On a Problem of Garcia, Stichtenoth, and Thomas

H. W. Lenstra, Jr.

Department of Mathematics # 3840, University of California, Berkeley, California 94720-3840; and Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA Leiden, the Netherlands E-mail: hwl@math.berkeley.edu, hwl@math.leidenuniv.nl

Communicated by Michael Tsfasman

Received September 29, 2000; revised January 22, 2001; published online July 11, 2001

In a recent paper, Garcia, Stichtenoth, and Thomas exhibited, for every finite field E that is not a prime field, an explicit sequence of absolutely irreducible smooth projective curves C_n over E with genus tending to infinity and with $\#C_n(E)/\text{genus}(C_n)$ tending to a positive limit. I show that their construction does not work over prime fields. © 2002 Elsevier Science (USA)

Key Words: finite fields; polynomials; curves with many points.

In a recent paper, Garcia, Stichtenoth, and Thomas [1] proved the following result.

THEOREM 1. Let E be a finite field, and let q be its cardinality. Denote by E[X] the polynomial ring in one variable X over E, and by \bar{E} an algebraic closure of E. Let m be an integer and $f \in E[X]$, and suppose that

- (i) m > 1, and m divides q 1;
- (ii) f has degree m, and the leading coefficient of f is an mth power in E;
- (iii) the number d of factors X in f satisfies gcd(d, m) = 1;
- (iv) there is a finite set $S \subset \overline{E}$ with $0 \in S$ such that $\{\alpha \in \overline{E} : \text{there exists } \beta \in S \text{ with } f(\alpha) = \beta^m \}$ is contained in S.

Then for each non-negative integer n the equations

$$x_{i+1}^m = f(x_i) \qquad (0 \le i < n)$$

in $x_0, x_1, ..., x_n$ define an absolutely irreducible curve over E, and if C_n denotes the normalization of its projective closure then one has

$$\lim_{n\to\infty} \operatorname{genus}(C_n) = \infty, \qquad \lim_{n\to\infty} \frac{\# C_n(E)}{\operatorname{genus}(C_n)} > 0.$$

This result is a consequence of Theorem 2.2 in [1], with the condition $S \subset E$ replaced by the weaker but still sufficient condition $S \subset \overline{E}$.

If p denotes the characteristic of E, and q > p, then m = (q - 1)/(p - 1) and $f = 1 - (1 + X)^m$ satisfy the conditions of Theorem 1, with S = E; see Example 2.3 in [1]. Thus, for every finite field E that is not a prime field one obtains an explicit family of curves showing that

$$\limsup_{C} \frac{\# C(E)}{\mathrm{genus}(C)} > 0,$$

with C ranging over all absolutely irreducible smooth projective curves over E, up to isomorphism. For finite prime fields the lim sup is still positive (see [2]), but the authors of [1] failed in their attempts to deduce this from Theorem 1 (see Remark 2.7 in [1]). In the present note I explain this failure by showing that, in the case in which q is prime, no pair m, f satisfying the conditions of Theorem 1 exists. More precisely, I prove the following result.

Theorem 2. Let q be a prime number, let E be a finite field of cardinality q, and let E[X] and \bar{E} be as above. Then there do not exist an integer m and a polynomial $f \in E[X]$ that have the following properties:

- (1) m > 1, and m divides q 1;
- (2) f has degree m, and if m = q 1 then the leading coefficient of f equals 1;
- (3) the number d of factors X in f satisfies 0 < d < m;
- (4) there is a finite set $S \subset \overline{E}$ with $0 \in S$ such that $\{\alpha \in \overline{E} : \text{there exists } \beta \in S \text{ with } f(\alpha) = \beta^m \}$ is contained in S.

I do not know whether this negative result can be extended to sequences of curves that are defined in a more general way. For example, one may replace the equation $x_{i+1}^m = f(x_i)$ by $f_0(x_{i+1}) = f_1(x_i)$, where f_0 and f_1 are polynomials or even rational functions; can one obtain, in this manner, a sequence of curves satisfying the conclusions of Theorem 1, if q is prime? Another problem is to classify, for general q, all pairs m, f that satisfy the conditions of Theorem 1.

For odd q, the pair m = q - 1, $f = 1 - (1 + X)^{q-1}$ satisfies all conditions (with d = 1, S = E), except the condition on the leading coefficient; for q = 2, it violates only the condition m > 1.

Proof of Theorem 2. Let the notation be as in Theorem 2, and assume that m and f satisfy conditions (1)–(4). I shall derive a contradiction. Write $T = \{\beta^m : \beta \in S\}$. Then T is a finite subset of \overline{E} containing 0, and for each $\alpha \in \overline{E}$ with $f(\alpha) \in T$ one has $\alpha^m \in T$. Define

$$g = \prod_{\gamma \in T} (X - \gamma).$$

This is a polynomial in $\bar{E}[X]$ of degree t = #T. I prove the identity

(5)
$$d \cdot X^{m-1} \cdot g(f) = g(X^m) \cdot f',$$

where f' is the derivative of f with respect to X. If α is a zero of g(f) in \overline{E} , then $f(\alpha) \in T$, so $\alpha^m \in T$ and α is a zero of $g(X^m)$, of multiplicity m if $\alpha = 0$; in addition, the multiplicity of α as a zero of $g(f) = \prod_{\gamma \in T} (f - \gamma)$ is at most 1 more than the multiplicity of α as a zero of f'. This implies that the left side of (5) divides the right side. One proves equality by comparing the degree and the coefficient at X^{m+d-1} .

Denote the leading coefficient of f by a. Comparing leading coefficients in (5) one sees that $d \cdot a^t = m \cdot a$. If a = 1, then one has d = m in E, contradicting that 0 < d < m < q since q is prime. This proves $a \ne 1$, so (2) shows that m is different from q - 1. Since m divides q - 1, it is at most (q - 1)/2, and one has 2m < q.

Put $X = Y^{-1}$ in (5), divide by $d \cdot a^t = m \cdot a$, and multiply by Y^{m-1+tm} . Retaining, in the result, only the terms that have degree less than 2m in Y, one finds that the polynomial $h = a^{-1} \cdot Y^m \cdot f(Y^{-1}) \in E[Y]$ satisfies

(6)
$$h^{t} + ba^{-1} \cdot Y^{m} \cdot h^{t-1} \equiv (1 + bY^{m}) \cdot (h - Yh'/m) \mod Y^{2m},$$

where b denotes the coefficient of g at X^{t-1} and h' is the derivative of h with respect to Y. Note that h has degree m-d in Y and that h(0)=1.

Define m' = m if $b \neq 0$ and m' = 2m if b = 0. From (6) one obtains

$$h^{t-1} \equiv 1 - Yh'/(mh) \operatorname{mod} Y^{m'}.$$

Let e be the number of factors Y in h-1; then $0 < e \le m-d$. Viewing the equation modulo Y^{e+1} one sees that $t-1 \equiv -e/m \mod q$. Write j for the residue class of $h^{e/m}$ modulo $Y^{m'}$, the exponent e/m being taken modulo q; this is well defined, since from $m' \le 2m < q$ and h(0) = 1 it follows that $h^q \equiv 1 \mod Y^{m'}$. One has $Yj'/j = ((e/m)Yh'/h \mod Y^{m'})$, so in terms of j the equation reads $j^{-1} = 1 - Yj'/(ej)$; that is, 1 = j - Yj'/e. Comparing coefficients at Y^i , $0 \le i < m'$, one concludes that $j = (1 + cY^e \mod Y^{m'})$ for some $c \in E$. Let n be the unique integer satisfying 0 < n < q and $n \equiv m/e \mod q$. Then one has

$$h \equiv (1 + cY^e)^n \bmod Y^{m'}.$$

Since h-1 has exactly e factors Y one has $c \neq 0$.

From n < q it follows that the degrees of the non-zero terms of $(1 + cY^e)^n$ are precisely the numbers ie, $0 \le i \le n$. I deal first with the case m' = 2m. Since h has a non-zero term of degree m - d, one must have m - d = ie for some i with $0 \le i \le n$. If i < n, then $(1 + cY^e)^n$ has also a non-zero term of

degree (i+1)e = m-d+e, and m-d+e < 2m = m' implies that h has a non-zero term of that degree as well, contradicting that h has degree m-d. If i=n, then one has $m-d=ne \equiv (m/e)e = m \mod q$, which is also a contradiction. It follows that m'=m, so that $b \neq 0$.

Let $k \in E[Y]$ be such that $h = (1 + cY^e)^n - k \cdot Y^m$; so $k \cdot Y^m$ is the sum of the terms of degree at least m in $(1 + cY^e)^n$. Modulo Y^{2m} , the left side of (6) is

$$(1 + cY^e)^{nt} + (ba^{-1} - tk) \cdot Y^m \cdot (1 + cY^e)^{n(t-1)}$$

$$\equiv (1 + cY^e)^{n-1} + (ba^{-1} - tk) \cdot Y^m \cdot (1 + cY^e)^{-1}$$

since $n(t-1) \equiv -1 \mod q$ and $nt = n + n(t-1) \equiv n - 1 \mod q$. The factor h - Yh'/m on the right of (6) equals

$$\begin{split} (1+cY^e)^n - k \cdot Y^m - (ne/m) \cdot cY^e \cdot (1+cY^e)^{n-1} + k \cdot Y^m + k' \cdot Y^{m+1}/m \\ &= (1+cY^e)^{n-1} + k' \cdot Y^{m+1}/m, \end{split}$$

since $ne/m \equiv 1 \mod q$. Substituting this in (6), canceling $(1 + cY^e)^{n-1}$, and dividing by Y^m , one finds

$$(ba^{-1} - tk) \cdot (1 + cY^e)^{-1} \equiv k' \cdot Y/m + b \cdot (1 + cY^e)^{n-1} \mod Y^m.$$

In particular, one has $ba^{-1} - t \cdot k(0) = b$, which by $a \neq 1$ implies $k(0) \neq 0$. By the definition of k, this shows that $(1 + cY^e)^n$ has a non-zero term of degree m. Since k has degree m - d, one concludes that m - d and k are two consecutive degrees of non-zero terms of $(1 + cY^e)^n$. Therefore k = d and k divides k. The congruence $k \equiv m/e \mod q$ now gives an equality k = m/e, and k = m/e the constant polynomial k. Thus, in the congruence just displayed one has k = 0, and multiplying the congruence by k = 0 one obtains

$$a^{-1} - b^{-1} \cdot t \cdot c^n \equiv (1 + cY^e)^n \operatorname{mod} Y^m.$$

This implies that $1 + cnY^e$ is congruent to a constant modulo Y^{e+1} , contradicting $c \neq 0$ and 0 < n < q. This contradiction completes the proof.

Remark. The identity (5), which forms the key to my proof, admits the following structural interpretation. Denote by \mathbf{A}^1 the affine line over \overline{E} , and let π , $\rho: \mathbf{A}^1 \to \mathbf{A}^1$ be the maps defined by X^m and f, respectively; these intervene in an obvious way in the definition of the curves C_n in Theorem 1. There are maps $C_n \to \mathbf{P}^1 = \mathbf{A}^1 \cup \{\infty\}$ of degree m^n that are unramified over the complement of T, and this is used in [1] to bound the growth of genus (C_n) as $n \to \infty$. Write, by abuse of notation, T for the divisor $(g) = \sum_{\gamma \in T} \{\gamma\}$ on \mathbf{A}^1 , and denote by R_{π} and R_{ρ} the respective ramification divisors ("differents") of

 π and ρ ; these are defined by X^{m-1} and f'. With this notation, (5) is, as an identity between divisors, equivalent to $\rho^*T - R_\rho = \pi^*T - R_\pi$.

ACKNOWLEDGMENTS

I thank H. Stichtenoth for bringing the problem addressed here to my attention and J. Flynn for an inspiring discussion.

REFERENCES

- 1. A. Garcia, H. Stichtenoth, and M. Thomas, On towers and composita of towers of function fields over finite fields, *Finite Fields Appl.* **3** (1997), 257–274.
- 2. J.-P. Serre, Sur le nombre des points d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I Math. 269 (1983), 397-402.