Experiments with Ceresa classes of Fermat quotients

Symposium on Arithmetic Geometry and its Applications

David Ter-Borch Gram Lilienfeldt

Einstein Institute of Mathematics
Hebrew University of Jerusalem
Joint work with Ari Shnidman

February 10, 2023 • CIRM • Luminy

THE HEBREW UNIVERSITY OF JERUSALEM

The Ceresa cycle

- $C=$ smooth projective curve over a field $K \subset \mathbb{C}$
- $g=$ genus of $C=\operatorname{dim} H^{0}\left(C, \Omega_{C}^{1}\right) \geq 2$
- $P \in C(K)$
- $J=\operatorname{Pic}_{C / K}^{0}=$ Jacobian (abelian) variety of dimension g

Embeddings: $C \hookrightarrow J$

$$
\iota_{P}(Q)=[(Q)-(P)] \quad \iota_{P}^{-}(Q)=[(P)-(Q)]
$$

The Ceresa cycle:

$$
\kappa_{P}(C):=\left[\iota_{P}(C)\right]-\left[\iota_{P}^{-}(C)\right] \in \mathrm{CH}_{1}(J):=F_{\text {ab }}(\text { curves } \subset J) / \sim_{\text {rat }}
$$

Observation: $\kappa_{P}(C)$ is null-homologous

$$
\kappa_{P}(C) \in \mathrm{CH}_{1}(J)_{0}:=\operatorname{ker}\left(\mathrm{CH}_{1}(J) \xrightarrow{\text { clc }} H^{2 g-2}(J(\mathbb{C}), \mathbb{Z})\right)
$$

Proof: $\iota_{P}^{-}=[-1] \circ \iota_{P}$ and $[-1]$ acts as +1 on $H^{2 g-2}(J)=\wedge^{2 g-2} H^{1}(J)$.

The Ceresa class

Algebraic equivalence:

$$
\mathrm{CH}_{1}(J)_{\mathrm{alg}}:=\sum_{\substack{x / K \leq \operatorname{sm} . \text { proj. curve } \\ \Gamma \subset X \times J \text { dim }=2}} \Gamma_{*}\left(\operatorname{Pic}^{0}(X)\right)
$$

The Ceresa class: $\kappa(C):=\left[{ }_{\kappa_{P}}(C)\right]_{\mathrm{alg}} \in \mathrm{CH}_{1}(J)_{0} / \mathrm{CH}_{1}(J)_{\mathrm{alg}}=: \operatorname{Gr}_{1}(J)$
Question: Is $\kappa(C)=0$ in $\operatorname{Gr}_{1}(J)$?

A brief history of the Ceresa cycle

Observation: C hyperelliptic $\Longrightarrow \kappa(C)=0$
Proof: If $\sigma=$ hyper. inv., then $\iota_{P}^{-}=\iota_{\sigma(P)} \circ \sigma$, so $\iota_{P}^{-}(C)=\iota_{\sigma(P)}(C) . \quad \square$

Infinite order Ceresa class:

Very general curves $/ \mathbb{C} \quad g \geq 3 \quad$ Ceresa/Top 1983/89
$F^{4}: X^{4}+Y^{4}+Z^{4}=0 \quad g=3 \quad$ Harris/Bloch $\quad 1983 / 84$
$X Y^{3}+Y Z^{3}+Z X^{3}=0 \quad g=3 \quad$ Kimura/Tadokoro 2000/08
$F^{m}: X^{m}+Y^{m}+Z^{m}=0$
if $\exists p>7$ such that $p \mid m \quad g(m) \quad$ Eskandari-Murty 2021
Question: (Clemens, $g=3$) C hyperelliptic $\Longleftrightarrow \kappa(C)=0$?
Theorem (Beauville-Schoen, 2021)
For $C: y^{3}=x^{4}+x, \kappa(C)=0 \in \operatorname{Gr}_{1}(J) \otimes \mathbb{Q}$.

A criterion of Beauville

The complex Abel-Jacobi map: $\mathrm{AJ}_{\mathbb{C}}: \mathrm{CH}_{1}(J)_{0} \longrightarrow \mathcal{J}_{1}\left(J_{\mathbb{C}}\right)$

$$
\mathcal{J}_{1}\left(J_{\mathbb{C}}\right):=\mathrm{Fil}^{g-1} \backslash H^{2 g-3}(J(\mathbb{C}), \mathbb{C}) / H^{2 g-3}(J(\mathbb{C}), \mathbb{Z})
$$

Idea: If $\sigma \in \operatorname{Aut}(C)$ and $\sigma(P)=P$, then
$\rightsquigarrow \sigma$ fixes $\kappa_{P}(C)$ in $\mathrm{CH}_{1}(J)_{0}$
$\rightsquigarrow \sigma$ fixes $\mathrm{A}_{\mathbb{C}}\left(\kappa_{P}(C)\right)$ in $\mathcal{J}_{1}\left(J_{\mathbb{C}}\right)$
\rightsquigarrow If $\operatorname{Fix}(\sigma) \subset \mathcal{J}_{1}\left(J_{\mathbb{C}}\right)$ is finite, then $\mathrm{AJ}_{\mathbb{C}}\left(\kappa_{P}(C)\right)$ is torsion
Let $V=H^{0}\left(C_{\mathbb{C}}, \Omega_{C_{\mathbb{C}}}^{1}\right)$. The finiteness of $\operatorname{Fix}(\sigma)$ is equivalent to:
Criterion (\star) : 1 is not an eigenvalue for σ acting on

$$
T_{0}\left(\mathcal{J}_{1}\left(J_{\mathbb{C}}\right)\right)=\overline{\text { Fil }}{ }^{g-1}=\left(\wedge^{g-3} V \otimes \wedge^{g} V^{*}\right) \oplus\left(\wedge^{g-2} V \otimes \wedge^{g-1} V^{*}\right) .
$$

Theorem (Beauville, 2021)

For $C: y^{3}=x^{4}+x, \mathrm{AJ}_{\mathbb{C}}\left(\kappa_{(0,0)}(C)\right)$ is torsion in $\mathcal{J}_{1}\left(J_{\mathbb{C}}\right)$.
Proof: $V=\left\{d x / y^{2}, x d x / y^{2}, d x / y\right\}$ and $\sigma(x, y)=\left(\zeta_{9}^{-3} x, \zeta_{9}^{-1} y\right)$.

Cyclic Fermat quotients

Let $m \in \mathbb{N}, 0<a, b<m, \operatorname{gcd}(m, a, b, a+b)=1$.

$$
\begin{array}{cccc}
f_{a, b}^{m}: \quad F^{m}: X^{m}+Y^{m}+Z^{m}=0 & \xrightarrow{\mu_{m}} \quad C_{a, b}^{m}: v^{m}=(-1)^{a+b} u^{a}(1-u)^{b} \\
(x: y: 1) & \mapsto & \left(-x^{m}, x^{a} y^{b}\right)
\end{array}
$$

Definitions/Properties

- $g_{a, b}^{m}=(m-(\operatorname{gcd}(m, a)+\operatorname{gcd}(m, b)+\operatorname{gcd}(m, a+b))+2) / 2$
- $\mu_{m} \subset \operatorname{Aut}\left(C_{a, b}^{m}\right)$ generated by $\sigma_{m}:(u, v) \mapsto\left(u, \zeta_{m} v\right)$
- $I_{a, b}^{m}:=\left\{(r, s) \in(\mathbb{Z} / m \mathbb{Z})^{\oplus 2} \mid r, s, r+s \neq 0, b r \equiv a s(\bmod m)\right\}$
- $\left(f_{a, b}^{m}\right)^{*} V_{a, b}^{m}=\left\{x^{\langle r\rangle-m} y^{\langle s\rangle-1} d y \mid(r, s) \in I_{a, b}^{m},\langle r\rangle+\langle s\rangle<m\right\}$ basis of σ_{m}-eigenvectors.

If $\{a, b, m-a-b\} \equiv\left\{t a^{\prime}, t b^{\prime}, t\left(m-a^{\prime}-b^{\prime}\right)\right\}(\bmod m)$ for some $t \in(\mathbb{Z} / m \mathbb{Z})^{\times}\left(\right.$written $\left.(a, b) \sim_{m}\left(a^{\prime}, b^{\prime}\right)\right)$, then $C_{a, b}^{m} \simeq C_{a^{\prime}, b^{\prime}}^{m}$.

Observation: $C_{a, b}^{m}$ is hyperelliptic if and only if $(a, b) \sim_{m}(1,1)$ or

$$
m=2 n \text { and }(a, b) \sim_{m}(1, n)
$$

Testing Beauville's criterion

Recall: $I_{a, b}^{m}=\left\{(r, s) \in(\mathbb{Z} / m \mathbb{Z})^{\oplus 2} \mid r, s, r+s \neq 0, b r \equiv a s(\bmod m)\right\}$.
Proposition: Criterion (\star) for $C_{a, b}^{m}$ and $\sigma=\sigma_{m}$ is equivalent to:
For all pairwise distinct $\left(r_{n}, s_{n}\right)_{n=1}^{3} \in I_{a, b}^{m}, \sum_{n=1}^{3}\left(r_{n}, s_{n}\right) \neq(0,0) \quad(\star \star)$.

Theorem (L.-Shnidman)

Up to \sim_{m}-equivalence, the only non-hyperelliptic cyclic Fermat quotients $C_{a, b}^{m}$ with $m \leq 100$ that satisfy Criterion ($\star \star$) are:

$$
\begin{array}{llll}
C_{1,2}^{9} \simeq y^{3}=x^{4}+x & g=3 & \text { (Beauville) } \\
C_{1,3}^{12} \simeq y^{3}=x^{4}+1 & g=3 \\
C_{1,5}^{15} \simeq y^{3}=x^{5}+1 & g=4 . &
\end{array}
$$

In particular, $\mathrm{AJ}_{\mathbb{C}}\left(\kappa_{(0,0)}(C)\right)$ is torsion for these three curves.
Upper bounds: $\# \operatorname{Fix}\left(\sigma_{9}\right)=81, \# \operatorname{Fix}\left(\sigma_{12}\right)=36, \# \operatorname{Fix}\left(\sigma_{15}\right)=2025$.

Algebraic cycles and L-functions

$C=$ smooth projective curve over a number field $K, g \geq 2$.

Conjecture (Beilinson-Bloch, 1984)

$$
\operatorname{rank} \mathrm{CH}_{1}\left(J_{K}\right)_{0}=\operatorname{ord}_{s=g-1} L\left(H^{2 g-3}\left(J_{K}\right), s\right) .
$$

The L-function is attached to the ℓ-adic $\operatorname{Gal}(\bar{K} / K)$-reps $H_{\mathrm{et}}^{2 g-3}\left(J_{\bar{K}}, \mathbb{Q}_{\ell}\right)$
\rightsquigarrow Euler product for $\Re(s)>g-1 / 2$
\rightsquigarrow Conjectural functional equation centered at $s=g-1$.

Conjecture (Beilinson-Bloch, 1984)

If $H^{2 g-3}\left(J_{K}\right)=M_{K} \oplus I_{K}$ of pure type $(g-3, g)+(g, g-3)$ and $(g-2, g-1)+(g-1, g-2)$ respectively, then

$$
\operatorname{rank} \operatorname{Gr}_{1}\left(J_{K}\right)=\operatorname{ord}_{s=g-1} L\left(M_{K}, s\right)
$$

L-function calculations

The Jacobian $J_{a, b}^{m}$ of $C_{a, b}^{m}$ has $C M$ by $\mathbb{Q}\left(\zeta_{m}\right)$

$$
\Longrightarrow H^{2 g-3}\left(\left(J_{a, b}^{m}\right)_{\mathbb{Q}\left(\zeta_{m}\right)^{+}}\right)=\left(M_{a, b}^{m}\right)_{\mathbb{Q}\left(\zeta_{m}\right)^{+}} \oplus\left(I_{a, b}^{m}\right)_{\mathbb{Q}\left(\zeta_{m}\right)^{+}} .
$$

Theorem (L.-Shnidman)

$$
\begin{aligned}
\operatorname{crd}_{s=2} L\left(\left(M_{1,2}^{9}\right)_{\mathbb{Q}\left(\zeta_{9}\right)^{+}}, s\right) & =1 \\
\operatorname{ord}_{s=2} L\left(\left(M_{1,3}^{12}\right) \mathbb{Q}\left(\zeta_{12}\right)^{+}, s\right) & =0 \\
\operatorname{ord}_{s=3} L\left(\left(M_{1,5}^{15}\right)_{\mathbb{(}\left(\zeta_{15}\right)^{+}}, s\right) & =2
\end{aligned}
$$

Proof: $A_{a, b}^{m}=\left(J_{a, b}^{m}\right)^{\text {new }}$ has dimension $\varphi(m) / 2$ and CM by $\mathbb{Q}\left(\zeta_{m}\right)$

$$
\Longrightarrow L\left(A_{a, b}^{m} / \mathbb{Q}, s\right)=L\left(\tau_{a, b}^{m} / \mathbb{Q}\left(\zeta_{m}\right), s\right)
$$

for a Hecke character $\tau_{a, b}^{m}: I_{\mathbb{Q}\left(\zeta_{m}\right)}(m) \longrightarrow \mathbb{C}^{\times}$given by Jacobi sum (Weil)

$$
\begin{aligned}
& \tau_{\mathfrak{a}, b}^{m}(\mathfrak{p}):=-\sum_{z \in \mathbb{F}_{p} \backslash\{0,1\}} \chi_{\mathfrak{p}}^{a}(z) \chi_{\mathfrak{p}}^{b}(1-z), \quad \chi_{\mathfrak{p}}(z):=z^{\frac{N(\mathfrak{p})-1}{m}}(\bmod \mathfrak{p}) . \\
& \text { E.g. } L\left(\left(M_{1,2}^{9}\right) \mathbb{Q}\left(\zeta_{9}\right)^{+}, s\right)=L\left(\tau_{1,2}^{9} \tau_{2,4}^{9} \tau_{5,1}^{9} / \mathbb{Q}\left(\zeta_{9}\right), s\right), \operatorname{sign}=-1, L^{\prime}(2) \neq 0 .
\end{aligned}
$$

Torsion in the Griffiths group

So far:

- $\mathrm{AJ}_{\mathbb{C}}\left(\kappa_{(0,0)}\left(C_{1,3}^{12}\right)\right)$ torsion $\xlongequal{\text { conj }} \kappa_{(0,0)}\left(C_{1,3}^{12}\right)$ torsion in $\mathrm{CH}_{1}\left(J_{1,3}^{12}\right)_{0}$
- $L\left(\left(M_{1,3}^{12}\right)_{\mathbb{Q}\left(\zeta_{12}\right)^{+}}, 2\right) \neq 0 \xlongequal{\text { conj }} \# \operatorname{Gr}_{1}\left(\left(J_{1,3}^{12}\right)_{\mathbb{Q}\left(\zeta_{12}\right)^{+}}\right)<\infty$
- $C_{1,3}^{12} \simeq y^{3}=x^{4}+1$.

Theorem (L.-Shnidman)

$$
\kappa\left(C_{1,3}^{12}\right)=0 \in \operatorname{Gr}_{1}\left(J_{1,3}^{12}\right) \otimes \mathbb{Q}
$$

Proof: Adaptation of Beauville-Schoen's proof that $\kappa\left(C_{1,2}^{9}\right)$ is torsion. Key input: $J_{1,3}^{12} /\left\langle\sigma_{12}\right\rangle$ is uniruled.

All three $J_{1,2}^{9} /\left\langle\sigma_{9}\right\rangle, J_{1,3}^{12} /\left\langle\sigma_{12}\right\rangle, J_{1,5}^{15} /\left\langle\sigma_{15}\right\rangle$ are uniruled and currently constitute the only known (to my knowledge) non-hyperelliptic examples.

There can be no such examples for $g=5$ or $g \geq 21$ (Beauville, 2022).

Recent related developments

- Bisogno-Li-Litt-Srinivasan (2020): $\mathrm{AJ}_{\mathrm{et}}\left(\kappa_{P}\left(C_{\mathrm{FM}}\right)\right)$ torsion for $C_{F M}=$ the Fricke-Macbeath curve (the $g=7$ Hurwitz curve) $\left(\stackrel{\text { conj }}{\Longrightarrow} \kappa_{P}\left(C_{F M}\right)\right.$ torsion in $\left.\mathrm{CH}_{1}\left(J_{F M}\right)_{0}\right)$.
- Gross (2021): $L\left(C_{F M}^{3}, 2\right) \neq 0\left(\xlongequal{\text { conj }} \kappa(C)\right.$ torsion in $\left.\operatorname{Gr}_{1}\left(J_{F M}\right)\right)$.
- Qiu-Zhang (2022): If $\exists G \subset \operatorname{Aut}(C)$ such that $H^{0}\left(G, H^{1}(C)^{\otimes 3}\right)=0$, then $\kappa_{\xi}(C)$ is torsion in $\mathrm{CH}_{1}(J)_{0}$
\rightsquigarrow applies to $C_{F M}, C_{1,3}^{12}, C_{\text {Bring }}$, and 1-dimensional family in $g=4,5$.
- Ellenberg-Logan-Srinivasan-Venkatesh (2023?): ~ 200.000 smooth plane quartics over \mathbb{Q} have $\kappa_{P}(C) \neq 0 \in \mathrm{CH}_{1}(J)_{0} \otimes \mathbb{Q}$.

Thank you for your attention!

Thanks to the organizers for a wonderful week at CIRM!

