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In a recent paper, Garcia, Stichtenoth, and Thomas exhibited, for every "nite "eld
E that is not a prime "eld, an explicit sequence of absolutely irreducible smooth
projective curves C

�
over E with genus tending to in"nity and with �C

�
(E)/genus(C

�
)

tending to a positive limit. I show that their construction does not work over prime
"elds. � 2002 Elsevier Science (USA)
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In a recent paper, Garcia, Stichtenoth, and Thomas [1] proved the follow-
ing result.

THEOREM 1. ¸et E be a ,nite ,eld, and let q be its cardinality. Denote by
E[X] the polynomial ring in one variable X over E, and by EM an algebraic
closure of E. ¸et m be an integer and f3E[X], and suppose that

(i) m'1, and m divides q!1;
(ii) f has degree m, and the leading coe.cient of f is an mth power in E;
(iii) the number d of factors X in f satis,es gcd(d, m)"1;
(iv) there is a ,nite set SLEM with 03S such that ��3EM : there exists �3S

with f (�)"��� is contained in S.
¹hen for each non-negative integer n the equations

x�
���

"f (x
�
) (04i(n)

in x
�
, x

�
,2,x

�
de,ne an absolutely irreducible curve over E, and if C

�
denotes

the normalization of its projective closure then one has

lim
���

genus(C
�
)"R, lim

���

�C
�
(E)

genus(C
�
)
'0.
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This result is a consequence of Theorem 2.2 in [1], with the condition
SLE replaced by the weaker but still su$cient condition SLEM .
If p denotes the characteristic of E, and q'p, then m"(q!1)/(p!1) and

f"1!(1#X)� satisfy the conditions of Theorem 1, with S"E; see
Example 2.3 in [1]. Thus, for every "nite "eld E that is not a prime "eld one
obtains an explicit family of curves showing that

lim sup
�

�C(E)

genus(C)
'0,

with C ranging over all absolutely irreducible smooth projective curves over
E, up to isomorphism. For "nite prime "elds the lim sup is still positive (see
[2]), but the authors of [1] failed in their attempts to deduce this from
Theorem 1 (see Remark 2.7 in [1]). In the present note I explain this failure
by showing that, in the case in which q is prime, no pair m, f satisfying the
conditions of Theorem 1 exists. More precisely, I prove the following result.

THEOREM 2. ¸et q be a prime number, let E be a ,nite ,eld of cardinality q,
and let E[X] and EM be as above. ¹hen there do not exist an integer m and
a polynomial f3E[X] that have the following properties:

(1) m'1, and m divides q!1;
(2) f has degree m, and if m"q!1 then the leading coe.cient of f

equals 1;
(3) the number d of factors X in f satis,es 0(d(m;
(4) there is a ,nite set SLEM with 03S such that ��3EM : there exists �3S

with f (�)"��� is contained in S.

I do not know whether this negative result can be extended to sequences of
curves that are de"ned in a more general way. For example, one may replace
the equation x�

���
"f (x

�
) by f

�
(x

���
)"f

�
(x

�
), where f

�
and f

�
are polynomials

or even rational functions; can one obtain, in this manner, a sequence of
curves satisfying the conclusions of Theorem 1, if q is prime? Another prob-
lem is to classify, for general q, all pairs m, f that satisfy the conditions of
Theorem 1.
For odd q, the pair m"q!1, f"1!(1#X)��� satis"es all conditions

(with d"1, S"E), except the condition on the leading coe$cient; for q"2,
it violates only the condition m'1.

Proof of ¹heorem 2. Let the notation be as in Theorem 2, and assume
that m and f satisfy conditions (1)}(4). I shall derive a contradiction. Write
¹"��� :�3S�. Then ¹ is a "nite subset of EM containing 0, and for each
�3EM with f(�)3¹ one has ��3¹. De"ne

g"�
���

(X!�).
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This is a polynomial in EM [X] of degree t"�¹. I prove the identity

d )X���)g ( f )"g (X�) ) f �,(5)

where f � is the derivative of f with respect toX. If � is a zero of g ( f ) in EM , then
f (�)3¹, so ��3¹ and � is a zero of g (X�), of multiplicity m if �"0; in
addition, the multiplicity of � as a zero of g ( f )"�

���
( f!�) is at most

1 more than the multiplicity of � as a zero of f �. This implies that the left side
of (5) divides the right side. One proves equality by comparing the degree and
the coe$cient at X��	��.
Denote the leading coe$cient of f by a. Comparing leading coe$cients in

(5) one sees that d ) a
"m ) a. If a"1, then one has d"m in E, contradicting
that 0(d(m(q since q is prime. This proves aO1, so (2) shows that m is
di!erent from q!1. Sincem divides q!1, it is at most (q!1)/2, and one has
2m(q.
Put X">�� in (5), divide by d )a
"m ) a, and multiply by >����
�.

Retaining, in the result, only the terms that have degree less than 2m in>, one
"nds that the polynomial h"a�� )>� ) f (>��)3E[>] satis"es

h
#ba�� )>� ) h
��,(1#b>�) ) (h!>h�/m)mod>�� ,(6)

where b denotes the coe$cient of g at X
�� and h� is the derivative of h with
respect to >. Note that h has degree m!d in > and that h (0)"1.
De"ne m�"m if bO0 and m�"2m if b"0. From (6) one obtains

h
��,1!>h�/(mh)mod>��.

Let e be the number of factors > in h!1; then 0(e4m!d. Viewing the
equation modulo >��� one sees that t!1,!e/m mod q. Write j for the
residue class of h��� modulo>��, the exponent e/m being taken modulo q; this
is well de"ned, since from m�42m(q and h (0)"1 it follows that h�,1
mod >��. One has >j�/j"((e/m)>h�/hmod>��), so in terms of j the equation
reads j��"1!>j�/(ej); that is, 1"j!>j�/e. Comparing coe$cients at >�,
04i(m�, one concludes that j"(1#c>�mod>��) for some c3E. Let n be
the unique integer satisfying 0(n(q and n,m/emod q. Then one has

h,(1#c>�)�mod>��.

Since h!1 has exactly e factors > one has cO0.
From n(q it follows that the degrees of the non-zero terms of (1#c>�)�

are precisely the numbers ie, 04i4n. I deal "rst with the case m�"2m.
Since h has a non-zero term of degree m!d, one must have m!d"ie for
some i with 04i4n. If i(n, then (1#c>�)� has also a non-zero term of
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degree (i#1)e"m!d#e, and m!d#e(2m"m� implies that h has
a non-zero term of that degree as well, contradicting that h has degree m!d.
If i"n, then one has m!d"ne,(m/e)e"mmod q, which is also a contra-
diction. It follows that m�"m, so that bO0.
Let k3E[>] be such that h"(1#c>�)�!k )>�; so k )>� is the sum of

the terms of degree at least m in (1#c>�)�. Modulo>��, the left side of (6) is

(1#c>�)�
#(ba��!tk) )>� ) (1#c>�)�	
��


,(1#c>�)���#(ba��!tk) )>� ) (1#c>�)��

since n (t!1),!1mod q and nt"n#n (t!1),n!1mod q. The factor
h!>h�/m on the right of (6) equals

(1#c>�)�!k )>�!(ne/m) ) c>� ) (1#c>�)���#k )>�#k� )>���/m

"(1#c>�)���#k� )>���/m,

since ne/m,1mod q. Substituting this in (6), canceling (1#c>�)���, and
dividing by >�, one "nds

(ba��!tk) ) (1#c>�)��,k� )>/m#b ) (1#c>�)���mod>�.

In particular, one has ba��!t ) k(0)"b, which by aO1 implies k (0)O0. By
the de"nition of k, this shows that (1#c>�)� has a non-zero term of degreem.
Since h has degree m!d, one concludes that m!d and m are two consecut-
ive degrees of non-zero terms of (1#c>�)�. Therefore e"d and e divides m.
The congruence n,m/emod q now gives an equality n"m/e, and k equals
the constant polynomial c�. Thus, in the congruence just displayed one has
k�"0, and multiplying the congruence by b�� ) (1#c>�) one obtains

a��!b�� ) t ) c�,(1#c>�)�mod>�.

This implies that 1#cn>� is congruent to a constant modulo >���, contra-
dicting cO0 and 0(n(q. This contradiction completes the proof.

Remark. The identity (5), which forms the key to my proof, admits the
following structural interpretation. Denote by A� the a$ne line over EM , and
let �, 	 :A� PA� be the maps de"ned by X� and f, respectively; these
intervene in an obvious way in the de"nition of the curves C

�
in Theorem 1.

There are maps C
�
PP�"A�
�R� of degree m� that are unrami"ed over

the complement of ¹, and this is used in [1] to bound the growth of genus(C
�
)

as nPR. Write, by abuse of notation, ¹ for the divisor (g)"�
���

��� on A�,
and denote by R� and R� the respective rami"cation divisors (&&di!erents'') of
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� and 	; these are de"ned by X��� and f �. With this notation, (5) is, as an
identity between divisors, equivalent to 	*¹!R�"�*¹!R� .
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