
INTRODUCTION TO ELLIPTIC UNITS

DAVID T.-B. G. LILIENFELDT

Abstract. These are the notes of two talks I gave at IMJ–PRG on May 24, 2023. The goal of these
lectures is to introduce the audience to a compatible system of units in class fields over imaginary
quadratic fields that plays an important role in the study of the arithmetic of CM elliptic curves,
notably in the landmark proof of BSD for CM elliptic curves in analytic rank zero by Coates–Wiles
[1]. We define elliptic units as values at torsion points on a CM elliptic curve E of certain rational
functions on E. We survey some of their salient properties, notably the so-called distribution relation.
We then give the complex analytic interpretation of elliptic units in terms of theta functions and
present an important link with special values of Hecke L-functions. These expository notes closely
follow [2] (and to a lesser degree [1] and [3]) and contain no novel mathematical contributions on
my part, except for the mistakes I may have introduced.

1. Motivation: circular units

Consider a compatible collection of roots of unity {ζm | m ∈ Z≥1} in the sense that ζnmn = ζm for
all m,n ≥ 1. If m is not a power of a prime, then ζm − 1 is a global unit in the cyclotomic field
Q(ζm), i.e., ζm − 1 ∈ Z[ζm]×. This is called a circular or cyclotomic unit. These special units satisfy
certain relations among them known as distribution relations or norm relations. Namely, given a
prime ` and an integer m ≥ 1 which is not a power of a prime, we have

N
Q(ζm`)
Q(ζm) (ζm` − 1) =

{
ζm − 1, ` | m
(ζm − 1)1−Fr−1

` , ` - m,

where Fr` ∈ Gal(Q(ζm)/Q) denotes the Frobenius automorphism. Note that the cyclotomic fields
Q(ζm) (along with their maximal totally real subfields Q(ζm)+) are the ray class fields over Q.
The so-called Euler system of circular units has many important applications in number theory,
notably to special value formulas for Dirichlet L-functions and subsequently to the construction of
the Kubota–Leopoldt p-adic L-function. Elliptic units play an analogous role when Q is replaced by
an imaginary quadratic field K.

2. Elliptic units: definitions and properties

Elliptic units are certain special units in ray class fields over an imaginary quadratic field K. The
explicit class field theory of imaginary quadratic fields is intimately linked with the theory of CM
elliptic curves. We will begin by recalling the main theorem of CM theory in the setting relevant for
us. In these notes we will often restrict attention to the case where the class number of K is 1, as in
the original [1]. This leaves us with 9 discriminants to choose from. For the more general case, we
refer the reader to [3].
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2.1. Complex multiplication. Let K be an imaginary quadratic field. Let E be an elliptic curve
over a field F with CM by OK . This means that there is an isomorphism EndF (E) ' OK and F
contains K(j(E)). The main theorem of CM theory asserts that the Hilbert class field H of K
is equal to K(j(E)). In particular, the isomorphism class of E over F̄ contains an elliptic curve,
again denoted E by slight abuse, which is defined over H and such that EndH(E) is isomorphic
to OK . We will choose once and for all this isomorphism sending α ∈ OK to [α] ∈ EndH(E) such
that the map [α]∗ : Ω1

E/H −→ Ω1
E/H is multiplication by α. Furthermore, if m is an integral ideal

of OK , then H(E[m])/H is an abelian extension and the ray class field K(m) of modulus m is
obtained by adjoining to H the image of the group of m-torsion points E[m] under the Kummer
map h : E −→ E/AutH(E) = E/O×K . In the case when O×K = {±1}, and after choosing a plane
projective model for E, the map h takes a point P to its x-coordinate. We recall that the Artin
map of class field theory induces an isomorphism

(2.1) IK(m)/PK,1(m)
∼−→ Gal(K(m)/K), [b] 7→ σb := [b,K(m)/K] ,

where IK(m) denotes the group of fractional ideal of K that are prime to m and PK,1(m) consists of
those principal ideals that can be written as αOK with α ≡ 1 (mod m). One deduces an isomorphism

(OK/m)×/O×K
∼−→ Gal(K(m)/H).

Finally, there is a unique algebraic Hecke character ψ := ψE of H of conductor F = cond(E) (an
ideal of H) and valued in K such that

(1) If M is any integral ideal of H prime to F, then ψ(M) ∈ OK and ψ(M)OK = NH
KM,

(2) If M is any integral ideal of H prime to F and c is any ideal of K prime to NH
KM, then

[M, H(E[c])/H](P ) = [ψ(M)](P ), for all P ∈ E[c].

(3) If P is a prime of H at which E has good reduction (with reduction EFP
), then [ψ(P)] ∈

EndH(E) reduces modulo P to the absolute Frobenius endomorphism FrobP of EFP
.

2.2. Elliptic units. From now on we let K be an imaginary quadratic field with class number one.
We then have H = K and the theory of the previous section simplifies considerably. Fix E an
elliptic curve over C with CM by OK . Pick a Weierstrass model

(2.2) E : y2 = 4x3 −Ax−B, ∆(E) = A3 − 27B2 6= 0, A,B ∈ C.

Note that we can always choose an isomorphic model with coefficients in K by the discussion of the
previous section.

Definition 2.1. Let a be an ideal of OK prime to 6 with generator α ∈ OK . Define a rational
function on E by

ΘE,a := α−12∆(E)N(a)−1
∏

P∈E[a]\0

1

(x− x(P ))6
.

The rational function ΘE,a is independent of the choice of α (since #O×K | 12) and of the choice of
Weierstrass model (the model is unique up to (A,B) 7→ (u4A, u6B) with u ∈ C×). In other words,
we have

(2.3) ΘE,a = ΘE′,a ◦ φ, for all φ ∈ Isom(E,E′).

Finally, it is clear from this that if E is defined over F , then ΘE,a ∈ F (E) (since a Weierstrass
equation with coefficients in F may be chosen, so that α ∈ F and ∆(E) ∈ F ).
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Proposition 2.2. Let a be an ideal of OK prime to 6 and let b be an ideal of OK prime to a.
Let Q ∈ E[b] be a proper b-section (a generator of E[b] as a free rank one OK/b-module). Then
ΘE,a(Q) ∈ K(b) and if c = (c) is any ideal of OK prime to b and σc := [c,K(b)/K] ∈ Gal(K(b)/K),
then σc(ΘE,a(Q)) = ΘE,a([c]Q).

Proof. This follows from CM theory. The fact that ΘE,a(Q) ∈ K(E[b]) is clear given that ΘE,a ∈
K(E). The fact that ΘE,a(Q) ∈ K(b) = K(h(E[b])), where h : E −→ E/Aut(E) is the Kummer
map, then follows from the invariance property (2.3). Let ψ be the Hecke character of K valued in
K× attached to E by CM theory. We then have

σc(ΘE,a(Q)) = ΘE,a(σc(Q)) = ΘE,a([ψ(c)](Q)).

The first equality follows from ΘE,a being a K-rational function, while the second equality is
property (3) of §2.1. By (1) of §2.1, we have ψ(c)OK = c = cOK , whence ψ(c) = cu for some
u ∈ O×K = Aut(E). The result then follows by (2.3). �

Theorem 2.3. Let a be an ideal of OK prime to 6 and let b be an ideal of OK prime to a. Let
Q ∈ E[b] be a proper b-section. If b is not a power of a prime ideal, then ΘE,a(Q) ∈ O×K(b). If

b = pn for some prime ideal p and n > 0, then ΘE,a(Q) ∈ OK(b)[1/p]×.

Proof. We give a sketch of the proof. Let p be a prime ideal and let n = ordp(a). Fix an extension
of the valuation ordp to K̄ such that ordp(π) = 1 for (π) = p. We may and will assume that E has
good reduction modulo p. Indeed, there exists an elliptic curve E′ over K that is isomorphic to E
over K̄ and has good reduction at p [2, Corollary 5.22] and we can apply (2.3). In particular, we
have ordp(∆(E)) = 0 and

(2.4) ordp(ΘE,a(Q)) = −12n− 6
∑

P∈E[a]\0

ordp(x(Q)− x(P )).

Let Kp denote the p-adic completion of K and let E1(K̄p) denote the residue disc modulo p of the
origin (the kernel of reduction modulo p of EK̄p

). Note that Q ∈ E(K̄) belongs to E1(K̄p) if and

only if ordp(x(Q)) < 0. We will need the following classical fact [2, Theorem 3.15]: if m is an ideal
prime to p, then E[m] injects into EFp [m], where EFp denotes the reduction of E modulo p.

First, suppose that n > 0 and write

(2.5) ordp(ΘE,a(Q)) = −12n− 6
∑

P∈E[a]\E[pn]

ordp(x(Q)− x(P ))− 6
∑

P∈E[pn]\0

ordp(x(Q)− x(P )).

Note that p - b since (a, b) = 1. In particular, we have E[b] ↪→ EFp [b]. Since Q 6= 0, we see that

Q 6≡ 0 (mod p). Equivalently, Q 6∈ E1(K̄p), or ordp(x(Q)) ≥ 0. Let us write a = a′pn, and p = (π).
If P ∈ E[a] \ E[pn], then 0 6= πnP ∈ E[a′] ↪→ EFp [a

′]. Thus, πnP 6∈ E1(K̄p), which implies that

P 6∈ E1(K̄p), i.e., ordp(x(P )) ≥ 0. We deduce that ordp(x(Q)− x(P )) ≥ 0. Observe that

ordp(x(Q)− x(P )) > 0 ⇐⇒ x(Q) ≡ x(P ) (mod p) ⇐⇒ Q ≡ ±P (mod p).

Since (a, b) = 1, we have 0 6= πn(P ±Q) ∈ E[a′b] ↪→ EFp [a′b]. In particular, πn(Q±P ) 6≡ 0 (mod p),
whence Q 6≡ ±P (mod p). We conclude that ordp(x(Q)− x(P )) = 0 and

(2.6) ordp(ΘE,a(Q)) = −12n− 6

n∑
m=1

∑
P∈E[pm]\E[pm−1]

ordp(x(Q)− x(P )).

We now use the fact [2, Lemma 7.2] that if P ∈ E[pm] \ E[pm−1], then

(2.7) ordp(x(P )) = − 2

N(p)m −N(p)m−1
.
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Since ordp(x(Q)) ≥ 0, we obtain

ordp(ΘE,a(Q)) = −12n+
12

N(p)m −N(p)m−1

n∑
m=1

∑
P∈E[pm]\E[pm−1]

1 = −12n+ 12
n∑

m=1

1 = 0.

Next, suppose that n = 0 and p - b. Then p - ab. Because Q 6= 0 and E[b] ↪→ EFp [b], we see that

Q 6≡ 0 (mod p), i.e., Q 6∈ E1(K̄p), which is equivalent to ordp(x(Q)) ≥ 0. The same is true for P ,
i.e., ordp(x(P )) ≥ 0. In particular, we have ordp(x(Q)− x(P )) ≥ 0. Observe that

ordp(x(Q)− x(P )) > 0 ⇐⇒ x(Q) ≡ x(P ) (mod p) ⇐⇒ Q = ±P (mod p).

But E[ab] injects into EFp [ab]. Since (a, b) = 1, we have 0 6= P ± Q ∈ E[ab], and thus P 6≡ ±Q
(mod p). We conclude that ordp(x(Q)− x(P )) = 0, and by (2.4) we deduce that ordp(ΘE,a(Q)) = 0.

Finally, assume that m := ordp(p) > 0. If b is not a power of p, then Q ∈ E[b] \E[pm] and as above
we obtain ordp(x(Q)− x(P )) = 0, whence ordp(ΘE,a(Q)) = 0 (since n = 0). If b = pm, then since
ordp(x(P )) ≥ 0, we use (2.7) to obtain

ordp(ΘE,a(Q)) =
2(N(a)− 1)

N(p)m −N(p)m−1
> 0.

Hence ΘE,a(Q) is only a p-unit in this case. �

2.3. The distribution relation.

Theorem 2.4. Let a be an ideal of OK prime to 6, and let b = βOK be an ideal prime to a. For
all Q ∈ E(K̄), we have ∏

R∈E[b]

ΘE,a(Q+R) = ΘE,a([β](Q)).

Proof. Let F :=
∏
R∈E[b] ΘE,a ◦ tR and G := ΘE,a ◦ [β]. We begin by observing that

div(ΘE,a) = −6
∑

P∈E[a]\0

([P ] + [−P ]− 2[O]) = 12N(a)[O]− 12
∑

P∈E[a]

[P ].

Using this, we deduce that

div(F ) =
∑

R∈E[b]

(12N(a)[R]− 12
∑

P∈E[a]

[P +R]) = 12N(a)
∑

R∈E[b]

[R]− 12
∑

S∈E[ab]

[S].

On the other hand, note that for P ∈ E[a] \ 0, the function x([β]Q) − x(P ) in the variable Q
has poles at points Q for which [β]Q = 0, i.e., at Q ∈ E[β]. The zeros are at points Q such that
[β]Q = P ∈ E[a] \ 0. In particular, Q ∈ E[ab] \ E[b]. As P ranges over E[a] \ 0, Q ranges over
E[ab] \ E[b]. We deduce that

div(G) = 12(N(a)− 1)
∑

R∈E[b]

[R]− 12
∑

S∈E[ab]\E[b]

[S] = div(F ).

As a consequence, F/G is a constant λ. We compare Laurent expansions at s = 0, or equivalently
we take the limit of F (Q)/G(Q) as Q→ O. We have

F (Q)

G(Q)
= α−12(N(b)−1)∆(E)(N(a)−1)(N(b)−1)

∏
P∈E[a]\0

(
x(Q)− x(P )

x([β]Q)− x(P )

)−6 ∏
R∈E[b]\0

(x(Q+R)−x(P ))−6.

We have

lim
Q→O

x(Q)− x(P )

x([β]Q)− x(P )
= β2,
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as can be seen using the complex uniformization via the Weierstrass ℘-function (see §3.1). We
deduce that

λ =
∆(E)(N(a)−1)(N(b)−1)

α12(N(b)−1)β12(N(a)−1)

∏
P∈E[a]\0
R∈E[b]\0

(x(R)− x(P ))−6.

Note that x(P ) = x(−P ). Since 2 - a, we have P 6= −P . We thus obtain

λ =
∆(E)(N(a)−1)(N(b)−1)

α12(N(b)−1)β12(N(a)−1)

∏
P∈(E[a]\0)/±1
R∈E[b]\0

(x(R)− x(P ))−12.

Let uK := #OK . Then uK | 12 and uK | N(a) − 1. To see the latter, assume first that uK = 2.
Since 2 - N(a), N(a)− 1 is even. If uK = 4, then we are in the case K = Q(i) and N(a) = a2 + b2

with a = (a+ bi). Thus, N(a) ≡ 0, 1, 2 (mod 4). Since 2 - N(a), we must have N(a) ≡ 1 (mod 4),
whence uK | N(a)− 1. If uK = 6, then we are in the case K = Q(

√
−3) and OK = Z[(1 +

√
−3)/2].

If a = (a + b(1 +
√
−3)/2), then N(a) = (a + b/2)2 + 3b2/4 = a2 + ab + b2 ≡ 0, 1 (mod 3). But

3 - N(a) so 3 | N(a)− 1. Since 2 - N(a), we obtain uK | N(a)− 1. In any case, we may write

λ =

 ∆(E)(N(a)−1)(N(b)−1)/uK

α12(N(b)−1)/uKβ12(N(a)−1)/uK

∏
P∈(E[a]\0)/±1
R∈E[b]\0

(x(R)− x(P ))−12/uK


uK

.

Using the same method as in the proof of Theorem 2.3, one can show that the quantity in brackets
is a unit in OK . Hence λ = 1. �

Corollary 2.5. Let a be an ideal of OK prime to 6, and let b be an ideal prime to a. Let p = (π)
be a prime ideal dividing b and write b = pb′. Assume that the map O×K −→ (OK/b′)× is injective.
Given a proper b-section Q ∈ E[b], we have

N
K(b)
K(b′)ΘE,a(Q) =

{
ΘE,a(πQ), p | b′

ΘE,a(πQ)1−Fr−1
p , p - b′.

Proof. We write b = (β), b′ = (β′), and p = (π). By (2.1), the Artin map of class field theory yields
an isomorphism

IK(b)/PK,1(b) ' Gal(K(b)/K), c 7→ σc.

Using the fact that hK = 1, we see that the left hand side is isomorphic to (OK/b)×/O×K . The same
is true with b replaced by b′. The Galois group Gal(K(b)/K(b′)) is thus seen to be isomorphic to
the kernel of the map

(2.8) (OK/b)×/O×K −→ (OK/b′)×/O×K .

The kernel of (2.8) is thus given by C := 1 + b′(OK/b) ↪→ (OK/b)×/O×K (the latter map is an

injection since its kernel is (1 + b′(OK/b))∩O×K = {1} since the image of 1 + b′(OK/b) in (OK/b′)×
is 1 and O×K ↪→ (OK/b′)× by assumption). If c ∈ C, we let c = (c). Using Proposition 2.2, we see
that

N
K(b)
K(b′)ΘE,a(Q) =

∏
σ∈Gal(K(b)/K(b′))

σ(ΘE,a(Q)) =
∏
c∈C

σc(ΘE,a(Q)) =
∏
c∈C

ΘE,a([c]Q).

Observe that [c]Q 6∈ E[b′]. Indeed, otherwise ΘE,a(Q) = σ−1
c (ΘE,a([c]Q)) = ΘE,a([c]Q) is defined

over K(b′), contradicting CM theory. If c ∈ C, we write c = 1 + β′x with x ∈ OK/b. Then
[c]Q = Q + [β′]xQ. Observe that [β′]xQ ∈ E[p]. If p | b′, then [β′]xQ ∈ E[b′] and [β′]([c]Q) =
[β′]Q 6= 0. Hence, the condition [c]Q 6∈ E[b′] is automatically satisfied. However, when p - b′, we



6 DAVID T.-B. G. LILIENFELDT

have [β′]xQ 6∈ E[b′]. Let S ∈ E[b′] be a proper b′-section. Observe that [π]S is again a proper
b′-section and that [π]Q ∈ E[b′]. Thus, there exists a unique x0 ∈ OK/b′ such that [π]x0S = [π]Q.
But then S0 := x0S ∈ E[b′] such that [π]S0 = [π]Q. Let R0 := S0 −Q. Then Q+R0 = S0 ∈ E[b′]
and R0 ∈ E[p] by construction. In conclusion, in the case p - b′, the condition [c]Q 6∈ E[b′] is not
automatically satisfied and we must exclude the case c = 1 + β′x with x = x0. We deduce that

N
K(b)
K(b′)ΘE,a(Q) =


∏
x∈OK/b ΘE,a(Q+ [β′]xQ) =

∏
R∈E[p] ΘE,a(Q+R), p | b′∏

x∈OK/b
x 6=x0

ΘE,a(Q+ [β′]xQ) =
∏

x∈R
R 6=R0

ΘE,a(Q+R), p - b′.

Since p | b and (a, b) = 1, we can apply Theorem 2.4 to obtain∏
R∈E[p]

ΘE,a(Q+R) = ΘE,a([π]Q).

This concludes the proof in the case p | b′. When p - b′, we get

ΘE,a(Q+R0)N
K(b)
K(b′)ΘE,a(Q) = ΘE,a([π]Q).

To finish the proof, we observe using Proposition 2.2 (since Q+R0 ∈ E[b′] and (b′, p) = 1) that

ΘE,a(Q+R0)Frp = σp(ΘE,a(Q+R0)) = ΘE,a([π](Q+R0)) = ΘE,a([π]Q).

�

3. Analytic theory of elliptic units

We use the complex uniformization of elliptic curves provided by the Weierstrass ℘-function to give
a description of elliptic units using theta functions. We then link these analytic elliptic units to
special values of Hecke L-functions, giving a proof of Damerell’s algebraicity result.

3.1. Complex uniformization. Let E be an elliptic curve given by a Weierstrass equation

(3.1) E : y2 = 4x3 −Ax−B, ∆(E) = A3 − 27B2 6= 0, A,B ∈ C.

The standard differential on E is ωE := dx/y. The period lattice

LE :=

{∫
γ
ωE

∣∣∣∣ [γ] ∈ H1(E(C),Z)

}
is then a lattice in C and there is an isomorphism

E(C)
∼−→ C/LE , P −→

∫ P

O
ωE .

The inverse of this map is given by

ξ : C/LE
∼−→ E(C), z −→ (℘(z;LE), ℘′(z;LE)),

where for any lattice L ⊂ C

℘(z;L) :=
1

z2
+
∑

06=λ∈L

(
1

(z − λ)2
− 1

λ2

)
.

In fact, the Weierstrass ℘-function satisfies the equation

(3.2) ℘′(z;L)2 = 4℘(z;L)3 − 60G4(L)℘(z;L)− 140G6(L),

where Gk(L) :=
∑

06=λ∈L λ
−k for k ≥ 4 even. The fact that ξ is the inverse map then translates to

A = 60G4(LE) and B = 140G6(LE).
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3.2. Special functions. Let L ⊂ C be a lattice. Define the (non-periodic) Weierstrass σ-function
by

σ(z;L) := z
∏

06=λ∈L

(
1− z

λ

)
e
z
λ

+ 1
2( zλ)

2

.

Applying the logarithmic derivative yields the Weierstrass zeta function

ζ(z;L) :=
d

dz
log(σ(z;L)) =

1

z
+
∑

0 6=λ∈L

(
1

z − λ
+

1

λ
+

z

λ2

)
.

It is non-periodic and has a single simple pole and no zeros. The derivative of the zeta function is

ζ ′(z;L) = −℘(z;L),

which is periodic. Choose an oriented basis L = w1Z ⊕ w2Z such that τ = w1/w2 ∈ H. The
discriminant of (3.2) is

∆(L) = (60G4(L))3 − 27(140G6(L))2 =

(
2πi

w2

)12

q
∏
n≥1

(1− qn)24, q = e2πiτ .

We also define 
G2(L) := lim

s→0+

∑
06=λ∈L

1
λ2|λ|2s ,

A(L) := Vol(C/L)/π,

η(z;L) := G2(L)z −A(L)−1z̄.

We point out the transformation law

ζ(z + λ;L) = ζ(z;L) + η(λ;L), ∀z ∈ C, λ ∈ L.
Finally, we define the fundamental theta function by

θ(z;L) := ∆(L)e−6η(z;L)zσ(z;L)12.

Note that it is a non-holomorphic function.

3.3. Analytic elliptic units. Let K be an imaginary quadratic field with class number 1 and let
E be an elliptic curve over C with CM by OK . Let L = LE denote the period lattice of E and recall
the complex uniformization ξ : C/L ' E(C). Because E has CM by OK , the lattice L is homothetic
to a K-fractional ideal, and since the class number is 1, there exists Ω ∈ C× such that L = ΩOK .
Given an ideal a = (α) of OK prime to 6, we define

ΘL,a(z) := ΘE,a(ξ(z)) = α−12∆(L)N(a)−1
∏

w∈a−1L/L\0

(
1

℘(z;L)− ℘(w;L)

)−6

.

Proposition 3.1. We have

ΘL,a(z) =
θ(z;L)N(a)

θ(z; a−1L)
.

Proof. Using properties of the fundamental theta function, the function f(z) := θ(z;L)N(a)/θ(z; a−1L)
is holomorphic and elliptic. Its divisor is

div(f) = 12N(a)[0]− 12
∑

w∈a−1L/L

[w] = div(ΘL,a).

Hence, the two functions differ by a constant, which can be determined by analyzing the Taylor
series expansions of both sides at z = 0. These are both given by

α−12∆(L)N(a)−1z12(N(a)−1)(1 +O(z)).



8 DAVID T.-B. G. LILIENFELDT

�

Definition 3.2. For k ≥ 1, define the Eisenstein series

Ek(z;L) := lim
s→0

∑
λ∈L

1

(z − λ)k|z − λ|2s
.

Proposition 3.3. We have

E1(z;L) = ζ(z;L)− η(z;L)

E2(z;L) = −E1(z;L)′ = ℘(z;L) +G2(L)

Ek(z;L) =
−Ek−1(z;L)′

k − 1
=

(−1)k

(k − 1)!

(
d

dz

)k−2

℘(z;L), k ≥ 3.

Proposition 3.4. For all k ≥ 1, we have(
d

dz

)k
log(ΘL,a(z)) = 12(−1)k−1(k − 1)!(N(a)Ek(z;L)− Ek(z; a−1L)).

Proof. Using Proposition 3.1, we see that

log(ΘL,a(z)) = N(a) log(θ(z;L))− log(θ(z; a−1L)).

Recall that θ(z;L) := ∆(L)e−6η(z;L)zσ(z;L)12 and thus

log(θ(z;L)) = log(∆(L))− 6η(z;L)z + 12 log(σ(z;L)).

Taking the derivative yields

log(θ(z;L))′ = −6G2(L)z − 6η(z;L) + 12ζ(z;L) = 12E1(z;L) + 6A(L)−1z̄.

We deduce that

log(ΘL,a(z)) = 12(N(a)E1(z;L)− E1(z; a−1L)) + 6(N(a)A(L)−1 −A(a−1L)−1)z̄

= 12(N(a)E1(z;L)− E1(z; a−1L)),

since A(a−1L) = N(a)−1A(L). The result for k ≥ 2 follows from Proposition 3.3. �

3.4. Hecke L-functions. Let ψ be the Hecke character of K with values in K× attached to E by
CM theory. Let f = cond(ψ) = cond(E). The Hecke L-function associated to powers of ψ̄ is

L(ψ̄k, s) :=
∑
b

ψ̄k(b)

N(b)s
,

where the sum is taken over integral ideals of OK prime to the conductor of ψ̄k. If m is an ideal
divisible by f and c is prime to m, we also define

Lm(ψ̄k, s, c) :=
∑

(b,m)=1
σb=σc

ψ̄k(b)

N(b)s
,

where the equality of automorphisms takes place in Gal(K(m)/K).

Proposition 3.5. Let v ∈ KL/L be a point of order m, where m is an ideal divisible by f. Recall
that L = ΩOK and let c := Ω−1vm. Then for all k ≥ 1, we have

Ek(v;L) = v−kψ(c)kLm(ψ̄k, k, c).
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Proof. Let m = (µ) and write v = cΩ/µ+L for some c ∈ K with ((c),m) = 1. Note that c = Ω−1vµ,
whence (c) = c. Writing

Ek(z;L) = lim
s→k

∑
λ∈L

1

(z − λ)k|z − λ|2s−2k
= lim

s→k

∑
λ∈L

(z̄ − λ̄)k

|z − λ|2s
,

we see that

Ek(v;L) = lim
s→k

Nµs

µ̄k
Ω̄k

|Ω|2s
∑
β∈OK

β≡c (mod m)

β̄k

|β|2s
.

Since ψ(b)OK = (β), we see that ε(β) := ψ((β))/β ∈ O×K . This defines a homomorphism

ε : (OK/f)× −→ O×K . Thus, if β ≡ c (mod m), then in particular β ≡ c (mod f) and thus ε(β) = ε(c),
which implies that

β̄ =
ψ(β̄c)

c
.

It follows that

Ek(v;L) = lim
s→k

Nµs

µ̄k
Ω̄k

|Ω|2s
ψ(c)k

ck

∑
(b,m)=1
σb=σc

ψ̄k(b)

N(b)s
= lim

s→k

(
N(µ)

N(Ω)

)s−k
v−kψ(c)kLm(ψ̄k, s, c).

The result follows by taking the limit. �

Definition 3.6. Let f = (f) and fix a set B of representatives of IK(f)/PK,1(f) = (OK/f)×/O×K so
that Gal(K(f)/K) = {σb | b ∈ B}. Let a be an ideal prime to 6f. Let u = Ω/f + L ∈ f−1L/L (a
point of order f) and define

ΛL,a,f (z) :=
∏
b∈B

ΘL,a(ψ(b)u+ z).

Theorem 3.7. For all k ≥ 1, we have(
d

dz

)k
log(ΛL,a,f (z))

∣∣∣∣∣
z=0

= 12(−1)k−1(k − 1)!fk(N(a)− ψ(a)k)Ω−kLf(ψ̄
k, k).

Proof. We have(
d

dz

)k
log(ΛL,a,f (z))

∣∣∣∣∣
z=0

=
∑
b∈B

(
d

dz

)k
log(ΘL,a(z))

∣∣∣∣∣
z=ψ(b)u

= 12(−1)k−1(k − 1)!
∑
b∈B

(N(a)Ek(ψ(b)u;L)− Ek(ψ(b)u; a−1L)).

Recall that u ∈ KL/L is a point of order f. Since (b, f) = 1, the point ψ(b)u is again a point of
order f. Note that Ω−1ψ(b)uf = b. We apply Proposition 3.5 to obtain

Ek(ψ(b)u;L) = (ψ(b)u)−kψ(b)kLm(ψ̄k, k, b) = u−kLf(ψ̄
k, k, b),

and ∑
b∈B

Ek(ψ(b)u;L) = u−kLf(ψ̄
k, k).

Observe that

Ek(z; a
−1L) = lim

s→0

∑
λ∈L

1

(z − ψ(a)−1λ)k|z − ψ(a)−1λ|2s
= ψ(a)kEk(ψ(a)z;L).

Hence,
Ek(ψ(b)u; a−1L) = ψ(a)kEk(ψ(ab)u;L) = ψ(a)ku−kLf(ψ̄

k, k, ab),
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and ∑
b∈B

Ek(ψ(b)u; a−1L) = ψ(a)ku−kLf(ψ̄
k, k).

The result follows by noting that u−k = fkΩ−k. �

Corollary 3.8 (Damerell). For every k ≥ 1,

L(ψ̄k, k)

Ω
∈ K.

Proof. We know that ΛL,a,f (z) ∈ K(℘(z;L), ℘(z;L)′). Using the Weierstrass equation (3.2) satisfied

by ℘(z;L) and ℘(z;L)′ with coefficients in K, we see that
(
d
dz

)k
℘(z;L) ∈ K(℘(z;L), ℘(z;L)′) for

all k ≥ 2. The result then follows from Theorem 3.7. �

Remark 3.9. By a classical result of Deuring, we have L(E/K, s) = L(ψ, s)L(ψ̄, s). In particular,
L(E/K, 1) 6= 0 implies L(ψ̄, 1) 6= 0. Theorem 3.7 for k = 1 then translates this information into a
statement of non-triviality for elliptic units. More precisely, under this non-vanishing assumption,
the so-called Euler system of elliptic units has non-trivial bottom class. The machinery of Euler
systems then allows one to bound the torsion in class groups of abelian extensions of K. The latter
are related to Selmer groups of E by explicit descent, resulting ultimately in bounds on ranks of
Mordell–Weil groups. This is the strategy employed by Coates and Wiles [1] to prove BSD for CM
elliptic curves in analytic rank zero (in the class number one case), namely they prove that

L(E/K, 1) 6= 0 =⇒ #E(K) < 0.
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