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On hats and other covers
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I. INTRODUCTION

The following game puzzle has recently received attention
froni mathematicians, computer scientists, coding theorists,
and even from the mass press [1]: A team of n players is fitted

. with hats, which are either red or green. A player can see the

other players’ hat colors, but not his own. Each player is then
asked to declare his hat color, or pass. All the players must
declare simultaneously, with no inter-player communication
allowed during the game. They are permitted, however, to
hold a strategy coordination meeting before the game starts.
The team wins if at least one player declares the correct color,
and no player declares incorrectly. The goal of the team is
to devise a strategy that maximizes the winning probability,
under an assumption of uniform probability distribution on
the hat color combinations.

A winning probability of 50% is guaranteed by a trivial
strategy in which a designated player declares “red,” and the
rest “pass.” The puzzle is popularly posed for n = 3. In
that case, the following strategy yields a 75% winning prob-
ability, which turns out to be optimal: Upon observing the
hats of the teammates, if a player sees two identical colors, he
declares the opposite color, otherwise he passes. Clearly, the
team wins whenever the color configuration consists of two
hats of the same color and one of the opposite color, and it
loses when the three hats are of the same color. Moreover,
the following property holds: In winning configurations, one
player declares the correct color, and the rest pass; in losing
configurations all the players declare a wrong color. For any
value of n, a strategy satisfying this property is said to be
perfect. We will be interested in the behavior of the winning
probability for the best strategies as a function of n, and in
its asymptotic behavior as n — oo. We start with the bi-
nary (two-color) game just defined, and then generalize the
problem to an arbitrary number ¢ > 2 of colors.

II. COVERINGS FOR THE BINARY GAME

Let 0 and 1 represent the colors in the binary hats game, let
N={1,2,...,n}, and let V,,={0, 1}" denote the n-dimensional
binary space. A deterministic n-player strategy is a vector F =
(f1, f2, ..., fn), where the function f; : Vaeq1 — {0, 1, pass},
1 € N, encodes the instructions for player i, i.e., upon observ-
ing u € V,_1, player ¢ declares f;(u). Clearly, given a hats
configuration v € V,, and a strategy F, it is uniquely deter-
mined whether F wins on v or not. For a given strategy F,
let Wr C V,, denote the set of winning configurations for F.
A 1-covering of V,, (in the Hamming metric) is a set C C V,
such that for all v € V,, there is a vector ¢ € C that differs
from v in at most one coordinate [2].

Proposition 1 There is a one-to-one correspondence be-
tween strategies for the binary hats game and 1-coverings of
Vn. For each strategy F, Cr=V,\Wx is a I-covering and,
conversely, each 1-covering C is the losing set of a strategy
Fc. Moreover, F is perfect if and only if Cr is a perfect code.

A strategy Fc corresponding to a l-covering C has losing
probability P, = |C|/|V.| = 27"|C|. For values n = 2™ —
1, the (perfect) binary Hamming code of length n defines a
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strategy with P, = (n + 1)_1, and the winning probability
1 — Pr, converges to 1 at the fastest possible rate. When n
is not a Hamming length, a shorter Hamming code can be
trivially lengthened to obtain Pr < 2(n + 1)~!. The factor
of 2 relative to the optimal convergence is inevitable in the
case of linear codes, but it follows from the results in [3] that
one can construct sequences of non-linear 1-coverings with Pr,
approaching, asymptotically, the ideal (n + 1)

III. STRONG COVERINGS FOR THE ¢-ARY GAME

We now consider a game where the hat colors are drawn from a
g-ary alphabet @, for an arbitrary integer ¢ > 2. The playing
rules remain the same as before. In this case, an approach
based on g-ary l-coverings quickly leads to disappointment,
even in the case of perfect codes. Strategies derived from ¢-
ary l-coverings approach a winning probability of (¢ — 1)™!,
which is fine when ¢ = 2, but leaves room for improvement
otherwise. As before, we characterize a deterministic strategy
F in terms of its set W C Q" of winning configurations, and
its complement C' = Q™ \ W.

Proposition 2 Let w = (w1, wa, ..., wa). Ifw € W,
then there exists a coordinate i € N such that for all x €
Q\ {w:i}, we have (w1, wa, ..., W1, T, Wit1, ..., wn) € C.
Conversely, any set C satisfying this condition defines a strat-
egy for the q-ary game.

We call a set C' as in Proposition 2 a strong covering of Q™.
A sphere-packing-type bound exists for strong coverings, as
well as a notion of a perfect strong covering, which corresponds
to a perfect strategy as defined in Section I (the definition
carries to ¢ > 2). However, the following proposition holds.

Proposition 3 There are no perfect strong coverings for
q>2 and n>1.

Assume (@ is endowed with an abelian group law. Then,
we can efficiently construct C' in the following proposition.

Proposition 4 There is a strong covering C' of Q™, with
PL = |Clg™ = O(n™°), with ¢ > (1 - ¢~ H)(1 + (2(q —
1)~")(elog(q - 1))~

For 0« ¢ <n, the dominant term in the exponent cis of the
form 1/(elog(q—1)). Noga Alon [4], using a non-constructive
random-coding argument, showed the existence of strong cov-
erings with P = O((qlogn)/n). The full paper will expand
on these results and their proofs, as well as on deterministic,
probabilistic, and symmetric variants of the basic game.
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