

p
, by Lemma (6.2). Note that a3F

q
satis"es

F
q
"F

p
(a) if and only if the elements a, p (a),2 , pk~1(a) are pairwise distinct,

where p (x)"xp.
One also constructs an element f3F*

q
of order '

k
(p). To do this, one "rst

applies Theorem 2 to h"k in order to "nd, for each prime number l3S (q),
a primitive lth root of unity in F*

q
. Next, using Theorem 3, one "nds for each

such l an element c
l
of F

q
that is not an lth power in F

q
. A suitable power d

l
of

c
l
has order equal to the largest power of l dividing '

k
(p). One can now take

f"<
l
d
l
, the product ranging over the primes l dividing '

k
(p).

(6.7) ¹he Ring R. The rest of the algorithm works in the ring
R"F

q
[X]/( f ). If one knows a zero-divisor in R, then as in (5.11) one can

use it in order to "nd a non-trivial factor g of f in F
q
[X]; and as we

saw in (6.4), the coe$cients of g are in F
p
. Thus, it su$ces to "nd a zero-

divisor in R.
Let p :RPR denote the pth power map and let a3R be the residue class of

X. We have p(a)"a (see (6.4)), and therefore p satis"es the condition pk"id
R

of Proposition (5.2). Let p
d

be as in (5.2). For each d we have p
d
(a)"a.

If a is a zero-divisor then one is done, so suppose it is not.
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(6.8) A Special Element of R. One constructs an element d of R* satisfying

d'
k
(p)
"1, d N F*

q
. (6.9)

If k"1 then one simply takes d"a. Let k'1. None of the elements !ia of
F
q
, with 14i4k@!1, belongs to F

p
, so none of them is a zero of f ; hence for

each of these values of i the elements ia#a is a unit of R. To "nd d, one
searches among the elements

<
d

(p
d
(ia)#a)k(d), 14i4k@!1.

By (5.2), each of these elements is a unit of R of order dividing '
k
(p). Hence, to

prove that the search is successful, it su$ces to prove that at least one of these
elements is outside F*

q
. Suppose not; then for each i there exists c

i
3F*

q
with

<
d

(p
d
(ia)#a)k(d)"c

i
.

Applying, to this equality, two F
q
-algebra homomorphisms RPF

q
that map

a to two distinct zeroes t, u3F
p

of f, we "nd that

<
d

(p
d
(a)i#t)k(d)"<

d

(p
d
(a)i#u)k(d),

because both sides are equal to c
i
. Thus, the two rational functions occurring

in Lemma (6.3) assume the same value at each of k@!1 elements of F*
q
. They

also assume the same value at R and at 0, and since each of the two rational
functions is the quotient of two polynomials of degrees k@/2 they must be the
same; but this contradicts (6.3).

We have k@!1"1 if k is a prime power, so that in that case no search is
necessary.

(6.10) A Zero-Divisor. Finally, one applies (2.5) to n"'
k
(p), with d in the

role of a and f as constructed in (6.6). The condition dn"1 from (2.3) is
satis"ed by (6.9), and f is a strict nth root of unity in R because it is a primitive
nth root of unity in F

q
. The algorithm of (2.5) cannot give rise to an integer

i (mod '
k
(p)) with d"fi, because d NF*

q
; hence one obtains a non-trivial

idempotent e in R, which is the desired zero-divisor.
This concludes the description of the algorithm underlying Theorem 1. We

proved the correctness along the way. The proof of the run time estimate is
straightforward; it is useful to note that k4s(q) if p'2, by (6.1). This
completes the proof of Theorem 1.
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