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Preface.

These notes grew out of a course given by H.-W. Lenstra, Jr. at the University of Amsterdam in the
fall semester of 1986. They are meant to give an introduction to the theory of elliptic curves to
non-specialists, and to review some of the recent applications to number theoretic algorithms. The
prerequisites are kept to a minimum. In fact, apart from a few execises which are not essential for
the understahding of the main text, a basic knowledge of groups, fields and rings will suffice. In
particular no results from algebraic geometry are used. Some statements are given without proof.
With the exception of theorem (4.6)" this is done to avoid a lengthy exposition rather than
mathematical difficulties. The references for proofs are all easily accessible to the average student.
Our main reference is Silverman [19] who based his book on a survey article of Tate [20]. A
history of elliptic curves and Diophantine equations is given by Bashmakova [2]. Recently a book
of Husemoller [7a] has appeared. I would like to stress that since this is a first version of many to
follow, suggestions and mild criticism are always welcome.

Notation.
The symbols Z,Q,R,C and F g are used to denote the ring of integers, the fields of rational,

real and complex numbers and the finite field of ¢ elements respectively. If K is a field, then K
denotes the algebraic closure of K .

Acknowledgement.
I'am greatly indebted to Hendrik Lenstra for his stimulating support during the preparation of these

notes.
JvdLL

* An elementary proof of theorem (4.6) will be given in the following version.






§1. The group law on an elliptic curve.

Let K be a field. The projective plane over K, denoted P%(K), is defined as the set of triples
(x,y,2) € KX K X K , such that x, y and z are not all 0, modulo the equivalence relation given by
(x,y,2) ~ (x",y’,z") if there exists A € K* with x = Ax’ y=Ay',z=2Az".
The equivalence-class of (x,y,z) under this relation is denoted by (x:y:z). The projective plane is the
disjoint union of the affine plane,
A2K)={ (xyz) e P2K) |z#0}={ (x:y:1) |xye K },
and the projective line at oo,
PIK) ={ (x:y:z) e P2(K)|z=0}.

In the language of algebraic geometry one can give two definitions for an elliptic curve E(K).
According to one definition an elliptic curve is a non-singular plane cubic curve, with a fixed point
0 € E(K). An intrinsic definition describes an elliptic curve as a non-singular complete curve of
genus 1, again with a fixed point O € E(K).
In Silverman [19, chapters I-III] one can find the meaning of all this and a proof that the two
definitions are equivalent up to isomorphism.
By a suitable choice of coordinates, taking O to be the point (0:1:0) in o, one obtains the
Weierstrass-form of the equation for an elliptic curve,

Y2 + ayxyz + azyz? = x3 + apx’z + axz? + a2, (1)
The inhomogeneous equation is

y2+a1xy+a3y =x3+a2x2+a4x+a6. (2)
If char K'#2 or 3 the equation can be simplified by .replacing y by y— (a;x +a3)/2 and x by
x = (4a, + a?)/12,

V=fx)=x3+ax+b. (3)
If char K # 2, a curve given by equation (3) is non-singular if and only if

A(f) = —(4a3 + 27b%) = 0.
Here A(f) denotes the discriminant of f. For convenience we shall always assume that K has
characteristic # 2 or 3. This justifies the following definition.

(1.1) Definition. Let K be a field of characteristic # 2 or 3. An elliptic curve over K, denoted E
=E,, ,isapair (a,b) € K XK such that 4a3 + 27b% # 0. The set of points of E over K is
E(K) ={ (x:;y:z) € PX(K) | y*z = x> + axz2+ bz3 }. Similarly one defines E(L) for a field
extension L of K.

Note that two different elliptic curves may give rise to the same set of points. This can be compared
with the difference between a polynomial as a formal expression and as a function.



A linear transformation of (x,y) that turns the equation (3) into a similar equation will always have

the form (x,y) = (ux,u3y) , withu € K *

(1.2) Definition. Let E op and E_.,. be elliptic curves over K. An isomorphism E — E’ over
K is an element u € K™ satisfying a’ = ua en b’ = ub .

The identity idp : E— E is 1€ K andifu:E — E’ env:E'— E” thenuv is the composed
map uv : E — E'— E”. An isomorphism u : E — E’ induces a bijection E (K) — E'(K) by
sending (x:y:z) to (u?x:uy:z).

When K = R, the field of real numbers, (the affine part of) an elliptic curve has one of the

following shapes:

VAR x
NI

Since A(f) # 01in (3), f has one or three zeros and the elliptic curve intersects the x-axis once or

three times accordingly.

On the set of points of an elliptic curve one can define an abelian group law matching the
geometrical structure of the curve, as was remarked by Euler. To be exact: the group operations are
morphisms and the curve together with these operations is a group variety. We want O = (0:1:0)
in e to be the zero element of the group, and three collinear points on E(K) must have a sum
equal to 0. Combining this we see that the opposite of an element (x:y:z) must be (x:—y:z), since
the line through these points intersects the curve at O.

(1.3) Definition. The group law on an elliptic curve E = E b 18 given by:
(@ If P(orQ)=0,then P+Q=Q (orP);
(b) If P=-Q,then P+ 0 =0 ;
(¢) If none of the above apply and P = (x;:y,:1) , Q = (x,:y,:1) , then



P+Q=(x:=(Ax;+V): 1), 4)
with
Yo=Y 9
A = , VEy —Ax; , x3=4 —X; =X , %)
Xy — Xy
or
x12+x1x2+x22+a
Yot X

Since y? =x+ ax; + b, both values for A are equal whenever they are both defined. Note that
in case (5) we have

(.)’2‘)’1)2
P+Q :(————_2 - (xy+xp) ¢
(xz"'xl) 5
Yo=Yy | G-y Y1~ X1)2
- —p+x) |- —mm 1 1)
Xy = Xy (x5 — xl)2 Xy —Xx;

( (x, "xl)(_Yz '“}’1)2 = (% +x1)(x2 _x1)3 :
(¥, ‘y1)3 + (xy +x1)(xy "xl)z(J’z -y - (x2y1 "xl)’2)(x2 _xl)z :
(xz _x1)3 ).

Il

So, after clearing denominators, the formula also makes sense when Xy =X,y #y; as well as
when y) +y, =0, %2 +xx, +x,2 +a#0 in case (6). At least one of the A is defined when P
#—0Q and P, Q # O. The affine line through P and Q is L = {&G:Ax+v:l)|xe K }. The

intersection points of L with E(K) are given by the zeros in K of (Ax+ W2 — (33 + ax + b).

=

i:P +0



This polynomial has three zeros in K (since it already has two: x; and x,), which satisfy x; + x, +
Xy = A%. So we can give a real-geometric interpretation to the addition as indicated in the figure

above.
(1.4) Theorem. The algorithm described above induces an abelian group structure on E(K).

A proof of this using the Riemann-Roch theorem can be found in Silverman [19, section II1.3].
Hartshorne gives an elegant proof using only very elementary facts from algebraic geometry
[7,section IL.6]. We give a proof based on straightforward calculations. A better proof based on
class groups will be given in a later version. This is tedious work, since we do not have a global
expression for the addition law. We can simplify matters a lot with the following lemma.

(1.5) Lemma. Let R, be the ring R, = Z[X,Y,2,,X,,Y,,2,,AB] | (F,F,) ,where
F.=Y?Z,-X} ~—AX1.Z’2—BZ-3 for i=1,2.
i J, S’ in Ro,forj_l 2, 3, such that

(a) Every 2 x 2 - submatrix of the matrix S g‘z U2 has determinant 0.
S U,

Then there exist nine polynomials §

(b) For any field K of characteristic # 2 or 3, any elliptic curve E=E ap Over K, and any pair
of points P = (x
syt u

Sy Iy Uy

Sy t3 Uy

and P+ Q = (s.'t.'u.) whenever this is a good projective point, i.e. when at least one of the

yyizy) and Q = (x,:y,:z,) on E(K), we have:

is a non-zero matrix over K,

coordinates is non-zero. Here Siptpl; denote the images of S, Iz T] s U in K under the
homomorphism ¢ : R, — K defined by ¢(X,)=x;,...,9B)=b. Note that P,Q €

E(K) implies that ¢ is well defined.

PROOF: When we take A as in (5), we can calculate (x1/z:y/21:1) + (xy/25:y4/2,:1) formally
using (1.3). Putting

(xpzq +X125)(x52; — x122)2 =

y1221223 + y2221322 + xlxzzzlzz2 + xlzxzzlzz2 - ax1212223 - ax2213222 - 2bzl3223
and clearing denominators we get polynomials

” _ 2

1y = h0,z) = ¥12) = Gy = X99) (7] = %125)7,

Uy = (52 = x12,)°,
with



We see that

P+ Q = (s;:t;:u;) whenever Xyzy #X12y) OF h(y,z; —y,25) # 0,
ie. when O # P # Q# O . Other values of P and Q will yield sy =t =u; =0. Taking the
expression for A as in (6) we obtain polynomials Soty,Uy With

P + 0 = (sy:ty:u,) whenever Y9Z; +¥12, %20 or g#0
for some polynomial g . The former expression is non-zero when P or Q = O, but not both, or
when P = 0 # O, except when P = Q = (x:0:1). We can see directly from (6) that

2,(x,0,1,%,0,1) = —=(3x% + @)* + (3x% + a)(x + x)(0 + 0) — (0-0 + 2x3 + b)(0 + 0) .
Now 3x? + a# 0 for otherwise 3x3 = —ax=x3+b and

4a3 + 27b% = 4-(=3x%)3 + 27-(2x3)2 = 0,
a contradiction. So if P = Q = (x:0:1) then t,# 0 and we must have g#0 and P +Q =
(s,:2,:u,).The only case not covered yetis P = Q = O. Then we have ¥y, # 0, so we can work in
the affine part of PX(K) defined by y = 0.
With the same technique as in (1.3), using the identity 72 =x3 + axz? + bz3, we have

_ 2 2
2y -z, X%+ X%, + %)% + azyz,
or Ao = 5 H
X, — Xy 1—a (xz) +xy2,) = b(z,2 + 2y2, + 2,?)

),,:

V =z —Ax, x3=2Ava+32%vb-x, -x, and P+Q=(=x3:1:=(Axg+V) ),

the second expression being the one we need for P = Q = O. In this way we obtain polynomials
83,03,43 which will give an expression for P+ Q , when P and Q areina neighbourhood of O.
The nine polynomials § T TJ , UJ thus obtained certainly satisfy condition (b). To prove the first
assertion, first note that R, is an integral domain: F ; 1s Eisenstein at Z; as a polynomial in X;.

We may assume that K is the field of fractions of R, , since the polynomials are independent of
K. Now sz, = syt etc. for any pair P, Q on E(K), and hence $;T,=8,T; in Ry So any 2 x

2 - subdeterminant of the matrix must be 0.

We now prove the theorem. The non-trivial verifications are the closedness and associativity of the
addition. We will work in the field of fractions L, of R, and use the fact that the matrix in (a) has
rank 1 over L,. None of the polynomials are identically zero, so we have S,=H,S,,T, =
H T . U = H U, for H, =S,/S.€ L, * Omitting suffixes, we have to show that

T2U = 8 + ASU? + BU® in R, (7)
and

SX .Y 1, 21,8(Xp,0,25),T(X y,...,24),U(X5,....,Z5)) =

G -S(SX 15, Z9),TX (5, Z9), UX ... Z5 ). X5,Y3,Z5) ®)



for some trihomogeneous non-zero element G in the field of fractions L, of the ring

Ry =Z[ABIIX )Y, Z,.X,,Y 3.2, X3,Y3,Z5 1/ (F|,Fy,Fy),
and equally for T and U.
The factor G depends on the indices and not on the coordinate S, T or U involved. In fact we
only have to show (7) and (8) for one of the j, since the polynomials are bihomogeneous. If (8)
holds for index j, we have

S XY ZLSpTRU) = H’kj H,j“ Sj(Xl,YI,Zl,Sj,Tj,Uj)

— ’ o
= Gy H'y Hy® S{SpTUpX5,Y3,74)
= Gy H'yH® H,* H', S,.(S,T,,U,,X3,Y3,Z5)
where « is the homogeneous degree of Sj for j=1,2,3. We can take
— ’ o o ’ _ ’ o ’
Olimn = G jjij H'ig H ™ Hj* Hypy = Gy H H, " HY,

with
H'kj :ij(XlaYleaSprUl) >
Hljm = Him(Sn’Tn’Un’X3’Y3’Z3) .

For the same reason it is sufficient to show (7) for only one index j as well. The actual
calculations can be done by an ambitious bookkeeper or any computer handling formal

expressions.



§2. Elliptic curves over rings.
All rings are commutative with 1 and ring homomorphisms are unitary.

(2.1) Definition. Let R be a ring. A collection (@)); .y of elements of R is primitive if it
generates the unit ideal, i.e. there exist b;e R, almost all zero, such that z‘. e biai=1.

This terminology will in particular be applied to vectors and matrices over R. Note that if R is a
field, a collection (a)); ., is primitive if and only if not all a; are zero. We will consider rings that
satisfy the following conditions:

(22) 6=1+1+1+1+1+1eR™

(2.3) For every pair of integers n,m and every primitive n X m - matrix over R with the
property that every 2 x 2 - subdeterminant is 0, there exists a linear combination of the rows
that is a primitive vector in R™.

The first condition is by no means essential. It allows us to use the simple form of the equation for
an elliptic curve. If we have a homomorphism R — K then char K # 2 or 3, so we can consider
elliptic curves over K in the sense of (1.1). The second condition however is indispensable for
our definition of elliptic curves over rings and their addition law. Examples of rings that satisfy
(2.3) are among others fields and finite rings, as we shall see.

(2.4) Proposition. The primitive linear combination in (2.3) is unique up to multiplication by
units of R.

PROOF: Let (aij) be the matrix and put a; = (@;;,...,4;,,) s a, = (a,,...,a,,). For a primitive
linear combination b = Zl ?Lla[ = (by,..,b,,) we have

bf’ik - bkaij = 21 l,a!jaikm z, l,a,kaij =0 for 1<i<n and 1<jk<m,
since every 2 X 2 - subdeterminant of the matrix vanishes. Hence bfli = baij for 1<i<n and
1<j<m. Thereexist i€ R suchthat 2., b =1 so we see that

a; = Zj ,ujbjaiz Zj yjaijb e Rb.
This shows that ZRai C Rb . Since clearly Rb ERai , all primitive linear combinations generate
the same R -module. Let ¢ be another primitive linear combination and let 7, s € R such thatb =

rc and ¢ = sb . Then rsbj =bj forall j ,so O=Zj ujbj(rs— 1)=rs—1 and r,s € R*.

(2.5) Definition. Let R be a ring satisfying (2.3) and r a positive integer. The n-dimensional
projective space over R, denoted P™(R), is the set of primitive n+1 - tuples of R, modulo the



equivalence relation (a,...,a,) ~ (by,...,b,) if there exists u e R~ with a; =ub; . The

(2.6) Definition. Let R be a ring satisfying (2.3) and (2.4). An elliptic curve E = E ap OVer R
is a pair (a,b) € R xR such that 44> + 27b% e R*. An isomorphism E — E’ is an element u €
R* with a’=u*a and b'=uSb . The set of points of an elliptic curve is

ER) = { (x:y:z) € P2(R) | y?z =3 + axz?+ b23 }

Note that (0:1:0) is in general not the only point on E(R) with z = 0. In fact, if (x:y:0) € E(R)
then x3 = 0 and since a nilpotent element is contained in every maximal ideal of R, the second
coordinate y must be a unit. So the points at infinity are (x:1:0) with x3 = 0.

Let E = Ea’b be an elliptic curve over R, and P = (x1:yy:z)) and Q = (x5:y5:25) two points on
E(R). We are going to define the sum of P and Q. If R, is the ring defined in (1.5) there is a
canonical homomorphism R, — R sending X, to x, etc. The image of the matrix in (1.5) is
primitive. For suppose it were not, then all its coordinates would be contained in some maximal
ideal m of R. The field K = R/m has characteristic # 2 or 3, so E
elliptic curve over K, and P and Q are good projective points over K, since their coordinates

4 mod m.b mod ;. defines an
form a primitive vector in R3. Hence P + 0 = (5:%:,) # (0:0:0) for some i , which is a
contradiction. Since R satisfies (2.3) there exists a primitive linear combination (5452414) Of the
rows which is unique up to multiplication by units.

(2.7) Theorem. E(R) has a natural abelian group structure, with zero-element O = (0:1:0),
inverse —(x:y:z) = (x:—y:z) and (epypi29) + (6295:2y) = (s4:t4:14) as defined above.

PROOF: In the case that R is a field, (s;7;u,) = (s,i2,u,) forsome i,and t,%u, —s,3 - asu2-
bu 43 =0, by lemma (1.5). This goes for any field, so putting (545845Uy) = Zli(si,ti,ui) , it follows
that T,2U, - S,3~-AS,U>~BU,*=0 in Ry[Ay,A,,A;] and consequently E(R) is closed
under addition for all rings R. It is clear from the identities in the proof of (1.4) that the addition
satisfies the other group axioms.

Since a finite ring is a product of local rings (i.e. rings with a unique maximal ideal), it is clear by
exercise (2.1) that finite rings satisfy (2.3). However, we will give a “constructive” proof of this,
which will give us a method to compute the primitive linear combination, provided we have
algorithms to add, multiply and solve linear equations in the ring. Note that in Z/nZ we can solve
linear equations using the Euclidean algorithm. We need a lemma first.



(2.8) Lemma. Let R be a finite ring and ¢ € R. Then there exist x€ R and t e Z, , with
¢t <log #R /log 2, such that ¢ =ctlx,

ProOF: Consider the sequence R 2 Rc D Rc? D ... . Since R is finite this sequence must stop,
which proves the existence of ¢ and x. Furthermore the smallest such ¢ satisfies 2/ < [R:Rcf] < #R.

Now let R # {0} be a finite ring and A = (aij) a matrix over R as in (2.3). Choose an element ¢

from (aij) which is not nilpotent. If ¢ e R* the row containing ¢ is primitive and we're done.
Otherwise calculate ¢ > 0 and x such that ¢f = c*lx . Since ¢ = cclx = ... = ¢2x!, the element e

=xlc! is an idempotent, i.e. €% =e and e(l1—e) = 0. By the Chinese remainder theorem we have a
decomposition R =R/Re x R/IR(1-e€). Since e is neither zero nor a unit the orders of these two
rings are strictly smaller than the order of R and the result follows by induction.

Note that we actually have R =R(l—e) X Re = R; X R,, where 1—e and e are the unit elements of
R, and R, respectively. Under this isomorphism an element r is mapped to ((1—e)r,er). Now ec
is a unitin R, , with inverse ec’~lx!, so we only have to apply the recursion in one direction.
Moreover ¢ —ec is nilpotent in R,, so the number of nilpotent elements in the matrix A, over
R, induced by the matrix A, is at least one more than in A itself. Hence the recursion depth is
bounded by mmn, if A is an nxm - matrix. The fact that the ring operations in R, and R, are the
same as in R will also be very convenient in applications.

When the induction is carried out completely, we see that R factors into a product of rings in
which every element is either a unit or nilpotent. Since all such rings are local, we have proved that
a finite ring is the product of local rings.

Exercises.

2.1 Show that the following rings satisfy (2.3):
(a) fields;
(b) semi-local rings (i.e. rings that contain only finitely many maximal ideals);
(c) finite products of rings that satisfy (2.3);
(d) principal ideal domains.

2.2 let R bearingand A an nxm - matrix as in (2.3). Let M = ZRai C R™, where q; is the
i" m - dimensional row vector of the matrix.
(a) Prove that there is a module N ¢ R™ with M @ N = R™ . (Hence M is a finitely
generated projective R - module.) .
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(b) Prove that M has constant rank 1, i.e. dimg n (M/mM) = 1 for all maximal ideals m
of R.
(c) Show that any module satifying (a) and (b) is in fact a module such as M.

2.3 Show that the following statements are equivalent:
(a) R satisfies (2.3);
(b) PicR =0;
(c) Every projective R - module of rank 1 is free.
Here the Picard group Pic R is the group of isomorphism-classes of invertible R-modules,
with multiplication given by <M><N>=<M ® N>, 1=<R>, <M>"l = <Hom,(M,R)>.

2.4 Show that if R is a Dedekind domain, R satisfies (2.3) if and only if R is a principal
ideal domain.

N~

2.5 Show that the matrix

S T, U
S, T, U, | is primitive over R,[1/6,(44% + 27B2)1].
S3T3 Uy ‘

w

2.6 Let R,R' be two rings satisfying (2.2) and (2.3), and f: R = R’ a ring homomorphism.
If E=E,, isanelliptic curve over R, then Eﬂ a)/b) is an elliptic curve over R’,and f
induces a group homomorphism f; : E(R) — E(R’).

(a) If f is injective then sois f; .
(b) If R 1is a principal ideal domain and R’ is its field of fractions, then f, is an

isomorphism.

2.7 Let R be aring satisfying (2.2) and (2.3) and @ C R a nilpotent ideal, i.e. " = 0 for some
n. Suppose E is an elliptic curve over R. Show that:
*@) f,: E(R) — E(R/g) is surjective.
(b) ker(fy) ={ (x:1:z2) e E(R) | x,z€ a }.
(c) The map ker(f,) — a , defined by (x:1:z) > x is bijective.
(d) The composed map ker(f,) = @ — @/’ is a group homomorphism.

2.8 Let E be an elliptic curve over a field K and f: K[[T]] = K[[T]l/T-K[[T]] =K the
canonical homomorphism of the ring of formal power series over K onto K. Denote H =
ker(f,) and g = TK[[T]].

(@) Show that H = { (x:1:z) e EK[[T]]) | x,z€ a }.
(b) Show that H — a, (x:1:z) > x is a bijection and the composed map H — ala® is a
group homomorphism.
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§3. The j - invariant.

Let K be a field of characteristic # 2 or 3. We have seen that E b = E4, 6, swhere ue K *,
Hence we can attach an invariant (a®:6?) € P}(K) to the elliptic curve E . Given the bijection
PYK)-{(27:-4)} - K , sending (x:y) to 4x/(4x + 27y), we can define the j - invariant.

a,u

(3.1) Definition. The j - invariant of an elliptic curve E = E b 1S
4a3 '
JE)=1728 —— eK.
4a3 + 272

The normalization by the factor 1728 = 123 stems from the fact that this formula is derived from the
general formula for fields of arbitrary characteristic. We have seen that two isomorphic elliptic
curves have the same j - invariant. The converse is not true for general fields (see exercise 3. 1), but
we do have the following theorem. We denote by K the algebraic closure of K.

(3.2) Theorem.
(a) The map j: {E : elliptic curve over K Y=¢ — K is surjective.
(b)(E) =J(E') & E=gE’ (henceis bijective if K = K).

PROOF: (a) First of allj(Ea,b) =0 & a=0 and JE, ) =1728 < b=0.For ce K-{0,1728}
we have j(E, ) =c with a =27/ - %990 ., or j(Eyynp) = With a=%70g_.. .

(b) If j(E b )=J(E a,,b,) =0 then a=a’=0. Since K is algebraically closed, there exists u e K
such that b =ubb’,s0 E=E". Similarly we deal with j = 1728. In other cases a,b,a’,b’# 0,
and an element u e K satisfying u? = bl b:/a/a' is an isomorphism E — E.

Exercises.

3.1 Show that for every je Q there exist infinitely many pairwise non-isomorphic elliptic
curves E/Q with j(E) =.

3.2 Let K=F, be a finite field of characteristic # 2 or 3 and let E/K be an elliptic curve.
q . ;
6 ifg=1(mod6)and j=0
(a) Prove that #{ E'/K | J(E") = J(E) Y=k = #Aut(E) =\ 4 ifg=1 (mod 4)and ;= 1728
2 otherwise
(b) Describe all a”,b" with j(E, ) =j(E ).
’ ’ 6 if g =1 (mod 12)
(c) LetC = {E: elliptic curve over K }/=g . Show that #C=2g+ | 4 if g=7 (mod 12)
2 ifg=5 (mod 12)
0 ifg=11 (mod 12)
(d) Show that D . (*Autg(E)=q.
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§4. Morphisms and isogenies.

Throughout this section K will be a field of characteristic # 2 or 3. Elements fe K(X) are
written f=f,/f, , with f; € K[X] coprime and Jf> monic. Furthermore E will be the elliptic
curve E=E_ , and F=X>+aX +b.

(4.1) Definition. Let E be an elliptic curve over K. The coordinate ring of E/K is the ring K[FE]
= K[X,Y]/(Y?2 - F) = K[X, VF]. The function field of E is the field of fractions of K[E], denoted
K(E) = K(X,VF).

(4.2) Definition. Let E and E’ be elliptic curves over K. A morphism ¢ :E — E’ over K is
anelement ¢ of E'(K(E)) thatis either equal to O, or of the form

¢ = (f:gVF:1), with fg € K[X] and degf, > deg f,.
An isogeny is a morphism that is not equal to O. The degree of a morphism is

Oif p=0,
deg ¢ =
degf,if @ = (f:gVWF:1).

If ¢:E— E" isamorphismand L 5K afield extension of K, then ¢ induces a map from the

set of points E(L) to the set of points E’ (L) . We shall denote this map by abuse of notaion by the

same symbol ¢. Explicitly this map is defined by @(P) =0 if ¢=0 andif ¢ = (f:gVF :1) then
®0)=0

and
J 0 if f,(x) =0,

P((x:y:1)) =
1 (f () : gx)y : 1) if fo(x) # 0.

This is a well defined map (see exercise (4.1)).

Anisogeny ¢ = (f:gVF :1) induces a homomorphism of fields ¢ : K(E") — K(E) , defined by
X f, VF'> gVF . This homomorphism is injective and K(E) is a finite field extension of
¢'K(E') .

(4.3) Example. The identity morphism [1] = lp=1=1id;: E — E is the morphism [1] =
(X:VF:1). This is an isogeny of degree 1. We shall see in the next section that for every me Z
there is a morphism [m] : E — E, called the multiplication-by-m map, which maps P € E(L) to
mP = £(P+..+P) (Im| times). This is a morphism of degree m?2. See also exercise (4.4).

(4.4) Example. Let K be a field of characteristic p>5 and let ¢ be a power of p. The
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Frobenius morphism Frobq i Ea'b 3 an,bq = E@ is the element ( X9 : (\/F)q 1) =
(X4:Fa-D2vF:1) of E@(K(E)). This is an isogeny of degree g.

(4.5) Theorem. If ¢ is an isogeny then [ K(E) :¢"K(E")] = deg ¢.

PrROOF: We have the following diagram of field extensions:

K(E)
2
K(X) o

\{‘IK(X)/K(E’)

K(X)

From this diagram it is clear that

[K(E) :9"K(ED] = [KX) :9"K(X)] = [K(X) :K(] .
We claim that the minimum polynomial of X over K(f) is M =f,(T) —ff,(T) € K(AIT]. Since
deg f| > deg f, , this shows that

[KX) :K(f)] =deg M =degf, =deg .
To prove the claim it is sufficient to show that M is irreducible. Note that M is primitive as a
polynomial in K[f][T] since its leading coefficient is a unit. By the lemma of Gauss M is
irreducible in K(A)[T] if and only if it is irreducible in K[f][T] = K[T][f]. Now deg fi1>0,s0 f
is a transcendental variable over K(T). Since f; andf, are coprime we can apply Gauss'lemma
again, hence we have to show that M is irreducible in K(T)[f]. This is evidently true, since M
has degree 1 as a polynomial in f.

(4.6) Theorem. Let ¢ : E — E’ be a morphism and L D K a field extension of K. Then the
induced map ¢: E(L) — E'(L) is a group homomorphism.

An elementary proof of this theorem will be included in one of the following versions. The reader
who is familiar with function fields and divisor classes can find a proof in Silverman [19, section
II1.4]. It can be verified easily that all morphisms we will consider, except the ones in exercise

(4.3), satisfy the statement of the theorem.

Of course we would like that morphisms have categorical properties. If two morphisms ¢: E — E’
and ¢': E'— E" are both not O, the composition of their induced maps E(L)— E’(L) — E"(L)
takes almost all elements (x:y:1) to (f(f(x)) : g (f(x))gx)y : 1).

(4.7) Definition. Let ¢: E — E’ and ¢ : E'— E"” be two morphisms. The composition ¢”
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=@ o @€ E"(K(E)). is defined as:
{ O if =0 or ¢'=0,
) (fof : (g'of)-gVF : 1) otherwise.

If ¢ and ¢’ are isogenies they induce field homomorphisms over K

0™ K(X,VF") = K(X,VF" and 0" KX, VF) = KX, VF) ,
X X X - fX)
VE” > g'(X)VE' VE' b g(O)VF

hence ¢ o @™ : K(E") = K(E) is given by X — f(f(X)) and VF” — g'(f(X))g(X)VF. This

shows that ¢ = ¢@" o ¢, giving a tower of field extensions K(E”) c K(E') ¢ K(E) and so

deg ¢” =deg ¢ - deg ¢'. We leave it to the reader to check that ¢” is indeed a morphism, and
that the induced map of ¢” is the composition of the induced maps of ¢ and ¢’.

The degree of an isogeny can be interpreted in another way than being a property of the function
fields. For general curves and finite morphisms instead of isogenies the degree of a morphism is
the number of points in a "typical” fibre. When K is an algebraically closed field all fibres have the
same number of points, if counted with the right multiplicity. For general fields this is no longer
true. In the case of elliptic curves and isogenies the situation is quite simple, due to the fact that
isogenies are homomorphisms: all fibres have the same number of points and therefore all points in
a fibre have the same multiplicity. When the isogeny is separable and K is algebraically closed this
multiplicity is equal to 1. Before specifying what is meant by a separable isogeny we recall some
facts from algebra.

(4.8) Definition. Let K be a field. A polynomial fe K[X] is called separable if f has no
double roots in the algebraic closure of K.

(4.9) Theorem. Let K be a field and fe K[X] a polynomial with derivative f. Then f is
separable if and only if ged(ff")= 1 in the ring K[X] .

PROOF: If f is separable and g |f,f" then every zero of g is a double zero of f, hence g must be
a unit. Conversely, if gecd(f,f)=1 then there exist g, and g, such that fg, +fg,=1,s0 f
and f have no roots in common.

(4.10) Theorem. If f is irreducible in K[X] then f is separable if and only if f" # 0.

PROOF: Since degf <degf we must have gcd(ff)=1 if f is irreducible and f # 0. If on the



15

contrary f=0,and f= zani , then necessarily ia; =0 forall i.This is impossible if char K
=0, and if char K =p >0 it follows that fe K[XP] < (K[X])” and we see that f has p-tuple

roots.

Hence for irreducible polynomials inseparability is easy to check. A typical example of an
inseparable polynomial is X7 —a, if a isnota p™ power in a field of characteristic p > 0. We
are now ready to define separable and inseparable morphisms.

(4.11) Definition. An isogeny @ = (f:gVF:1) is called inseparable if charK =p >3 and fe
K(XP) , and otherwise separable. The morphism O is also called inseparable.

In the next section we shall give a geometric characterization of (in)separability in terms of actions
on tangent spaces.

(4.12) Proposition. Let ¢ = (f:gVF:1) be an isogeny E — E’, defined over a field K of
characteristic p > 0. Then the following are equivalent:

(a) ¢ isinseparable ;

() fy . f, € KIXP] ;

(©) f1—1Tf, € K(T)[X] is inseparable as a polynomial over K(T) ;

(d) There is an isogeny y: E®) — E' with ¢=yo Frob, ;

(®) ¢ e EKXP,(VF)P)) .

PrOOF: Weprovea==b=e=d=>a and bec.

(a=b) Since fe K(XP) we can write f= hy(XP) | hy(XP) with gcd(hy,h,) =1, h, monic. It is
sufficient to show that ged(hy (XP),h,(XP)) = 1 for in that case f; = h(XP). We can show
this by substituting X? for X in the expression u h, + uyh, = 1.

(bec) This is trivial since f, — Tf, is irreducible in K(T)[X]. (See proof of (4.5))

(b=>€) If g =0 then obviously ¢ e E'(K(XP,(VF))). Otherwise gP € K(XP) since charK =p
and (gVF)? =f +af+b'e K(XP) since fe K(XP) and therefore, putting p = 2g+1,
we see that gVF = (gP / (gVF)2 )-(VFY e K(XP,(VF)).

(e=>d) We can write K(XP,(\/F V) = K(XP) ® (VF PK(XP). Since by definition f,g € K(X) we
must have f=f(XP) and gVF = g'(XP)-(VF)P, with f,g’e K(X). Hence v =
(f:g'VF":1) will do, where F’'=X3+ aPX + bP .

(d=a) If y=(f:g’'VF"1) then Wo Frob, = (f(XP) : g'(XP)-(VF) : 1), 50 ¢ is inseparable.

(4.13) Corollary. Every isogeny ¢ has a unique decomposition ¢ = Pyep © Frob 7 with Peep
separable and g = p” for some n20.(Wetake g=1 if p=0.)
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Remark: We call g =deg; ¢ the inseparable degree of ¢ and deg Pyep = deg ¢ the separable
degree of .

PROOF: If ¢ is separable we take g = 1. If ¢ is inseparable we can write @ = Yo Frobp by
(4.12.d) and the result follows by induction since deg v < deg ¢ . Note that Frob g ° Frobq, =
Frob aq Verifying the uniqueness is left to the reader.

The reader who is familiar with the theory of field extensions will not be surprised to see that
deg;(¢) = [K(E N:0"K (E)]; and deg ()= [K(E Y:0"K(E)] ¢ » the inseparable and separable degree
of the field extension K(E) / ¢"K(E). Corollary (4.13) is analogous to the field theoretic situation
where a finite field extension L D K factorizes into L > M > K where M/K is a separable
extension and L/M is a purely inseparable extension, i.e. o € M forevery o€ L.

(4.14) Theorem. Let ¢ : E — E’ be an isogeny over K.Let L DK be an algebraically closed
field. Then the induced map ¢ : E(L) — E'(L) is surjective and #ker ¢ = deg, ¢.

PROOEF: Note that Frobp : E(L) — E@)(L) is bijective if char K =p . We may therefore assume by
corollary (4.13) that ¢ = (f:g\/F :1) is separable. In this case & =f, —Tf, € K(T)[X] is separable
as a polynomial over K(T) . Hence by theorem (4.7) there exist A, e L[TX] and ve L[T], v
# 0, with Ah+ ph’=v.Choose te L suchthat w(z)#0 and F(¢) # 0. Then h,=f -1, is
separable as a polynomial over L[X] and so

#xe L| h(x)=0}=degh, =degf, =deg @=deg .
Let P=(ru:l)e E'(L).If h(x)=0 and Q = (x:y:1) € E(L) then ¢(Q) ==P and necessarily
O(XQ) = P since ¢ is a group homomorphism. Now F(¢) #0 so P #—P and the conclusion is
that for every root x of A, there exists exactly one point Q = (x:y:1) with ¢(Q)=P . So

#ol(P) = deg_ ¢ for all but finitely many points on E’(L).
(Namely all affine points (z,u) with v(z) -F(z) # 0.) We see first of all that the subgroup ¢[E(L)]
of E'(L) has a finite complement and since E’(L) is infinite this complement must be empty,
whence ¢ is surjective. Secondly

#ker ¢ = the number of points in the fibre of an arbitrary point = deg_ ¢.

Exercises.
4.1 (a) Check that the map E(L) — E’(L) induced by the morphism ¢ :E — E’ is well

defined. Show in particular that g,(x) # 0 if f,(x) #0.
(b) Show that the Frobenius-morphism and the multiplication-by-m map are group
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homomorphisms.

4.2 (a) Show that every isogeny of degree 1 with domain E is of the form (u2X:u3VF:1) with
ue K*, and conversely such an element of E'(K(E)) ,where E'=E 4, 6, ,is indeed
an isogeny of degree 1. Hence there is a one to one correspondence between isogenies of
degree 1 and isomorphisms as defined in (1.2).

(b) An isogeny of degree 1 induces a group isomorphism. Give an example to

show that the converse is not true (not even in characteristic 0).

X?+a X?-a
4.3 (a) Show that ( X : 2 VF: 1) isan isogeny E,,—E_,,  of degree 2.
(b) Show that E_,= E 4.0 ifand only if i e K* ,1.e.—1is a square in K"

X3+4b  X*-8b
(¢c) Show that ( 5 : ; VF: 1) isan isogeny E,, — E,_,, of degree 3.
X X > 2
(d) Show that E,,=E, ,,, ifand only if &€ K" ie -3isa square in K"
(e) Show thatif K =R and b <0 the isogeny in (c) induces a bijection.

4.4 (a) Using formula (6) from section 1, show that if P = (x,y) € E(K), with y # 0, then
P+ P = (f(x):gx)y:1),
with
(F)? - 8XF 12X-F-F'— (F")3 - 8F?

f_« s g = [ K(X) .
4F 8F2

(Here F’ denotes the derivative of F=X>+aX +b.)
(b) Show that (f: g\/F :1) e E(K(E)) is an isogeny.
(c) Conclude that the multiplication-by-2"-map [2"] : E — E is an isogeny of degree 22",
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§5. Addition of morphisms.

The set of morphisms E — E’ is a subset of the abelian group E'(K(E)). At first sight it is not
clear that the sum of two morphisms is a morphism, nor that (¢ + Y)(P) = @(P) + W(P) . In this

section we will see that both statements are true. Before doing so we embed the function field Ki (E)
into the field of formal Laurent series over K .

(5.1) Definition. The field of formal Laurent series over K is
K(@)={2s,at |neZ,a,e K},

with the evident addition and multiplication. The degree of a formal Laurent series f= ... af#0

i2n i
is deg f=min{ie Z |a;# 0 }. The degree function is a group homomorphism from the

multiplicative group Ki ((t))* to the additive group Z .

(5.2) Proposition. Let E be an elliptic curve. For every point P € E(K) there is a
K-homomorphism p + K(E) — K((2)) , defined as follows:

{ X > r2

W > o=r3+hot suchthat o?=F(r2)

If P=0 then

X - x+t
If P=(x:y:1) and y#0 then
F a=y+hot suchthat o =F(x + 1)

X b x+ £2/F(x)
If P=(x:y:1) and y=0 then
> o=t+hot suchthat o2 = F(x + 2/F'(x))

(h.o.t. = higher order terms.)

PrOOF: The only thing to be proved is the existence of « . This can be done in many ways. One
could approximate the solution recursively by solving (ag + ... + @, ) =f (mod *1) for
successive n, where

f = OFr?) = 1+at+ b6,

f =Fx+0 =y +F )t +3x2+£ or

[ o= 2F @+ 2F'x) = 203 + ax + b + 2 + 3xF'(x)"2¢ + F'(x)~34)
1+ 3xF'(x)2¢2 + F'(x)3 respectively.
When worked out one sees that this is always possible since (fmod #) € K is a non-vanishing
square, and that the leading coefficient a; of V¥ isa square root of (fmod ¢) . This can be seen
directly using Hensel's lemma, of which the last remark is just a special instance.

1]ui.

)
J

1l

If all else fails one could use Newton's formula (1 + u)1/2 = ijo (
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The embeddings i, allow us to consider an element f of the function field K(E) really as a
(rational) function f: E(K) = PYK) = K U {e} . The value of f is defined as

fP) = ip(H(0)
with the convention that ip(f)(0) = e if deg ip(f) <O.

The representation of a function as a formal Laurent series contains all the local information of the
function around a point. This is completely analoguous to representing a meromorphic function in
complex analysis as a Laurent series around a point P which is convergent in a (reduced)

neighbourhood of P .

Let E’ be another elliptic curve over K . Since K[[¢]] is a principal ideal domain the map ip :
K(E) — K((r)) induces by exercise (2.6) an injective group homomorphism (ip), : E(K(E)) —
E'(K[[]]). Furthermore the canonical map K[[z]] — K, t+> 0, induces a group homomorphism
h: E'(K[[£]]) = E'(K).

(5.3) Definition. Let E,E’ be two elliptic curves. The evaluation map hp : E'(K(E)) = E'(K) is
the composed map hp = ho(ip)y .

In exercise (5.1) it is shown that if f,g,h € K(E) then hp(f.g:h) = (f(P):g(P):h(P)) provided all
negative powers of ¢ in the Laurent series are multiplied out. In particular A,(¢) = @(P) for
morphisms ¢.

(5.4) Theorem. The set of morphisms Homy(E,E") is a subgroup of E'(K(E)) and is contained
in the kernel of 4, .

Proor: The proof is divided into two parts. We first prove that

H={ (fgVF:1) e E'K(E))|fg € KX)} v {0}
is a subgroup of E'(K(E)). Since K(E) is a field extension of K(X) of degree 2, there is one
non-trivial automorphism ¢ of K(F) over K(X) defined by VF + —VF . The induced bijection
o: E'(K(E)) — E'(K(E)) , o(x:y:z) = (Ox:0y:0z) is a group automorphism since the addition law
is defined by rational functions over K and o acts trivially on K(X). It is clear that P € H
implies oP = —P . Conversely, if 6P =-—P and P# O ,say P=(x:y:1),then ox=x and oy =
-y so xe K(X),ye K(X)V/F and P e H.Hence

H={Pe E(K(F))| oP =-P},
which is a subgroup of E'(K(E)) since o is a homomorphism.
Secondly we prove that
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Hom(E,E") = { (fgVF:1) e H|degf, >degf, } U {0}
is a subgroup of H . In fact we will show that Hom(E,E’) = ker h,, " H , which is clearly a
subgroup of H. In exercise (2.8) we have seen that the elements in the kernel of the map &
defined above are of the form (x:1:z) with x,z e tK[[f]] . Let (fg VF :1) € ker h, NH . Then
deg iy(1/gVF) >0 =
deg i, (g VF)? = deg io(f +af + b) <0 = (by exercise (5.2))
deg f, — deg f; = Y,-deg ipy(H) < O .
So ker hy N H < Homg(E,E") . If on the other hand (f:g\/le) € Hom(E,E") then
deg ip(f) <0 =
deg in(gVF) = ¥ydegiy(f) <0 =
deg io(f/g\/F) >0 and deg iO(I/g\/F) >0,
and Homy(E,E") cker hp, N H .

(5.5) Theorem. Let ¢,y : E — E’ be two morphisms and P € E(K). Then

- (o+Y)(P) = oP)+ y(P),
where on the left side the addition is in E'(K(E)) and on the right side the addition is in E'(K).

PROOF: Since A, is a group homorphism we have:

(@ + Y)(P) = hp(@ + y) = hp(®) + hp(W) = §(P) + Y(P) .
Another proof of (5.5) can be found in exercise (5.3).

(5.6) Corollary. Let ¢ and y be morphisms.
(@) If @ and y are group homomorphisms then sois @+ y.

) Let E—2 5" ®Y, 5%, B be morphisms.

Then x(¢+ w) =y + xy and (¢ + Y)O= @+ wo .
(¢) Endg(E) = Homy(E,E) is a ring with respect to the multiplication given by composition of

morphisms, with unit element 1 =[1].
PROOF: (a) and (c) are trivial and (b) follows from exercise (5.4).

(5.7) Definition. For m € Z the multiplication-by-m map [m] is defined as the image of m

under the unique unitary ring homomorphism Z — Endi/(E) .

Let m = :K[[#]] be the maximal ideal of K[[¢]]. By exercise (2.8) there is a group homomorphism
d :ker h — m/m? = KT , the additive group of K , defined by (x:1:z) > (x mod #2).
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(5.8) Definition. Let E,E" be two elliptic curves and P € E(K) . The derivation map dp :
Homy(E,E") — K is the composed map dp = do(ip)s . If ¢ € Homy(E,E") then the derivative of

@ at P is dp(9).

In an affine neighbourhood of P the tangent line to E at P can be considered as a one
dimensional vector space over K with origin at P . Viewed in this way the derivative of ¢ at P

is a K-linear map from the tangent line at P to the tangent line at ¢(P). Hence the name derivative
is not so odd as it may seem. However the derivative is not canonical in the sense that it depends on
ip , which can be defined in many ways to meet our purposes, as well as on the particular

isomorphism m/m? =K% .

If ¢ isan isogeny then the embedding ip : K(E) — K(()) allows us to extend ¢" K(E)—
K(E) to K((1).

() P— ~K()
Tiw,) * i,
K(E") ¢ » K(E)

The extension ¢*, : K(()) — K(()) is unique and continuous, i.e. ¢*p(Xat) = 2a,¢"p(1)" . See
exercise (5.7).

(5.9) Proposition. Let ¢ be a morphism.
(a) If ¢ is anisogeny then d,(¢) = coefficient of ¢",(#) at ¢.

(b) dy()=0if ¢=0 or ¢=(f:gVF:1) and degf, —degf,> 1,
leading coefficient of f
and d,(9) = otherwise.
leading coefficient of g,

ProoF: Exercise (5.8).

(5.10) Proposition. Let ¢,y be morphisms over K .
(@) dpidp) =1;

(b) do(q) +y) = d()(‘@) +do(y) ;

(©) dow)"w)} = do(@)'do(llf) 5

(d) @, is aunitary ring homomorphism End(E) — K ;
(&) dp(p) =0 < ¢ is inseparable .

PROOF: (a) Immediate from (5.9.b).
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(b) By definition.
(c) Thisis trivial if ¢=0 or y=0.If @,y O then using (5.9.a) we see that
(Poy)*,(1) = V/*o ° (P*o(t)
=¥ o (dy()t + hot.)
=dy (@)Y (1) + h.ot,
=dy(9)-dy(Y)t + hot. .
(d) Clear from (a), (b) and (c).
(e) Suppose ¢ is inseparable. If char K =0 then ¢ = O. Since d(Frob q) =0 by (5.9.b), we
obtain the result for char K > 0 from (c) and corollary (4.13).
Conversely, suppose ¢ = (g VF:1) is separable and let m = deg ¢ . It will be sufficient to
show that deg f, > m — 1. Denote the algebraic closure of K by L. The point P = (x:y:1)
E(L) is in the kernel of the induced map ¢ : E(L) — E'(L) if and only if x is a zero of f, .
This kernel contains exactly m points so the proof is reduced to showing that x is a double
root of f, if P#—P .Let A >0 be the multiplicity of x as a root of f, . The coprimality of
i and f, implies that the denominator of f3 + a’f + b’ = g2F has exactly 31 factors X —x .
By assumption X —x does not divide F since otherwise P = —P . Hence g22 has 314
factors X —x,s0 A is even and therefore 1 > 2.

It follows from the proof of (e) that for separable ¢ the polynomial J, can be written as
f=Il,@-xp ,

where the product is taken over the non-trivial points P = (xp:yp:1) in the kernel of the induced
map over the algebraic closure of K . Moreover we see that the inseparable morphisms form a
subgroup of Homy(E,E") . This subgroup contains p-Homy(E,E") if charK =p, since do(po)
=pdy(p) =0.1f E =E’ the inseparable morphisms form a two-sided ideal of Endg(E). In
particular we see that if char K = 0 the endomorphism ring of an elliptic curve is isomorphic to a
subring of K . Later we shall see that EndQ(E) =7.

Exercises.

5.1 (a) Let (f:ig:h) € E'(K(E)) . Show that hp(fig:h) = (flgzhz(P):fzglhz(P):fzgzhl(P)) under
suitable conventions.
(b) Show that hy(p) = @(P).

5.2 (a) The degree function on K((¢)) is a discrete valuation , i.e.
deg(xy) = deg(x) + deg(y) ;
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deg(x +y) =2 min{deg x , deg y} ;
deg(x +y) = min{deg x , deg y} if degx=degy .
(b) Show that K[[t]] = {xe K(()) |degx=>0 }u {0} and
K[[t]] ={xe K((2)) | deg x> 0 } L {0}.
(c) Use (a) and (b) to prove that ¢K[[]] is the unique maximal ideal of K[[¢]].
(d) Show that K[[¢]] is a principal ideal domain.

Let ¢, e Homg(E,E) and « B:E(K)— E'(K) be the homomorphisms P - (@+y)(P)

and P> o(P) + y(P).

(a) Use lemma (1.5) to show that a(P) = B(P) for almost every (i.e. for all but finitely
many) P € E(L).

(b) If Lo K is a field such that E(L) is infinite then { P € E(L) | o(P) = B(P) } = E(L).

(c) Prove theorem (5.6).

Remark: note that this proof uses theorem (4.6) whereas the proof in the text does not.

Let oy E — E’ be two morphisms over K . Show that the following are equivalent:

@ o=v;

(b) The induced maps ¢: E(L) = E'(L) and y: E(L) — E'(L) are equal for every field
extension L DK ;

(¢) The induced maps ¢: E(K) — E'(K) and y: E(K) — E'(K) are equal.

Let ce R ; and d: K((2)) X K((2)) = R, be defined as

c~deely) if x#y;

d(x'}y) = {

Oif x=y.

(a) Show that d is a metric function on K((z)).
(b) Show that (K((2)),d) is a complete metric space.
(c) Henceif x e tK[[7]] and a;& K for i= i, the sum

n
Eaixi = lim Zafx‘
l=-‘-lo

1210 oo
is well defined and
7
Z ax = za‘x" + Zaixi forall n>i,.
lZiO ‘ I=1g ‘ i>n

(d) Show thatif degx=1 every element of K((¢)) can be written as a sum > agc" .

(a) Show that K[[1]* =K*{ye K(@)* | Vr203zeK(2) : 22" = y }.
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(b) Let f: K((#)) = K((#)) be a homomorphism of fields such that fl x = 1dg . Show that
K[ < K[[7] and f(z) € K[[]. Hint: K[[A] = K[ + K[[1]7)

©) AXat ) - Zaf) e K[[4] forall n>0.

(d) Conclude that f is uniquely determined by f(2).

(e) Show that f is a continuous function (K((z)),d) — (K((2),d) .

5.7 (a) Let x,y be elements of K((t))”< with degrees a,b #0 respectively, such that gcd(a,b)
= 1. Then there exist elements A,pue Z suchthat degxiy#= 1.
(b) Let ¢:E — E’ be an isogeny. Show that (p*P is uniquely defined. [Hint: use exercises
(5.5) and (5.6).]

5.8 (a) Prove proposition (5.9).
(b) Show that d,(u)=u if u is an isomorphism (considered as an element of K* as in
section 1).

5.9 Let E be an elliptic curve over K and [m] the multiplication-by-m map for m e Z . Show
that:
(a) [m] is a morphism ;
(b) Endg(E) does not have zero-divisors ;
(c) [2] isnot a unitin Endi(E) ;
(c) [m] is anisogeny if m# 0 [Hint: consider the ring homomorphism Z — EndgE ].

5.10 Prove that deg ¢"() = [ K((1)) : ¢* ,K((2)) ] = deg; ¢ . Hence ¢, is bijective if and only
if ¢ is separable.
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§6. Elliptic curves over the field of complex numbers.

In this somewhat informal section we intend to give an illustration of how analytic methods can
give deep insight into the theory of elliptic curves. No proofs are given for the main results, not
because they are difficult (in fact they require no more then a first year's course in calculus of one
complex variable), but rather because the ingredients do not fit into our algebraic approach. Detailed
proofs, and many more interesting facts about this vast subject can be found in Koblitz [10]. The
corollaries in this section will be proved later for general fields, by means of algebraic techniques.
For these reasons this section may seem superfluous, but one might have felt deceived if this
classical approach would not have been treated. Moreover it is very instructive to see the
correspondence lattice < elliptic curve.

(6.1) Definition. A larrice in C is a subgroup L of the additive group C* of the form
L=7Zua+ Zp,

where o,f e C* are linearly independent over R. Two lattices L and L’ are homothetic if L =

ol for some o e C*, and isogenous if L < oL’ for some o € c* (This is indeed an

equivalence relation: see exercise(6.1).)

(6.2) Definition. Let L be alattice in C. The Weierstrass g -function associated to L is
paD =2 s D {G@-oy? - a2}
wel—{0}
The derivative of g is
(L) =2 Eé (z— )3
[0

We will write g(z) for short when the reference to L is clear. The correction term @2 in the
representation of 2(z) is needed to make the series convergent.

(6.3) Proposition. The Weierstrass g -function g (z;L) satisfies the following properties:
(a) itis meromorphic ;
(b) it has a pole of order 2 in all the points of L and no others ;
(c) itis periodic with respectto L,i.e. $(z+ w;L)= p(z;L) forall wel;
(d) itiseven,ie. @ (-z;L)= p(zL).
Its derivative §o'(z;L) satisfies:
(a) itis meromorphic ;
(b) it has a pole of order 3 in all the points of L and no others ;
(c) itis periodic with respectto L ;
(d) itis odd, ie. @'(-z;L)=—-p'(z;L).
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Furthermore the Weierstrass o-function satisfies a functional equation:
#'(2)? = 4p(2)° — 60g, ¢ (z) — 140g, , where

= o(l) = i | = 4.6.
g = g(L) QELZ;O}“’ for i=46

ProOOF: Koblitz [10, sections 1.4-6].

(6.4) Definition. Let L be alattice in C. The elliptic curve associated to L is

Er = Eo15g,),-35550 -

There is a canonical map C — E;(C) defined by

{ (9@ p'@):1)if ze L;
Z
(0:1:0) if ze L.

(6.5) Theorem.

(a) Let L be alattice in C. The map C/L — E;(C) induced by the map above is an isomorphism
of abelian groups. The group of points E;(C) is isomorphicto (RxR)/(ZxZ)=TxT,
where T denotes the circle group T={e*|xe R }.

(b) There is a one-to-one correspondence between elliptic curves over C and lattices in C, given
by E;, & L.

(c) Let L,L' belattices and ove C such that aL c L’. Then there is a unique morphism ¢, :
E; — E;. such that the following diagram is commutative:

CL »E,(C)
Jo l7.
CIL'———E; (C)

Here the map C/L — C/L’ is given by zmod L+ oz mod L’ .
(d) The map a> ¢, is a group isomorphism { ce C| ol c L’} =Homq(E},E;.) . Also Pop
=@y P whenever this expression makes sense. The inverse of this map is the derivation

map: dy(@,) = .

PrROOF: (a) Silverman [19, section VL.3] ;
(b) Koblitz [10, section IIL.2] ;

(¢) Silverman [19, section V1.4] ;

(d) Silverman [19, section V1.5].

In fact the isomorphism in (a) is an analytic isomorphism. In particular an elliptic curve over C is
a torus embedded in the four-dimensional real space. This explains the terminology "genus 1" as
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indicated in section 1: an elliptic curve has one hole.

(6.6) Corollary.

(a) The group of m-torsion points E(C)[m]={ P e E(C)|mP =0 } of an elliptic curve is
isomorphic to Z/mZ x Z/mZ. .

(b) If 9= ¢, is an isogeny E, — E;, then deg @=#ker ¢, =#ker o= index[L’: aL].

(c) Two elliptic curves are isomorphic if and only if the corresponding lattices are homothetic.

PROOF: (a) Immediate from (6.5). In the next section we will deduce a similar result (for general

algebraically closed fields) by algebraic arguments.

(b) Clear.

(c) Twocurves E and E’ are isomorphic if and only if there exist morphisms ¢: E — E’ and
V. E'— E such that @oy = idg. and yo@ =id; . Now apply (6.5.d).

We will now study the endomorphism ring of an elliptic curve more closely. By a discrete subring
of C we mean a subring that inherits the discrete topology as a subset of C.

(6.7) Theorem. Let R be a discrete subring of C.

(a) Either R=7Z or R =7 + Za , where ave C satisfies o2 + ma+n =0 with m = 0 or
1 and ne Z,.

(b) If Be R then ﬁe R ,ie. R is closed under complex conjugation.

PROOF: The polynomial in (a) has discriminant < 0, so if ¢ is aroot of it then a¢ R and o2
Z+Zo,so Z + Zois adiscrete subring of C, as well as Z. Conversely any subring of C
contains Z and in a discrete subring every real element is an integer, for otherwise the ring would
contain an element 0 <x <1 which has the property x* — 0 if n grows, a contradiction. Now
suppose R # Z. Then there exists ace R with

Ime > 0 minimal and !, <Rea<l,.
Let xe R be arbitrary and take ke Z such that

0 <Im@x—-ka) < Im .
The minimality of Im ¢ implies that Im(x — ko) =0.So x—kote Z and hence xe Z + Zc .
This proves R © Z + Zo . The other inclusion is obvious. It follows that

oo — (X + Q) = -0 = n+ma forsome nme Z,
and we see that m = —(a+ @) = —2Re() ,s0 ~1 <m<1 and n= oo =|? > 0.
If fe R then by the same reason as above S+ B and BBe R, in particular S e R.

(6.9) Theorem.
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(a) Let E be the elliptic curve over C corresponding to the lattice L = Zx + Zy . Then End(E)
is isomorphic to a discrete subring of C. If we write Q(L) =,.; Q(x/y) then this subring is
not equal to Z if and only if Q(L) is a quadratic extension of Q. In fact End(E) is
isomorphic to a discrete subring of Q(L).

(b) Let E,E" be elliptic curves over C corresponding to lattices L and L’.

ZxZ if L and L’ are isogenous and [Q(L):Q]

Hom(E,E") = { Z if L and L’ areisogenous and [Q(L):Q] >2;
0 otherwise .

PrOOF: (a) Exercise (6.2).
(b) This follows from (a) once we have noted that the isomorphism class of Hom(E,E") as an
abelian group only depends on the isogeny classes of E and E’, since in that case Hom(E,E") =
EndC(E)+ if £ and E’ are isogenous, and 0 otherwise. Let M,M’ be lattices isogenous to L,L’
respectively, say M c L and fL'cM’'.If aL < L’ then

BafM c f'alL < B'L'cM'.
Sothe map a+> f'aff isaninjection {dxe ClaLcL'} > {ae C|aM c M’ }. If we take
M =M"=L we see that Hom(E,E") is isomorphic to a subgroup of EndC(E)Jr =(Z x7Z or
Z) and as such is either 0,Z or Z x Z . By reasons of symmetry End(E)" is isomorphic to a
subgroup of Homg(E,E") which is only possible if the two are isomorphic.

(6.10) Definition. Let R #Z be a discrete subring of C .
(@) The discriminant of R ,denoted Ay ,is defined as Ap = (0 — 0)% , where « is as in (6.7).
(b) The class number of R ,denoted hp , is defined as
hp=#{ (ab,c)e Z3| ged(ab,c)=1,b%—4ac=Ap,
b|<a<c,and b20 if bj|=a or a=c }.

(6.11) Theorem. Let R #Z be a discrete subring of C . Then
#{ E/IC |End. E =R Yz = hy.

PROOF: By theorem (6.5) we have to show that
hp=#{ L lattice| R={ze C|zLcL} }C".
By exercise (6.4) every lattice is homothetic to a unique lattice of the form L =Z + Z7y where ye
C satisfies -
Imy>0, [#=21, -, <Rey<l, and Rey20 if [f=1.
Furthermore exercise (6.4) states that there exist a,b,c € Z such that
ay—by+c=0 and ged(a,b,c) =1,
and we may take a >0 by changing signs, if necessary. Finally exercise (6.4) shows that
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Zlal = Zlay .
where « is as in theorem (6.7). Comparing imaginary parts we see that avb®~4ac 12a = Im o
and hence % —4ac = 4(Im o)? = Ap . The conditions on ¥ imply that [b|<a<c and b20 if
one of the inequalities is an equality. Finally any triple (a,b,c) such as in (6.10) induces a zero y
of the polynomial aX?— bX + ¢ that is of the required form.

The following theorem will be used in the analysis of the algorithms in sections 11 and 12.

(6.12) Theorem, (Brauer-Siegel)
hp = 141120 for Ap — —oo.

PrROOF: Lang [12, chapter XVI] ; see also exercise (6.5).
Exercises.

6.1 Let L,L’ be lattices and e C* suchthat al cL’. Show that there exists o’e C*
such that oL" < L. Show that o' can be chosen such that oo’ =deg ¢, .

6.2 Let E=E,; be the elliptic curve associated to L = Zx + Zy .
(a) Show that End(E) is isomorphic to a discrete subring of C.
(b) Suppose End(E)=Z + Zoc. Show that there exist integers a,b,c,d € Z such that
=a+bxly and owxly=c+dxly.
(c) Prove theorem (6.9.a).

6.3 (a) Let E=E,, with ae C". Show that Endc(E) = Z[i] .
(b) Let E=E, with be C*. Show that End.(E) = Z[{;] , where {; is a primitive third

root of unity.

6.4 (a) Show thatevery lattice is homothetic to a unique lattice of the form Z + Zvy, where ¥ is
as in the proof of theorem (6.11).
let L=Z +Zyand R={ze C|zLcL }. Suppose that R#Z .
(b) Show that there exist a,b,c € Z with ged(a,b,c) =1, such that ay> —by+c=0.
Let L'=Z + 2% and R"=Z[a})] .
(¢) Show that aL-L’'=R’.
(d) Show that R"=R .

6.5 Show that h < |Ap|l/2+oD)
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§7. The degree as a quadratic form,

In this section we will derive some properties of the map deg : Homy(E,E) — Z and as a result
we shall be able to give an upper and lower bound of the number of points on an elliptic curve over
a finite field.

(7.1) Proposition. Let E,E" be two elliptic curves over K and ¢, € Homy(E,E") . Then
deg(@+ y) + deg(¢— ) = 2deg ¢+ 2deg .

PROOF: It will be enough to show deg(¢ + y) + deg(p — ) < 2deg ¢ + 2deg v, since by
substitution of ¢+ y for ¢ and ¢— y for y it then follows that

4(deg ¢ + deg y) =deg(2¢) + deg(2y) < 2deg(e@+ ) + 2deg(p—v),
and we obtain the inequality in the opposite direction. Here we use that deg 2 = 4, see exercise
(4.4). The cases @,y,p+y or ¢—y =0 being trivial, we may assume @ = (fig VF:1), V=

g°F = f+a’f+b’ and j2F = h3+a’h+b’ we find

gxj \?
k= | —— | —f-h
/+ Fh f

(g £))°F = (f+h)(F~h)>
(f~h)*
+2gjF + (f+h)(fh+a’) + 2b°
(f~h)?

The denominator of g2F-j*F divides (f,h,)® and therefore the denominator of gjF divides
(fyh)? . It follows that ky =Ty /N , with
T_;. = (Hhh)*(E2gjF + (f+h)(fh+a’) + 2b") € K[X],
and
N = (fih, —fzhl)ze K[X1.
On the other hand a little calculation shows that

(Frhy (fh+a’)? + 4b° (f+h)(fh+a’) + 4b’ 2 — 4(gjF)?
) (F—h)*

= [ PR -£r + 1% = 2a'(Bh - 22h2 + fh3)
— AP - LPh -2+ B3 + a2 = 2n+ b2 | (F- )™

+ -
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(FPH? = 2a’fh — 4b'(f+h) + a?)(f—h)?

(hy*
(Fh — @) — 4b'(F + B)
) (-h?
(fihy = afyhy)? — 4b'(f hy + foh ) yhy polynomial
) N ) N

From k k_=T +T_“/N2 it follows that N divides T,T_ e K[X]. We now have
N = ged(T,T_,N) | ged(T, ,N)-ged(T_,N)
SO

deg(@ + y) + deg(p— v) deg T, — deg(ged(T, , N)) + degT_ — deg(ged(T_, N))
deg(T,T_)— deg(ged(T, T_, N))

= deg(T,T_)—degN

deg[ (fhy - cz'fzhz)2 — 4b'(fihy + foh Moy |

= deg(f hy)?

= 2deg ¢+ 2deg v ,

IA

I

which concludes the proof.
(7.2) Corollary. The degree of the multiplication-by-m map is deg [m] = m?2.

PROOF: By the proposition deg[m+1] + deg[m—1] = 2deg[m] + 2deg[1] , so by induction
deg[m+1] = 2m? — (m~1)2 + 2 = (m+1)2 .

Notation: If A is an (additive) abelian group and m € Z_, we denote by A[m] the subgroup of
m-torsion elements of A ,ie. Alm]={xe A|lmx=0}.

(7.3) Corollary. Let E be an elliptic curve over K and me Z_;.
(a) If char(K)tTm then
EK)[m] = (Z/imZ) x (ZimZ) .
(b) If char(K) =p >0 and m =p*n , with k > 0 and ptTn then for some i€ {0,1}, which
depends only on E and not on m , we have
EK)[m] = (Z/ p*2) x (Z/nZ) x (Z/nZ) .

PROOF: (a) Let d be a divisor of m . Itis clear that E(K)[m][d] = E(K)[d] = ker [d] so #EX)[d]
= deg [d]. Since char(K)td it follows from proposition (5.10.e) that [d] is separable and so
#E(K)[d] = deg[d] = d&* . Now apply exercise (7.1.b).

(b) Using (5.10.e) again we see that [p] is inseparable. Hence deg[p] is a strictly smaller
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divisor of deg[p] =p?,say deg[p] =p'. Since E(K)[p] is the kernel of the map [p] : EK)[p*]
— E(K)[p*'] and in general isogenies over algebraically closed fields are surjective, it follows by
induction that #E(K)[p¥] = p* . The general result follows from (a) and exercise (7.1.a and b).

(7.4) Definition. An elliptic curve E/K is called super-singular if char K =p > 0 and the
following equivalent properties hold:

(@) EK)[p4={0};

(b) [p] is purely inseparable ;

(©) [p]sep is an isomorphism and [p] = [p]Sep o Frobpz .

Super-singular curves are rare: because [p]..  is an isomorphism a necessary condition for E ab

sep

to be super-singular is E, , = Eapz’ bpz .

This implies j(E) = j(E)A"2 , 80 j(E) € F , .The converse is not true (for example a curve E
P

defined over Fp has j(E) € Fp but clearly need not be super-singular). In fact it can be shown
thatif K is an algebraically closed field of characteristic p >3 the number of supersingular curves

over K is
0 if p=1 (mod 12)
[p/12] + 1 if p=35or7(mod12)
2 if p=11 (mod 12)

(7.5) Proposition. The map (, ) : Homg(E,E") x Homy(E,E") — Z defined by

(9.9) = deg(p+y) — deg(p) — deg(y)
is bilinear, symmetric and ||¢|| := (¢,¢) = 2deg ¢@.

PROOF: Symmetry is trivial and ||¢|| = deg(2¢) — 2deg(¢) = 2deg(¢@). As for bilinearity, we have
the following series of identities using (7.1) several times:
4deg(p+y+y) = deg((p+2y) + (9+27))

2deg(p+2y) + 2deg(p+2y) — 4deg(y—1)
2deg((p+y) + ¥) + 2deg((@+2) + x) — 4deg(y=2)

4deg(p+y) + 4deg(y) — 2deg(¢)
+ 4deg(@+y) + 4deg(y) — 2deg(¢)
+ 4deg(w+y) — 8deg(yw) — 8deg(y) .
Rearranging terms and dividing by 4 yields

(P, y+3) = deg(p+y+y) — deg() — deg(y+%)

deg(p+y) — 2deg(¢) — deg(y) — deg(y) + deg(p+%)

(@) + (9. )
whence the pairing is bilinear.

I

1l

Il
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(7.6) Theorem. (Hasse, 1934). Let E be an elliptic curve over K =F g Then
| #E(F) ~ (q+1)| < 2Vg.

Remark: note that g+ 1 = #Pl(Fq).

PROOF: Let ¢ = Frob, : E — E@ = E  be the Frobenius morphism. The points over K are
characterized by E(K) = { P e E(K)| P =P } =ker{¢-1: E(K) = E(K) }. Indeed, if ¢(x:y:1)
= (x%:y%:1) = (x:y:1) then x=2x9 and y=y9,s0 (x,y) € Fq X Fq . Since dy(@-1) = d,()+d,(1)
=1 we see by proposition (5.10.e) that ¢—1 is separable, and so

HE(K) = deg (¢-1) = deg(p-1) = 1, ||l .
For arbitrary m,n € Z we have

Il

by e +
L,m%(9,0) + mn(@,1) + U,n%(1,1)
= m?q + mn(p,1) + n? .
Applying thisto m =2, n=—(¢,1) we get 0 <deg(me +n) =4q - (p,1)?,50 |(9,1)| <2Vg .
Taking m=1,n=1 yields deg(¢-1)=g—(p,1)+1,s0 I#E(Fq) —(g+1)| = |(p,1)] .

deg(m® + n)

Il

Exercises.

7.1 Let A be an abelian group.
(@) If myne Z_, are coprime then A[mn] =A[m] x A[n] . L
(b) Let #A4 = mk  where m e Z ., ke Z,, and suppose #A[d] = dk for all d|m . Then
A= (ZimZ)k.

7.2 Let E,E’ be elliptic curves and denote the first coordinate of a non-zero element Qe
Hom (E,E") by Xy with numerator and denominator (x(p)1 and (x(p)2 respectively.
Now suppose ¢,w= O and ¢ #*y . Prove that
ES
(xw‘!,)2-(x¢,_w)2 = l((x(p)l-(xw)2 - (x(p)z-(xw)l) for some A e K .
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§8. The division polynomial.

This section is devoted entirely to the construction of the division polynomials, which give explicit
formulae for the morphisms [m] . We fix an elliptic curve E=E ap Overa field K and denote by
F the polynomial F=X>+aX +b.

(8.1) Definition. The division polynomials vy, € K[X,VF] = K[X] ® K[X]VF ,for me Z,_,,
are defined inductively as follows:

v =-1;
vo=0;
vi=1;
v, =2VF;

Vs = 12FX - (F)? = 3X* + 6aX? + 12bX — a? ;
v, = 4VF(F"y 5 — 8F2) = 4VF(XS + 5aX* + 12bX3 - 5a°X? + 4abX - 8b% - a°) ;

Vome1 = Yms2(W ) - Wm—l(‘//m+1)3 m=2);
Vo = YpWso W )2 = VoW ) 1 QVF)  (m23).

(8.2) Theorem. Let m € Z, . Then

lVm—l‘l/m+1 . (Wm+2(wm—1)2 - Wm—Z(V/mH )2) / (4\/F) — ] (*)

@ ( to Y ¥,

(Here the numerators and denominators of the two fractions are coprime polynomials.)
) (v, )2 = A1 = xp)deailml | where 1 e K" and the product is taken over all P = (xp:yp:1)
e E(K) such that mP =0 #P .

PrOOF: Since [m] is invariant under field extensions we may assume K = K . We first deal with
the case char K = 0. Define another set of polynomials ¢,_,me Z, ; by ¢,=0 and for m=0

o =m {\/F if m even
= .

*. ey —
LS m odd }~H{(X—x)|3yeK cmey:1)=01}.

It is clear that ¢, 2 =m?-

X - K[X].
Pekerlm)-{0} X = xp) € Kixi
If [m] = (fm:gm\/F :1) then the denominator of f is qom2 . Denote

h, =0, 2X~-f) = ¢,>X - (numerator of f,) € K[X].
We shall prove that 4, =@, ¢, . Since dy[m]=m#0 and deg qomz =m? -1 it follows by

proposition (5.9) that
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deg k,, = deg(numerator of f,) = deg(¢,>X) = m?
and so the leading coefficientof h, is m?—1.
Now let x e K be such that ¢, +1(x)2-g0m“1(x)2 = 0. Then P = (x:y:1) € E(K) satisfies [mt1]P
=0 ,50 [m]P = (x~h, (x)/@,(x)? : g,(x)y: 1) =+P = (x:ty:1) # O and consequently ¢ _(x)%#
0 and A, (x) = 0. The polynomial ¢, ,-¢,_; is squarefree since both factors are squarefree so a
double root x of it would satisfy ¢, ,(x) = ¢, _,(x) =0 . This would imply [m*1]P =0 ,so 2P
=0 and F(x) =0 , which is a contradiction since ¢, 11?1 contains at most one factor X —x
for F(x) = 0. Finally deg(o,,., ¢,_;) = m? and the leading coefficient is equal to m2 -1, so
the conclusion is that k=@, ¢, ;.
We now show that VF-g, = ¢, /(2¢,%) . If we write Fg 2=f 3+ af, +b we see that the
denominator of F ng is (pm6 modulo a unit in K ; the numerator and denominator of F gm2

have degrees 3m? and 3(m2-1) respectively ; and

leading coefficient numerator of F, gm2 P
=m?°,

leading coefficient denominator of Fg m2

Let P=(x:y:1) e E(K) be a point such that 2mP = O and mP # O . Then ¥8,,(x) = 0 which is
the case if and only if x is a root of Fg,2 . It follows that (¢, /¢, ) is a divisor of the
numerator of Fg m2 and since these polynomials have the same degree we find
05,/ 0,

<Pm3
Comparing leading coefficients yields ¢ = 1/2. All in all we have shown

cC.

gm\/F =

@m~1$rn+1 . (p2m/¢m . 1}

[m] = [ X - :
@2 29,

Any common factorof ¢, ¢, , and (pm2 comes from a non-zero point P € E(K) with mP =
[mE1]P ie. £P = O, which is impossible. Clearly ¢, /¢, and gom3 have no factors in common
since we deal with squarefree polynomials. Hence it remains to be shown that ¢, =y, from
which the result follows since ., /¥, = (W, »(W,,_)?= ¥, (¥, Y)I(2VF) by definition.
The equality certainly holds for m =-1,0,1,2 and for m = 3,4 we can use the representation of
[2] found in exercise (4.4). For higher values we use exercise (7.2) applied to [m] and [n],
where m#tn and mn#0:

PinPrn = MO KO 2= 0 10, ) —0,2X0,2- 0,10, )

= 0 1Pt = P Prat Pat >

since comparison of leading coefficients yields A =1. So

Pom = Ponst)im=1)Poma1)—(m-1) 2VF
(P P3P = (P * PPy ) | 2VF

il



36

= w2m ;
Pome1 = Poma1)+(m)Pim+1)~(m)
2
(sz(Pm+2(Pm - ((Pm+1) (pm+1(pm—1

= Yo
by induction. This completes the proof in the case charK =0.

To deal with arbitrary characteristic, first notice that (a) implies (b) in general. We prove (a) by
induction on m . Suppose the identity (*) holds over K for m~—1, m and m+1. Considering ¢,
and y, aselements of Z[A,BX ,W/F 1, then the identity (*) holds for the curve E = E AB Over
Q(A,B) since char Q(A,B) = 0. Hence (*) remains true for 2m and 2m-+1, under the ring
homomorphism Z[A,B] — K taking Atoa and B tob, provided v, %0 and v, #0.

But V/2m+1 =0 & l//m+2(‘l/m)3 = t//m—l(y/m+1)3 o X - v/m lVm+2/(v/m+l)2 =X~ Wm—lwmﬂ/wmz
< [m+1] = £[m] by induction, which is impossible. In a similar manner we find that v, #0,

which concludes the proof.

Exercises.

8.1 Show that to calculate v, recursively, one needs to calculate at most 8-2log m division
polynomials of index < m .

8.2 Let {y,|me Z, |} be aset of polynomials such that (*) holds for all m . Show that
there exists A€ K" such that (v, > = A-I1(X = xp)d8i"] as in the theorem. [Hint:
assume K is algebraically closed.]
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§9. The structure of the endomorphism ring.

In this section we will have a closer look at the endomorphism ring Endg(E) of an elliptic curve.
As a result we will be able to give the exact number of points of an elliptic curve over a finite field.

(9.1) Theorem. Let R < Endy(F) be a commutative subring.

(a) There is an injective ring homomorphism f: R — C such that f{R) is a discrete subring of C;
(b) R has an automorphism = (complex conjugation) of order <2 ;

(c) Forall re R : degr = rF.

Remark: If char K = 0 we can take R = Endg(E) . If char K =p >3 we can take for instance R
= Z[Frobp] . It can be shown (but this is not easy) that if K is algebraically closed, then Endg(E)
is not commutative if and only if E is super-singular. Hence the non-commutative case rarely

occurs. See also exercise (9.3).

To prove (9.1) we need a lemma from valuation theory, which we state without proof. The proof is
not difficult but lies outside the scope of this text.

(9.2) Definition. Let F' be a field. An archimedean valuation on F is a function ¢: F — R,
satisfying:

1) ¢x)=0 < x=0;

() @(xy) = e(x)p(y) ;

()3 Ce Ryy Vxye F 1 ox +y)<Cmax{ox),0)};

(iv) C =1 won't work in (iii) .

Property (iv) is essential. If we can take C =1 the valuation is called non-archimedean.

(9.3) Lemma. (Ostrowski, Gelfand-Mazur, Tornheim)
Let F beafieldand ¢:F — R an archimedean valuation on F . Then there exists an embedding
f:F— C andaconstant ¢ce R_j, suchthat ¢(x) = [f(x).

PROOF: Lang [11, chapter XII] ; Weiss [22, chapter 1] ; Artin [1, chapter 2] or for an analytic proof
Rudin [16, chapter 10] .

PROOF of (9.1): Note that R is an integral domain. Let F be the field of fractions of R and define
(r/s) = deg(r)/deg(s) . By proposition (7.1)
deg(r + s) < 2deg(r) + 2 deg(s) < 4-max{deg(r),deg(s)}
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so ¢ satisfies properties (i-iii) in (9.2) with C = 4, and this is the sharpest value since deg[2] = 4.
Hence R can be embedded in C . Moreover we can take ¢ =2 , since 4 = ¢(2) = |f(2)|¢ = 2¢.
Hence if r € R—{0} then |f(n)>=1,s0 fiR) is a discrete subring of C. This proves (a), and

(b) follows from theorem (6.7). Concerning (c), note that deg r = [{r)| = Ar)fr) .

(9.4) Theorem. Let E be an elliptic curve over K =F q and ¢ = Frob q € Endg(E) . Define ¢,
recursively by #,=2,t=t;,=0+¢ , t,=1t, ;—qt _,.Then

(@ ¢?—19+g=0;

() It <2Vg";

(c) #E(Fqn)zq”+1-—tn ,n=21.

PRrROOF: (a) See exercise (9.2) ;

(b) Clear;

(c) In the proof of (7.6) we have seen that #E(Fq) =deg(o-1) = (0-1)(@-1) = |¢p* - (o + ) +
1. Since Frob = ¢"* , we have #E(F qn) = |pP" - (¢" + §") + 1 . This gives the required
result since by induction 7, = (@+P)(@" 1+ P 1) — (" 2+ §2) = @ + P + PP 2+ 2)
~ @D = 1

Exercises.

9.1 (a) Forevery ae Endi(E) there exists a commutative R Endg(E) containing o, and
@ is independent of the choice of R.
() af =pa.
©) m =0+ B [Hint: reduce to the case o= 1.]
It follows from (b) and (c) that ~ is a ring anti-automorphism R — R .

9.2 The trace of an endomorphism ¢« is definedas Tr() =0+ 0 € Z .
(a) Prove that o — Tr(a)or + deg(o) =0 .
(b) Prove that (a,f) = Tr(aeff) , where (-,-) is the quadratic form defined in §7.

9.3 Suppose R =Endg(E) is non-commutative. Define an equivalence relation on R xZ_, by
(r,n) ~ (s,m) iff rm =sn and denote the class of (r,n) by r/in.Let D={r/n|re R and
ne Z_,}.
(a) Show that D is a division ring and that = and (-,-) can be extendedto D .
(b) Show that there exist o, e D-Q with (¢,1) = (B,1) = (B,&) = 0. Show that any such
pair satisfies o2, € Q .o and off = —foc. [Hint: use Gram-Schmidt orthogonalization.]
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9.5

9.6
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(c) If (31) =(y0)=0 then ye Q(a)-B. [Hint: Q(a,yp) is commutative.]

(d) Conclude that D has a Q-basis {1,o,B,0} and that the map D — H (the
quaternions), defined by o> Mi and B> V{Bfl/ ,embeds R as a discrete subring
of H of rank 4 over Z . Show that the anti-automorphism = is induced by the
conjugation on H.

Let E be an elliptic curve over F 7’ where g = p*. Show that E is super-singular < for
all n, the order of E(F qn) is not divisible by p < p |t = Tr(Frob q). If g =p thisis the
caseifand only if z=0.

In [19, section II1.2] it is shown that if E,E’ are elliptic curves, then there exists a group
homomorphism = : Homy(E,E") — Hom(E",E) such that

(i) ©P = dego € End(E") ;

(i) Py = deg ¢ € Endy(E);

(i) g = ¢.

Check that this is true for K =C..

The centreof aring R is Z(R)={ae R|Vbe R:ab=ba}.
(a) Let E/K be an elliptic curve. If Endg E is not commutative, then Z(Endg E)=7.
(b) Show thatif K=F p the Frobenius endomorphism of E/K is in the centre of Endy E .
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§10. Counting points on an elliptic curve.

We now have enough theory at hand to describe the algorithms for primality testing and
factorization into primes. One sub-algorithm plays an important part, and it deserves special
attention: counting the number of points on an elliptic curve over a finite field.

There is one "algorithm" to determine the number of points on an elliptic curve over F 7 which is
as trivial as it is useless: count every pair (v,y) € F_ x F_ which satisfies the equation y? =x3 +

ax + b , and add one for infinity. This will take ¢? operations. Here (and in the sequel) an
operation denotes a constant (i.e. independent of ¢ and E) number of additions and multiplications
in F 7" Using ordinary methods a multiplication of two numbers of say ¢ digits takes about 2
time. Using the so called fast multiplication method [9], such a ‘multiplication takes ~ r1*€ time,
with €> 0 arbitrarily small. So we may say that one operation takes O((log g)%) time, or O((log
q)'*9) if we use fast multiplication. The constant in the big O-symbol of Landau depends highly on
the speed of your computer. |

(10.1) Proposition. #E(F )= g + 1 + 2 203 + ax + b) .
q x€F,

Here y: F " {-1,0,1} ¢ Z is the multiplicative character defined by

0 if z=0: 7’

—1if z is not a square in F
x2(2) = if z= o,
1 if z is asquare in Fq .

PROOF: Immediate since 1+ y(z) =#{ye F q |y =z }. The term 1 is for (0:1:0).

Since {x(z)} is the inverse image of z(#~12 under the canonical homomorphism Z — F 4o the
calculation of x(z) takes about log ¢ squarings. Hence the proposition provides an algorithm
taking g-log g operations.

(10.2) Algorithm.

Step 1. Choose a random point P € E(F q) .

Step 2. Calculate mP for g+1-2Vg<m < g+1+2Vg .

Step 3. If there is a unique m such that mP = O then m = #E(F q) and the algorithm terminates;
if there are more than one , then we know the order k of P.

Step 4. Start again by picking P'e E(F q) , but now calculate mP’ modulo the subgroup
generated by P for (g+1-2Vg)k<m < (g+1+2Vq)/k . We continue in this way for
subgroups <P>, <P,P'>, <P,P',P"> , ..., until the order k of the subgroup that has
been found satisfies |g + 1 — k| <2Vg.If ¢ =737 then #E(F )=k



41

We pick a random point by taking xe F g at random until we find one that satisfies y(x3 + ax + b)
= 1. It follows from Hasse's theorem (7.6) that about half of the elements of F 7 have this
property, so this way of picking points is efficient in a probabilistic sense. We take P = (x:y:1) ,
where y is just a formal symbol. There is an efficient way of calculating square roots in F 7’ cf.
exercise (10.2).

The calculation of mP for all m will take O(qY4*%) operations in E(F ;) » using the so-called
baby step-giant step method. This method is analogous to an algorithm of Shanks [18] to calculate
the class number of an imaginary quadratic number field. The method proceeds as follows. Make a
list of all mP for 0 <m < g% (the baby steps), which includes Q = [¢!/4]-P . (This requires
O(¢q""*) memory, which is not feasible for large g .) Next calculate nQ for 0 < n < q'4 (the giant
steps) and check whether nQ +mP = O for mP in the list. This is done by searching the list in
O(log q) time. For any such pair (n,m) we have (m + [¢Y4]1n)P =0 .

To calculate the order of (P’ mod P) in step 4, we have to compare m'P’ wit mP for k values
of m and k' values of m’, where kk’=O(Vg) . Again this can be done in O(g"%) time using
O(¢"*) memory using a baby step-giant step strategy. For k small it is clear how this should be
done: keep a small list of <P> and walk with baby and giant steps through <P’> , comparing
with the few values of <P>. We can do the same thing with P and P’ transposed if k is large.
See exercise (10.6). The depth of recursion is O(log ¢). In practice it is very small, since most
points have a large order.

We see that the expected running time of this algorithm is O(q'/4*%) . In practice it is quite good for
g up to 20 decimals. For most elliptic curves a large part of its points have order > 4Vg . For such
a curve a good alternative for step 4 is picking random points on E(F q) until one is found of large
enough order. Curves that do not have this property exist for instance for g < 37 (i.e. q —[2 \/q]
< 4“/(1 ) or g = K2 1, for which there exist curves with E(F q) = Z/kZ x Z/kZ . There is

however no good way of telling whether we are dealing with such a curve, so it might happen that
this al gofithm unfortunately never ends.

For special curves we can calculate #E(F q) very efficiently. Consider for instance the following
theorem.

(10.3) Definition.
(a) Let o,we Z[i] with 7 prime and ged(2e,m) = 1 and put g = #7% . The biquadratic residue
symbol with respect to 7 is defined as the unique unit of Z[i] such that:

(_0_5__) = @4 mod 1.
T Ja
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(b) Let a,we Z[{,] with 7 prime and ged(6a,m) =1 and put g = 2. The sixth power
residue symbol with respect to 7 is defined as the unique unit of Z[{;] such that:

(.ﬂ_ﬁ) = @ V6 mod 1.
T Je

(10.4) Theorem. Let g be a prime number.
(a) If g=1(mod4) and E is the curve given by Y% =X3+aX then
#E(Fq) = m-)(r-1),
where 7w e Z[i] satisfies 7T=¢q and 7 = (—_—%—)4 (mod 2(1+i)) .
(b) If g=1(mod3) and E’ is the curve givenby Y2=X3+b then
#E'(Fq) = (r-1Z-1), )
where 7 € Z[(;'s] satisfies 7 =q and 7 E(-fﬂ—)s (mod 2V-3) .

Note that in both cases 7 is unique up to complex conjugation.

PRrROOF: [8, chapter 18].

The theorem is not surprising if you know that that Endg (E) = Z[i] and Endg (E) = Z[§ ],cf.
exercise (6.3), since ¢ = Frob satisfies P =deg ¢ =q (i)y (9.1) and (qo—l)((pgl) q- ((p+_) +
1 =#EF q) resp. #E'(F q) by (9.4). However this does not show that 7z satisfies the congruences
stated. For an algorithm to'solve n7T=¢q in Z[i], we refer to exercise (10.3). A similar algorithm
can be designed for Z[§3] .

Another algorithm to calculate #E(F q), due to Schoof, depends on the following theorem.

(10.5) Theorem. Let E be an elliptic curve over F g and m a positive integer with gcd(m,2q) =
l.Let R bethering R=R,_=F q[X,Y]/(y/m,Yz —F), where y,_ is the division polynomial and
F the polynomial defining E . Finally let t=q + 1 —#EF PR Then:

(a) R is afinite ring containing F g

(b) E(R) has a group automorphism ¢ with o(x:y:z) = (x7:y9:29) ;

(c) The point P = (X:Y:1) € E(R) has order m ;

(d) (¢t mod m) is characterized by o*(P) + gP = to(P) .

PROOF: (2) R has an F -basis {XY | 0<i <(m?-1)2,0<j<2 },s0 dimpR = m?— 1.
q

(b) Denote § = E(F;)[m}-{O} JIf Q0= (xQ:yQ:I) € S then x;/m(xQ) =0 and yQ2 = F(xQ) #0
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since 2+m . It follows that there are ring homomorphisms

¢p R »4?5"; , defined by X x, and Y=y, ,
and a ring homomorphism

¢:R—>Ilps F, , definedby ¢(r) = (9,(n), -
If g,he Fq[X] are such that ¢(g+hY) =0, thenforall Q € S we have g(xQ) + h(xQ)yQ =0
and since Yo # 0 this means that g(xQ) = h(xQ) =0 and hence y, | g and & . This shows that ¢
is injective and by exercise (2.6) we may consider E(R) as a subgroup of HQG S E(F‘;) by means
of the embedding ¢, . Since F 7 < R , the map x > x9 is a ring endomorphism of R . So we can
define o : E(R) — E(R) by o(x:y:z) = (x9:y1:29) . The restriction of o to each coordinate is the
Frobenius morphism on E(F‘;) , which is bijective, so ¢ is an injective group homomorphism and
hence an automorphism since R is finite.
(c) By definition ¢,(P)= (Q)Q .5 - Each coordinate has an order which is a divisor of m and by
corollary (7.3a) at least one coordinate has order exactly m .
(d) Denote ¢=Frob, . By theorem (9.4) ¢*~ 1@+ g =0, in particular ¢*(Q) - t@(Q) + qQ = O
and hence o*(P)—to(P)+ qP = O . Since P has order m and o is an automorphism , any
number ¢ satisfying this equation is determined modulo m .

(10.6) Algorithm.

Step 1. Determine the smallest x such that H p > 4Vg.
p Primespsx»ng(P,2Q)=l

Step 2. Calculate y,, for m<x.

Step 3. Calculate (¢t mod p) for every p prime, p <x, gcd(p,29)=1, using the theorem.

Step 4. Calculate (r mod [Ip) using the Chinese remainder theorem. Then ¢ is uniquely
determined by | < 4Vg , and #E(F J=a+1-t.

The speed of this algorithm depends mainly on the size of x . We claim that x = O(log g) . This is
clear from the prime number theorem [6], which states that

) pﬂ%ﬁx logp ~ x,
but it also follows from exercise (10.5).
To calculate (zmod p) in step 3, we first calculate 0P + gP in O(log q) arithmetic operations in
the ring R = Rp . Next we calculate 0-0P , 1-0P , 2-0P,... until we find #0P = o2P +gP .
This will take at most p operations in R . Since R has dimension p*>~1 over Fq , one arithmetic
operation in R takes O(p*) operations in F g We may say that the number of primes p <x is ~
log g . In fact this number is O(x/log x) , so this is a reasonable estimation. Furthermore we may
take p ~log g which is reasonable for a large part of the p . So step 3 takes

(number of p)-(O(log g )+ O(log q)) operations in R
= O((log q)-(log g + log q)-(log ¢)*) = O((log q)®) operations in F,.
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The calculation of , takes log(m) multiplications of polynomials of degree ~ m2—1, so step 2
takes O((log ¢)°) operations in F . We conclude that Schoof's algorithm takes O((log ¢)8) time
using conventional multiplication. Fast multiplication methods can perform a multiplication in R b
using O(p?*€) multiplications in F g 0 the algorithm takes O((log ¢)°*€) time using fast
multiplication.

Exercises.

10.1 Let G = <> be the multiplicative group generated by ¢ = Frob 4 € Aut(E(F q)) and let S
be as in theorem (10.5) . Choose a set of representatives X for the orbits of Q € S under
the action of & . Show that:

(@ R = HQGE Fq(anyQ);
() [F o) F,1=#{ ¢Qlic Z}.

10.2 Let ¢ be an odd prime power and denote ¢ — 1 =2*Fu with kue Z andu odd. Let reF q
. k-1 . . . . .
satisfy 72 =—1. Such an element exists and is easy to find, for instance r = s* , with
x(s)=-1,where ¥ is the character defined in (10.1). Finally let a € F q with y(a) = 1.
Prove the correctness of the following algorithm to solve x*=a in F 7

(1) Let x=a®D2 and c=a* .
(2) If ¢ =1 then x*=a and the algorithm terminates.
(3) If not, then determine the smallest positive integer m such that 2"=1,
Replace x by o2 and ¢ by 2™ and go back to step 2.
~ [Hint: show that % =ac always holds , and eventually ¢ =1.]

10.3 Let p be a prime number, p =1 mod 4. Suppose x € Z satisfies x*=-1 mod p . Such an
x can be found as in (10.2). Define f: Z[i] — Fp by flc + di) = (¢ + dx mod p).
(a) Prove that f is a ring homomorphism and ker f is generated by p and x—i.
(b) Show that ker f= Z[i]-7 where m=a + bi e Z[i] satisfies nT=p .
(¢c) Show that xb=—-amodp .
(d) Prove that 7 can be found by calculating the greatest common divisor of p and x—1i
in Z[i] using the Euclidean algorithm.

Remark: A faster method to find such a number 7, or rather to find a,b € Z satisfying a? + b =
p , is the following [3]. Let again x € Z satisfy x“=-1modp . We may assume O<x<p.
Now define r,,r,, ... by
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r()zp > rlzxa

Ta1 =90t That > 0< Tnel <7y -

2 2

The algorithm terminates when r, < Vp , and then pP=r+r, 0.

n

10.4 Prove the Chinese remainder theorem for 7,
Let n;, ..., n, be pairwise coprime positive integers, i.e. gcd(ni,nj) =1 for 1<i<j<zt.
Then Z/(Hni)Z = (Z/n|Z) x ... x (Z/n,L) . Furthermore for every t-tuple of integers
(a;,...,a,) there exists an integer a , such that a = a;mod n; for 1<i<¢.This a is
uniquely determined modulo Hni .

10.5 (a) Show that every prime power that divides (z ) is<n.

n

() 2" = k; (’;) < (n+ 1)yn ppn];nlps” p

(c) Thereexists ¢ > 1suchthatforall n=>2 : = .
p prime,p<n
n
d < < 2,
@ P primglt/zkpgn P ({n/Z])
(e) Thereexists d>1suchthatforall n=>1 : p < 4dt.
p prime,p<n

(Note: [n/2] denotes the greatest integer < n/2 and [n/2] denotes the smallest integer > n/2 .)

10.6 Let P,P'e E(F,) with order(P) =k < 4Vg . Let S = [(g+1)/k]P" .
(a) There exists k" with |kk'|<2Vg and kP + k'P'=S.
Assume that & <2g¢'* and let Q = [2¢Y4P".
(b) Show that one can calculate all triples (m,m’,n) such that
mP +m'P +nQ =8 and |m|<k,|m’|<2qV4, |n| < 2qV4/k
in O(g"% time using O(¢'*) memory.
(c) Show that this can be used to calculate the order of (P'mod P), and it gives the order of
EF q) if there is only one such triple.
(d) Show that a similar method works for k > 2¢!*4 .
*(e) Generalize this to calculate ki, =order( P, mod <P, ..., P,>) from
k; = order( P; mod <Py, P>), 1<i<e,
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§11. Primality proving.

Although it is not hard to convince yourself of the primality of a given number # , it is quite hard to
give a sound mathematical proof of this. In this section we will show how the theory of elliptic
curves can be applied to design a primality proving algorithm. It should be noted that there exist
fast so-called pseudo-primality tests, such as the one outlined in exercise (11.1), which give an
almost certain answer to the question whether a number is prime or not. In fact it seems less likely
that a number passing a reasonable pseudo-primality test is not prime, than that your computer
equipment has been wrecked by some species of vermin, or even that in the future someone will
find a logical paradox in the foundations of mathematics which will turn all the results in these

notes into false statements anyway.

(11.1) Theorem. Let n be an integer greater than 1, not divisible by 2 or 3. Suppose there exists
an elliptic curve E over Z/nZ and m,q € Z_, and P € E(Z/nZ) such that:

(i) ¢ is aprime divisor of m and g > (n' + 1)2;

(ii) mP =0 in E(Z/nZ) ;

(iii) If [m/qlP = (x:y:z) thenz e (Z/nZ)* .

Then n is prime.

PROOF: Let p be a prime divisor of n . The canonical homomorphism Z/nZ — Z/pZ. induces a
homomorphism E(Z/nZ) — E(Z/pZ) which maps [m/q]P to Q = (x:y:z). Now Q # O, since
Z/pZ is afield and z e (Z/pZ)* by (iii). It follows from (i) and (ii) that

(" +1)2 < ¢ = order of Q in E(ZIpZ) < #EZIpZ) < (Vp + 1)?,
s0 p > Vn and hence p=n.

Let ne Z_, , ged(n,6) = 1. If n is prime, the following algorithm provides a proof of this.
However, if n is not prime there is no certainty that the algorithm will tell you so (although it will
do for "most" numbers). In the algorithm we use an undefined constant C , which influences the
speed of the algorithm and whose size depends on n. It should be chosen such that given a random
number m = n , the probability that m has exactly one prime factor = C is large, and the time
needed to find all prime factors < C of m is short. We call a number probably prime if it has
passed a pseudo-primality test.

(11.2) Algorithm. Let ne Z_, , gcd(n,6) = 1. We determine whether » is prime as follows:

Step 1. Subject n to a pseudo-primality test such as in exercise (11.1), and terminate if » is not
prime.

Step 2. Choose an elliptic curve over Z/nZ and m e Z_ such that
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if n is prime then m = #E(Z/nZ).
If me [n+1-2 W/rzg n+1+2 \/n] then » is not prime and the algorithm terminates.
Step 3. Let k be the product of all prime factors of m smaller than C , and denote g = ml/k .
Now check if
(i) k>1;
(i) g > a1+ 1)%;
(iii) g is probably prime .
If one of these properties does not hold, go back to step 2.
Step 4. Choose a random P = (x:y:1) € E(Z/nZ) . Proceed until we find a point P such that kP
= (x"y"z)# O . If ged(z',n)# 1 then n is not prime and the algorithm terminates.
Step 5. If mP # O then n is not prime and the algorithm terminates. If mP = O all the
assumptions of theorem (11.1) are satisfied, except possibly that g is prime.
Step 6. Prove recursively that ¢ is prime.

Step 1 needs no explanation. There are two methods to choose E and m in step 2, which are
treated separately in (11.3) and (11.7). To find small prime factors of m in step 3 we can use for
instance the algorithm described in the next section. The probability that m has only large prime
factors (i.e. k= 1) or that it has only small prime factors (i.e. g < (n/4 + 1)2) is quite small, at

least in comparison to the probability that ¢ is not prime, whichis ~ 1 — 1/log n by the prime
number theorem. So the probability that (i), (ii) and (iii) are satisfied is probably O(1/log n) and
hence we can expect that step 2 (which is the most time-consuming part of the algorithm) must be
repeated O(log n) times at each recursive step.

In step 4 a point P is found by picking x at random such that (x> + ax + )12 =1 mod n and

solving y*=x3 + ax + b mod n as in exercise (10.2). This algorithm is efficient in a probabilistic

sense if n is prime. If n is not prime the algorithm either provides a good solution, or it ends up
telling you that » is not prime (for instance if it finds s such that s® 1722 —1.0 or 1 mod n), or
it may have trouble finding an s with s**1Y2# 0 0r 1 mod » . So if no such s is found after a

few tries, it is best to terminate the whole algorithm and reconsider your suspicion that # is prime.
You might try another pseudo-primality test, or even try it the other way around: decompose »
into irreducible factors, e.g. by the algorithm in the next section.

We calculate multiples of P by repeatedly doubling. We can use the doubling formula of exercise
(4.4), which also works over Z/nZ . If n is prime the probability that kP # O is (g—1)/q, see
exercise (11.2).

Since g < (n+ 2V + 1)/2 = n/2 , the depth of recursion is bounded by c-log »n . Note thatif ¢ is

below a certain bound it is better to apply more direct methods to prove the primality of ¢ . The
expected running time is O((log n)?)-the time taken by step 2, which yields a total time of O((log
n)10) if we use the Goldwasser-Kilian method, or O((log n)6+) using Atkin's method.
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(11.3) First method to choose E and m. (Goldwasser-Kilian).

Step 1. Choose 0 <a,b < n arbitrarily, until 4@+ 2762+ 0mod 7.

Step 2. Check whether ged(4a® + 27b% 1) = 1. If this is not the case we have found a non-trivial
divisor of »n and we can finish the job.

Step 3. Calculate m using Schoof's algorithm (10.6).

Note that Schoof's algorithm only works in the case that n is prime, but if this is not the case any
number m , even the one provided by Schoof, satisfies the condition of step 2 in (11.2). It is
however quite likely that in that case Schoof's algorithm will terminate by telling that » is not

prime.

The second method, due to Atkin, is in a way reverse to the first, since it starts by calculating m ,
and then tries to find an elliptic curve E with #E(Z/nZ) =m (if n is prime). Since the
construction of E is the hard part of Atkin's method, we must of course first check if m is of the
desired magnitude and that it has a probably prime divisor ¢ satisfying the conditions in step 3 of
(11.2). Before describing the algorithm, we state a few facts.

(11.5) Definition. Let p > 5 be a prime number. The complex multiplication field of an elliptic
curve E over the prime field Fp is defined to be L = Q(Vd) , where d =12 — 4p with te Z
such that #E(Fp) =p+1-—z.

The ring of integers of L is O, = { xe L|3fe Z[X] monic such that f(x) =0 }.

A complex multiplication field is an imaginary quadratic field, since d < 0. Itis an elementary fact
from algebraic number theory that an imaginary quadratic field is of the form L = Q(VA), with A a
negative integer not divisible by the square of an odd prime, and A=1mod 4 or A=8 or 12 mod
16. This number A is called the discriminant of L . The ring of integers of such an L is O, =
Z[(A+ V)2,

(11.6) Theorem. Let L = Q(VA) be an imaginary quadratic field. Then there exists a monic

irreducible polynomial F, € Z[X] such that for all primes pt6A4, for which 77%=p is solvable

in O, , the following properties hold:

(a) Fy=(F, modp) splits into distinct linear factors over Fp .

(b) If je Fp is a zero of F , then every elliptic curve E/Fp with j(E) =j has L as its
complex multiplication field.

The degree of F; is equalto h; , the class number of O, .
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PROOF: See [21], where it is also shown how to construct these polynomials. In [17] one can find a
few useful remarks on how long this will take.

It is easy to determine whether 7#7 =p is solvable in O, , and indeed to solve it, by methods
analogous to those indicated in exercise (10.3) for O; = Z[i] ,i.e. A=-4. The solution 7 is
unique up to conjugation and multiplication by units.

(11.7) Second method to choose E and m. (Atkin).

Step 1. Select Ae {-3,-4,-7,-8,-11,-15,-19,-20,...} with gcd(A,n) = 1, for which nT=n
is solvable in the ring of integers O, of the field L = Q( VA) , and solve it.

Step 2. Calculate m= (- 1)(7—-1).

Step 3. Find je F, with F;(j)=0.
Step 4. Find an elliptic curve with j(E) =j and #E(Z/nZ)=m if n is prime.

By exercise (3.2) there are 6 (if j=0),4 (if j=1728) or 2 (otherwise) isomorphism classes of
elliptic curves with j(E) = j and by exercise (11.3) there are 6 (if A=-3),4 (if A=-4) or 2 (if
A £ -T7) possible values of m . It can be shown that if A# -3,—4 then 0 an 1728 are not zeros
of F; ,and F Q(3) = X resp. F Q) = X - 1728 . So given j with .772(]') =0, there is a bijective
correspondence between possible values of m and isomorphism classes of elliptic curves with
J(E)=j. For A=-3-4 itis easy to match the right curve with the right m , using theorem
(10.4), since all the curves with j(E) = 0,1728 are of the form E = Ey, or E 0 respectively. For
A <=7 two non-isomorphic curves with j-invariant j are for instance E = E4 ko2r and E'=
Eqpe2 op3 » where k=ji(1728 — j) and "2 =1 mod n (provided n is prime). There may
be good ways to find out which curve has the right order, but these are not known. The best way
seems to be to choose arbitrary points on them until one is found which is not annihilated by m . In
that case the other curve must have order m .

Rather than calculating the polynomial F; we keep a list of all of them for the first few hundred
discriminants. This should be enough if n = 10290 | which is about the size of a number that the
elliptic-curve-method-primality-proving-machine can handle effectively. Zeros of F; can be easily
found using general zero-finding routines over finite fields [9, section 4.6.2].

It is hard to give an exact analysis of the time needed by this algorithm. A heuristic analysis shows,
modulo some uﬁpr@ve;d assumptions, that given A, we can find m in O((log n)3+%) time [13].
Since calculating F; is hard it should be checked first whether m satisfies the properties in steps
2 and 3 of the main algorithm. A good value of m can be found in probably O((log n)**¢) time.
Once we've got m , calculating E will cost O((log n)>*€) time. Note that the degree of F 7 not too
large by the Brauer-Siegel theorem. So Atkin's method takes O((log 7)7*€) time, and with recursion
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the whole algorithm takes O((log n)°*€) time.

Exercises.

11.1 Let n> 1 be an odd number, say n— 1 =u-2", with # oddand t>1.
(a) If n is prime, then every a € (Z/nZ)-{0} satisfies:

-1
a*=1 or -le {a*,a®,. a2 *},

s (*)
*(b) If n is not prime then (*) holds for at most 25% of all a € (Z/nZ)-{0}.
(c) Let re Z with r=2mod 4 ,suchthat p=r+1 and ¢g=2r+ 1 are prime. Let n=

pq . Show that #{ a e Z/nZ | a" V2 = +1} =#{ a € Z/nZ | a satisfies (*) } = r2/2 .

It is conjectured that there exist infinitely many r € Z as in (c). It follows that the bound in (b) is

sharp in the sense that there exists a sequence (ny) of non-primes such that #{ ae Z/nZ | a
satisfies (*) } ~ n,/4 asymptotically if k — oo. Also for n=9 we have exactly 25% in (b).

11.2 Let n,ym,k,q be as in algorithm (11.2) and assume that » is prime. Show that #E(Z/nZ)[k]
=k . [Hint: gcd(k,q) = 1.]

11.3 Let L an imaginary quadratic field of discriminant A . Show that:
(a) The ring of integers O, of L is a discrete subring of C.
(b) The discriminant of O, , as defined in (6.10), is equalto A.
(F1£V-3)2 } if A=-3;

{ %1,
© O =19 {14} if A=—4;
{+1 } otherwise .



§12. Factoring integers.

In contrast to primality testing, the difficulty of the factorization of an integer into primes lies in
obtaining the answer. The verification that the answer is correct is completely trivial. We first give
an older algorithm, for its striking analogy with the elliptic curve algorithm. As before, n is a

positive integer.

(12.1) Algorithm. (p—1 - method, Pollard 1974)

Step 1. Choose a number & that is composed of small primes, e.g. & = kgv(1,2,...,C) , for some
constant C .

Step 2. Choose a mod n arbitrary.

Step 3. Calculate d =gcd(a*-1,n).

Step 4. If 1 <d <n we have found a non-trivial divisor of n.If d=1 start again, putting some
more primes into k. If d=n , try again with another a or take some primes out of k.

If p isaprime factor of n with p—1|k then p | ged(ab~1,n), since by Fermat's theorem )2
divides @”~1-1 . Hence the method works if n has a prime factor p such that p—1 is completely
built up from small primes. If this is not the case the method is not likely to work.

We calculate a*~1 (modn) in O(log k) squarings and multiplications mod » . The running time is
O((log n)%-C) .

The following method differs from Pollard's method in that it uses the structure of the group E (Fp)
instead of the multiplicative group (Z/pZ)" . The advantage of this lies in the fact that if one curve
doesn't work we can always try another. Let n be non-prime, ged(n,6) = 1 (factors 2 and 3 can be
easily found) and not a power. This can be checked by calculating nl/2, nl3 .. nl* for k=

[“log n] . There are two parameters v and w in the algorithm. The constant v is an upper bound

for the size of the prime factor we want to find. We can take v = [\/n] , but since the speed of the
algorithm depends highly on v it is better to choose v smaller. The other constant w depends on

v and we shall see below how it can be calculated .

(12.2) Algorithm.
Step 1. Choose an elliptic curve E over Z/nZ and P = (x:y:1) € E(Z/nZ) .
Step 2. Let e(r) = max{e e Z,,|r* < (W + 1)2 } and let

k= [ o,

r prime,r<w

Calculate successively for i=0,1,2 ..., Ze( r):
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k; = (product of the i smallest primesin k) and P;=kpP = (x:y;:2)
until we have found the largest i (which is < Y.e(r) ) with z;#0mod n.

Step 3. Calculate d = ged(z; , n) , which is divisor of n that is strictly smaller than n.If d=1
start again at step 1.

The best way to choose E and P is to choose arbitrary (a,x,y) and take b =y? — x> — ax, until
we find ged(4a® + 27b%,n) 0 mod n. If ged > 1 we have found a non-trivial divisor of . If
ged =1 we take E = E,, and P = (x:y:1). Step 2 takes

Zr {e(r) multiplications-by-r } in E(Z/nZ) =

O(Xe(r)log r) operations in Z/nZ =

0(Xlog ¢y operations in Z/nZ =

O(w-log v) operations in Z/nZ =

O(w-log v-(log n)?) time.
To analyse the algorithm we need to know the probability that a random triple (a,x,y) provides a
pair (E,P) that gives a non-trivial divisor. A sufficient condition for (E,P) to do so is given in the
following theorem.

(12.3) Theorem. Let n,v and w be as above and let E be an elliptic curve over Z/nZ with P
= (x:y:1) € E(Z/nZ) . Suppose n has prime divisors p and ¢ such that:

@ psv;

(i) #E(Fp) is composed of primes <w ;

(iii) #E(F q) is not divisible by the largest prime factor of the order of (P mod p) € E (Fp) .

Then the algorithm (12.2) finds a non-trivial divisor of # .

PROOF: Let r be a prime number with 7| #E(Fp) < (\é) + 12 (W+ 1)2 . It follows from (ii)
that » <w and by definition m < e(r) . Hence #E(Fp) | k. Now suppose the algorithm doesn't
find a non-trivial divisor, then there exists i < Y.e(r) with

ged(zym) =1 and {i=2e(r) (*) or z;,, =0 (**) }.
It is impossible that (*) holds, since in that case k = k; and k(P mod p) = (kP mod p) = (O mod
p)so plz; and hence ged(z,n) > 1. Also (*¥*) is impossible since this would imply p,q | Zi1
and

k(P mod p,q) # (O mod p,q)  (since p and ¢ are prime) ;

k; 1(P mod p,q) = (O mod p,q) .
If k; ;= rk; then it would follow that r is the largest prime divisor of the order of (P mod p,q),
which is in contradiction with condition (iii).

The following theorem shows how the orders of elliptic curves over Fp are distributed over the
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interval (p+ 1-2 \/p, p+1+2 \/p) .

(12.4) Theorem. Let p > 3 be a prime.

(a) Let E be an elliptic curve over Fp . Then End E = EndeE is a discrete subring of C not
equal to Z .

(b) Lette Z with | < 2\{0 and R adiscrete subring of C . Then

#EIF, | #E(F ) =p+1—t ,End E=R Y=p =

{ hy if R contains a zero of X?—zX +p ,
P

0 otherwise .

PRrROOF: (a) Let ¢ = Frobp e End E . Since |¢| = Vp we can'thave End E = Z . Moreover exercise
(9.6) shows that ¢ e Z(EndE)={ ye End E | Vy: xv=1yy }and that Z(End E) =Z if End E
is not commutative.

(b) See [5]. Note that this is analogous to theorem (6.11).

(12.5) Corollary. Let E be an elliptic curve over Fp andte Z with | <2Vp . Then
N, = #{EIF, | #E(F ) = p+1-t Y= = [2-4p|'2+%D) for p — oo

PrOOF: Comparing discriminants we see that X2 —¢X + p is solvable in R if and only if
?2—4p = d*4,.
By the Brauer-Siegel theorem 4y, = |A,[V2+() , So

t

N, = ; (2= dp)d?| Vo) = |2~ 4p12+0) for p —y oo .
d*| -4p

We now sketch how to find an upper bound for the number N of triples (0,&,1) € (Z/nZ)? for
which the algorithm provides a non-trivial divisor. Details can be found in [14]. Keep v and w
fixed and assume that n has a prime divisor p <w . To simplify the analysis, we assume || < Vp,
Le. we consider only a part of the possible choices of (E,P). In real life the probability that a
random pair will work can only be greater. Let S be the set

S={rtelZ||]< va and p+1-t is completely built up of primes <w } .
If | < Vp, then [~ 4p|V2~Vp and it can be shown that the o(1) in (12.5) doesn't vary too
much with ¢, in fact for [f) < Vp there exists a constant ¢, suchthat ¢, /logp < |~2-4ple®
for all ¢ with the possible exception of one |¢| . So for all but possibly two 7€ S we have
N, 2 ¢;\p/logp . (1)
The number of curves E a b/Fp of order p+1-r (up to isomorphism) with (x:y:1) € E a,b(Fp) is
N, . Furthermore there are (p—1)/#Aut E > ¢, (p—1) isomorphic curves, and p—t affine points

on a curve of order ¢. So
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#{ (a,bx,y) € (ZIpZ)*| 4a® + 2702 20, #E,,(F)e S
and (x:y:1) e Ea,b(Fp) 12

2ies No- @-D-0HAut E 2 cp-(#S = 2)p>2 I logp . )

Denote for te S :

T, = { (axy) e (ZIpZ)*| 4a® + 27b* =0 ,

#Ea’b(Fp) =p+1-t for b=y?-x3—ax };

and for (axy)e T, :

Toxy = largest prime dividing the order of (x:y:1)e E a’b(Fp) ,

Upy = {(@x'y) e (ZIgZ) | 4a® + 2767 % 0,

#E a,’b,(Fp) is not divisible by r axy 1

where b’ =y?—x3 ~a'’x’. It can be shown thatif ¢ and r are primes, ¢ >3, then

| HEIF, | #E(F) #0modr}/= 2 cpq > 0, (3)

so #U,,, 2csq® . Theorem (12.3) implies that

Nz tcg (a,x%e T, (a’,x%e Uy #V“xya'x’y ’ @)
where

Vgary = L (@&m € (Z/nZ) | (o mod p,§ mod p,n mod p) = (a,x,y) and

(e mod ¢,€ mod ¢,n mod q) = (a’,x",y") } .

It is clear that #Vaxya,x y = n3/ (pg)® and combining (1), (2), (3) and (4) we obtain

N/n® 2 cg2, #T,1p% 2 c(X,.g #T;)p® 2 c,(#S-2) / Vp(log p) (5)

where N/ n? is the probability that a random triple is succesful in the algorithm. Now let f(w) =
#S 1 ([12Vp] + 1) be the probabilitity that a random integer ¢ in the interval (—=vp, Vp) isin S.If
#S > 2 we can rewrite (5) as

N/in® 2 cfw)llogp 2 cof(w)/logv . (6)
We now have established the following proposition.

(12.6) Proposition. Let n, v and w be as in (12.2) and suppose n has a prime divisorp <v .

Let f(w) be the probability that a random integer in the interval (p+1-Vp, p+1+Vp) is completely

built up from primes <w . Then the algorithm finds a non-trivial divisor of » in an expected time
O(w(log v)(log n)*)f(w)~l(log v)) ,

provided fw)=3/([2Vp]+1).

To make the algorithm as efficient as possible we have to choose w such that w/f(w) is as small
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as possible. To establish this, we introduce another function g(w) = probability that a random
number in the interval (1, p) is completely built up from primes <w . Then g(w) = w(p,w)/p ,
where Wx,y) 1 Z_oxZ_5— Z_ is defined by

vixy)=#{ae Z| 1<a<x and a is completely built up from primes <y }.
This function is called the Dickman-de Bruijn function.

(12.6) Theorem. Let £>0.1f x> 10 and y > (log x)1*¢ | then
w(xy) = xu W) yniformly for u — oo,
where u=1logy/logx.

PrOOF: [4, theorem 3.1].

If g(w) = y(p,w)/p , then
g(w) = probability that a random number in the interval (1,p) is
completely built up from primes <w .

It follows from the theorem that g(w) ~ u™ , for u=1logw/logp, and that if
w = eV(log p)(log log p)/2-(1+o(1))

then sois g(w)~!. This suggests a choice for w . Since p 1is not known beforehand, we should
replace p by v.If we assume that flw) = g(w) , which seems a reasonable conjecture, the
running time of the algorithm is

O (eV2(og p)(iog log p)-(1+o(1).(Iog v)2(log n)?) =

O(eVZ(log v)(log log v)'~(1+o(1))_(1Og n)Z) )

We have a worst case bound if n is a product of two primes of the same order of magnitude. In
that case v= Vn and the running time is O(eV(08 M(log log n}(1+o(1))) Thig running time has also
been proposed for other factoring methods such as the class group method and the quadratic sieve
method. The present method has the advantage that the running time depends on the size of the
smallest prime factor of n . Therefore it is particularly suitable for factoring integers with a
relatively small prime factor. However in view of applications such as cryptography, these
numbers are not the most interesting. Another advantage of algorithm (12.2) is that it needs very
little storage: it requires O(log n) memory, which is about the room needed to store the number n.
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APPI:ZND;X TO . . .
Elliptic Curves and Factorization Algorithms.

§1. The class group.

Throughout this section, X denotes a field of charactaristic = 2 (hence char K =3 is allowed), F
€ K[X] is a monic polynomial of degree 2g + 1, where g is a positive integer. There is a
factorization F = FF 12 » where F is squarefree, i.e. F; is not divisible by the square of an
irreducible element in K[X] . Note that F o € K since F has odd degree. We have an extension
of rings

KX) < KX,VF)

U U
KIX]I < K[X,VF] .

(1.1) Definition. Let R be a ring (commutative with 1  as always). An R-module is an abelian
group M together with a pairing R XM — M, (ryn) > rm that satisfies the following axioms:
M) (+sym=rm+sm;
M2) rim+ny=rm+rn;

M3)  r(sm) = (rs)m;
M4) 1m=m.

with r.se R and mne M.

If R is a field then an R-module is the same as a vector space. Every abelian group A isa
Z-module in a canonical way, by defining na=a+... +a (n times). Ideals of R are R-modules
with the usual addition and multiplication. A ring homomorphism f: R — S induces an R-module
structure on the additive group S by defining rs = f(r)s .

An R-module M is called finitely generated if there exist my, ..., m,€ M such that every
element m e M can be written as m = 3, rim; with r,e R. '

(1.2) Definition. An order in K(X,VF) is a subring A ¢ K(X,VF) such that

() K[X]cA;
(ii) A is a finitely generated K[X]-module.
(iii) The field of fractions of A is Q(A) = K(X,VF) ;

(1.3) Proposition. Let M c K(X,VF) be a finitely generated K[X]-module, which generates



KX, VF ) as a vector space over K(X).

(a) There exist p,q,r € K(X) , with p,r # 0, such that
M = K[X]p + K[X](q + rVF) .

(b) M is an order if and only if there exists fe K[X]-{0} such that
M = K[X] + K[X]-fVF, .

(c) There is a bijection
{fe K[X] monic } - { orders in K(X,VF)}

defined by

f > KIXfVF,].

PROOF: (a) After multiplying M by a common multiple of the denominators of the generators of M
we may assume M < K[X,VF] . Define n:M—K[X] by a+bVF — b . Theimage of 7 is a
submodule of K[X] which is non-trivial since M generates K(X,V?’) over K(X). Such a
module is an ideal in K[X], and since K[X] is a principal ideal domain, m(M) = K[X]r, with r €
K[X]-{0} . It follows that there exists ¢ € K[X] with g+rfFe M. If o,fe M form a basis
of K(X,VF) over K(X) then 0# m(B)a— m(a)B e ker(n), so the kernel of 7 is a non-trivial
submodule of K[X], hence

ker(m) = M N K[X] = K[X]p,
with p € K[X]-{0} . Itis clear that K[X]p + K[X](g+rVF) < M. On the other hand, if a + bvF
€ M then b= b,r € K[X]r . Since b,(q + r\/F) € M we have

a-b,q = (a+bVF) - b,(q+rVF) € M N K[X] = K[X]p
and

a +bVF = (a-b,q) + b,(g+rVF) € K[X]p + K[X](q+rVF) .
(b) Clearly a module of the form K [X]+K [X]fx/F 0=K (X,f\/F o) With f# 0 is an order in
K(X,VF) . Conversely, suppose M = K[X]p + K[X](q+er) , with p,q,r € K(X) is a subring of
K(X,\/F) . Then 1 and p2 are elements of M N K(X) = K[X]p . Hence p! and p € K[X],
ie. pe K[X]". This shows

M = K[X] + K[X]y
with y= g+rVF . On the one hand we can write

Y=a+by
with a,b € K[X]. On the other hand, the minimum polynomial of ¥ over K(X) is T% - 24T +
(¢*>-r2F) , so

¥ = (FF-g%) + 2qy.
Since 1 and y are linearly independent over K(X) we see that ¢ = b/2 € K[X] and hence
(rF)*Fo=rF =a+q*e K[X] . It follows that the denominator of (rF))? is squarefree, since
F is squarefree. In other words



f=4er 7F, € KIX].
Since f\/FO =rVF = ¥—gq this shows

M = K[X] + K[X]y= (K[X] + K[X]q) + K[X](}-q) = K[X] + K[XIfVF, .
(c) Immediate from (b). |||

(1.4) Definition. Let A be an order in K(X,\/F) . A subset M c K(X,\/F) is called an
invertible A-module if it is an A-module and if there there exists an A-module M’ K(X,VF) such
that M-M’'=A , where M'M’ is the A-module generated by {xy|xe M ,ye M’} . An
invertible A-module of the form aA , with e K(X,VF)", is called principal.

It is obvious that the invertible A-modules form a multiplicative abelian group / '« With unit element
A . In particular the inverse M’ of M is uniquely determined. From MM’ =A we see that there
exist x;e M and y,e M’, 1<i<k, such that 2xy; = 1. Hence the module Ax; + ... + Ax,
coincides with M since they have the same inverse M’. This shows that M is finitely generated
over A and that for some ae A the K[X]-module aM satisfies the conditions of (1.3). The
principal modules form a subgroup P 4 of 1, . The qoutient group C! 4 =14/P, is called the class
group of A. Two invertible modules M and N that are in the same coset of P, are called
equivalent, denoted M ~N .

Let M = o(K[X] + K[X]p) , with aye K(X,\/F)* and ye K(X) . Then vy is quadratic over
K(X) , so there exist a,b,c € K[X] with ged(ab,e) =1 and a# 0, such that ay - by+c=0.

(1.5) Proposition. Under the assumptions above, M is an invertible K[X, VF]-module if and
only if b*>dace (K*)2F .

PROOF: Let o be the automorphism of order 2 of K(X,VF) sending p+gVF to p—qVF . Then
Yo(Y) = c/a and ¥ o(y) = bla . Hence
M-o(M) = aro(0)(KIX] + ¥KIX] + G(PKIX] + yo(DKIX])

= ao(0)(K[X] + K[X] + blaK[X] + claK[X])

= ahao(e) (aK[X] + ayK[X] + bK[X] + cK[X])

= alao(0)-(K[X] + a)K[X])
since aK[X] + bK[X] + cK[X] = K[X] . Hence M is an invertible K[X,a-module, with inverse
aoM)/ao(a) . By exercise (1.1) M is an invertible K[X,\/F]-module if and only if X [X,\/F]
K[X,ay =K[X, \/152—4ac]. By proposition (1.3.c) this is possible if and only if VF is equal to
Vbi-dac up to unitof K . |||



(1.6) Theorem. Let H = H. be the set
H={(abo)e KIX* | ged@be)=1,

a monic ,
degb<degas<yg ,
b?4ac = 4F 1
and let
b2 + VF
Pabc) = — € K(X,VF),
a

for (a,b,c) € H . Then there is a bijection H — Cl = CIK[X"/F] defined by
(a,b,c) ¥ class of K[X] + K[X]-¢(a,b,c) .

PROOF: There is an embedding of K(X,VF) into K ((9)) defined by

Xt r2y. .,

VF t‘23‘1+...,
cf. (1.5.2). Let d: K(X,\/F) — K((7)) = Z U {>=} be given by the composition of this embedding
with the degree function deg,(Zaiti) =inf{i]a;#0}. Let y= ¢(a,b,c) and M=K [X]+K[X]y.
The properties of the degree function derived in exercise (1.5.2) imply dy=—(2g+1) + 2dega <
-1, and for p,q € K[X] |

d(p+qy) = min{ -2deg p, —2dég g+dy}.
(With the convention that deg 0 = —oo.) It follows that

{ye M|dy=max{dr|xe M-{0}}} =K". (1)
and

{ye M|dy = max{dx|xe Mk[x]}} =

{pekiXl|degp<gdega}+ K. )
Suppose ¥ =@ (a'b',c’) and M’ = K[X]+K[X]y is equivalentto M ,say M = oM’ . 1t
follows from (1) that da=0.Hence ore K* and M =M’. Now it follows from (2) that deg a
=dega’ and

Y =Av+p, (3)
for pe K[X] and e K* . If we compare the VF-coordinates of both expressions in (3) we find
that @ = Aa’ and since a,a” are monic A=1 and a = a’. The equality (3) now reduces to

b'12 =pa+b/2.
But since deg a>deg b and deg a >deg b’ this can only be an equality if p = 0. This proves that
the map H — CI is injective.
Conversely, let M be an invertible module. Multiplying M by a suitable element of K(X,VF) if
necessary, we may assume M C K{X,\/F] and max{dx|xe M-{0}} = 0. By proposition
(1.3.2) there exist p e K[X] and ye K[X,VF] such that M = K[X]p + K[X]y. Note that
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dy= d(g+rvF) < —~(2degr+2g+1)<0
since r# 0. It follows that dp = max{dx |xe M—{0}} =0, sope K' and

M = K[X] + K[X]y.
Let a,b,c € K[X] be such that ged(a,b,c) =1, a is monic and ap-byc =0.We will modify
(%.a,b,c) step by step, without changing M , until (a,b,c) e H and @(a,b,c) = y. By proposition
(1.5) there exist A€ K" such that b>~4ac = 22F . Replacing ¥ by 24-'y we obtain aA1y2 -
QAB)(2271Y + 4472 =0 and (2A71b)2- 4a(447%c) = 4F , so we may assume A2 =4 . It
remains to be shown that deg b < deg a < g . One easily verifies that the quadruple

(v+9, a, b+2aq, ¢ + bg - ag?)
satisfies the same properties as (y,a,b,c) above and that in addition deg b+2aq < deg a fora
suitable value of ¢ . Hence we may assume deg b < deg a . Furthermore

0>dy=d(b’2 + VF) - da = min{db,dVF} - da .
Since db >da we must have da > dVF = -2g-1,ie.deg a< g . We now have achieved that
(a,b,c) e H and ¢(a,b,c) =ty . But then ®a,tb,c) = y and M is in the image of the map H -
Cr
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‘(4.1> D&"initlov\.. A Weierstrass - curve. e a triple E=(a,; ,a,,d,) ¢ K*. The
set of points of E over a field extemsion. L=K s
E(LY= § (xiy:z) € P | o= o +a,2% + a x2 vag2 .
A K- isomorphism E—E' s a pair (u,ad< kK* x K soch that

k3
Wa,= 3a +a, ,

4

Way= 3 + 2aa, + a

4 - o 2 ¢ ' ’
t'\%— +6\a7_+0\a" +a4.

Note that an isomorphiem. induces a bijection. betwesn the sets of
points E(L) and ECL) | givenm by (0:1:0)+> (0:1:0) and (x:y:1)r>
(Wx+a: Uy :1) | since

Cuscﬂ)z—. (x> ¢ uwra, (WxY 4 o, uix + a‘a‘
(uzx+a)3+ o, (Wx+a) + Gy (LX+A) + u‘aé.

)]

A po'mf' ?:(xt%'.z) e EL) is called ..s'm%uQar 'a(: the 'PCU‘HO\Q
derwatives G, Gy and Gz of the polynomial
G= Y*Z - X3~ a,X°z —a,Xx2°* - 2°

vanish simuQ'mneouqu in (%,9,2). This does not dxzpeml on. o
purticolor cepresentalion of T sinee s Pf\amo%weoug. The point
0 =(o0:1:0) is never singular | since Gz (o1,0) =1, Lk F =

XP+ 0, X + a,X +ay be the o\e,{-inin% po@W;“Q of E=(0,2,,1,). I
CGeryd e BLL) s sin%qu\.r them QY (€,9,1) = 2y=0 Lemce 9’: Fx)=0
and G (x,u,17= K (W =0. We sex tha} tha singular points of E(L)
. are in owe-to-one corresponclenct with the dovble zeros of F in L.
Sine deoyF =3 the sef of fpoints comtaing at most one singolaur
point. The set of non-singular points  of ECL) is dendred by Ens(L).
A Weierstrass curve is ca non«:’mev@a.r \f Ens(K) = ECK)  or
eqv'.vgeuq&(q i€ the duecriminant A)+#o0. Consequm\'&.' the non-
sinoplarity of o Weierstrass curve only depends on its isomor-
phism dass, for f EZE then the alifin;n% ‘poeb;nmia\i F'is
Ootoined from F by Wwear gubstitution ’

I char K#£3 o Weierctrass curve (a,,a,,0,) is isomorphic to
(0, ay~-a3 /3 5 O —‘/q; /z? - aa,/3) via the iSOmorPHism (1,0,/3).
Hene n this case we can identify tn lsomorfhiSM classes of

Q\MPHQ corves with the \somor'\ohiswx,-dasses o hon~sinrpoo\r
Weierstrass corves. n pacticolor twe Miptic curves are ‘isomor-



. -
Phic 6% in Ehe sense of olﬂ_fin\tian (I.12) f and only ic
they are isomorphic as Welerstrass cvrves.

(13) efintion.. et E ke a Weicrstrass curve over K , and.
P,Q € EK). The sum. T+Q s defined as So()ﬁou)s:

W 1f PlrQ) =0 khen T+Q=Q @r?>-
@ 1€ ?=C3<13<¢1-’4) and Q - (19,0 1)  Ehem
?‘!’Q = O (F— X=X, and %1”_92_

and
PrQ = (xg:-(Axg+v):1),
with
A= Y1-Y1 or = X,? +1411+1; + A, (X + X)) + A,
X, X, Yt Yq 3
Y = Yy AXy
and.
X5 = X =X, X, -a,
otheorwise.

Qearky this definikims extemds defimition (LA.8). In particul
the Ehree poinks  (X;:1yg:11) for (=12,3 in the ,generic” cose
(with Yy, = Axg+v ) are the dhrer interscction -F)oinl’S of the

Une  y=Ax+v  with the affine part of the Weiershrass poinks

(+9) Theoreom, Lok E be a Welersirass corve over K with deflining
polynomial - F. Then there s o bijeckion |

| : EnscK) —_—> H;:, |

definech by

7 (or1:0) > (1,05F)

XY t4) v ()(-x,-Zg, )‘21-!: 5
6udwl¢.\od- the compaed Map @:E, (K)—H— Clz = Qe 2]
Sc\Hs{—aes Le(’P+Q)-= ‘f'(?)"f(a)' |

Tha -Impor‘\'awdf Coroua.r-\{ of this W is'

¢1.10) Cor‘o\lan{. The addibion i (1.8 defines a grovp law en_
Ens(K)y ond Ep (K) 22 @e . In particvlor the addition (aw
for e,Q.Qi‘oHc_ cvrves olefined m (T.1.3) ;dw cer am abelian
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| grove shruckure on BECKY. O

Before proving e thesrem. we shall have a closer look al Elg
case that E is .sinsu\ow. Tha sitvation Is as follows .

If Fz= (X-s$(X-t) ana s#t tlen the s]naulou‘ib./ S-(si0:1) s
callesd a noce . It is straightforward that s,teK, by

Cxevcise (1.4). Apart from x=s  the lines Ehrovgh S are give
by y = «(x-s) )océ-_\a . The intersection Po'mf"s of this ling witl
E(K) are  given by Ele zeros of  o@(X-s¥ = (X-s¥(X-t). A Dinc
throogh S s tangent to ECKY if khis polynomial has one triple
2ermo, s , hence W x*=s-t. There is a Ma

Ens (K) — K(Vs-£)

&'E/{“\V\LOL b\.,
O+ 1, —_ |
(X1 Yy — Vs-t'(x-s) +1.

Y+ Vs-t (x-8D

i twe l:ah%en\'sdré\fe, r"OLHC/ViOLQ) L-e. VR&K) thersm this o (S an
isomoerphism En(K) = K¥ | |f te fangenmts are qoaclratic | ie.

V8-€ € K | then Epg(K) is isomorphic to the grovp of eloments of
novm 1 in K(Vs£ ) wheve tha norm of an elesnemt is Nias oViT) =

CUsP

I F=(X-sY then the singuloriky s coalled o cosp. Clearly
6eK if char K3 o  Kis perfect (& field of characteristic p s
called gexfe_d' if psoc,or P> and sfek @ sek forall se ).
nEhis caase En(CK) is isomorphic to the QAAAHVQ qroup K* via_
the mMap - '

0 o,

?—.:(X’.(j'.‘l) > —ﬁ-— = 1
X-935

slope TS )



PROOF OF (1.9) : |t is easy to see that the map Epn (K) = He is weld
defined and bijective. In particolar X-x | y'-F since F(x)zy*. For
the composition @ wWe have - 7°

(0:1:0) > (1,0,~-F ) — cassof KUI+KIXIWF = K[(x,F]

(X:9:1) B (X-x, -2y ,-) > dass of KIx)+ Kx]92F KUY (X-2) + K] (-
It remains to be shown that p respects addition XX let T,Qe B, (K.
£ 0ei?.Q] thamn @CP+Q)- e(P) (@) since ©(0)=KXIF] s the vnit
element of (g.
If P=-Q= (x:y:1) them

QCP @ (@) = (KIXI(-2D 4 KIXT (W - )-(KIx)(x-) + KOO + ).
We have to show that this i< a Prfndpaﬁ ideal in Kix,5¢). In fact ve
shall show thak is equal to KUK SE](X-x).
The wnecluscisn PARQ(R) < XX TFIX-x) s Jear since X-r!(@-ﬂ)(\ﬁ‘ﬁg).
Conversely i« Y# O Ehem

= b () Al N0~ (o)) b ()=o) () ()

lf Y=o them F - f(x-2) with ]fa\mo( X-x (opr}m,c, since x s ok «

clovble zero of F, and hemce 1= 2 A ME-x) for some M p e KIK] , and
X-x = AF + (23 € (KiXI(x-) « KKIFE P = P ¢ (Q).

This proves the cmse P=-Q -

Lexr ()'4»?;‘ -Q+4 0 > Say ?:(x,:kﬁ: 1) ondd Q= (x,:9,:1). Pot

2
Xz= A-,-X,-aq,

anol
Ya = AX; +v |
- where v have (owme b e valves n (1.3). Since we have &Lf/eqo‘-q :
% Ht’téwﬂ Ehat  (0)= 1 and P2 (P itis sufficient ko show
ot s
I ( KIXT(xx) + KIXIOVF-9;) ) = KOXGED-(VF -AX=v) .
=1

As we have .si_@u, Yi = AX{+v S0 €l eft expression equab:.
o T JU(KRIex) + KIXT(EF -2 -0) ).

[ )

The welusion T e KIGIF J-(JF =) X-v ) now follows {rom the fact that

ﬁ (X-X;) s F-OXsvY = (VF+XXe0)({E-DX-r) & KX SEJ(VF -AX-v) .
The other tddwsiom s dear i the ; are pairwise distinck | for in Ehak
case khewe exish AL € KIK] such ewat

NX=XD(-%2 ) + 2, (K0 (KX + A (K~x Y(X-X3) =4
ond.
VE MK~ = (A;(Vr-AXw)-)l:(f(x-xJ-)) eI.
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Fiml‘? soppose the x; are not diskinot »SAY &=X:=X; for some #].
Lek J be the KIX,VE]- ickeal

J= 14 e KIGIRT | §-(VF-AX-y) eTq.
We shall show that 1e J by pointing ovt two cprime elemants of
KT in T Tt elemments (X-30' , (VE-M-v ? avd VE42Xav  are in
Conseoyuently

VF = = (AX+v) mod T

and
(VF-Mv) = (VE 4 Axev) = 4 VEAX V) = F = (AXre) = o wodd J,

Le. F andd (AX+vY e J. Suppose X-8 dividen AX+v. Sine

K=Y | F = (AX40)* = T (X-x;)
t would follow Ehat (X-3¥ |F  and sine S € 1%, 53 either P
or Q (or oobh) woulol ke singugar)a contradiction. Hene (X~;)2'

amch ()Lx*v)z are. coprim leme,v&s o‘g J. Hudo«-{ odl cases o re
dealk with. O,
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- 82. Norms and isogenies.

In this section we give a pr'oog of theorem (T.4l): a morphism
indwees o group hmmovnorph‘.sm on the seks of points. Since this
s dear for” the briviel worphism we restrict ourselves o the case
that @:E—E' s an isogeny , with G,&8' elliptic curves over a field
K of charaderistic # 2,3. We have ko prove Ehat ¢ E(L)— E(L)
I's & grodp homomorphism  {or any Liell extension L>K . Since
E andd E' are QQQ,LPHC, curves over L we need not tolk abeul ex-
Eensions ovd may assuma L=K_ . \f = (4 %W? $1) we have an
embeclding  ¢*: K(E) C» K(E) defineck by X' f  VF7 s qVF.
We Iolani-;{y the coordirate (g K[E'] with KL«?)%‘E’J < K(CE),
and put K= Kﬂx)&,f,%ﬂ:‘]. We have extemsions of rings

K{(ED

R/ \K(E’)

NS

KCE] KCE']
\K /

&fore Prov'«hg Ehod CPK 15 o 64‘00!0 lfwomorp‘ﬂ;&m,we reca&
some. Unear od%e,bm.. lek L be a field o arbibrary charackeris-
l.:ric_, qnoL V an n—d.\mensiona_l' veckor spoace ovew L, for n=1.

fl”?s& nition. A volwme fonckion on ¥V s a map: D:V L
thal satisfies: -
Ly Mulkilinearity |
D('D’,‘ . )RU‘!’/&\-(,, ).‘D‘h‘ >= @(1’1,’;' 9V7"' )Jy\,) +/’KD(\,'1 T w’ "-)Un:
LG Antisymmetry: o ; ,
T Dy, > -“7‘7,\3'—‘;- o i there exists 1si<n such that .o, .

See exercise(z1) for elementory properties of volume funchioms.
I particvlar it is shown Ehere that ¢ {e,,.. .3 is a basis of
\7; and 1= ('151)-“,0,\) e V" wikl 0; = .}Zd"j CJ' | , thea

Doy = .(’2 ECEY Oy gyt By oy - Dley, -2, |
where 6 mngey over the permotations of §4,-,m} and £(¢> deno-
tes tha sn ok 6.
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 (2.2) Proposition. The set of volume fonckions on Y is a vector

cpak  of dimension 1 over |,

Proor : It is cleawr thal the volume functions form o veckor space,
with the evidemt scalar moltiplicakion. By the remarks macle
aloove , a volonma fonckion D depends only ofr the valve of
Deey,,e,) , which proves dimension < 4, and it is shraight-
forward o dreck that

D\? = ‘62 E(G).a“,éﬁ)"“.qmé(n) ‘
with notoriong as q!oove) s molbilinear and anHSymme}nc)
which proves dimension =4 . 0

2.%) Definicion. Let T be a veckorspace of dimension |VI™,
with basis fe) |ve V'), Lek U be the svbepace of T
3%3(0&@0& by

eV, -, A+ M, -, 0) = Al (8,30 V0 ) — e (Vs 0, O )
{for U, ,00 €V and Amel , and

e(v,,..,0,) suvchthat 3Jasi<n @ Y <V¢pq .
for v.eV. We def ine the*extecnal power AV of Y by

/\“ \/ = T//bL .
(2.4) Proposition.,  cim A"V =
- Proor: Homt.. (/\n\/)l_) =, § volume fuonckions on V S‘ .a

‘We denote the olass of €, -,0,) mod U in AW by
Y AAv . By the proposibion AV s gemeratted by e d-de,

W ofeq, .83 s o basig of V. The externad power comstrockion is

'Fvndorlap. , (-8, om eMclomorphicm s VoV moch% Q»Ur\ear
map A'e: AW oAV by Ne(0AA0)= ey A A,
. '@S}&{Inikion. Let £:V—=V be an endomorphism. The deker—

minont of &, denoted det £, is the unigue elloment of L
soch Ehak N = (molkiplicaion-by-dete ) on A'V. |

We now refurn to oor 'Lsoazv;q p= ({8&“‘: :,'t)k}. Tenote V‘by IE
and Teg/ the grovps of invertible Weals of KCE] and K{E'] fe>-
Ped'ivel\f. To show that P s a groop Nowiowmerphism |, we
shall alz@'m A hap (norm): ’ .
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N:Tg = Tgr
sudh Ehat
W N is o grovp hmmomwpkismé
G NPe < P :
@) The diagrom

/T —Ns To/7

k J
B -5 £l

is C.Ovnmu('a('ive) the Vert'ica_Q CArrows be,.nﬁ the }somorplnisms
defined W the previous seckiom.

The Ehesrem readaly follbwr from the existence of such o map.
We vse the {oﬂow{nc, notation. Let n= cb.% ¢ - Thean KC(E) is an n-dumensip-

hal vector spoce over KLES ,with n™ external power A'K(E). For a
finitely genevaled R-modwle o0+ H < KIE) we clenote
A'H = sobgroup of NK(E) gerered oy R AAL, hie vl

By exercase (23 /A'H s o finitely cemeraked.  KLE'T-modole +0. By

choosing an isomsrphism AMK(E) =5 KIE, we may idemtifty all modwlin A'H wWith sue-
| KLE-mecwlen of KLEY. By exercise (1.2) khe AMH Ehus become invertlule

:K(,E’] modwles. torthermove N (xH) = det =) NH fov o e K(E),

by definition of tie doterminant. |

We now defing the viowm of an invertible KLE) -moeduldi M as Hu
nigque KCET-module such that |

S CANMRM) = N(N)-/\“(.E))
n other wewds

N = A(RM)(AR)™.
; (Z.é) ,L.&W\m%. N?E <« fPel .

TRooe: N(xKLED) = A'(«R)-ANRY! = debi. AR -(A"RY"!
- d.b"(cc)- K['E'J a

23> Lomma. N s a grovp homomor phiswm.

Proor: Define the map
' X 1 ATKLEEY X ATKIBY = A™(K(EY @ K(E))
by
X(01A---AUA,Q1A»'-ANJ’,A = <U1)°)A"')\(VMO)A(O'J“h)A’”A(O)wn)'
£ His an R-modwle | cugn
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CX(NH X AH) = AT (He k),
gClN)\ sine X 15 KLEY-Linear
| X (S AHxAH) = X(AH xSAHY = S AR (He H)
for any svbset £ < K(E'). |n "ooch.ulow

-~ AT(RMeR) = X(A"RM Y AR) = X(NIMA"R x AR )

= N - A (ROR)
for MeT:. |

We nave to show thar N(MM') = N(N)-N(M') for M, M e Tg- We
first ool wirh the case M+1'= KLET. Leb mefl and w'ef’ be
such Ehat M+um' =4, and ek 6 be the KCE') ~aavtomor phisnc
of K(E)® KIE) oefined by

clx,y) = (/M‘Jc—/wj , X4y ),
The averse of 6 is given by

€'ta,b) = (atmb |- aruu'b).
 xe RN and (f)e_’lam' , thew /u':(-—/uﬂ c RN and I-fgézn-fzm'ez.
Conversely if ae RN ond be® thu asub e RAM'+ RM < RM and
—at b e RAM' + RN ¢ M. Sumwa.r'(z,inc)

c(RMNe RV) = ROM'OR .

It follows thar Z . .
NCH) N - AN (ROR) = ATH(RMBRM) = deb - A" (ROATDOR)

= det (€ N(RA)- A" (ROR) =
= N(nm'y. R" (e (ROR))
= N(MM) - A" (RO R) .
§~;r*lcl.wt'{{y{nc) A" (ROR) with an invertible KIE'J-modwle Ehig shows
O NCARNCR) = NOe) . To dead with e gemerad case , we datine
CEhak for every MN'eTe theve exist ax' e K(EM such that
ol o' ' 2 KTET. bt then follows Hhal
NN = deb (<) dlek (D7 N IT) - N e<'T1)
= clef (o) ek &) - N(x' MA') = NC(HMY) .
-~ Weleawe the proof of the claim as an exercise (2.4). O

2.3) Lewmma. The d.io\aroxm
a(‘: __..E.-—-) uil

R
E(K) —f< o /KD

1s commoutalive.



PRoOOF : By theorem (1.9) every invertible K(E£]-modwle is equivalemk
to o modwde My for Pe E(k) , whare
Mo = {KC{] § P=O
P KIXJ(X-x) + KIXT(WF -y) if P=0Cxry:1) .
To prove the demma we hiave to show that N(M,) ~ Moy e aver
tible K[ET1-modwle bdomoin% fo @(P) . In fack we shall show that
equality holds. If P=0 thaen thisis car.
lf ?:(x:g,:'t) and ce(?): J tuem f60 =0. ({1 and §, are vsedl
to dewnote the numerator and and demcminator of £ in (owest bewrins
as usval.) Henc fr e KXT-X-x) « My and f1=H-f e TR,
Hene {{and £, are coprinme eloaments of KXT nNp-R, which shows
that My R =R, and
NC) = AYRY - AT = kie'g- My
as required . )
Now suppose that P=(x:y:1) is not in the kernol of @ - Thesm
)= ({0 9y :1)  and N;m,) = KIXI(X"- fx)) + KEX'}(\/E"'-g(x)q))
with X's{ and VE - 3W::. y
We first show that N(KLEI(X-x)) = KLE'I(X-f(x)). [n seckion §'f
the notes we have seen that the minimom polynomial of X over K(E")
s £ =-X"£,(T) € K(E)[LT]. Hence the vminimum Po(u‘,nomial
of X-x over K(E!) s an ‘
‘ Ao fo(Tax) = X' £, (Tex) = TV Z o T .
The matrix of ,moultiplication-loy-X=X)" syer Fhe basis T4 X, -, (Xx)'¢
of K(E)/KE") s
, 00 - 0O -a,

1 o * "a1
o 1 .

: '.‘é

o - 1 ‘an~1

Hence

b det (X-x)= )" (-a,) = 1 o

et = 1 ) - X' f G

ot =FH)ek”) X'~ 0],

So N(KEJX-x)) = KIET(X-§00). o “

As we have seen in the proof of .9y, Mo, = KIET(X-T) and

Mey. Ny = (X'-£&)) . Since It e also cleor thok ~p(P)= @(-P),wesce
N () -N(M_p) = N(KIE](X-x)) = K{E'J(X 4(x)) = m:((p) ‘ ”c}(-?)n

From Mp < KLEY it follows that N(Mp) « N(KE))=K(e'] isan icdeald
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| In exerase(2s) itis shown that the icleals T with
KIE)(X-§(x)) « T < K(&']
Are n ore to owne carraspoﬂdﬂ_iﬂ(.& w e klﬂQ Aivisors O{ tHhie
PolynomiaQ
(T- 9y T+ gty ) e KILTI,
as illwshratedh in che o\\'aoév‘a\M.
KC{e']
/ AN
NC) N

YX '-&(x){

lf gty =0 we have ke 1

I, ,
Me@) =Ngep

|
(X-€060))

so N(Mp) is one of these chvee iceals, and since N = (x'-{(x))
we wmwsk hove N(Mp) = \‘1'@(?).

If 90049 # o we have KCE"
0/ N /
Mece> M e(-»)
NP
(x-{(x))O
and N(Mp) = M, > To prove that N(Mp)= M., we
(+P) P P (™
show Ehat (\ﬁ-"—q(x)g)"e f(gj(ﬁi,) . €
Let A e KIKT be soch that Afpepuf, =1. Then ;= AMarpme®
2.

—and since 9, has tue same facdors as £,
. N - l :

g ¢ KXI L < KIXTR-R.
- Furtharmove X | -9 g 50 94- 9(x)g, € Mp | and
9 -qx) = 3:; (61“%(’C)313 é.?\‘np .
Since VF-y My we have o
\ft-'“(ca-g(x)) 4 gcx)-(.\rﬁ-cj) = ,341‘ ~glx)y = {F'—é:)(x)g e R-MNp.

VE- 900y = dar (fr-qo0y) € {se KE) | s AReRM, | = N(Mp). O

D ekt e Aok K begivem. by o< +BIF s - RIF | and put T =Ty
Thue Tp= TH, and by exercise(2.4)
' T'NMp = N(th,) = NM_e .
Svppose NN, = KIE'] them K[E]< KIE). CELE) =N TN, - NFe-NiT_p =
=(x'-{@) ,a controcichion . Similarly NN, & (X'~ o)) |
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83, m_du_ql_!:ngm
In exercise ()5) of the notes we have mentioned q 3mexc«bzahm

of the notion of complex Conjuopttion of endoworphisms. [n Ehis
seckion We shall state and prove this fesulb. ln fack we shal prow

a s%rovxcjew theorem. As usoal , kK devotes & Field of choarackeristic
£ 2,3,

(31) Teorem. Lek E,E',E" be elliptic curves over K, undl ¢: E~E'
and Y E=E" segenies soch that
@) ker o < ker Y ;
) deg; @ =< dﬂgcl{, i
Then theve exists a unique worphism X :E SE” soch that Xo = .
e ¥ g’
o
4
O\
E
We postpona the proof to the end of this seckiowm .

(32) Corollary. Lok ¢ € Hom (EE) be a morphism. Them Ehere
exists a umque Morphism e Hom (E,E) thowal mavplmsm),
soch that ¢ @ = )

) Qo = [odeg p] & Endy (E);

Q) ‘Pﬂe Ede%te]e Endy ()

Uu.) (.p ®.

P&DGF: If =0 we con kake P= O ,so we way assome that
q> ({, q\ﬁ: 1) is an isogeny. 'By theovem (T.4.44)
Hker oz = d"%s‘l’ | dag ®s
“'so !F ’Pe ker g Elem (:o(zc')f.p] P= O This shcws Ehat kex@z =
kex[dﬂ%‘f]k' { dor K= pso and 9 =P~ and 1oTn  Ehem
‘ _ dag (gqn) _ Znt _
A T T Wty " -217\_; T
- where \eioﬁ cf. (oro(aﬂ/ ¢33 . Hence 'f cP=q>qurob;r then
deg ¢ = ‘p G with pfa . (This inclwds the cuse charK=p=o:
we pot 0°-1.) We have




I P= G € Pg < deg degg)
We can now qpplu, the theovemt with Y = Eo(.p_co 7.
E ——i—‘l‘ﬁi"?——?qE\
\ T
¢ £ _
%9 g
Theve exists a unique [ that saFisPies (). Moveover
(YoFlop = Qo (@) = (poldeqqT = CAeg @To ¢,
hene @F = Ueleq @] by exarcise G, and

A2 (- olog & = cleg @ = cleg) (deqp)= (cleg g)?,
hence  oleg ¢ = deg @ . By vniguemesg ik follows that P=¢. 0

/I "

A

El

b LeM le an arbitrary extension of fields . The group
of L-awtomovphiems of M s defined us
Aok (M) = {6e A1 | sl =id_ |-
For any bgrovp G o Aok M we denote
M= ixel“! | Veeq : s(x)=x}.
This is a sobfield of M, called ©re field of G=tvariaants.

. 33 Progosibion.  Suppose M= L(<) is a finite extemcionof L and
J(}‘uh a Sobca(oup of Aut 1 such that #4=0[M:17. The

L L= M

om q‘z /-\uh_l‘“l .

Proor: We howe L <« MAa M. Let £ MYLTT and 9ellTT ke
e minimwm polynomials of o« over N% andk L res peckively .
Fcnr U’”‘f s ¢ Au{-Lr\ we have 3(6(«.)) = 6(9(;)) =0, henc
T-eto) | § = NLTT. Similarly T-e) lf for 6€G. Ome
€asily verifies thut 66)=T(x) if aviok Ml if €=T, fov 61
e Aok M. Ik follows that - T
G = deg T (T-ee) < deg f=Lm:re 7 < Ln:iL]=#g,
honee the inequadities ave equadities, 1n poarticular Cr-neJ=ti.g
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ot n
P

ﬂfl\u(v(_ﬂé clzq g = C:L) = #q
When ce G= Avk 1. 0D

We calb a Lfinite field extemsion LM a £ini

ik sakbisties Ehe Wypotheces of thg propositi
anck #Auﬂ_ﬂ =[”.’Lj.

te Qalo is_extemsic

0\4) e, i? M:L(K)
In Ehis cuse ;‘\quM s calledd the Qq_(ofj
e of Le, and is vsvadly desoted by  Gad (M/L).

(34) Lemma . Lok L)(_.' be F{e,’o( exbengioms o{: K
K-homowmorphism L—L'. If E isan elliphic

curve over K, then g indwees o map 6=6¢ : E(LY = EW'),

Jiven by (x:iy:2) = (ex: €Y :cz) . Fourthor more L if

w:E—>E is a MCY'OHibM Ehem

We have o commotalbive ancbraM

yand ¢ a

ECL) —S5 5 geu

e Ja

-/

EICL) c: s E/(L/)

PROOF: Exercise . [

»»»»» .

‘ gemy , such that
g #kej(@K = Ol.ea . Them KCE)Y/ KCE’) is Finite Qa/ofs with
S Qrovp - Gak (K(E)/ K(ED) = Ker @, | |

PRooF @ We. define a map E(K) —> Aut, K(E) ag follows .
- Consider the sek of points E(k(E)) with aoneric fpoint T, =
X:NF:1). For every Pe E(K) we sholl debine oun ouutovmor
Phism <, of k(E) , by specifying its values 6p(x) ond

© (3.5) Proposition . Let ¢:E—E' ke an i
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6p(IF) . These are givwen \og
CGPD() : 6?(55) 1) = B+ e ECKCE)).
First of all &, is a welldefined map KLE]— K(E)
since 6 WEF) = 6 (FOO), and 6, is a ring hevmovnar o hism
by definition (we pot (=X for xelk.). SQCMOUA/ €p
Is ind;e,c)—(ve sine €06, (x) = x whenever «,6,&) e KIE].
Hemce we can extend 6, to KCE) , and i becomes aw K-
avtomorphism of K(E) ,with. inverse 6_p. As
6P+Q<a> = ?OTP*' Q = sppo +Q = 6?%7' GPQ =61>°6QCPO),
Ehe map Pro 6p 18 a 4 roup omovnovphi sm. (Nete Ehalt
Q= Q since Qv rakioval .) If Gy = 65 tham To1P =
"PO+Q and. o P=Q . This shows thot the dafined map
1S awn Wbeo(.df(noa
E(K) & Aot KE).
Leb ¢*: K(E) 5 K(E) be the esmmbedeling of the funchow
fiedds, with K(eY= KW', SE'). Now
VR 1) = (PxF 1) = [ F0) 3(/\’){[—' 1)
= @iy (X 0F 1),
So if P e kev ¢ Ehaw
e (X @ lF 1) = S © Pece) (o)
R S = Pue e p (To) (b“f %_:"S:‘Sscg)""‘“"') ’
= Qe (P, +P) ‘
= Preey o * Pree)y 7
= Preer 7 N
T‘ TS AP S = ((‘otX’ g (("d"_:-"' 1)' LT YT
. This shows Ehat Sletkeery =it Hemee ker @ s ""‘._‘P"QP(‘ |
'SOV'\OfP"!\U%m" to a suvlgrovp of A"".Kce') KCED . The Pro-
-posikion now Fol(ouos {-r‘aw (5.3) ,t‘Ogerwr with the obseor-
valHon thal K(E) = KEHX) and  §ker g, = [KE): KEH]I. O

In the proof of (31) we ned yek ancthor leanma.
(3.6) Lemma, Lek Kcel be an exfension of fields anel
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o
{— elL(x). Svppose Ehere exists g= 9%1 c K(X) with
deq g1 > dega, | such bhat  £(g) € KGO . Them fe KX).

Proor: For B- Po/h, with Q\,,Dne KIX] we put
le(h) =, leacing coetficient of h,
lecaols ney coetficient of K,
This does not d.o.r)emd of tw represewmtation of L. We {irsk
prove thal Le(f) e kKX (assoming £ £0). )f Fu £ /f, and
fi= Q54 +a, X" thea
4 (’3):—-_ 069, +';+°‘n%‘; A

97

Since J.o.% Y >OLQ_03 9. wWe have Qc(aogr+..+o&»\%:)= Qe fc(o;).
Homee e f.(q) = Lef- Le(g) and

e 'F(?): @c{ . (&% >oh3$, - (e %).4“7 F"‘
This is well deflinedk sinen %+O,and i+ shows that pCF e KX,

We now show thar fe KOO by induckion om deg f,+degf, , with
f= f1/f, redocad in lowert fevms. By tubking tha mverse 1§ neces-

sary we may assome k= aLe(c) fr-cleg £, >0. Lok
b= £- (tep)'.xx
= Fi- @' xS £,

Nomesor aund disominatdor of fre laher exprassion are. co-
prime,and Qe £3X4G Pas the same Leaoing coelfidnt aud
- degrer 06 {1 Hemce clag b +cleqh, <deg [, +cleg, ,and
o hg) = £00) -@ef)Tgk ¢ KD, By imdwckiom he KKX)
Cand f DGRt Xk ekod. o

i Ly
. OFAIN SV S o

Peeor oF (50 If X exists it s cartoinly onique by exercise( ),
 We prow existence in taree steps of increasing gemerality.
Case {: #ker @ =degp and # ker Py = degy.
Inthis cmase @ and Y are sepdralde and  ker Qe = kerqy <
Ker o = ker o, by theoram (4.7%). We haw two sobfields
PKE’) ancdk L¥K(E) of K(E) ,and applying propesition (3.5)
L OVKE) s KE) ™ = ke - prreely
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This wmplies the existence of a homomorpohism & : KCEY)— K(E).
K(E)D
/4
¢ kee)
27N
K(E) vV K(E")
N
K(E")
We sholl show that 6 is imowced by an Lo Y EE”
We set @=(p:aqlF 1) ,Y=(r:s/F:1) and KI(E)= KX, F')
KCE") <« KIX,UF") . Suppose €3 =t+ olF' with toe KX

Then r(X)= ¥ (x") = ¢*ea(x")
= e(p(X)) + v(pX) g OOVF .

Homee U(P)g =0 and since g #° (t follows that V=0, and
6(X) =€ ¢ KIX). |n a similar monner we rowr that
€ UF)= uVF' e KOXO)JF andk ufp)g = . We claim €hat
y ((‘:u\r{:':'f) »w an l'socjem,t/ E'— E”. If this is so
thew cleorby X*=6 and Xq=(tip): wiplg 1) = Y. Fint
of all X e E"(K(E")) since
(“ﬁ')z= 66@"’}1= 6()(”1 a’X"+lc")
N ‘ ,, = E+a"t L b". '
i e remains to be shoun Ehat dey €4 >cleg & . Lab { :K&E)— KT
- bethe wdl k’?'l‘"{h‘ew\‘oedolin% ,oomd d= deg o(o T the n-
- ducegl valuakion  K(E) —» Zut0l. We have &()= r ond

st G is K-Lneor we can worke Ehs as
I "or ° él“’?’) = (- &(p) ’}[obp('P) = & ("o‘P) ’

M eyt dp = ey b)dp.

HNWW dr, dp <o since ¢ %ok P are ‘&,W'u » SO
(J2g £y -degt).dp ='dr <o |

- omd f""LQ‘a by > olesy b, . This proves Cose1.

Case 2: ¢ and Y are seporable. |

By Bworwn (414) this recdwvces o case 1 for the oi%dara{c
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~ doaore of K. We obtain an (sogemy X olefined over K| ie.
t,u e K(X') (notetions being as above). Now € (p)=rek)
omd  W(Pp) = c!,/s e K((X). Since dey py > cleg P, We con
orpht leymma (56) and find that X ¢ clefined over K,
which comcluvdes case 4.
Case 3 - @ amd \P O\.r‘oifrow%.
Say deg; = p* < pf - cdeg; 3, whew charK=1. (0 covrse
0°=1.) We have Foclovizokions

= Qeeps Frob,a

'\4/ = '\PSaP 4 Ff‘ObPB .

The isogqemy A= Feob 34 o Psepp Pots inseparable degree ¢

anck fLackovs as A= Asep ° Frob ga. We olotain a commu-
tahRve ok(oxoavoxm
= Frob, A E(19“) FrohgB-A EC'P") Vsep > E»

e —————

Mok

7

.
, ﬁ'o\".s'A // x’-“?

BN —— g™
The existemce of Xsep follows from case 2 ondk X = XsepoTrobs
15 the required | eny. This proves bhe caemm\ cage and com -
eyt proof

i
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Exercises.

1.

1.2,

4.3,

14,

Let F be a monic pol«{nomial of oddl dagree in KIx], and A an gvdar
n KIXNE]. Lek N be an invertible A-mod.u%,g.

(@) Show that A = ﬁxeKO(‘\ﬁ:) | o1 < j

(5) Supposc M is an invertible A'-wmodols . Show thoat A'z A .

Lev F be a monic /Po(u’v‘c/n“al o{: odd &Q%Ya. Vih KD(],QWC{ suppose

0% M c RxJF) is a finitely gemerated KX IF]-moduly

(@) Show that A= fce KGUR) <M} is an ovder, and M is an
invertible A-modwle .

(b Suppose I is Kuarefrer . Show that Mis aninvertible KU IF]-module.

Ler F be a monic polynomial of dlzarae 3 in KIX]. Show thak KI_)(’J;—‘] N
a principal ideal dovain ¢ and omly f F(x)is nok a ayuarein X {ar all xekK.

Ler st ek witn Spc e sucachat (4-s4-6, € KK, Show bhak € e K,

Remaurk: ln the four exercises above K isa Lield of drarackerishic =2

21

22

2.3

2.4.

Leb Vo be an n-dimensisnal vectsr space over L. wibh basis 1€4,,8n],
and t D be a velume funchiome on V. Show that :
) Do, 00 0=0 ity with ;=0 , and D("}h")‘):,--,‘);,'-’\l‘):
=D(v, )";vj)";gir")d'\); '
) f VU= (v,-,5) with U= %a;"ci' them
ble) =6%S.\ Ao A e -DLQGH) 31 ey ) ’GeZS., é{é)'a‘,“ﬂ'“"qﬂ,ﬂn)' D(ﬁ.l 58 )3

($> '|s, 1,6‘3 C'?}.,e,")‘ﬁ:) W“’L\ z)f - dzadt ed, tL\-L'L ’Dlv) - —-D(vﬁ).

Lek V,L be as above. Choose for ve AW a makris Ay = (ay)
such Ehat U= 42“'424"‘"'/‘?%}%‘- Show that det Ay dees not
depend on the representation =0;4--Av, ,bot Aoes depend on Ehe clhoue
Show that V> dat Ao s an isomorphisn NN — . of basis,

Leb R KO, X,F'] be asin §2, and ok 04 HCK(E) be a finitely
gnercked. R-modwle . ‘
(@) Show thatr & is a finitely cawaral'eoL KLE'J-mocdwle with generoibprs

$,0, X k&, XE§. Concludda thatk H s Finitely qeme rated KIE-modole
() Show that H gevierakes KCE) over K(E') and HAKCE'] ¢ 0 . CHint: 1€ HKE)]]
@ Shoo thak AH is a finikely geme raked. K(E'J-module aud A'H=40.

Let for P=(x:y:1) € E(K) be Aivem Mp = KIXT(X-x) + KxJ(VF-9) e Tg. Show that.

@) Np+Mg =K(E) if P4Q;

G) Mo~ MpeMlap and Mp ¢ Mo My =KLE] if PA-P;

©) Mo~ KIXIG+KIXJVE  and Mo + KIXJG+ KUAF = KIE) i P=-T, vhore
Q= F/txex) € KIXT. [Hink: MG e KIKIE) = KISE](0F)

) Finish tha ‘Pmo{: of proposition (L3
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2.5.

2.6,

3.1,

,—Zc;w o , e
Let (xX:y:1) e E(K). Show thatr KILEJ/(x-x) =2 KLT) [(T-9)(T+4)) , vhere
T iy a transcendental variable .

Let e Aot K(B) ke givem by arflF »a-fiE and Ue Avt KED by
o4 IF/ > «— RVE ,where o fe KK) (fesp. KIX') ). Let H < K(E) be
an \hver Flole. R-madw be .

(o) Let b= RiA-AR, € A"H be represemted by Ap = (ai) e Mag, (KEh)
where K. = ga%x*“. Show thak 'te\.‘Am/\‘La\W > T'(det Ap ) ’
vader khe ’\somorph]S»\ /\"{((E)-’:—> K(E') as d.o_{»'me&k th €Xercige (2.2)

&) Let M be an jnvertible K[Ef-moduz. Show Ehat TM s an (wver-
Eible KCET-modol | and  N(Tr) = 2/(VM).

Leb & be an elliphic corve over K and v e End (E). Show that
B cwal T as defined n (3.2) (s equok fo the complex

Congogarc of ¢ as defined n §9 of tie rokes.

Extra oxercices & 84 of Elie nofes.

4.

4.6,

o 2.}.

Lek Y E=E and Lk E—E e 1Sogemies csuch thar

Xy = X'y . Show that X ="'
Leb ¢ E=E and Y E'E" ke morp»"z/'sms. Show that
dag (o) = deg (Y clog (p)- [Hinti reduce to b sgparable cuse.]

Let §€.1,-'~,£,\S aad ?Q;,"',Q:\') be bases o{ K(E) over KLE'Y, and dﬂ.fml_.
by x)=e¢i. let ¢,¢" @ AKE) = K(E') be givem by
@leyA--Aen)=1 and 'lefA-Aey) =1 respectively .
(@) Lek H < X(E) be  finitely gemerake R-medole . Show Ehow
@ (N'RY = det(x). ¢'(A"H).
(o) Show kthat e norm of awn iavertible KEJ-modwle cloes ot
depend. on a particvlar choice of isomorphism N'K(EY =5 K(E").



