HEEGNER CYCLES IN GRIFFITHS GROUPS OF KUGA-SATO VARIETIES
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ABSTRACT. The aim of this article is to prove, using complex Abel-Jacobi maps, that the subgroup
generated by Heegner cycles associated with a fixed imaginary quadratic field in the Griffiths group
of a Kuga—Sato variety over a modular curve has infinite rank. This generalises a classical result of
Chad Schoen for the Kuga—Sato threefold, and complements work of Amnon Besser on complex
multiplication cycles over Shimura curves. The proof relies on a formula for the images of Heegner
cycles under the complex Abel-Jacobi map given in terms of explicit line integrals of even weight
cusp forms on the complex upper half-plane. The latter is deduced from previous joint work of the
author with Massimo Bertolini, Henri Darmon, and Kartik Prasanna by exploiting connections with
generalised Heegner cycles. As a corollary, it is proved that the Griffiths group of the product of a
Kuga—Sato variety with powers of an elliptic curve with complex multiplication has infinite rank.
This recovers results of Ashay Burungale by a different and more direct approach.

CONTENTS
1. Introduction 1
2. Cusp forms and Kuga—Sato varieties )
3. Algebraic cycles in CM fibres 7
4. Complex Abel-Jacobi maps 11
5. Bloch’s map on torsion cycles 15
6. A finiteness result for étale cohomology with torsion coefficients 18
7. Explicit isogenies 19
8. Asymptotics for Abel-Jacobi images of explicit cycles 24
9. Infinite rank Griffiths groups 27
References 28

1. INTRODUCTION

1.1. Heegner cycles. A generalisation of the conjecture of Birch and Swinnerton-Dyer [7, 8]
involving algebraic cycles exists for higher dimensional algebraic varieties over number fields. It
is due independently to Beilinson [2] and Bloch [10]. The motive of a newform f of level I';(N)
and higher even weight k + 2, with k = 2r > 2, is cut out from the Kuga—Sato variety Wj over Q
of dimension k + 1 and level I'; (V) by the work of Scholl [39]. The conjecture of Beilinson and
Bloch roughly predicts that the order of vanishing of the L-function of f over a number field F' at
its center s = r 4+ 1 is accounted for by the existence of non-torsion elements in the Chow group
CH”H(W;C, r)o of null-homologous algebraic cycles of codimension r 4+ 1 modulo rational equivalence.

Given an imaginary quadratic field K satisfying the Heegner hypothesis with respect to N (all
primes dividing N split in K), a construction of cycles that could potentially account for the first
central derivative of L(f/K,s) was envisioned in the seminal work of Gross and Zagier [23, §V. 4].
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These are higher dimensional analogues of Heegner points known as Heegner cycles. They live in
complex multiplication (CM) fibres of the Kuga—Sato variety Wi— X;(N), and lie above Heegner
points via the map of modular curves X;(N)—Xo(N). Zhang [44] has proved a Gross—Zagier type
formula relating L'(f/K,r + 1) to the Beilinson-Bloch height of a Heegner cycle. This formula
has recently been generalised by Qiu [35]. A p-adic version of Zhang’s formula has been obtained
by Nekovar [32], with a step in the proof filled by Shnidman [40], generalising previous work of
Perrin-Riou [34] for weight 2 forms. A universal p-adic Gross—Zagier formula encompassing the
previously known formulae has recently been obtained by Disegni [17]. Kolyvagin’s [22, 28] method
of Euler systems has also been adapted to the setting of Heegner cycles by Nekovar [31].

The present article is concerned with questions about the algebraic geometric, or Hodge theoretic,
incarnation of Heegner cycles. The aim is to give an explicit formula for their images under the
complex Abel-Jacobi map, and deduce consequences for Griffiths groups of Kuga—Sato varieties.
This in turn implies results about certain variants of generalised Heegner cycles introduced by
Bertolini, Darmon, and Prasanna in [5].

1.2. The Griffiths group. The Griffiths group Gr(X) = @?:0 G1’(X) of a smooth projective
algebraic variety X of dimension d is the group of null-homologous algebraic cycles modulo algebraic
equivalence. It is a rather mysterious quotient of the null-homologous Chow group. For codimension
1 algebraic cycles, algebraic equivalence coincides with homological equivalence, hence Gr!(X) is
trivial. In higher codimension, this is however no longer the case. Indeed, Griffiths [20] showed that
for a general quintic hypersurface X of P* over C, Gr?(X) ®z Q is non-zero. Clemens [14] then
showed in the same case that dimg Gr?(X) ®z Q = oo. Ceresa [13] proved that the Ceresa cycle
1(O) — [-1]*1(C) € Gr971(Jac(C)) is non-torsion for a generic curve of genus g > 3 over C, where
t: C — Jac(C) is a fixed Abel-Jacobi embedding, and Nori [33] later proved in the same case that
dimg Gr?(Jac(C)) ®z Q = oc. In recent related developments, Totaro [41] showed that for a very
general principally polarised complex abelian 3-fold X, Gr?(X) ® Z/{Z is infinite for any prime /
(see [36,38] for prior results).

Over number fields, the first explicit example of a variety for which such phenoma occurred
was found by Harris [24] who studied the Ceresa cycle of the Fermat quartic over Q, and proved
that it is non-zero modulo algebraic equivalence by computing its image under the complex Abel-
Jacobi map. Bloch [10] then proved that the algebraic equivalence class of the Ceresa cycle of the
Fermat quartic is non-torsion using a purely algebraic method involving the étale Abel-Jacobi map.
Schoen [37] studied Heegner cycles on the Kuga—Sato threefold W of level I'(N) and proved that
dimg GrQ(W@) ®z Q = oco. His method cleverly combines a complex Abel-Jacobi calculation with
the algebraic method pioneered by Bloch. The approach of Schoen was generalised by Besser [6] to
Heegner cycles over Shimura curves associated with indefinite division quaternion algebras over Q.

1.3. Generalised Heegner cycles. Let K be an imaginary quadratic field satisfying the Heegner
hypothesis with respect to N. Let A be an elliptic curve with CM by the maximal order Ok of K
over the Hilbert class field H of K. Fix an embedding H < C such that Ac = C/Og. Bertolini,
Darmon, and Prasanna introduced in [4] a distinguished collection of cycles, known as generalised
Heegner cycles, on the product varieties W, 7 x g A” where r > 1 is an integer. These cycles account
for the motives of cusp forms twisted by certain algebraic Hecke characters of infinite order. In a
subsequent paper [5], they further introduced variants of generalised Heegner cycles on the product
varieties W;., g X g A™ where r; > 72 are non-negative integers of the same parity, and proved some
non-vanishing results in Griffiths groups using p-adic Hodge theoretic methods. Burungale [11,12]
studied the p-adic syntomic Abel-Jacobi images of these variants of generalised Heegner cycles
modulo p (both in the case of modular curves and Shimura curves). A consequence of his work is
that the subgroups generated by these cycles in the relevant Griffiths groups have infinite rank. His
method uses tools from Iwasawa theory and crucially relies on the p-adic Gross—Zagier formula for
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generalised Heegner cycles of [4] and [26]. In joint work of the author with Bertolini, Darmon, and
Prasanna [3], the original approach of Schoen [37] was adapted to the generalised Heegner cycles
of [4]. In the case when r > 2 and the discriminant of K is not —3 or —4 (assumed for simplicity),
the main result of [3] proves that dimg Gr™ ™ (W, g x i A")g) ®z Q = oo by exploiting a complex
Abel-Jacobi calculation for generalised Heegner cycles. It is worth pointing out that the proof
actually gives the infinitude of the rank of the Griffiths group over the maximal abelian extension
K of K.

1.4. Main results. Let N > 5 and r > 1 be integers, and let k := 2r. Let W}, denote the Kuga—Sato
variety over Q fibred over the modular curve X;(/N) (defined in Section 2.1). In [3, Remark 10], it
was noted that the techniques developed in [3] for generalised Heegner cycles should adapt to the case
of Heegner cycles. Namely, it should be possible to establish a formula for the complex Abel-Jacobi
images of Heegner cycles, and use such a formula to deduce that dimg Grr‘*'l(Wk@) ®z Q = co. The
first goal of the present article is to carry out this program. This complements the work of Besser [6],
which does not treat the case of the quaternion algebra My(Q). The second goal is to use the result
for W}, to deduce similar results for products of Wy, with even powers of CM elliptic curves.

1.4.1. The complex Abel-Jacobi map. The complex Abel-Jacobi map
(Fil™! Hid ! (Wic))
Hyp1(Wic(C),Z)

is a homomorphism from the codimension r + 1 null-homologous Chow group to the Griffiths
intermediate Jacobian of Wi ¢, a complex torus. The complex vector space Sii2(I'1(N)) of
holomorphic cusp forms of weight k& + 2 and level I'; (V) is naturally identified with H k“’o(Wk,@)
via the association f + wy where wy(C/(1,7),1/N) := f()(2midw)* ® (2midr) for T in the complex
upper half-plane H and w the standard coordinate on the torus C/(1, 7) with lattice (1,7) := Z@®Zr.

AT CHH (Wi o)o— I (W) =

1.4.2. Setup and assumptions. Let N > 5 and r > 1 be integers, and let k := 2r. Let K be an
imaginary quadratic field satisfying the Heegner hypothesis with respect to N: all primes dividing
N are split in K. We impose no restrictions on the discriminant —dg of K (whereas [3] assumed
—dg # —3,—4 for simplicity). Choose an ideal N of Ok such that Ox /N = Z/NZ (which exists
by the Heegner hypothesis). Let A be an elliptic curve with CM by the maximal order Ok of K
over the Hilbert class field H of K. Fix an embedding H — C such that Ac = C/Og and a choice
of T'1(N)-level structure t € A[N] (i.e., a generator ¢ of the cyclic group A[N]). Associated to any
(isomorphism class of) isogeny ¢ : A— A’ of elliptic curves whose kernel intersects A[N] trivially is
a Heegner cycle denoted AEC € CHTH(W,C’@)O (defined in Section 3.2).

1.4.3. The complex Abel-Jacobi formula. By definition, ey, Agc = AI;C where ey, denotes Scholl’s
projector with rational coefficients (defined in Section 2.1). Let €y, denote the normalised corre-
spondence with integral coefficients (see Definition 3.3). By functoriality of the complex Abel-Jacobi
map, we will solely be interested in the piece of the Abel-Jacobi map that survives after composing
with ng:

(Fil"™ &, Hit (Wi )V

I ’

with IIj, := éw, Hi+1 (Wi c(C),Z). By properties of Scholl’s projector ey, , the complex vector space
Fil ! eWKHé‘:l'{l(Wk’c) is identified with Skyo(I'1(V)) via the association described in Section 1.4.1
(see Proposition 2.1). We may thus view AJyy, (Agc) as an element of Syo(T'1(NV))Y modulo some
lattice. In Section 4, we will define a slightly larger lattice L} in the dual space of cusp forms of
weight k& + 2 and level T'1(IV), which has the advantage that it allows for more explicit formulae.

The first main result is a formula for the complex Abel-Jacobi image of a Heegner cycle viewed in
the torus Si11(T'1(N))Y/L}:

Adw, = &, 0 AJyLL: CHT (Wi c)o—
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Theorem 1.1. With the assumptions of Section 1.4.2, let ¢ : C/Ox—C/(1,7') be an isogeny of

degree d, whose kernel intersects A[N] trivially and such that ¢(t) = + (mod (1,7')). For any cusp

form f of weight k + 2 and level T'1(N), we have the following equality modulo the lattice L :
_9./_ r jk AT+192k ATk (1.1\2\2  pr!

A, (251200 RHC) (o) = 2V ) i) TN (RY)') / (2 — 7Y (2 — ) f(2)dz.
(T -7 )T 100

Remark 1.2. The proof of Theorem 1.1 that we give avoids any adaptation of the Abel-Jacobi

calculations of [3] (although the method of [3] can be adapted). Instead, by exhibiting correspondences

from Wy g xp AF to W), i which map generalised Heegner cycles to Heegner cycles (see Proposition

3.4), we use functorial properties of the complex Abel-Jacobi map to deduce Theorem 1.1 directly

from the formula for generalised Heegner cycles [3, Theorem 1].

Remark 1.3. Theorem 1.1 implies the compatibility of the conjectural partial generalisations of the
Gross—Kohnen—Zagier theorem to higher weights formulated by Hopkins in [25] with the conjectures
of Beilinson and Bloch. This is discussed further in Remark 4.4.

1.4.4. Griffiths groups of Kuga—Sato varieties. Using Theorem 1.1, we prove the second main
theorem:

Theorem 1.4. With the assumptions of Section 1.4.2, the subgroup of GI‘T+1(Wk7Kab) generated

by the algebraic equivalence classes of the Heegner cycles Agc indexed by isomorphism classes of
isogenies ¢ : A— A" whose kernels intersect AN trivially has infinite rank.

Remark 1.5. Theorem 1.4 implies in particular that dimg Grr"'l(Wk’@) ®z Q = oo. In the case when
Wi, is a threefold (the case r = 1) and the congruence subgroup is I'(V), the latter is Schoen’s
main theorem in [37]. However, Schoen’s proof proceeds by studying Heegner cycles attached to
varying imaginary quadratic fields, so even in the case r = 1, Theorem 1.4 is a strengthening of his
result. As already noted, Theorems 1.1 and 1.4 together with their proofs complement the work of
Besser [6], which is valid for Kuga—Sato varieties over indefinite quaternionic Shimura curves.

Remark 1.6. Let F be a number field and fix a prime ¢. The ¢-adic étale Abel-Jacobi map [10]
AT CH Y (Wi p)o—rH (Gal(Q/F), Hit (W g, Qe(r + 1)),

is a homomorphism from the codimension r + 1 null-homologous Chow group of cycles rational over
F to the first (continuous) Galois cohomology group of the Gal(Q/F)-module HftH(Wk@, Qe(r+1)).
It is conjectured, for cycles defined over number fields, to be injective up to torsion [27, Conjecture
9.15]. In the course of proving Theorem 1.4, we (roughly) show using Theorem 1.1 that Agc has
infinite order in the Griffiths group asymptotically as deg(y) goes to infinity. Thus, conjecturally,
our results imply asymptotic non-vanishing results for ¢-adic étale Abel-Jacobi images of Heegner
cycles.

1.4.5. Griffiths groups of products of Kuga—Sato varieties with even powers of CM elliptic curves.
We next turn our attention to the variants of generalised Heegner cycles introduced in [5]. Retain
the notations and assumptions of Section 1.4.2. Given an even integer 0 < k' = 27’ < k, the variants
of generalised Heegner cycles are cycles Ak,k/#, of codimension r + ' +1 on (Wi g Xg Ak’/) Jab
indexed by isomorphism classes of isogenies ¢ : A— A’ whose kernels intersect A[N] trivially
(defined in Section 3.2). In the case k' = 0 these are Heegner cycles, while in the case k' = k they
are the generalised Heegner cycles of [4]. We prove that Heegner cycles are images under certain
correspondences of these variants of generalised Heegner cycles (see Proposition 3.4). The third
main result then follows from Theorem 1.4:

Theorem 1.7. Under the assumptions of Section 1.4.2, if 0 < k' = 2r' < k is another even integer,
then the subgroup of Gr"+" +1((Wk,H X i Ak/)Kab) generated by the algebraic equivalence classes of
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variants of generalised Heegner cycles Ak,k’,¢ indexed by isomorphism classes of isogenies ¢ : A— A’
whose kernels intersect AIN| trivially has infinite rank.

Remark 1.8. Theorem 1.7 is a generalisation of the main result of [3], which is valid under the
same hypothesis assuming k' = k (and —dx # —3,—4), but without requiring k& > 2 to be even.
Theorems 1.4 and 1.7 recover results of Burungale [12] by a fundamentally different approach. The
complex geometric method presented here is more direct, as it does not rely on any type of (p-adic)
Gross—Zagier formula, which was instrumental in [12].

1.5. Strategy. The method of proof of Theorem 1.4 follows closely that of the proof of [3, Theorem
2], which itself is an adaptation of the original work and ideas of Schoen [37]. We give a self-
contained proof which does not assume familiarity with these prior works, offering along the way
some additional details, simplifications, and minor fixes. The method can be summarised as follows.
Analytic estimates of the integrals appearing in Theorem 1.1 imply that infinitely many Heegner
cycles have either infinite or large order in the Griffiths group. A comparison argument with Bloch’s
étale variant of the Abel-Jacobi map defined on torsion cycles, together with fundamental properties
of étale cohomology, allows us to deduce that in fact infinitely many Heegner cycles have infinite
order in the Griffiths group. Finally, using knowledge from the theory of complex multiplication
about the Galois action on these cycles enables us to prove that they generate a subgroup of infinite
rank in the Griffiths group.

1.6. Outline. In Section 2, we recall the definition of Kuga—Sato varieties and define Scholl’s
projector, which cuts out spaces of cusp forms in the de Rham cohomology of these varieties. We
define the product varieties Wy, g x g A¥ for even integers k > k', as well as correspondences relevant
for the definition of the various cycles. In Section 3, we define the variants of generalised Heegner
cycles following [5]. We exhibit certain correspondences from Wy g x g A* to Wi, and prove
that they map variants of generalised Heegner cycles to rational multiples of Heegner cycles. In
Section 4, we recall the definition of the complex Abel-Jacobi map and prove Theorem 1.1 using
the correspondences defined in the previous section with k = k’. The next sections are dedicated to
proving Theorem 1.4. Section 5 recalls basic properties of Bloch’s étale variant of the Abel-Jacobi
map on torsion cycles. Section 6 is devoted to proving a finiteness result for the étale cohomology
groups of W), 5 with torsion coefficients related to the target of Bloch’s map. In Section 7, we write
down a collection of explicit isogenies that gives rise to a distinguished subcollection of Heegner
cycles on which we will focus for the proof of Theorem 1.4. In Section 8, we use Theorem 1.1 to
derive asymptotic information about the behaviour of Heegner cycles in our subcollection. Finally,
in Section 9 we prove Theorem 1.4 and deduce Theorem 1.7.

1.7. Notations and conventions. All number fields in this article are viewed as embedded in
a fixed algebraic closure Q of Q. Moreover, we fix a complex embedding Q — C, as well as a
p-adic embedding Q < C, for each rational prime p. In this way, all finite extensions of Q are
viewed simultaneously as subfields of C and C,. Throughout, the subscript Q on a group will
denote the tensor product with Q over Z. If F' is a field and X is a variety over a field contained
in F', then Xz will denote its base change. Given two varieties X and Y over a field F', we write
Corr" (X,Y) := CHY™ X+ (X x 1Y) for the group of correspondences of degree 7.

2. CUSP FORMS AND KUGA—SATO VARIETIES

2.1. Kuga—Sato varieties. Let kK > 2 and N > 5 be integers. Throughout, we will suppose that k
is even, and we let k = 2r with r > 1. The open modular curve Y;(N) over Q is the fine moduli
space representing isomorphism classes of pairs consisting of an elliptic curve over a Q-scheme
together with a point of exact order N. It is a geometrically connected smooth affine curve over
Q. Let Y1(N) < X (N) denote the canonical proper desingularisation of Y;(N) over Q. As a
Riemann surface over the complex numbers, it is obtained by adjoining the cusps. The modular
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curve X (V) represents isomorphism classes of generalised elliptic curves with I'y (IV)-level structure.
Let m : E——X1(N) denote the universal generalised elliptic curve equipped with its canonical
I’y (N)-level structure, and write W, for the canonical proper desingularisation of the k-fold self
fibre product of £ over Q (see [39, §3.0] in the original case of full level I'(N), and [4, Appendix] in
the case of level I'1(IV), even over Spec Z[1/N]). This is the k-th Kuga—Sato variety. It is smooth
and proper over Q of dimension k + 1, and has a natural fibration 7 : W;— X1 (). The fibre over
a non-cuspidal point x representing the isomorphism class of an elliptic curve E, with I';(N)-level
structure is given by 7, '(z) = EF.

Scholl has constructed a projector ey, , which cuts out the space Si12(I'1(NV)) of cusp forms of
weight k + 2 and level I'; (V) inside the de Rham cohomology of the variety Wy, (see [39, §1.1.2]
for the original construction of Scholl in full level, and [4, (2.1.2)] for the case of level I';(N)). We
briefly recall its definition. Translation by the section of order N of 7 : E— X3 (N) given by the
canonical I'1 (N)-level structure gives rise to an action of Z/NZ on £. Multiplication by —1 in the
fibres of 7 defines an action of o on £. The symmetric group ¥ acts on £F by permuting the
factors. There is therefore an action of the group

A := (Z/NZ x p2)* x 3y,

on £F. By the canonical nature of the desingularisation, this action extends to an action on the
Kuga-Sato variety Wy [39, Theorem 3.1.0 (i)]. Let xx : Ak—{=£1} be the character which is trivial
on (Z/NZ)¥, the product character on (u2)*, and the sign character on Y. The projector

awe = 5 (o) € 2| g | 1)

gEAL

is the one corresponding to the character xi. We will view this projector as an idempotent element
of CorrO(Wk,Wk)Q as follows. Given g € Ay, denote by J, the induced automorphism of W,
and let T's, C Wy X W denote its graph. By slight abuse of notation we define the idempotent
correspondence

1
(1) Wi = T > xk(9)Ts, € Corr® (W, Wi)g.

gEAK

As such, ey, acts on the various cohomology groups associated to Wj. The symmetry of the
correspondence €y, implies that the push-forward and pull-back maps it induces are equal, and we
will denote any such map simply by ey, .

Proposition 2.1. We have ey, Hjz (Wi c) = eWkH(’ff;l(Wk,C), and the Hodge filtration is given by
FilV ey, Hit'(Wic) =0 for j > k +2, and

Skt2(T1(N)) ~ Fill ey, Hi (Wi c),

for 1 < j < k+1, via the association f — wy where ws(C/(1,7),1/N) = f(7)(2ridw)* ® (2midr)
for T in the complex upper half-plane H and w the standard coordinate on the torus C/(1,7) with
lattice (1,7) :==Z & L.

Proof. This is [4, Lemma 2.2 & Corollary 2.3] (which hold more generally over any field of charac-
teristic zero). O

2.2. Products of Kuga—Sato varieties with powers of CM elliptic curves. Fix an imaginary
quadratic field K with ring of integers O and discriminant —dx coprime to N. Let H be the
Hilbert class field of K. By our conventions in Section 1.7, a complex embedding H — C is fixed.
Let A be an elliptic curve defined over H with ring of endomorphisms Endg(A) isomorphic to Og.
Such an elliptic curve is said to have CM over H by the maximal order Ok of K.
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Let &’ be another even integer with &’ = 27/ for some 1’ > 0. We will assume that k > k’. Consider
the variety X, 1 := Wi g Xg A¥ | which is smooth and proper over H of dimension k + k' + 1. It
comes equipped with a natural fibration 7y 5 : Xj v —>X1(IV), whose fibre over a non-cuspidal
point x representing the isomorphism class of an elliptic curve E, with I'1(IV)-level structure is
given by %,;i, (z) = EF x A

The group pso acts on A by multiplication by —1, and the symmetric group Xy acts on A¥ by
permuting the factors. Hence A* carries a natural action of the group Ay, = (p2)* % Sp. Let
X @ Ay—{=£1} be the product character on (u2)*" and the sign character on . Let

1
Epk! 1= |A/, Zxk/ hEZ|:2 k‘:|[/]

heA;,
be the projector associated with x},. Given h € A}, denote by 0 the induced automorphism of A¥
and by F% C A¥ x AF its graph. As in the previous section, we denote by € 4 the corresponding

idempotent element of Corr’(A¥, Ak/)Q constructed using these graphs.
We can now define the idempotent correspondence

(2) €X, 0 1= €Wy, X €gqr 1= priz(ew, ) - Prag(€e n) € CorrO(X;%k/, X k')
where pry3 : X,f k,—ﬂ/Vk2 and pryy : X,f ,C,—>(Ak/)2 are the natural projections. Explicitly, given

(g,h) € Ak,k/ := Ay x A}, denote by Sgyh the automorphism &4 x ;. Letting X 1 denote the product
character xj X X}, : Appw—{=£1}, we have

1 .
eXk,k/ = ’A ,’ Z Xk,k' (g, h)rgg!h e COI‘I‘O(X]C’]C/,X]CJC/)Q_
k.k (9,:h)EA, 4

Note the symmetry of this correspondence, in the sense that its induced push-forward and pull-back
maps on Chow groups and cohomology groups are equal. We will therefore denote these simply by
€x, ., by slight abuse of notation.

Notation 2.2. In order to lighten the notation in the case k' = k, we will replace the subscript
k, k' simply by k, e.g., we will write X}, for Xy . This convention will be adopted throughout the
article.

Proposition 2.3. We have ex,_,, Hig(Xrrc) = €x, k,Hé“gk"H(Xk’k/’(c), and the (r +r' + 1)-th
step of the Hodge filtration is identified with

(3) Sk42(T1(N)) ® Sym* Hip(Ac) ~ Fil' ™ T ex,  HEF (X, 0 o),

kk’

via the assignment f @ a — wy A o under the Kiinneth decomposition.

Proof. The case k' = 0 is Proposition 2.1. The case k' = k is [4, Propositions 2.4 & 2.5]. In general,
we have e 0 Hig (AE) = Sym* H 1:(Ac) by [4, Lemma 1.8]. The result then follows by Proposition
2.1 from the Kiinneth decomposition. O

3. ALGEBRAIC CYCLES IN CM FIBRES

Let N >5 and k =2r > k' = 27" > 0 with r > 1. Fix an imaginary quadratic field K satisfying
the Heegner hypothesis with respect to N: every prime dividing N splits in K. Let A be an elliptic
curve with CM by Ok defined over the Hilbert class field H of K. By the Heegner hypothesis,
there exists an ideal N of Ok such that Ok /N = Z/NZ. Fix such a choice of ideal N'. Choose a
generator ¢ of the cyclic group A[N]. Then the isomorphism class of (A,t) is represented by a point
Py in Y1(N) defined over the ray class field Ky of K of conductor N by the theory of complex
multiplication [15, Theorem 11.39]. This point maps to the Heegner point (A4, A[N]) in Yy(N) (as
defined in [21]).
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3.1. Isogenies. The algebraic cycles that we will consider on X v = Wy g Xy A*" are indexed
by the set Isog" (A) consisting of K-isomorphism classes (¢, A’) of isogenies of elliptic curves
¢ : A—> A’ defined over K whose kernels intersect A[N] trivially. The Galois group Gal(K/H) acts
naturally on Isog™ (A), and (¢, A’) admits a representative defined over some field H C F C K if it
is fixed by Gal(K/F).

Any isogeny ¢ : A— A’ induces an isomorphism K = End(A4) ® Q ~ End(4A’) ® Q, and in
particular the elliptic curve A’ has CM by some order O, in K. Such orders are determined by
their conductor ¢, := [Ok : O,]. Given ¢ € N, the unique order of conductor ¢ will be denoted by
O, := Z+ Ok, and we let Isog (A) denote the subset of Isog"V (A) consisting of those isomorphism
classes (p, A’) for which A" has CM by O.. By the theory of complex multiplication [15, Theorem
11.1], a representative of (¢, A’) € Isogl (A) can be taken to be defined, along with its complex
multiplication, over the ring class field H. of K of conductor ¢. We then always fix the isomorphism
Endy, (A") ~ O, by the convention that [a]*w’ = aw’ for any regular differential form w’ of A’
where [a] denotes the element o € O, viewed as an endomorphism of A’. Note that O, = O,
always contains the order Og4,,, where d,, is the degree of ¢.

3.2. Variants of generalised Heegner cycles. Heegner cycles are certain algebraic cycles on
Xj.0.0 = Wyg of codimension r + 1, while the generalised Heegner cycles of [4, §2.3] are cycles on
Xy = Xj 1, of codimension k + 1. Variants of generalised Heegner cycles, as introduced in [5, 84.1],
are algebraic cycles on X ;/ g of codimension r 41’ + 1. We will now recall their definition. When
k' = 0, this gives the definition of Heegner cycles, while the case k' = k recovers the definition of
generalised Heegner cycles.

Given (¢, A') € Isog" (A), the isomorphism class of the pair (4’, p(t)) is represented by a rational
point P, in Y1(N), which determines an embedding ¢, of (A’ )* in W}, seen as the fibre 7, '(P,).

This in turn determines an embedding ¢, = 1, x id 4u of (A’ ¥ x AF in X k& Seen as the fibre

ﬁ,;,lg/(Pw). Consider the graph I'y; /=5 C A" x A’ of the endomorphism [dyv/'—dk] € End(A’), as

—dx

well as the graph I', C A x A’ of ¢. Define

/ o ’ ot / 4
Tig o = ) % (T, ymam)"™ C (A x AP x (A x A7 = (A)F x A & Xy
Applying the projector (2) gives rise to the variant of the generalised Heegner cycle associated to ¢
Ao = €x, s Tiwro € CHT (X 1 9)00

in the Chow group of codimension r + 7’ + 1 cycles on X ki @ With rational coefficients. The cycle
Ay, k., is null-homologous since cycle class maps are functorial with respect to correspondences and
€x, ., annihilates the target of the cycle class map by Proposition 2.3. That the cycles are defined

over Q (in fact over K?P) follows from the following:

Proposition 3.1. Let c € N. If (p, A’) € Isogév(A), then the cycle Ay ., is defined over the field
compositum F, == Ky - H. € K% c Q.

Proof. The elliptic curve A was chosen to be defined over the Hilbert class field H of K (possible since
H = K(j(A)) by [15, Theorem 11.1]). Similarly, we may choose a representative of the isomorphism
class (¢, A') € Isogl (A) that is defined over H, (again by [15, Theorem 11.1]). The fixed 'y (N )-level
structure t € A[N] is defined over the extension H(A[N]) obtained by adjoining the coordinates
of the A-torsion points. This extension is abelian over H, but not necessarily over K. However,
the isomorphism class of (A, t) as an elliptic curve with I'; (N)-level structure (i.e., the point P; of
Y1(N)) is defined over the ray class field Ky = H(ha(A[N])), where hy : A— A/ Aut(A) = A/OF
is the Weber function [15, Theorem 11.39]. It follows that the isomorphism class of (A’, ¢(t)) (i.e.,
the point P, of Y1(N)) is defined over F¢, hence so is the embedding ¢(,. Finally, Endp,(A") ~ O,
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and thus [d,v/—dk] is defined over H.. This shows that Y} , is defined over F.. Since € is
defined over Q, the result follows. O

Definition 3.2. Let ¢ € N and (¢, 4') € Isog) (A
e When &’ = 0 in the above construction, we write Tgc = T},0,, and
AEC = Ak‘,O,(p = EWkTgC € CHT+1(Wk7F6)0,Q.
This is the Heegner cycle associated to ¢ and studied for instance in [31, §5].
e When £’ = k in the above construction, we write TSHC =Tk = Tk and
AGHC Ak ko = Ak#ﬁ = GXkTSHC S CI‘IIH_1 (XIQFc)O,Q'
This is the generalised Heegner cycle associated to ¢ first introduced in [4, §2].
The cycles introduced so far are elements of Chow groups with rational coefficients. In order to

meaningfully consider their images under Abel-Jacobi maps and discuss their torsion or non-torsion
properties, we clear denominators by multiplying the cycles by suitable integers.

Definition 3.3. Let my p := [Ag | = (2N)*E!12F (K)!. Define the correspondence
EXy 1= MEREX, 1 € Corr® (X i, Xp)

and for all (p, A') € Isog" (A) define the cycles

Appr i = M Do = €x, Thpp € CHFHX 10 g)o
These cycles have integral coefficients and inherit the properties described in Proposition 3.1.
3.3. Relation with Heegner cycles. In [4, §2.4], Bertolini, Darmon, and Prasanna exhibited a
correspondence from X to Wy mapping generalised Heegner cycles to multiples of Heegner cycles.
The details of this calculation were left to the reader. A more general setup was worked out by the
same authors in [5, Proposition 4.1.1]. They exhibited a correspondence from X}, to X iy mapping
generalised Heegner cycles to multiples of the cycles Ay 3 . This was done for specific isogenies

between elliptic curves both having CM by Og. In this section, we exhibit a correspondence from
X to Wy, which maps Ay, to an integer multiple of Agc for all (p, A") € IsogN(A

Consider the variety Wi.n XHAT, embedded into Zig = Xpp XgWeg = Wi n XHAk, Xg Wi
via the map Wy, 1, := (idw,, (id4, [dyv/ —dK])’”/, idw, ). Denote its image by IIj, s ,,. This is a k+r'+1
dimensional subvariety of the variety Zj ;s of dimension 2k 4+ k' + 2. Its class modulo rational
equivalence therefore gives rise to a correspondence

(4) Hk,k’,cp € CHk+k,+1_rl(Xk’k/ XH Wk‘,H) = COI'I'_T/ (Xk,k/y Wk7H)

defined over H. This in turn induces push-forward and pull-back maps on Chow groups and
cohomology groups in the usual way. In particular, it induces via push-forward a map

(Hk,k’, ) CHTJFT +1(Xk k.Q )0 Q— CH"™ (ij@)g@.

We will use the following notations for the various natural projection maps:
()

Ly i X XH Win Wi ¥ A¥ xg Wiy

/ \ / | x

!
X Ak Wi H.

Proposition 3.4. Let (p, A') € IsogV (4) of degree dy. Then
(Mg )+ (Thpr o) = doTHC and (Mg o) (App,p) = dly AHC.
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Proof. By definition of the push-forward map, we have
(Mg o) (Trepr o) = (m2) s (Mg g o - (m01)* (Thpr )

where - denotes the intersection product in the Chow ring of Z ;. Note that (mo1)* (Y i) is
described by

(@), (i [V =di) (i) i ) @)y 2) | (2)iey € A¥, (yi)iZ] € A7,z € Wi},

and by definition we have

Uy o = {(s, (t1, [dp/ —dK](t1), . - 1o, [d \/7 s)| s €Wy, (t)i_, € A™}.

The ambient variety Z, ;s is smooth of dimension 2k + £’ 42, and the two subvarieties (mo1)*(Ygr o)
and IIj v , have respective codimensions r + ' 4+ 1 and k 4 ' + 1. Set theoretically we see that
they intersect in a subvariety of dimension r. In particular, they are dimensionally transverse.
By [18, Proposition 1.28], it follows that (m1)* (Y s ,) and Il s , intersect generically transversely.
By [18, Theorem 1.26 (b)], we deduce that Hka/#, . (7T01)*(Tk,k’,ap) = Hk7k/7¢ N (7701)*(Tk,k’,ap) in
the Chow group, where N denotes the set theoretic intersection. Using this, we obtain that
(T, o) (L hpr ) I8 given by

a7 {1 o/ =dr D)o (i [/ =) )7 ) | (t)1s € AT, )iy € AT,
where the appearance of the degree of ¢ stems from the push-forward by me. Observing that
@ o ldov/—di] = [dpv/—di] 0 ¢ leads to (I g7 o)« (Thor o) being equal to

dn{il( [dpn/—dK] )1, (Wi [do/—di) (i) (t)iey € A" (y)'=T € A"}

The latter is dfp T}0,0 since ¢ is surjective. We have proved that (Hhk/’w)*('fk’k/’(p) = dngC.

In order to prove the equality (ITj 1 o)« (App o) = de, Agc, it suffices to prove that

(6) ek 0 €x, 0 ) (Thprp) = (€wy, © Wi o) (Tiepr o)

in CH"*! (ka@)@, where o denotes composition of correspondences. Given g € Ay, we observe by
direct calculation that

(7) Hk,k’,(ﬂ ° Fgg,l = F69 ° Hk7k/7§0'
Define a map o : Aj,— A} as follows. Given ((p1,...,up),0) € A}, = (/Lg)k/ X Y, define

a((:ula s a,uk')?a—) = ((,ulv E 7,Uk’)’ (L s 1)¢0—) €A, = ((MQ)k X (MQ)k_k ) X X,

where the natural inclusion ¥;, C ¥, is obtained by permuting the first &’ factors. The map « is an
injective group homomorphism. Composing with the inclusion A} C Ay C Ay realises A}, as a
subgroup of Ay, 1/, and thus also as a subgroup of the group of automorphisms of Xj, ;-. Similarly, the
map o composed with the inclusion A}, C Ay, realises A}, as a subgroup of the group of automorphisms
of Wj,. Consider also the injective group homomorphism 1 x id : A}, C Agp = Ay x A},. The
product of these two homomorphisms realises (AZ/)Z as a subgroup of Ay, ;/, and thus as a subgroup
of the group of automorphisms of Xj, x-. Note that Ay /(A})? =~ Ay/a(A},). It follows from (7)
that, for any (g, h) € (A},)?, we have

=y pols

(@] < [e] (@] T
da(g)1 F‘Sa(h),h e ool

O < =
Hp ol L's Sa(h),h

da(gh),h a(g)

in Corr™"(Xg, Wy ir)g- It is immediate that (I'; . e(Thpr o) = Tipr oo and therefore

@) (Mgweol;

Sa(gh), (T o) = (s, 0 Wi o)« (Thp ), forall (g, h) € ( )%
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This is similar to the equality obtained in [5, (4.1.4)]. The following calculation is inspired by the
one at the end of the proof of [5, Proposition 4.1.1]:

1 -
(M © €x, 0 ) (T o) = (i p)s | =—— Z X (8,8)(T5 )+ (T )

k] ek, o

/|2
= (). | A 5 Y ko, )T

X )
Aw A ) sa(g)h
A 1A% (s:1)€Ry o /(A])2

(9)E(AL)?

Z Xk(S)(F&S)*(Hk,k’,gp)* ‘A/i/|2 Z )Zk,k/(a(g),h)(FSa(g%h)*(Tk’k/’(p)

(9.W)E(A},)?

- ’a(fsk’” Z Xk(8)(Fs, )« (M o) ; ‘2 Z Xk(a(g))(Féa(gh)’h)*('rk,k’,tp)

seAL/a(A]) Al? ety
®) e(Ay)]
) \Ak| > x(s)(Ts,)s |A’ | S x(@(9) Ts, ) ) (M) (Tt )
Ml senr/alal) 1 gen,
Z X0 (5) (T, ) (T pr ) ( L)
SeAk

== (GWk ©) Hk’k/,cp)*(’fk’k/’w).
In the fourth equality, we made the change of variables g <+ gh, and used the fact that

Xiegr (a(gh), h) = x(a(g))xu(a(h) X (h) = xk(e(9)),
since | a(AL) = X} and these characters are quadratic. O
4. COMPLEX ABEL-JACOBI MAPS

Let V' denote a smooth projective variety of dimension d defined over C. The familiar Abel-Jacobi
map for curves admits a higher dimensional analogue

(Fﬂd—j-i-l H§§_2j+1 (V))V
Hyq 2541 (V(C),Z)

(9) AJ,  CHI(V)g—J9 (V) :=
defined by the integration formula
AJL(Z)(B) = / B, for f e Filtit! F2-2+1(y),
0~1(2)

where 9~1(Z) denotes any continuous (2d — 2j + 1)-chain in V(C) whose image under the bound-
ary map 0 is Z. Here, Hoq_2;11(V(C),Z) is seen as a lattice by taking its image in the space
(Fild—i+1 Hifi*% L))V via integration of differential forms over topological chains. The target of
AJ{/ is the j-th intermediate Jacobian of V', which by Poincaré duality can be identified with

(10) J(V) ~ H¥=Y(V(C),C)/(Fi Hy, (V) @ H¥~Y(V(C),Z)).

We are interested in the Abel-Jacobi maps of the varieties Wi, ¢ = X 0c and X c = X 1.c,
and in particular in the images of Heegner cycles and generalised Heegner cycles. Observe, using
the notations of Definition 3.3, that m;ﬁOAEC = €WkAgC and m;ﬁkAg'HC = ngAg.HC‘ Since



12 DAVID T.-B. G. LILIENFELDT

Abel-Jacobi maps are functorial with respect to correspondences [19, Propositions 1,2 & 4 iii)],
we will solely be interested in the pieces of these maps that survive after applying the relevant
correspondences. By Propositions 2.1 and 2.3 (with &’ = k) respectively, this allows us to view the
relevant Abel-Jacobi maps as homomorphisms

I (N))Y
(11) Alw, = AJ;;; o€, = €, © AJ}}[J;; : CH’”+1(W,€,(C)O—>S’“+2(LZ()),
where Ly, = éw, Hy41(Wic(C),Z), and

(N EHL (Ac))Y
AJXk = AJ]H-I OEXk - eXk OAJk—H CHk+1(X (C) —>(Sk+2( 1( )) X Sym dR( (C))

Y

Ly
where Ly = éx, Hopy1(Xp.c(C),Z). With these notations, for all (¢, A’) € Isog™ (A), we have
(12) AT (mi0ALC) = Adw, (ADC) and AT (my f AGHC) = Adx, (AGHC).

The Abel-Jacobi formula that we are about to state gives an expression for AJWk(AgC) in
Sk4+2(T'1(N))Y modulo a lattice L), which is slightly larger that Lj. This is less precise, but the
resulting formula gains in explicitness.

Definition 4.1. Define the lattice L}, C Si12(I'1(NV))Y to be the Z-module generated by the period
lattice attached to Sky2(I'1(IV)) (see [3, Definition 3]) and the functionals J; p defined by

B
Ja,@P(f) (27Tz)k+1/ P(2)f(z)dz, with a, 8 € }P’l((@)7 P(X) e Z[X]deg:k,

See [3, §9] for further details.
The goal of this section is to prove the following:

Theorem 4.2. Let N > 5 and k = 2r > 2 be integers. Let K be an imaginary quadratic field
satisfying the Heegner hypothesis with respect to N, and fiz a choice of cyclic N-ideal N'. Let A
be an elliptic curve with CM by Ok over the Hilbert class field H with a I'1(N)-level structure
t € A[N]. Let ¢ : Ac—C/(1,7') be an isogeny of degree d, representing an element of IsogV (A)
and satisfying (t) = + (mod (1,7’)). Then, for all f € Sk+2(F1(N)), we have

(—2v/—=dg)"dE (2mi) 1 m], /
-7

(' =7)r

AJWk((2kk!)2d;AgC)(w ) = — 7Y f(2)dz (mod L}).

Remark 4.3. A formula for the images of generalised Heegner cycles under the complex Abel-
Jacobi map AJ]H'1 was established in joint work of the author with Bertolini, Darmon, and
Prasanna [3, Theorem 1] by writing down explicit bounding chains for generalised Heegner cycles
and computing the defining integrals in terms of explicit line integrals of modular forms. It was
noted in [3, Remark 10] that the techniques used can likely be adapted to calculate the images of
Heegner cycles under the complex Abel-Jacobi map AJ%l. While this is indeed possible, we have
opted for a different method. We will use Proposition 3.4 together with the functorial properties of
Abel-Jacobi maps to deduce the formula for Heegner cycles directly from the formula for generalised
Heegner cycles.

Remark 4.4. Fix a normalised newform f in Ski2(I'1(V)). Composing the complex Abel-Jacobi
map (11) with the projection to the f-isotypical Hecke component of the intermediate Jacobian gives
rise to a map AJywy, 5 : CHT+1(Wk7C)0—>(C/Lf, where L is the period lattice of f in C. Theorem
4.2 yields the formula

(—2v/—dg )’”d mkk
=7y

~—

(13) AJW((zkk!)?d;AgC = a(t’)  (mod Ly),
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where o : I'1 (N)\H“M—C/Ly is the map on Heegner points of [25, Lemma 2.2] precomposed with
T (N)\HM = To(N)\HM. Suppose that the fixed embedding H < C of Section 1.7 is such that
Ac =C/Ox =C/(1,7) with 7 = (—dx + V—dk)/2 € H the standard generator of Q. Suppose

n

also that 7/ = d,7 (e.g., take ¢ : C/(1,7)—C/(1/n, T>—]>(C/<1,n7> for some positive integer n).
In this case, formula (13) becomes

Ay, f((2kk!)2d;Af;C)

(~2d,)"m? ya(=')  (mod Ly).

As explained in [25], a relation such as (13) was expected to hold, but was not verified except for
weight 4 newforms (i.e., when k = 2) as a consequence of the work of Schoen [37]. The relation
(13) implies the compatibility of the conjectural partial generalisations of the Gross—Kohnen—Zagier
theorem for higher weights formulated in [25, Conjectures 3.1 & 3.3] with the conjectures of Beilinson
and Bloch. See the introduction of [25] for further details and [43] for related work on higher weight
Gross—Kohnen—Zagier type theorems.

We will need the following two lemmas for the proof of Theorem 4.2. Recall the correspondence
I, := g i, from Xy to Wy, g defined in (4).

Lemma 4.5. Under the assumptions of Theorem 4.2, let p : A— A’ be an isogeny of degree dy,
representing an element of Isog (A). Then, for all f € Spy2(T1(N)), we have

AJw, ((2FKD?dLARC) (wy) = ATx, (AGHC)(IT} ,(wy))  (mod Ly).

Proof. By functoriality of Abel-Jacobi maps with respect to correspondences [19, Propositions 1,2
& 4 iii)], the following diagram commutes:

k+1

CHF (X4 )o(C) —£- JH+1(X,/C)
<HW>{ l(nz,w)v
CH" Y (W)o(C) —— J™FL(W;,/C).

By Proposition 3.4 (with &’ = k), we have (I ,).(ASHC) = d} ABC. Since myx = 2Fk!my, we
deduce that (ka)*(ASHC) = Qkk!dgﬁgc. The result then follows by (12). O

Let wa € HY9(Ac) be a non-zero differential form. Recall that the isomorphism Endy(A) ~ Ok
is chosen such that [a]*ws = awy for all @ € Ok. The choice of wy determines a generator 74
of HY%!'(Ac) by the condition (wa,n4) = 1, where ( , ) denotes the cup-product on the de Rham
cohomology of Ac. The generator n4 satisfies [a]*n4 = ana. For 0 < j < k, define

'k = j)!

.
(14) whny ? = o

E priwi s A... \Dprywgr,
Ic{1,...,k}
[7|=j

where w; 1 is either wy or n4 depending on whether i € I or ¢ ¢ I. A basis of Sym* HéR(AC) is
then given by {wi‘nfz_j } for 0 < j < k. The cup product ( , ) induces a self-duality

(, Yar s Sym* Hig(Ac) x Sym* Hig(Ac)—C,

given by

1
(15) (1 T, Y1 Yk) Ak = %! Z <9017ya(1)> s <$kaya(k)>-
UEEk
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Lemma 4.6. Under the assumptions of Theorem 4.2, let ¢ : A— A’ be an isogeny of degree dy,
representing an element of IsogN(A). Let wa € HYY(Ac) be a non-zero differential form. Then, for
all f € Spi2(I'1(N)), we have ex, 1T} (wy) = (2dpv/ —dg) wy A wihnly.

Remark 4.7. The right hand side of the equality in Lemma 4.6 does not depend on the choice of
non-zero differential w4 since scaling w4 by A € C* leads to a scaling of 74 by A7

Proof. The correspondence IIj, , induces a pull-back map on de Rham cohomology
I Fil T B (W o) — FilFH B3R (X 0),
given by the usual formula ITj (w) = (mo1)+(clar (k) A 75 (w)), where clar (Ilx,) € Hg’ﬁ“(Zk,(c)

is the de Rham cycle class of Il ,. We are only interested in the piece of Filk+! HdQIIf{H(X k,c) that
survives after applying ey, . Since

Fﬂk+1 Hgﬁ—i_l(Xk,(C)L — Fﬂk-‘rl Hi}k{i—l (Xk,(C)7

and

HI (X)) = FilM ™ HIE (X 0) @ FilF ! H3RH (X 0),

we see that the dual of Fil*+! €X,, HgﬁH(Xk,(C) with respect to the de Rham pairing is its complex
conjugate. By Proposition 2.3, € XkH* (wy) is completely determined by the values

(ex, 1T o, (wy), Wg A wAnA Nx,, for all eigenforms g € Sgyo(T'1(N)) and 0 < j < k.
Using the notations of (5) and properties of the de Rham pairing, we compute that
(ex, I o (W), @y Awhnly ) = ((To1)s (clar (T ) A5 (w5)), B A wj;m'ifj ) Xi
= (clar (M) A 73 (wy), 71 (@g A WAUA ))Zk
= ~(clar(yp), 7§(@y) A (Whity 7) A3 (wp)) 2,
~ (o) (clar (Wi x A7), m5(@g) A i (Wharly 7) A3 (wy) 2,
= —({clar (Wi x A7), (Urp)" (75 (Wg) A 77 (wAnA 7) A3 (wi))) 2
= {wy ANy, ((ida, dso\/TK D"( WAWA ))) Wi x Ar

= (wy, Wg)w, </ ((ida, [dpv/ —dk])" w] 77,]2 J ) .
AT

Observe that ((ida, [dev/—dKk])")*(pr} wi,r A ... Aprj wy ) # 0 if and only if wy_1 1 # w1 for all
1 <1 <r. In particular j must equal r, and there are 2" sets I of length r that satisfy this condition.
For such a set I, observe for all 1 <[ < r that

(ida, [dpv/ —dk])* (pra;_q (wa—1) A pryy(warr)) = —dpy/ —dk pri(wa Ana).
From the defining equation (14) we see that ((ida, [dyv—dk ])T)*(wf%nfz—j) =0 for j # r, and

27" r' %
((ida, [dev/ —dk])")* (wWin'y) —dp\/— I pri(wa Ana) A... Aprp(wa Ana).
This shows that for any eigenform g and any 0 < j < k we have
(16) <5Xka¢(Wf) Wy /\wAnA Xi —2dy/ —di) Wg) W, Ojrs

where §;, = 1 if j = r and 0 otherwise.
Observe from (15) that

<Wf /\wzn;lvwg /\wf477,4 J>Xk = <wf¢wg>Wk<wj‘477,T47wf477A ]>A’9 = (_1) (2r)|<wfawg>Wk6jr-
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The result follows by comparing with (16). O
Proof of Theorem 4.2. Using Lemma 4.5 and the equality AJx, = €x, o AJI)“(:l, we see that
Adw, (kN2 AT (wy) = AITHAGHO) (Ex, 1T} ,(wp))  (mod Ly).

Let wa € HYY(Ac) be the non-zero differential form given by ws = ¢*(2midw). By Lemma 4.6, we
obtain

17)  AJw, (2°k)2dLARC) (wp) = my s (2dpy/—di)" AITHAGHO) (W Awlyny)  (mod Ly).

The result follows by applying [3, Theorem 1], remembering that ASHC = mk,kASHC. O

5. BLOCH’S MAP ON TORSION CYCLES

In this section, we recall the existence and properties of an étale cycle class map defined on torsion
cycles first considered by Bloch [9]. Its restriction to null-homologous cycles admits a comparison
with the complex Abel-Jacobi map restricted to torsion cycles. As we will show, it follows that it
factors through algebraic equivalence when composed with the correspondence €y, of Definition 3.3.
The resulting composition map plays a key role in the proof of Theorem 1.4 in Section 9. For a
more complete account of Bloch’s map, we refer the reader to [29, §1.5.2].

5.1. Basic properties. Let V denote a smooth projective variety of dimension d defined over a
number field F' and let £ denote a fixed prime. For all non-negative integers n,j and v, we use the
convention H% (Vi, Z/0VZ(5)) == HE (Vi, ,ug?,]), where pyv is the étale sheaf of ¢¥-th roots of unity.
There are natural maps

(18) He Ve, L/ L(7) — HE (Vi 2/ €T L(j))

induced by the maps Z/*Z — Z/¢**'7Z sending m + ¢m or by the inclusions jp < ppwi1. By
taking the direct limit over v, we obtain the cohomology groups of V' with ¢-torsion coefficients

(19) He(VE, Qe/Z4(5)) = Tim Hey (V, 2/ Z(3))-
Viewing Q/Z, as a torsion étale sheaf on V, there is a natural isomorphism

(20) H (Ve, Qe/Ze) @q, /7, Qe/Z(5) = Het(Ve, Qu/Zo(j))

where the right hand side cohomology group is defined by (19).
Let CH’(Vz)[¢>°] denote the power-of-¢ torsion subgroup of the Chow group. Bloch has defined
in [9] a map

(21) N o CH (V) [0 —HZ ™ (Vie, Qu/Zo(5)).-

whose restriction to null-homologous cycles can be regarded as an arithmetic avatar of the complex
Abel-Jacobi map on torsion (see Section 5.2 below for a precise statement). The construction of
the map is rather involved, and we therefore refer the reader to the original [9, §2], or alternatively
to [1, Appendix A].

Proposition 5.1. The Bloch map (21) is functorial with respect to correspondences and Gal(F/F)-
equivariant.

Proof. Functoriality for correspondences is [9, Proposition 3.5]. The Galois equivariance is [1,
Proposition A.22]. O
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5.2. Comparison with the complex Abel-Jacobi map. Using the description (10) of the
intermediate Jacobian along with the natural isomorphism of R-vector spaces
(22) HY =YV (C),R) ~ H¥~H(Ve(C),C)/ Fi¥ Hl ' (Ve),
there is an identification of real tori
J(Ve) = H¥ =1 (Ve(C),R)/H* (Ve (C), Z),

and thus an identification

(23) T (Veltors = HY 1 (Ve (C), Q)/H#~H (Ve (C€), 2).
From the long exact sequence in singular cohomology associated to the short exact sequence
(24) 0—Z—Q—Q/Z—0

we deduce a short exact sequence
(25) 0—J7 (Ve )tors— HH 1 (Ve (C), Q/Z)— H? (Vi (C), Z)tors—0,
thus identifying J7 (Ve )tors up to a finite group with H%~1(V(C), Q/Z).
Composing the complex Abel-Jacobi map (9) restricted to torsion with u yields a map
(26) wo AJ, : CH/ (Ve)o[¢®]—H* ' (Ve(C), Qu/Zy).
For each natural number v, there is a sequence of isomorphisms
(27) HE ™ (Vi ) ~ HEY ™ (Ve ) ~ HY 7 (Ve (C), ).

For the first isomorphism, apply [30, VI Corollary 4.3] with respect to the complex embedding
F — C fixed in Section 1.7. The second isomorphism is an application of [30, IIT Theorem 3.12].
Taking direct limits over v, we obtain a sequence of isomorphisms

(28)  comp: HZ T (Vp, Qu/Z(5)) = HE ™ (Vie, Qo) Zu(j ))2H2j‘1(V<c(<C) Qe/Z(5)).

Proposition 5.2. If we identify Qu/Z¢ ~ Qu/Z¢(j) by taking e F as the generator of the £¥-th
roots of unity, then the diagram

CHJ(VF)O[EOO] i’ HQ] 1(VF7Q€/Z€( ))
(29) l glcomp

woAJ?

CH (Ve)ol¢™] ——+ H¥~(Ve(C), Qe /Zy)
commutes, where the vertical left map is induced by the fized embedding F — C.
Proof. This is [9, Proposition 3.7]. O

5.3. Factorisation through algebraic equivalence. Let k = 2r > 2 be an even integer. We now
specialise to the case where V' is the Kuga—Sato variety Wy, of level I'1 (V) defined over Q. Recall the
idempotent correspondence ey, defined in (1) and its normalisation €y, defined in Definition 3.3,
along with the fact that the composition of the complex Abel-Jacobi map with this correspondence
can be viewed as a map (11)

Syro(T1(N))V
Alw, = €éw, o AJT+1 CHT+1(Wk,C)O—>W-
k
Proposition 5.3. The map AlJw, factors through algebraic equivalence, giving rise to a map

AJWk : Gr’"+1(Wk7c)—> Lk
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Proof. Let CHTH(W;@,@)alg denote the subgroup of CH"™! (W}, ¢)o consisting of algebraically trivial
cycles. The image of CHT+1(Wk,C)alg under AJW; lies in an abelian subvariety J™ ™ (Wj. ¢)alg Of
J™H (W, c) whose cotangent space is contained in H™ 17" (W), ¢) [42, §12.2.2]. More precisely, if 77,
denotes the largest integral sub-Hodge structure of Hk+1(Wk7C(C), Z) of type (r+1,7)+ (r,r + 1),
then

AJGHCH™ (Wi 0)alg) © ™ (Wi)arg = J(T) = T/ (Fil' Te © Ty) € J™H (Wie).

Recall that AJyw, = €y, o AJ;;;C1 by definition. Thus, in order to prove the proposition, it suffices to
show that the map on complex tori &y, : J™ (W c)—>J (W c) restricts to the zero map on
J "+1(Wk7@)alg. This restriction is completely determined by the restriction of the map of Hodge
structures éw, : H*™1(Wj, c(C),Z)— H** (W), c(C),Z) to Tz. By Proposition 2.1, the motive
(Wk, ew,,,0) with rational coefficients is of pure Hodge type (k + 1,0) + (0, k + 1), and in particular

ew, (H™ " (W) @ H™" 1 (W) = 0.
It follows that éw, (Tc) = 0 and thus éw, (17) = 0. O
Taking the direct sum of the ¢-adic Bloch maps (21) over all primes ¢ yields a map
(30) )‘%@1 : CHT+1(Wk,@)tors—>H§t+1(Wk,@a Q/Z(r + 1)),

which is functorial with respect to correspondences by Proposition 5.1. In view of evaluating
this map on Heegner cycles, it thus suffices to consider its composition with €y, . Restricting to
null-homologous cycles and composing with €y, yields a map

(B1) Ay, s CHP (W gosors—w, BT (Wi, Q/Z(r + 1) € HEM (W 0. Q/(r + 1))
Proposition 5.4. The map (31) factors through algebraic equivalence, giving rise to a map
Ay, : Gr" T (W, o) — HET (W), 0, Q/Z(r + 1)).

Proof. The group CHT+1(Wk7@)alg is divisible since (by definition of algebraic equivalence) it is
generated by images under correspondences of Q-valued points on Jacobians of curves. It follows
that there is an exact sequence of torsion subgroups

(32) 0— CH™ ™ (W), g)alg,tors—> CH ™ (W}, ) o,tors— G (W, g )tors—0.

In order to prove the result it thus suffices to show that the subgroup CH”H(Wk’Q)alg,tors lies in
the kernel of (31). By Proposition 5.2, we have

(33) W, = €w,, © comp ! ou o AJ’{)(}';1 .

By compatibility of the comparison isomorphism (28) with correspondences (which follows from the
compatibility of the cycle class maps with respect to the comparison isomorphism [27, §5.3]),

(34) A\, = comp ™! o€y, ouo AJ’{,[J,;1 .
From the natural compatibility of the map u with correspondences, it follows that
(35) AW, = comp ™! ou o &y, o AJ’{/I}:l = comp ' ouo Ay, .

We have AlJyy, (CHT‘FI(W,C’Q)alg’torS) = 0 by Proposition 5.3. O
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6. A FINITENESS RESULT FOR ETALE COHOMOLOGY WITH TORSION COEFFICIENTS

Let k =2r > 2 and N > 5 be integers. Let W}, be the Kuga—Sato variety of level I'; () over
Spec Z[1/N] (constructed in [4, Appendix]). Let K be an imaginary quadratic field of discriminant
—dy coprime to N which satisfies the Heegner hypothesis with respect to N. Let N be a choice
of cyclic N-ideal of K. For each positive integer n, recall that H,, denotes the ring class field of
conductor n over K, while K is the ray class field of conductor N over K. Let H,, denote the
compositum of the ring class fields H,, for all square-free integers n coprime to N. Let F), := Ky - Hy,
and Fi := Ky - Hoo. The goal of this section is to prove the following;:

Proposition 6.1. With the above notations, the group Hfjl(Wk,@,Q/Z(r +1))CGal@/F2) s finite.

Before proving Proposition 6.1, we collect a preliminary result concerning the splitting behaviour
of primes in the extension F,, of K:

Lemma 6.2. With the above notations, let q be a prime which is coprime to 2N and inert in K.
Let q denote a prime of H above q and denote by s its residual degree in the extension Ky/H.
Then, for any square-free positive integer n coprime to N, the residual degree of q in the extension
F,/H is equal to s.

Proof. This is [29, Corollary 1.2]. The proof uses the fact that if n is a square-free positive integer
and ¢ is a rational prime which is inert in K, then the residual degree of ¢Ok in the extension
H,/K is equal to 1 (see for instance [29, Proposition 1.8]). O

Proof of Proposition 6.1. Fix q; and g2 two distinct primes which are coprime to 2N and inert in K.
Let i € {1,2}. The variety W has good reduction at ¢;, and we may consider the reduction Wk,]Fqi
over Fg,. The embeddings fixed in Section 1.7 determine primes g; in H and q;° in Fi, above ¢;Ok.
If s; denotes the residual degree of q; in Kxr/H, then the residual degree of q; in Foo/H is s; by
Lemma 6.2. Since ¢ is inert in K, ¢gO splits completely in H. It follows that the residual degree of
qOk in H/K is equal to 1. By multiplicativity of residual degrees in extension towers, we conclude
that ¢; has residual degree r; := 2s; in the extension Fi,/Q. Let D; denote the decomposition group
of Gal(Q/F) of a prime above q°.

Let ¢ be a prime and choose i € {1,2} such that ¢ # ¢;. Note that we may choose i = 1 except
when ¢ = ¢ in which case we must choose i = 2. Using [30, VI Corollary 4.2] and taking direct
limits, we obtain an isomorphism

, Gal(F,, /F r;)
HEP (Wi g, Qu/Ze(r + )P = HE (Wg, \Qu/Za(r +1)) 0 7,

In particular, HftH(WkQ, Q/Z(r + 1))Gal(@/F=) injects into

Gal( Gal(Fq, /F r1)
a

Fgp /T 73)
202 o @ H§+1(Wk7FqI7Q3/Zg(T +1))
#£q

We have reduced the proof to showing that the group (36) is finite. Let ¢ be a prime and choose
i € {1,2} such that ¢ # g;. From the short exact sequence 0—Z;—Qy—Qy/Z;—0, we deduce
a short exact sequence

HiH (Wyg,  Qe(r +1))
HE (W, Zo(r + 1))

(36) HQH(Wk,FqZ,qu [Zq,(r +1))

S HE (Wg,  Qe/Za(r + 1) — HEP (Wys, , Zelr + 1))iors—0.

The group on the right hand side is finite and trivial for all but finitely many ¢. Indeed,
using [30, VI Corollary 4.2 & 4.3] and taking inverse limits gives an isomorphism

HEP(Wyz,  Za(r +1)) = HE2 (W0, Zo(r +1)),
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which in turn is isomorphic to H§t+2(Wk,(c(C), Z)(r+1) ® Zy by the comparison isomorphism [30, III
Theorem 3.12]. The claim follows since HQ‘*‘Q(W&C(C), Z)tors is finite.

The number of fixed points under the action of Gal(Fy, /F i) of the left hand side of the above
short exact sequence is equal to |det(1 — Frob, ri ’Héﬁ_l(wqu'_,(@g(T + 1)))|, which is finite and

independent of the prime ¢ by Deligne’s theorem (the Weil conjecture) [16].
In conclusion, each term in the infinite direct sum (36) is finite, and trivial for all but finitely
many terms. (]

Definition 6.3. Let M, := |H§+1(Wk’(@, Q/Z(r + 1))Gal(@/Fs)| which is finite by Proposition 6.1.

Corollary 6.4. With the above notations, if n is a square-free integer coprime to N, then the image
of Grr+1(Wk7Fn)tors under the map Ay, of Proposition 5./ is annihilated by M,..

Proof. By the Galois equivariance of the Bloch map (Proposition 5.1), the image of GrT+1(Wk7 F, Jtors
under Ay, lies in HftH(Wk,@, Q/Z(r+ 1))@/ Fr) "5 subgroup of HftH(WkQ, Q/Z(r+1))GalQ/ Fe)
by definition of Fio. The result follows by definition of M, (Definition 6.3). O

7. EXPLICIT ISOGENIES

In the rest of this paper, we will focus on a particular subcollection of Heegner cycles and their
properties. These are indexed by certain explicit (isomorphism classes of) isogenies. In Section 9,
will prove that this subcollection generates a subgroup of infinite rank modulo algebraic equivalence.

Fix an imaginary quadratic field K with ring of integers Ok and discriminant —dg coprime
to N. Assume that K satisfies the Heegner hypothesis with respect to N, and let N denote a
choice of cyclic N-ideal of O . Let A be an elliptic curve with CM by Og over the Hilbert class
field H of K. Choose the complex embedding H < C of Section 1.7 such that Ac = C/Ok. Let
T:= (—dg ++v—dk)/2 € H denote the standard generator of O, so that Ox = (1,7) :=Z®Z7. It
satisfies the quadratic equation 72 +dx 7 +dg (dgx +1)/4 = 0. Note that the coefficient dx (dy +1)/4
is integral since —dg = 0,1 (mod 4).

7.1. Explicit ¢-isogenies. Let ¢ be an odd prime which is coprime to dx. Consider the ¢ + 1
lattices Ay 5 := (1,7,5) = Z @ Z7, 5 in C indexed by 8 € P1(F,), where

qT if =00
TeB =
T\ i B £ .

Observe that A, is the order O, of K of conductor g.
There are natural isogenies ¢4 3 : C/Ox—C/Ay 5 of complex tori defined as follows:

o If 3 = o0, then ¢, is the natural quotient map induced by the inclusion of lattices
(1,7) C (1/q,T) composed with multiplication by g¢:

oo C/(1,7)EEC/(1/q, 7T/ (1, Tgn0).-
o If 3 # oo, then ¢, g is given by the quotient map
pap: C/(1,7)5C/ (1,7 + BYEIC/(L, (7 + 8) /),

induced by the inclusion of lattices (1,7 + ) C (1, (7 + 8)/q)-
Observe that the degree dy, , of ¢, 5 is equal to ¢ for all 3 € PY(F,).

Proposition 7.1. If q is an odd prime which is inert in K, then Ay g is a proper fractional Oy-ideal
for all B € PL(F,).
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Proof. The statement is clear for 8 = oo, hence we assume 3 € F,. The element 7,3 € H
satisfies the quadratic equation q27'q2ﬁ + q(dx — 2B)1y5 + (8% — dgB + dx(dx + 1)/4) = 0. If
B% —dgB +dg(drg +1)/4 =0 (mod q), then —dx = (28 — dg)? (mod ¢), hence (%) =1 and
q splits in K. Since ¢ is assumed to be inert, we conclude that ¢ does not divide the constant
coefficient. Thus, the coefficients of the above quadratic equation satisfied by 7, 3 have no common

factors. By [15, Lemma 7.5], A, is a proper fractional (1,¢%7, s)-ideal. The result follows by
observing that (1,¢%7,3) = (1,¢(t + B)) = O,. O

Proposition 7.2. Let ¢ be an odd prime which is inert in K and coprime to N. For all B € P! (Fq),
there exists an elliptic curve A,y g with CM by O, defined, along with its complex multiplication, over
the ring class field Hy such that Ay pc = C/Ayp and the isogeny of complex tori ¢, g descends to
an isogeny pq 8 1 A—>Ag g giving rise to an isomorphism class (g 3, Aq8) € Isog (A) with field of
definition H,.

Proof. By Proposition 7.1, the elliptic curve C/A, 3 has CM by O,. The proposition is then a
consequence of the main theorem of complex multiplication [15, Theorem 11.1]. Note that the
assumption that ¢ is coprime to IV guarantees that the classes (4 3, 4, 4,8) belong to IsogV (4). O

Lemma 7.3. Let q be a prime which is inert in K, and let ug := |O|/2. Then the extension
Hy/H is cyclic of order (¢ +1)/uk.

Remark 7.4. Note that ug = 1 if dg # 3, 4.

Proof. Artin reciprocity yields an isomorphism

(37) (O /a0k)* |OR(Z/qZ)" ~ Gal(H,/H),
by mapping ¢ to the Artin symbol [¢cOk, H,/H] (see [15, Eq. (7.27)]). Since ¢ is assumed to be
inert, we have (O /qOKr)* = FqXQ and the result follows. O

Proposition 7.5. Let q be an odd prime which is inert in K and coprime to N. The action of the
Galois group Gal(H,/H) on the subset {(pq.5, Agp) | B € PL(Fy)} C Isog (A) is simply transitive.

Proof. As in Section 3.1, Gal(H/H) naturally acts on Isog" (A) since A is defined over H. There
are ¢ + 1 isogenies from A of degree g, namely the isogenies ¢, g for 8 € PY(F,). Any isogeny
¢ : A— A’ is completely determined by its kernel A[p] C A(H). Two isomorphism classes (1, A1)
and (g, A2) are equal if and only if there exists 1 € Aut(A)/(£1) such that ¢ (A[p1]) = Alps] (the
effect of the automorphism —1 being trivial). Since A has CM by O, we have Aut(A) = Oy. The
set {(pq.8, Aq5) | B € PL(F,)} of isomorphism classes of isogenies of degree ¢ therefore has order
(¢ +1)/uk. By Proposition 7.2, since g is inert we have {(¢, 3, Ag5) | B € P}(Fy)} C Isogg\/(A) (in
the notations of Section 3.1). It follows that the action of Gal(H,/H) on {(pq.8, Agp) | B € PL(F,)}
is simple. The transitivity then follows from the fact that {(p,s, Ag.5)| B € P1(F,)} and Gal(H,/H)
have the same order by Lemma 7.3. O

Remark 7.6. In contrast, if ¢ is an odd prime that splits in K, then the proof of Proposition 7.1 shows
that for exactly two choices of 3 € F,, say 81 and S2, the constant term 82 — dg 8 + dx (dx +1)/4
of the quadratic equation satisfied by 7, 5 is divisible by ¢. Hence, for i € {1,2}, 7, 5, satisfies the
equation q7'q2ﬁi + (dx — 2Bi)7.8, + (BF — diBi + dic(di + 1)/4)/q = 0 with coprime coefficients.
By [15, Lemma 7.5], A, s, is a proper fractional (1, g7, g,)-module for i € {1,2}. But (1,¢7,3) = Ok
for any € Fy, hence the elliptic curves C/A4 g, and C/A, g, have CM by Ok and can be defined
over H. Alternatively, writing ¢ = qq for some prime ideal q of K, these two elliptic curves along with
their cyclic g-isogenies can be described as g : A—A/A[q] and g : A— A/A[q]. In conclusion,
there are ¢ — 1 cyclic g-isogenies with CM by O,. Their isogeny classes form a set of order (¢ —1)/ux
given by a single orbit under the action of Gal(H,/H), which in the split case has order (¢ — 1)/ug
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by (37). Working under the assumption that ¢ is inert is not strictly speaking necessary for our
method, but it does simplify the notations and arguments a little bit.

7.2. Explicit I';(N)-level structure. Recall that Ac = C/Ok is an elliptic curve with CM by
Oy over H, Og = (1,7) with 7 := (—dg +v/—dx)/2 satisfying 72 + dx 7 + dx (d +1)/4 = 0, and
N is a cyclic N-ideal of Og.

Proposition 7.7. With the above notations, a generator t of the cyclic group A[N] must be of the
formt = (et +d)/N + (1,7) for some integers c¢,d € Z with ged(c,d, N) =1 and ¢ #0 (mod N).

Proof. Observe that A[N] = N"!/Of. The canonical isogeny @x : A—A/A[N] is defined over H
and given over C by the quotient isogeny C/Ox—C/N 1. Note in particular that A/A[N] has CM
by O . By definition, ¢ is a generator of the cyclic subgroup A[N], hence there exist integers ¢ and d
with ged(c,d, N) = 1 such that ¢t = (c7+d)/N + (1, 7). Note that only the classes of ¢ and d modulo
N matter in this expression for t. If ¢ =0 (mod N), then d is coprime to N, A[N]| = (1/N + (1, 1)),
and @ar is the quotient isogeny C/(1,7)—C/(1/N, 7). But C/(1/N,7) ~ C/(1, N7) has CM by
On [15, Lemma 7.5], contradicting the fact that A/A[N] has CM by Og. Thus, ¢ Z0 (mod N). O

Remark 7.8. The fact that A/A[N] has CM by Ok places restrictions on the possible choices of the
integer d in Proposition 7.7. For instance, in the case where N is prime, the generator ¢ of A[N]
must, up to multiplication by an element of (Z/NZ)*, be of the form ¢t = (7 +d)/N + (1, 7) for one
of the two choices of d € Z/NZ in Remark 7.6 such that C/(1, (7 + d)/N) has CM by Ok. Indeed,
in this case A/A[N] = C/(1,t) must have CM by Ok and Remark 7.6 applies since N splits in K
by the Heegner hypothesis.

Fix a choice of I'1(IV)-level structure ¢ € A[N]. By Proposition 7.7, t = (¢ + d)/N + (1,7)
for some ¢,d € Z with N { ¢ and ged(c,d, N) = 1. Let a,b,k € Z be such that ad — bc — kN =1
(possible by the ged condition). Then the matrix v = 7 := ( a Z) € My (Z) reduces modulo N into
SLo(Z/NZ). By modifying the entries of v modulo N if necessary, we may and will assume that
v =(2%) € SLy(Z). This does not affect t = (c7 +d)/N + (1, 7). Note that if ¢ = 1, then we may

for instance take v = (% dgl) € SLy(Z). Multiplication by cr + d yields an isomorphism

en + (C/(Ly(7), 1/N + (1,4(7)))—=(C/(L,7), (eT + d) /N + (1, 7)) = (A, 1)
of elliptic curves with I'; (N)-level structures. It follows that the point (A, t) € Y1(N)(C) =T (N)\H

is represented by 'y (N)y(7) = T'1(N) ZZIZ

Definition 7.9. Let ¢ be an odd prime not dividing ¢, and let 8 € P!(F,). Given the above
notations, define 7 5 € H to be ¢y(7) if # = oo and (y(7) + 8)/q if § # oo. Let Al 5:= (1,7} )
and define the isogeny
ot - LN ENC (g r ()5 N, f =00
q, : uot
C/(1,7(7)) = C/{1,7(r) + BYTHC/AL 5, B # oo.

The composed isogeny

_ cr+d)~ 1 @t,
(38) b= b sofler+d)7: C/O Y ey, (r)) 228/t

has kernel of size q. Hence wé, 5 must be isomorphic (in the sense of Section 3.1) to ¢, g of Section
7.1 for some ' € PL(F,). Indeed, we have

((r+ctd)/q+(1,7)), B =00
ker(z/)fm) =< (1/qg+ (1,7)), a+cf=0 (mod q)
((r+(a+ceB)" (b+dB))/qg+(1,7)), B#o0,a+cB#0 (modq),
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and thus
(Soq,c—lda Aq,c—ld)a B =00
(V4,80 C/Ag,8) = { (Pg.00: Agoo); a+cf=0 (modq)
(Pq,(a+ed) 1 (b+dB)s Aq,(ateB)-1(v+dB))s B # o0,a+cf#0  (mod g),

as elements of Isog?V' (4). In particular, there is an equality of subsets of Isog" (A)

(39) {(pq.8:Aq8) | B € PHF,)} = {(¥g,5.C/Ag ) | B € PL(Fy)},

and Proposition 7.5 can be restated as:

Proposition 7.10. With the above notations, let q be an odd prime which is inert in K and coprime

to cN. The action of the Galois group Gal(Hy/H) on the subset {( qﬁ’(c/Az,ﬁ) | B € PYF,)} of

ISOgN 18 simply transitive.

7.3. Explicit pg-isogenies. Retain the notations of the previous subsection. In particular, ¢t = (c7+

d)/N + (1,7) € A[N] with ¢,d € Z, ged(¢,d, N) =1, ¢ # 0 (mod N), and vy = = (¢ %) € SLa(Z).
Let ¢ be an odd prime which is coprime to cdx N. Let p be an auxiliary distinct odd prime which

is also Coprlme to cd KN Consider the lattices At pgf = (1, Tp a0 5} with 8 € PY(F,) of index pq in

Ok where T R pT 8 Consider the isogenies w R :C/Ox—C/ A; 0B obtained by composing
wzﬁ defined in (38) Wlth the map

quot
(C/<17T(§,ﬁ> (C/<1/p> qﬁ> C/<17 pq,@)
The isogenies wf) 0.8 have degree d: , = Da with kernel spanned by ker(wfl 5) together with the
7 p,q; )
point (7 + ¢~ td)/p+ (1, 7).

Proposition 7.11. If q is an odd prime which is inert in K and coprime to cN, and p is a distinct
auziliary prime not dividing cdy Nlcr + d|?, then A q.3 s a proper fractional Opq-ideal for all

B € PY(F,).
Proof. Begin by observing that
ar +b T ac|t|? — bedy + bd

40 = =
(40) () ct+d et +d|? leT + d|?

Consequently, we have Q(7, pqﬁ) Q(Téﬁ) = Q(y(r)) = Q(1) = K. By (39), C/A 5 1s equal
to Ay p.c = C/Ayp for some B € PL(F,). Since ¢ is inert, it follows by Proposition 7.1 that
Afl 5 = Aqp is a proper fractional Og-ideal.

Let us first suppose that 5 # oo. By [15, Lemma 7.5], T; 5 must satisfy a quadratic equation of
the form ¢?|cr + d|?X? + AX + B, with coefficients A, B € Z such that gcd(A4, B, ¢*|ct +d|?) =1
But then 7';;, 0.5 satisfies the equation ¢?|cT + d|?X? + ApX + Bp?. The coefficients have ged equal to
1 since p and q are distinct and p { |er + d|?. By [15, Lemma 7.5], Aqu,ﬁ is then a proper fractional

(1,¢%|cT + d|?7t  ,)-ideal. The result follows by observing, using (40), that

Tp.a.8
¢ler +dP*1) , 5 = paler + d*(v(7) + B) = pa(7 + ac|r|> — bedg + bd + Bler + d|?),

hence (1, ¢?|er + d|*T qu’> (1,pq7) = Opq.

If = oo, then, by [15, Lemma 7.5], 7} must satisfy a quadratic equation of the form
ler + d|>?X? + AX + B, with coefficients A, B € Z such that ged(A, B, |er + d|?) = 1. But then
]’; q.00 Satisfies the equation leT +d|?X? + ApX + Bp?. The coefficients have gcd equal to 1 since
p1ler +d?. By [15, Lemma 7.5], Al -ideal. The

result follows by observmg that

ler 4 d|*,

is then a proper fractional (1, |cT + d|?

P,q,00 pqoo>

T} 400 = palet + d|*y(1) = par + palac|t|* — bedk + bd),
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hence (1, er +d*7} , ) = (1,pg7) = Opq. -

Proposition 7.12. Let q be an odd prime which is inert in K and coprime to cN. Let p be a
distinct auziliary odd prime which is coprime to cdgxN|ct + d|?. For all B € PY(F,), there exists
an elliptic curve szqﬁ with CM by O,y over the ring class field H,, such that A;,q’ﬁ,(c C/qu 3

and the isogeny of complex tom' wt 0.3 descends to an isogeny w;qﬁ A A giving rise to an

P,q,8
tsomorphism class (zpt 0.5 pqﬂ € Isoggg with field of definition Hp,

Proof. By Proposition 7.11, the elliptic curves (C/At have CM by O, and the result is a
consequence of the main theorem of complex multlphcatlon [15, Theorem 11.1]. O

Proposition 7.13. Let q be an odd prime which is inert in K and coprime to cN. Let p be a
distinct auziliary odd prime which zs copmme to cdg N|er +d|%. The Galozs group Gal(Hpy/H,) acts
simply transitively on the subset { (! 0.5 p 05| B€E PL(F,)} C Isog" (A). The action is determined
by the action of Gal(H,/H) on {(111q5,C/A )| B € IP’l( q)} upon restm'ctmg automorphisms from
Hp, to Hy.

Proof. Let 3 € P1(F,). The isogeny w; 4.5 has kernel of size pg. The p-part of this kernel is generated
by (7 +c¢7td)/p+ (1, 7), and is therefore independent of 3. It corresponds to the isomorphism class
of an isogeny from A to the elliptic curve A, := A, .14 defined over H,, of Section 7.1 (if p is inert
in K, then A, has CM by O,, while for p split it can happen that A, has CM by Ok as explained in
Remark 7.6. In any case, the isomorphism class is defined over Hp). In particular Gal(Hpe/Hp) fixes
the p-part of the isogeny 1/1;7 and as a result its action on the set {(¢} (U p 05) | BE PL(F,)} is
well-defined. Note that the latter set has order (¢ + 1)/uk (as in the proof of Proposition 7.5, using
(39)). By Proposition 7.12, we have an inclusion {(%t)’qﬁ, pqﬂ) | B € PYF,)} C Isog;\g(A) (in the
notation of Section 3.1) and the Galois action is simple. Since p and ¢ are distinct primes, we have
H,NH,=H and Hy, = H, - H; [29, Proposition 1.7]. Thus, the natural restriction map from H,,
to H, induces an isomorphism of Galois group

(41) Gal(Hpq/Hp) ~ Gal(Hy/H).
By Lemma 7.3, Gal(H,,/H,) thus has order equal to the one of {(¢, 0.0, pqﬁ) | B € PY(F,)}, and
consequently the action is transitive. ([l

Definition 7.14. With the above notations, given an odd prime ¢ coprime to cdx N and inert in
K, an auxiliary disctinct prime p coprime to cdg N|er +d|?, and 8 € ]P’I(IFq), the cycles associated

to the isomorphism classes (1/1; 0B p a0 5 € Isogqu are denoted
ANC =AY and  AJHG .= AGHC
D4, L 0B p.a,B ! 0B

in the notation of Definition 3.3. By Propositions 3.1 and 7.11, they are defined over the field
compositum Fy, = Kx - Hpy C K2 c Q.

Proposition 7.15. Fiz a T'1(N)-level structure t € AN, and let p and q be distinct odd primes
coprime to cdxg N with q inert in K and p { |er + d|*. The action of Gal(F,y/F,) on the subset
{quﬁ | B€PYFpy)} of CHTH(Wk F,,)o is determined by the action of Gal(Hpq/H,) on the subset

{( ;7(175, pqﬁ) |6 € IP’l( } of Isoggg under the restriction map Gal(Fpq/Fp)—Gal(Hyq/Hp).

In particular, the action is tmnsztwe

Proof. Let o € Gal(F,,/F,) and 8 € P(F,). Let t,,5 := U a5(t) € quﬁ[/\/ﬂ Opq| and let 1) 4 5
denote the inclusion of (A;q”g)k in Wy, as the fibre above P, , 3 := (Al pa.f tpa.8) € X1(IN)(Fpq). By

Definitions 3.2 and 3.3, we have qucﬁ = €Wy (tp,g,8)« (Lpgy=ax))") € CH" ™' (W, p,, )o, and thus

(quﬁ) g%/K(L;,qﬂ)*((F[pqm ) )
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We have €&, = éw, since éw, is defined over Q, and [pgv/—dk]” = [pgv—dK] € End((A;,qﬁ)U)

since o fixes H. The map ¢7 . 5 is the inclusion of ((A; " B)")k in Wj, as the fibre above the point
P75 = (A} .57 (W), 5)7(t7)) of X1(N). Since o fixes Ky, it fixes (A,t) € X1(N)(Ky), so that

P75 = (A, 5)7 (¥, 5)7(t). Thus, the action is determined by the action on (¢}, , 5, A7  5) €
Isog{o\é (A). The last part of the statement then follows from Proposition 7.13. O

8. ASYMPTOTICS FOR ABEL—JACOBI IMAGES OF EXPLICIT CYCLES

Let k =2r > 2 and N > 5 be integers. Fix an imaginary quadratic field K with ring of integers
Ok and discriminant —dg coprime to N. Assume that K satisfies the Heegner hypothesis with
respect to IV, and let A denote a choice of cyclic N-ideal of O. Let H be the Hilbert class field
of K. Let A be an elliptic curve with CM by Ok over H, and choose the embedding H — C of
Section 1.7 such that Ac = C/Ok. Let 7 := (—dg + v/—dk)/2 denote the standard generator of
Ok so that O = (1,7), and fix a I'; (N)-level structure ¢t € A[N]. Then t = (¢t +d)/N + (1,7)
for some ¢,d € Z with ¢ # 0 (mod N) and ged(c,d, N) = 1 by Proposition 7.7. As in Section 7.2,
let a,b € Z such that v := v = (2%) € SLy(Z) (which might require translating ¢ and d by some
multiples of N).

Define the indexing set

T =1, :={(p,q) | p > q odd primes coprime to cdg|cT + d|?,q inert in K,p,g=1 (mod N)}.

Note that this set is infinite by Dirichlet’s theorem on primes in arithmetic progressions since dg
and N are coprime. Using Theorem 4.2, we are going to produce asymptotic estimates for the
Abel-Jacobi images of the Heegner cycles in the collection

(42) C:= {705 € CH ' (Wi, )o | (p,9) € Z,5 € P'(F,)}

(see Definition 7.14) as p/q — oo. As a corollary, we will deduce information about the orders of
the algebraic equivalence classes of these cycles when p/q is large.

Definition 8.1. Given (p,q) € Z and 3 € P}(F,), define

Ypg.8 = pg p=oo and Kpq,B = 1 f=oo
o ple B # o, e q B# .
Writing 7 5 =: X} 5 +1iY) 5 and using (40), we see that Y}/ 5 =, lcT + d|=2\/dx /2 and
i ler + d|~2(ac|T|* — bedx + bd — dx /2)pq f =00
Pa.p (ler + d|7%(ac|7|? — bedg + bd — d /2) + B)p/q B # oo.

Consider the convergent improper integral

o0
I;,qﬁ = /Yi (y2 - (}ﬁ,qvﬁ)z)reizﬂyd&/ > 0,
p,q,8

okl k k 2 2miXt t X
and define J, g := 2T 7" e + d (qufip,q,ﬁmk,ke ol g5 € C*

Lemma 8.2. Let d be the dimension of Sky2(I'1(N)) and choose a basis (fi,..., fa) consisting
of normalised cuspidal eigenforms for the action of the Hecke algebra. This choice identifies
Sk12(T'1(N))Y with C?, and we let L denote the lattice in C? whose elements are the evaluations
(via integration) of the elements of the lattice L} C Sii2(T1(N))Y at & := (wy,,...,wy,). Given
(p,q) € T and B € PL(F,), we view AJWk((Qkk!)2(pq)TA§gB) as an element of C¢ by identifying it
with the formula displayed on the right hand side of Theorem 4.2 (this amounts to choosing a fixred
representative of AJWk((Qkk!)z(pq)TAggﬂ) viewed as an element of C¢/L). Then, as a complex
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vector valued function of (p,q) € I, AJw, ((2%k")2(pq)" Aggﬁ) is coordinate-wise asymptotically

equivalent to J_;Dqg = (Jpgpr--sJpqps) € CLas p/q— .

Proof. By Definition 7.14, AHSB is the Heegner cycle associated to (1! 00,8 pq ﬁ € Isog‘;\g

have AY 5~ = C/(1,7,, 5) with 7/ 5 equal to pgy(t) or (v(7) + 8)p/q depending on Whether
B = oo or B # oo. Recall that the isogeny w;qﬁ C/(1, T)—>(C/<1,T£qﬂ> is given by mapping
w (mod (1,7)) + pg(er +d)~'w (mod (1,7 pqﬁ)) if 3 =00 and w (mod (1,7)) + p(cr +d)"tw
(mod (1,7]  5)) if 8 # co. By the assumption that p and g are both congruent to 1 modulo N, we
thus have ¢! _ 5(t) = 1/N (mod (1,7] 5)). Applying Theorem 4.2 therefore yields the equality

t
P,q,8 —

Adw, (2"KD?(pa)" ALg 5) = (=2)7 2md) e +d|* (pa)" Ky, s, k/ (2= Tp08) (2= T g.8) (2)dz
100

modulo the lattice L, where f = (fi,...,fs), and Kpqp is defined in Definition 8.1. Writing

Tt ;7 st zY bq.p 81N Definition 8.1 and making the change of variables z = X, t pa.p 1y gives

pas —
the equality

oo
AT (CFRYP (a) RS ) = 24710 fora (o) i [ (P (VP T i)
0,8
modulo the lattice L. For all 1 < j < d, using the Fourier expansion at ico together with the fact
that f; is a normalised cuspidal eigenform, there exists a constant ¢; > 0 such that

(43) Ifi(z) — e?miF| < Cj€_4ﬂ-$(z) for all z € H.
Let ¢:= (c1,...,cq) € CZ Using (43), Definition 8.1, and the fact that thg,ﬁ = Ypgsler+d| 73 dK /2,
we deduce that
T -2 —
’AJWk((Qkk!) (pq)" qu,@) pqﬁ’ < 2y "Her + d| (pq)" s pqﬂmk L€ ~p.q.pleT+d| \/Ej;;’qﬁc'
It follows that

AJw, ((2"K)(pa) A} 5) = Tpa s

P,q,8 < 6—’Yp,q,6|CT+d|727T dKa

=

Ipa.8
The result follows by noting that v, 4 3 = 00 as p/q — . O

Proposition 8.3. With the above notations, as p/q tends to oo for (p,q) € I, the order of

AJWk(AESﬂ) becomes large (possibly infinite) in the intermediate Jacobian J™ (Wi c) for all

B e PL(F,).
Proof. We have |J,, 4 8| = ok+1 " er + d\ (pg)" K pqgmk kIpqﬁ and

t _ k+1

Ipgs = Tp.a.B (312 —|er + d\_4dK/4)”e_2mpaqﬁydy.

/|<:7'+d|2\/6§/2
Unfolding the power (y? — |er + d| *dx/4)" and integrating by parts repeatedly yields the formula

KL o= pgplertdl*mv/li - r\ (29! (ler +d|*Vdk/2)F 0
(4d) I, =it maslertdl” KZZ ()(2 v

S
P 20 5=0 j—s)! (279p,9,8)°

It follows that J;qﬁ tends to 0 in C? as p/¢ — co. Let € > 0 such that the open polydisc
D.(0)% c C? of radius ¢ and center 0 satisfies D.(0)¢ N L = {0} (possible by discreteness of L).
For p/q large enough, J;,q,g lies in D((0)¢ and thus J;,qﬁ € L if and only if J;Qﬁ = 0. However,
J_];,q,g # 0 as is clear from the definition of the integral I, , 3. The closer the value J;q”g is to
0 € C%, the larger the order (if finite) of jp,q,ﬁ (mod L) becomes in C?/L. By Lemma 8.2, the j-th
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coordinate satisfies AJWk((Qkk:!)z(pq)”A}igB)j = Jpq8(1 +0(1)) for all 1 < j < d. In particular,

AJWk((2kk!)2(pq)Tﬁggﬁ) (viewed in C?%) tends to 0 without being equal to 0 as p/q — co. We

deduce that (2¥k!)2(pq)" AJWk(AESB) has large (if finite) order in Si42(I'1(N))Y/L}. In particular,

the same conclusion holds for AJWk(Agg 5). The result follows since Syt2(I'1 (N ))Y/Lj is a quotient
of J"TH (W c). O

Proposition 8.4. With the above notations, as p/q tends to oo for (p,q) € I, the order of
Aldw, (quc,ﬁ)_AJWk (Aggoo) becomes large (possibly infinite) in the intermediate Jacobian J™ (W c)

for all 0o # B € PL(F,).

Proof. Define the polynomial

r 2] r . or -2 k—s
P(X) — Z Z(_l)r—j< ) (2(23)! (| + d’ @/2> X ks e R[X]

pare i) @i =) (2m) T

It has degree < k. By (44), for all 3 € P1(F,), we have

I;J,qﬁ = e_vp’q’ﬂ‘CTJFdIi%\/EP('Yp,q,ﬂ)-
It follows that
Jpqoo’ _ ok lpace _ ok P(PD) - jervai=2n (- 1/
Joas | T 1 Pl/g) ‘

In particular, the limit as p/q — oo is equal to 0. By Lemma 8.2, we deduce that for all 1 < j <d,
the ratio of the j-th coordinates \AJWk((2kk!)2(pq)TAng)j/ Adw, ((2%EN2(pg)" Ay 4.5)5] tends to
0 as p/q — oo. Thus,

AJw, (2FED2(pg)" AHC )5 — AJw, (28K (pg)" ALY )5 = AJw, (28K (pg)" ANS )5 (1 + o(1))
= pa‘],ﬁ(l + 0(1))7

as p/q — oo. From this point on, the result follows from the same argument as in the proof of
Proposition 8.3. (|

Corollary 8.5. There exists a constant C,. > 0 such that for all (p,q) € I satisfying p/q > C,, the
following statements hold:
(1) For all B € PY(F,), the algebraic equivalence class of Aﬁgﬁ in Gt (Wy, p,,) has infinite
order.
(2) For all oo # 3 € PY(F,), the algebraic equivalence class of Agg - Aff,gm in Gr" P (Wi k)
has infinite order.

Proof. Given 8 € PL(F,), we let Z,, 3 denote either Aggﬁ or qucﬁ - quc’oo (in the latter case
we exclude = c0). Using either Proposition 8.3 or Proposition 8.4, we may choose a constant
C, > 0 such that for all (p, q) € T satisfying p/q > C,, the order of AJy, (E,44) in J"™TH (W) is
greater that the constant M, of Definition 6.3, for all 3 € P1(F,). Let (p,q) € T with p/q > C,
and let 8 € P}(F ¢)- The cycle Z, ; g is defined over Fj,, by Proposition 3.1, and thus its algebraic
equivalence class [E,, ] belongs to Gr" (W, g, ). Suppose by contradiction that [, 4 5] is torsion
in Grr+1(Wk, F,,)- Using the Galois equivariance of the Bloch map (Proposition 5.1) along with
Proposition 5.4, we see that Ay, ([E,,4,5]) belongs to HftH(Wk’Q, Q/Z(r + 1))62U@/Frq) and is thus
annihilated by M, by Corollary 6.4. Recall the equality (35): Aj, = comp louo Aly,. We
conclude that w(AJw, ([Z,,4,])) is annihilated by M,. By injectivity of the map u, we deduce that
AJw, ([Zp,q,8]) is annihilated by M,, which contradicts that fact that the order of AJy, (2, 4.8]) is
greater than M,. This proves by contradiction that [=,, ] has infinite order. O
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9. INFINITE RANK GRIFFITHS GROUPS

Let k£ = 2r > 2 be an even integer. Fix an imaginary quadratic field K with ring of integers O
and discriminant —dg coprime to N. Assume that K satisfies the Heegner hypothesis with respect
to N, and let N denote a choice of cyclic N-ideal of Of. Let H be the Hilbert class field of K.
Let A be an elliptic curve with CM by O over H and choose the embedding H — C of Section
1.7 such that Ac = C/Ok. Let 7 := (—dg + v/—dk)/2 denote the standard generator of O so
that Ox = (1,7), and fix a I'y(N)-level structure ¢t € A[N]. Then t = (¢t + d)/N + (1, 7) for some
¢,d € Z with ¢ 0 (mod N) and ged(e,d, N) = 1 by Proposition 7.7. As in Section 7.2, let a,b € Z
such that v : = = (‘é g) € SLy(Z) (which might require translating ¢ and d by some multiples of
N).

Of interest is the group Grr‘*'l(Wk@) of algebraic equivalence classes of cycles of codimension 7+ 1
defined over Q. More precisely, we will focus on the subgroup ch of Gr”“(Wk, ab) generated by
the algebraic equivalence classes of the Heegner cycles in the collection C defined in (42).

Theorem 9.1. With the above notations and assumptions, we have dimg G?C Rz Q = oo.

Proof. It suffices to prove that dimg G?C ®7zQ > £—1 for an arbitrary fixed prime £ > 6 Ndg. Pick
an odd prime ¢ which is coprime to cdg|ct + d|?, congruent to 1 modulo N, inert in K, and such
that (¢ +1)/ux =0 (mod £). Recall that ux = |Of|/2 € {1,2,3} and in particular it is coprime
to . The last condition is thus equivalent to ¢ = —1 (mod ¢). The last three conditions on ¢ are
equivalent to a single congruence condition modulo Ndg¥ by the Chinese Remainder Theorem since
N,dg, and ¢ are pairwise coprime. In particular, there are infinitely many possible choices for ¢
by Dirichlet’s theorem on arithmetic progressions. A single choice of a prime ¢ will suffice for this
proof.

Recall from Lemma 7.3 that the extension H,/H is cyclic of degree (¢ + 1)/ug. Since ¢ divides
this degree by assumption on ¢, Gal(H,/H) admits a unique cyclic subgroup Gy of order ¢. Let oy
denote a choice of generator of Gy. By Proposition 7.10, we have

(45) (Y00 C/Ag00)™ = (V3.5 C/ NG ,)

in Isogé\/(A) for some oo # 3 € PY(F,).
Pick a prime p such that (p,q) € Z and p/q is greater than the constant C, of Corollary 8.5. This
choice guarantees that the algebraic equivalence classes

(46) [AHC ], [AHC ], and [AHC | — [AHC | have infinite order in Gr”H(Wk,qu).

D,q,00 P,q,Pe D,q,00 D,4,B¢
Restriction of automorphisms induces isomorphisms
Gal(Fpy/Ky) — Gal(Hpy/H) and Gal(Hpq/Hy)—Gal(H,/H).
29, (1.39)] (41)
Let Gy C Gal(Fpq/Ky) be the preimage of Gy under the above maps. It is a cyclic subgroup of

Gal(Fq/F,) of order £. Denote by 6, the preimage of o, which is a generator of Gj.
Define a homomorphism of Q-vector spaces

U QUG — G (Wi, ) ©2Q, &0 [(AHS )7,

p’q7w

The kernel of ¥ is stable under multiplication by Q[ég] and is thus an ideal of Q[G’g}. Let ¢, € Q be
a choice of primitive ¢-th root of unity. There is a ring isomorphism

-1 -1 -1
QGA-Q x Q%) Y Niby (Z Ay w‘) :
=0 =0 =0

The only proper ideals of the ring Q x Q(¢;) are {0} x Q(¢y) and Q x {0}, corresponding respectively
to the augmentation ideal and the ideal QN in the group ring Q[Gy], where N = Zf:é 52} is the
norm element.
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By Propositions 7.15 and 7.13, the action of 6, on AHC_is determined by the action of oy on

- - B’q7w
(W} 00y C/AL ). Tt follows from (45) that (quc’oo)”f = A;{gﬁz. By (46), both ¥(1) and ¥(6, — 1)
are not equal to 0. Thus, ker(V) is neither all of Q[G/] nor the augmentation ideal. In particular, it
must either be trivial or equal to QN, which implies that dimg Q[G/]/ ker(¥) > ¢ — 1. O

Corollary 9.2. With the above notations and assumptions, let 0 < k' = 21" < k be another even
integer and let Xy, 1 := Wy g x g A¥' . The subgroup of GI'T+T/+1(Xk’k/’Kab) generated by the algebraic
equivalence classes of the variants of generalised Heegner cycles Ak,kﬁw;,qﬁ indexed by (p,q) € Z has
infinite rank.

Proof. This follows by combining Theorem 9.1 and Proposition 3.4. O

Remark 9.3. The method of Section 4 can be used to give a formula for the complex Abel-Jacobi
images of the variants of generalised Heegner cycles Ay, v , with (¢, A") € Isog" (A), as these are
images of generalised Heegner cycles under certain correspondences by [5, Proposition 4.1.1]. Such
a formula can then directly be used to prove Theorem 9.2. We have opted not to do so, as it is
enough to know the images of Heegner cycles under the complex Abel-Jacobi map in order to
deduce Corollary 9.2.
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