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Abstract

We use a method by Goldfeld and Zhang to compute values and derivatives of the Rankin–
Selberg L-function associated to a pair of modular forms. Central to this approach is the
holomorphic kernel, which relates the L-function to an inner product of modular forms. Using
the Petersson formula, the Fourier coefficients of the holomorphic kernel can be understood.
We solidify the Goldfeld–Zhang method by providing extra details to proofs and making
justified adjustments to their formulas. In particular, we believe that an additional term has
been overlooked in their main theorem. For weight k > 2, we verify their final claim that it is
possible to recover the analytic part of the Gross–Zagier formulas for heights of Heegner cycles.
More generally, we recover the analytic results in recent work by Lilienfeldt and Shnidman on
heights of generalized Heegner cycles.
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1 Introduction

1.1 The arithmetic of elliptic curves

Elliptic curves have long been an object of study. In some ways, we understand them well: over a
number field K, the K-rational points E(K) of an elliptic curve form a finitely generated group,
and E(K) is thus of the form

E(K) ∼= Zr × E(K)tors,

with r ∈ Z≥0 the algebraic rank of E over K and E(K)tors the finite torsion subgroup. If K = Q,
we even know that E(Q)tors has at most 16 elements. This is a result of Mazur [Maz78] and has
been extended by Merel [Mer96] to a bound on E(K)tors for any number field K in terms of the
degree of K over Q. The rank r is somewhat more mysterious. Computing the rank of a given
elliptic curve is in general hard, and we do not know whether the rank of all elliptic curves over
some number field K (or even Q) is bounded.

A similar object with many open questions surrounding it is the Hasse–Weil L-function L(E/K, s)
associated to an elliptic curve E over K, given by (A.1). Due to the (very deep) modularity theorem,
first proven for semistable elliptic curves by Wiles [Wil95] and then in general by Breuil, Conrad,
Diamond and Taylor [Bre+01] (see also Theorem A.6), we know that L(E/Q, s) extends to the
whole complex plane for any elliptic curve E over Q. As such, one can consider the order of
vanishing of L(E/Q, s) at s = 1, which is called the analytic rank of E. In the 1960s, at which
time the modularity theorem had not yet been proven, Birch and Swinnerton-Dyer came up with a
conjecture based on extensive numerical evidence. In a modern phrasing, it can be stated as: the
algebraic rank and the analytic rank of an elliptic curve agree. At the moment, it is one of the six
remaining open Millennium Prize Problems.

In 1986, a partial proof of the conjecture over Q was given by Gross and Zagier [GZ86]. Together
with a later result of Kolyvagin [Kol88], it follows that the algebraic and analytic rank agree if the
analytic rank is at most one. To date, there have been no successful ideas for proving the conjecture
for curves of higher ranks, and so the conjecture still remains wide open, even over Q.

The Gross–Zagier strategy

The paper by Gross and Zagier can be divided into two parts. In the algebraic part, they compute
height pairings of a divisor associated to a Heegner point. Heegner points are special points on an
elliptic curve that are constructed from imaginary quadratic points in the complex upper half-plane
using the modularity theorem. In the analytic part, Gross and Zagier compute the value and
derivative of certain Rankin–Selberg L-functions at the center. The Rankin–Selberg L-function
associated to two modular forms f ∈ Sk(Γ0(N)) and g ∈Mℓ(Γ0(D), χ) is given by

L(f ⊗ g, s) =
∞∑
n=1

a(n)b(n)

ns
,

where a(n)n
k−1
2 and b(n)n

ℓ−1
2 are the Fourier coefficients of f and g. It converges absolutely for

ℜ(s) > ℓ+1
2

and has a meromorphic continuation to the whole complex plane. For fixed g and s,
the map f 7→ L(f ⊗ g, s) is linear, and so there exists a holomorphic kernel Φs̄,g ∈ Sk(Γ0(N)) with

L(f ⊗ g, s) = ⟨f,Φs̄,g⟩ for all f ∈ Sk(Γ0(N)).
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Here ⟨·, ·⟩ is the Petersson inner product on Sk(Γ0(N)) as in (2.3). Gross and Zagier consider the
Rankin–Selberg L-function when ℓ = 1 and g is a theta series associated to an imaginary quadratic
field K of square-free discriminant. When k = 2, by the modularity theorem, there is some newform
f ∈ Snew

k (Γ0(N)) such that the two L-functions L(f ⊗ g, s) and L(E/K, s) are closely related. By
computing the Fourier coefficients of the holomorphic kernel, Gross and Zagier are, under the right
conditions, able to relate the central derivative L′(E/K, 1) to the height of a Heegner point and
deduce a lower bound for the algebraic rank of E over K. See Appendix A for more details.

In order to compute the Fourier coefficients of the holomorphic kernel, Gross and Zagier use Rankin’s
method, also known as the Rankin–Selberg method, to derive formulas for the Fourier coefficients
of the holomorphic kernel. This method was independently discovered and used by Rankin [Ran39]
and Selberg [Sel40] to study L-functions of the form L(f ⊗ ḡ, s). After using Rankin’s method,
non-holomorphic modular forms of different levels appear and so Gross and Zagier need to use
traces and holomorphic projections to obtain a final formula in terms of holomorphic modular
forms. We elaborate on this in Section 3.3.

The Goldfeld–Zhang method

Around the turn of the millennium, Goldfeld and Zhang published a paper with a different method
for deriving formulas for the Fourier coefficients of the holomorphic kernel Φs,g [GZ99]. This
method, which we will refer to as the Goldfeld–Zhang method, computes these coefficients using
the Petersson formula for Poincaré series (Proposition 2.9). In particular, this method avoids taking
traces and holomorphic projections. It could, in this sense, be interpreted as a more direct method
for computing the holomorphic kernel. This method has since been generalized by Nelson, allowing
f , and thus Φs,g, to have any nebentypus ε [Nel13].

Goldfeld and Zhang end their paper with a remark claiming that one can recover the analytic
results in [GZ86] by evaluating their final formula at specific points. In this thesis, we will take a
close look at the Goldfeld–Zhang method and verify this claim.

1.2 Contributions

Broadly speaking, with this thesis we have two main goals. Our first aim is to solidify the work by
Goldfeld and Zhang. In Chapter 4, we follow the approach in their paper to obtain a formula for
the Fourier coefficients of the holomorphic kernel of the Rankin–Selberg L-function. We elaborate
on their proofs and, where necessary, we adjust their formulas and statements. Most notably, we
believe that they have missed an additional term that should be present in all main formulas.
This additional term comes from the residue in Lemma 4.1, which appears because the twisted
L-series Lg(s,

a
c
) given by (3.8) has a pole at s = ℓ+1

2
if g is not a cusp form (Proposition 3.5). We

have proceeded methodically and have justified all our steps. We will not explicitly mention all
adjustments we made in the body of the thesis. Instead, the interested reader can find an overview
of the changes in Appendix B.

The main result for the coefficients of the holomorphic kernel is Theorem 4.4 and corresponds
to [GZ99, Thm. 6.5]. The Fourier coefficients for the holomorphic kernel modified suitably by
adding oldforms are given in Proposition 4.11 and this corresponds to [GZ99, Prop. 9.1]. Finally,
we compute the Fourier coefficients of the modified holomorphic kernel associated to a theta series
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in Theorem 4.13, which corresponds to [GZ99, Thm. 11.5]. We use these formulas to deduce a
functional equation for the Rankin–Selberg L-function associated to a cusp form and a theta
series (Theorem 4.16). For completeness, we also give a corrected version of [GZ99, Thm. 10.1] in
Appendix C.

Our second aim is to recover parts of the analytic results of the influential paper by Gross and
Zagier [GZ86] and thereby verifying the last claim made in [GZ99]. We only verify the claim for
weight k > 2, as it is not possible to obtain results for k = 2 without modifying the Goldfeld–Zhang
method in a major way. In Chapter 5, we derive an expression for special values (Theorem 5.8), the
central value (Theorem 5.9) and the derivative (Theorem 5.10) of the Rankin–Selberg L-function
associated to a cusp form and a theta series of an unramified Hecke character of possibly infinite
order. These theorems are generalizations of [GZ86, Thm. IV.5.5],[GZ86, Thm. IV.5.6] and [GZ86,
Thm. IV.5.8], respectively, which only consider finite order Hecke characters. With Theorem 5.10,
we also recover the analytic part of the recent paper by Lilienfeldt and Shnidman [LS24, Thm. 3.6],
in which they prove a generalization of the Gross–Zagier formula.

Remark. In [Nel13, p. 2602-2603], of which we were not aware while writing the thesis, Nelson
gives a list of errors in the Goldfeld–Zhang paper. Their findings agree with ours. The aim of their
paper is finding a formula for twisted first moments of the form∑

f∈Sk(Γ0(N),ε)

L(f ⊗ g, s)

⟨f, f⟩
λm(f),

with λm(f)m
k−1
2 the mth Fourier coefficient of f and the sum taken over an orthogonal basis of

Sk(Γ0(N), ε) for some nebentypus ε. As they only consider the case where g is a cusp form, they do
not derive a formula for the term that is missing from the formulas of Goldfeld and Zhang. They
also do not give corrected versions of the main formulas in [GZ99], but they do give a variant of
[GZ99, Prop. 9.1] in the special case where gcd(D,N) = 1 and g is a cusp form.

1.3 Thesis overview

In Chapter 2, we give a quick overview of the theory of modular forms, and we describe two
important examples of modular forms: Poincaré series and theta series. These will be used to
derive the main results of the thesis. In Chapter 3, we define various L-series and recall or derive
their analytic properties. We also illustrate Rankin’s method, which is used in the paper by Gross
and Zagier. In Chapter 4, we use the Goldfeld–Zhang method to derive a formula for the Fourier
coefficients of the holomorphic kernel of the Rankin–Selberg L-function. We end the chapter
by considering the holomorphic kernel in the context of theta series and obtaining specialized
coefficients. In Chapter 5, we compute these coefficients and their derivatives at special points,
thereby deducing [GZ86, Thms. IV.5.5, IV.5.6, IV.5.8] and [LS24, Thm. 3.6]. Finally, in Chapter 6,
we reflect on the thesis and give suggestions for further research.

In Appendix A, we cover some background on elliptic curves, modularity, and the famous Birch
and Swinnerton-Dyer conjecture. We also give a broad overview of the Gross–Zagier paper. This
appendix is meant to provide context for the interested reader. In Appendix B, we have compiled a
list of adjustments we made to the Goldfeld–Zhang method. In Appendix C, we give a version of
[GZ99, Thm. 10.1] that takes the additional missing factor into account.
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2 Modular forms

In this chapter, we give a brief overview of the theory of modular forms. We state the definition of
a modular form and mention general results that are needed for this thesis in Section 2.1. For a
more detailed approach, see [DS05]. In Section 2.2 and Section 2.3, we give the definitions of two
important types of modular forms: Poincaré series and theta series. These are needed to obtain the
main result of this thesis.

2.1 Modular forms

Congruence subgroups

For an integer N ≥ 1, we define the subgroup Γ(N) ⊆ SL2(Z) by

Γ(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣∣ a ≡ d ≡ 1 (mod N)

b ≡ c ≡ 0 (mod N)

}
.

Note that Γ(N) is a normal subgroup of finite index, as it is the kernel of the reduction map
SL2(Z) → SL2(Z/NZ). Given a subgroup Γ ⊆ SL2(Z), we say that Γ is a congruence subgroup if
Γ(N) ⊆ Γ for some N ≥ 1. The smallest N for which such an inclusion holds is called the level of
Γ. Two important examples of congruence subgroups of level N are

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ a ≡ d ≡ 1 (mod N)
c ≡ 0 (mod N)

}
,

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N)

}
.

It is clear that there are inclusions

Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) ⊆ SL2(Z),

and these are strict for N ≥ 3.

Slashing operators

Given a matrix γ = ( a bc d ) ∈ GL+
2 (R) and a point z ∈ H, it holds that

γz :=
az + b

cz + d
∈ H,

and it turns out that this defines an action of GL+
2 (R) on H. We define the factor of automorphy

j(γ, z) by cz + d. A simple calculation reveals that it satisfies the following two identities:

j(γ1γ2, z) = j(γ1, γ2z) · j(γ2, z), (2.1)

ℑ(γz) = det(γ) · ℑ(z)
|j(γ, z)|2

. (2.2)

We can now define an action of GL+
2 (R) on the group of holomorphic functions from H to C.

Fix an integer k. Given f : H → C and γ ∈ GL+
2 (R), we define (f |kγ)(z) = det(γ)k/2

j(γ,z)k
f(γz). For

γ = ( a bc d ) ∈ SL2(R), this reduces to (f |kγ)(z) = (cz + d)−kf(γz). It is readily verified that this
satisfies the properties of an action. This action is called the weight k slashing operator.
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Modular forms

Given a congruence subgroup Γ of level N , we say that a holomorphic function f : H → C is weakly
modular of weight k for Γ if f |kγ = f for all γ ∈ Γ. As ( 1 N

0 1 ) ∈ Γ, it follows that f(z +N) = f(z)
for all z ∈ H, and so f is periodic. More precisely, define

SL2(Z)∞ =

{
±
(
1 n
0 1

) ∣∣∣∣ n ∈ Z

}
,

and
Γ∞ = Γ ∩ SL2(Z)∞.

Let h∞ ≥ 1 be the smallest positive integer such that
(
1 h∞
0 1

)
∈ Γ∞. It then follows that f(z+h∞) =

f(z) for all z ∈ H and so there exists some analytic function f̃ : D \ {0} → C on the punctured
unit disc such that f(z) = f̃(exp(2πiz/h∞)). If f̃ can be continued analytically to D, we say that f
is holomorphic at ∞. Then f̃(z) has a Taylor expansion at z = 0 and so f has a Fourier expansion
of the following form:

f(z) = a(0) +
∞∑
n=1

a(n)n
k−1
2 e2πinz/h∞ .

Here we have normalized the coefficients a(n). In the special case that Γ = Γ0(N) or Γ = Γ1(N), it
holds that ( 1 1

0 1 ) ∈ Γ and so h∞ = 1.

More generally, consider the quotient of P1(Q) = Q ∪ {∞} by Γ, using the action(
a b
c d

)
q =

aq + b

cq + d
.

Here we define ∗
0
= ∞ and a·∞+b

c·∞+d
= a

c
. We write Cusps(Γ) = Γ\P1(Q) for this quotient and an

equivalence class is called a cusp of Γ. Note that the action is transitive in the case of Γ = SL2(Z),
and so SL2(Z) only has one cusp. Given a cusp c ∈ Cusps(Γ), we can thus choose a matrix
γc ∈ SL2(Z) such that [γc∞] = c. Now consider f |kγc and

Γc = (γ−1
c Γγc) ∩ SL2(Z)∞.

Note that f |kγc does not depend on the choice of γc, as γc is determined uniquely up to an element
in Γ and f is weakly modular of weight k for Γ. There exists a minimal hc ≥ 1 such that

(
1 hc
0 1

)
∈ Γc,

and then (f |kγc)(z + hc) = (f |kγc)(z), which gives us an analytic function f̃c : D \ {0} → C with
(f |kγc)(z) = f̃c(exp(2πiz/hc)). If f̃c has an analytic extension to D, we say that f is holomorphic at
the cusp c. In that case, we have a Fourier expansion

(f |kγc)(z) = ac(0) +
∞∑
n=1

ac(n)n
k−1
2 e2πinz/hc .

A holomorphic map f : H → C that is weakly modular of weight k for Γ and is holomorphic at all
cusps of Γ is called a modular form (of weight k for Γ). We will write Mk(Γ) for the space of all
such modular forms. If, in addition, f vanishes at every cusp, i.e., ac(0) = 0 for every c ∈ Cusps(Γ),
then we say that f is a cusp form, and we write Sk(Γ) for the subspace of cusp forms. Mk(Γ) and
Sk(Γ) are complex vector spaces of finite dimension.
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An important fact about modular forms that we will need is the following.

Lemma 2.1. Let f ∈Mk(Γ) be a modular form. Let α ∈ GL+
2 (Q) be a matrix and define

Γ′ = (α−1Γα) ∩ Γ,

and
fα =

∑
γ∈Γ′\Γ

f |kαγ.

Then this is a well-defined finite sum, and fα ∈Mk(Γ). Moreover, if f is a cusp form, then so is fα.

Proof. See [DS05, Section 5.1].

Modular forms with a nebentypus

Let N ≥ 1 be a level and let χ be a Dirichlet character modulo N . We can then consider the
subspace Mk(Γ0(N), χ) ⊆Mk(Γ1(N)) consisting of modular forms f that satisfy

f |k
(
a b
c d

)
= χ(d) · f for all

(
a b
c d

)
∈ Γ0(N).

If f ∈Mk(Γ0(N), χ), we call χ the nebentypus of f . In the case that χ is the trivial character, we
have an equality Mk(Γ0(N), χ) =Mk(Γ0(N)). It turns out that Mk(Γ1(N)) decomposes as a direct
sum of these subspaces:

Mk(Γ1(N)) =
⊕

χ∈ ̂(Z/NZ)×

Mk(Γ0(N), χ).

Similarly, we can define a subspace Sk(Γ0(N), χ) ⊆ Sk(Γ1(N)). There is an obvious inclusion
Sk(Γ0(N), χ) ⊆Mk(Γ0(N), χ), and as above, Sk(Γ1(N)) decomposes as a direct sum of the subspaces
Sk(Γ0(N), χ).

Petersson inner product

On Sk(Γ), we can define the Petersson inner product. Given f, g ∈ Sk(Γ), we define

⟨f, g⟩ =
∫
Γ\H

f(z)g(z)yk
dxdy

y2
. (2.3)

This allows us to talk about orthogonality in the space of cusp forms, which is needed to construct
the so-called newforms.

Oldforms and newforms

Given a level N and a proper divisor M of N , we have an inclusion Γ0(N) ⊆ Γ0(M). It follows
that a holomorphic function that is weakly modular of weight k for Γ0(M) is also weakly modular
of weight k for Γ0(N). As a result we obtain an embedding Sk(Γ0(M)) ↪→ Sk(Γ0(N)). In fact,
something stronger is true: given a divisor d|N

M
, we have a linear map

iM,N,d : Sk(Γ0(M)) → Sk(Γ0(N)),

f(z) 7→ f(dz).
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The space generated by the images of all these maps is called the space of oldforms:

Sold
k (Γ0(N)) :=

⊕
M |N
M ̸=N

⊕
d| N
M

iM,N,d(Sk(Γ0(M))).

We then define the space of newforms to be the orthogonal complement of the oldforms:

Snew
k (Γ0(N)) := Sold

k (Γ0(N))⊥. (2.4)

These are the modular forms of level N that do not arise from a modular form of a lower level.
Results about modular forms can often be reduced to results about newforms.

For any congruence subgroup Γ, one can define a decomposition

Mk(Γ) = Ek(Γ)⊕ Sk(Γ),

where Ek(Γ) is called the Eisenstein subspace, see [DS05, Section 5.11]. Using an explicit basis for
Ek(Γ(N)) and a deep result of Deligne [Del74], one can obtain the following bounds for the Fourier
coefficients of a modular form with nebentypus.

Lemma 2.2. Let k,N ≥ 1 be integers and χ a Dirichlet character modulo N . Let f ∈Mk(Γ0(N), χ)
be a modular form and consider its Fourier expansion

f(z) = a(0) +
∞∑
n=1

a(n)n
k−1
2 e2πinz.

If f ∈ Ek(Γ0(N), χ), then a(n) = O(n
k−1
2

+ε) as n → ∞, for any ε > 0. If f ∈ Sk(Γ0(N), χ), then
a(n) = O(nε) as n → ∞, for any ε > 0. In particular, for general f ∈ Mk(Γ0(N), χ), one has
a(n) = O(nγ) as n→ ∞, for any γ > k−1

2
.

Proof. For the case f ∈ Ek(Γ0(N), χ), note that Ek(Γ0(N), χ) ⊆ Ek(Γ(N)) and use the explicit
Fourier expansion of a basis for Ek(Γ(N)) given by [DS05, Thm. 4.2.3]. For the case f ∈ Sk(Γ0(N), χ),
this is a consequence of the proof of the Weil conjectures by Deligne, see also [IK04, Section 14.9].

Atkin–Lehner operators

Let D ≥ 1 be a square-free integer and χ a Dirichlet character modulo D. Let g ∈Mℓ(Γ0(D), χ) be
a modular form and fix a decomposition D = δ · δ′. As gcd(δ, δ′) = 1, we can find integers x, y ∈ Z
with xδ − yδ′ = 1 and define the matrix

ωδ =

(
x y
δ′ δ

)(
δ 0
0 1

)
=

(
xδ y
D δ

)
.

Note that ωδ has determinant δ. We now define

gδ = g|ℓωδ, (2.5)

and
χδ = χ−1

δ · χδ′ .

7



Here χδ and χδ′ denote the unique Dirichlet characters modulo δ and δ′, respectively, such that
χ = χδ · χδ′ . We note that ω2

δ = δ · γ for some γ ∈ Γ0(D) and so (gδ)δ is again equal to g up to
multiplication by its nebentypus. Slashing with ωδ is an example of an Atkin–Lehner operator. If g
is a modular form for Γ0(D), then it has a trivial nebentypus and hence (gδ)δ = g. In this case, the
operator is an involution.

We will show that gδ ∈Mℓ(Γ0(D), χδ) using the following lemma.

Lemma 2.3. ωδ normalizes Γ0(D) and Γ1(D).

Proof. Let ( a bc d ) ∈ Γ0(D) be given. A simple calculation shows that

ωδ

(
a b
c d

)
ω−1
δ =

(
axδ + cy − bxD − dyδ′ ∗
aD + cδ − bDδ′ − dD −ayδ′ − cy + bxD + dxδ

)
.

As D divides c by assumption, it follows that ωδ( a bc d )ω
−1
δ ∈ Γ0(D). If furthermore ( a bc d ) ∈ Γ1(D),

then ωδ( a bc d )ω
−1
δ ∈ Γ1(D), as we have

axδ + cy − bDx− dyδ′ ≡ δx− yδ′ = 1 (mod D),

−ayδ′ − cy + bDx+ dxδ ≡ −yδ′ + xδ = 1 (mod D).

This proves the inclusion ωδΓi(D)ω−1
δ ⊆ Γi(D). A similar argument shows that ω−1

δ Γi(D)ωδ ⊆ Γi(D),
from which the lemma follows.

As a result, we obtain the following proposition.

Proposition 2.4. Let g ∈ Mℓ(Γ0(D), χ) with D square-free and fix a decomposition D = δ · δ′.
Then gδ ∈Mℓ(Γ0(D), χδ). Moreover, gδ is a cusp form if and only if g is a cusp form.

Proof. By Lemma 2.1 and Lemma 2.3, it immediately follows that gδ ∈ Mℓ(Γ1(D)) and that
gδ ∈ Sℓ(Γ1(D)) if and only if g ∈ Sℓ(Γ1(D)). It remains to show that gδ|ℓγ = χδ(d)gδ for
γ = ( a bc d ) ∈ Γ0(D).

Given such γ, consider γ′ = ωδγω
−1
δ ∈ Γ0(D), so that ωδγ = γ′ωδ. By Lemma 2.3, we know that

the lower right entry of γ′ is given by −ayδ′ − cy + bDx+ dxδ. Now note that

χ(−ayδ′ − cy + bDx+ dxδ) = χ(dxδ − ayδ′) = χδ(−ayδ′) · χδ′(dxδ)
= χδ(a) · χδ(−yδ′) · χδ′(d) · χδ′(xδ) = χδ(a) · χδ′(d) = χ−1

δ (d) · χδ′(d) = χδ(d).

Here we used that xδ − yδ′ = 1 and that ad ≡ 1 (mod D). We conclude that

gδ|ℓγ = g|ℓωδγ = g|ℓγ′ωδ = (χ(−ayδ′ − cy + bDx+ dxδ)g)|ℓωδ = χδ(d)gδ.

As a consequence, gδ has a Fourier expansion and we will write it as

gδ(z) = bδ(0) +
∞∑
n=1

bδ(n)n
ℓ−1
2 e2πinz. (2.6)

Remark. The modular form gδ is related to the behavior of g at the cusps of Γ1(D) of the form a
c

with δ′ = gcd(D, c), as can be seen in Lemma 3.6.
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2.2 Poincaré series

An important example of a modular form, and one that will play a key role in our approach, is the
Poincaré series Pm. In this section, we give the definition of a Poincaré series and state a formula
for its Fourier coefficients (Proposition 2.8). We also state the Petersson formula (Proposition 2.9),
which relates the Petersson inner product ⟨f, Pm⟩ to the mth coefficient of a modular form f .

Definition

Fix a level N ≥ 1 and an even weight k ≥ 4. Let m ≥ 1 be an integer. We then define the Poincaré
series of order m (of weight k and level N) by

Pm(z) = m
k−1
2

∑
γ∈Γ∞\Γ0(N)

j(γ, z)−ke2πimγz. (2.7)

This sum converges absolutely and uniformly on compact subsets of H and thus defines an analytic
function there. By (2.1), it is not hard to see that Pm(z) is weakly modular of weight k for Γ0(N).
It turns out that Pm(z) is also holomorphic at the cusps of Γ0(N) and hence defines a modular
form of weight k and level N .

Fourier coefficients

Definition 2.5. Let m,n, c ≥ 1 be integers. We define their Kloosterman sum as

K(m,n; c) =
∑

r∈(Z/cZ)×
e2πi

mr+nr̄
c ,

where r̄ denotes the inverse of r modulo c.

Lemma 2.6. For m,n, c ≥ 1, the Kloosterman sum K(m,n; c) satisfies the following bound:

|K(m,n; c)| ≤ σ0(c)
√

gcd(m,n, c)
√
c,

where σ0(c) denotes the number of divisors of c.

Proof. The bound can be reduced to the case that c is prime. The case c prime is proven in [Wei48,
p. 207].

There are various ways to define the Bessel function of the first kind. See, for example, [Erd+81b,
Ch. VII], where many equivalent definitions are given. The following definition corresponds to
definition (34) on page 21 after a change of variables.

Definition 2.7. Fix an integer k > 0 and a real number 0 < ϵ < k−1
2
. Then we define the Bessel

function of the first kind for x > 0 by

Jk−1(x) =
1

2πi

ϵ− k−1
2

+i∞∫
ϵ− k−1

2
−i∞

Γ(k−1
2

+ w)

Γ(k+1
2

− w)

(x
2

)−2w

dw.
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The function Jk−1(x) does not depend on the choice of the value ϵ. Using Stirling’s approximation
for the gamma function, it follows that the integral above converges absolutely for all x > 0. The
approximation states that for fixed σ ∈ R,

|Γ(σ + it)| =
√
2π|t|σ−

1
2 e−

1
2
π|t|(1 + o(1)) as |t| → ∞, (2.8)

and so for w = ϵ− k−1
2

+ it, the integrand is O(|t|2ϵ−k) as |t| → ∞.

Remark. One can also express Jk−1(x) as an infinite sum [Erd+81b, Eq. 7.2 (2)]:

Jk−1(x) =
∞∑
n=0

(−1)n

n!

1

Γ(n+ k)

(x
2

)2n+k−1

. (2.9)

This expression can be obtained from the integral representation in Definition 2.7 by using the
residue theorem and taking a contour integral consisting of a vertical line segment at ℜ(w) = ϵ− k−1

2

and a large semicircle to the left of this segment. In the limit, this contour will pick up all poles of
the integrand, which correspond to the poles of Γ(k−1

2
+w) at w = −n− k−1

2
for n ∈ Z≥0. One can

show that the integral over the semicircle vanishes as the radius increases and by taking the limit
one obtains the equality above.

The Fourier coefficients of the Poincaré series can be given in terms of Kloosterman sums and
Bessel functions of the first kind.

Proposition 2.8. Let k ≥ 4 be even and m,N ≥ 1 be integers. Then Pm(z), as defined by (2.7),
lies in Sk(Γ0(N)). Furthermore, the coefficients pm(n) in the Fourier expansion

Pm(z) =
∞∑
n=1

pm(n)n
k−1
2 e2πinz,

are given by

pm(n) = δm,n + 2πik
∞∑
c=1
N |c

K(m,n; c)

c
Jk−1

(
4π

√
mn

c

)
,

where δm,n is the Kronecker delta function that is 1 if m = n and 0 otherwise.

Proof. See [IK04, Lemma 14.2]. Note the difference in normalization.

Remark. There are no non-trivial cusp forms of weight 4 ≤ k ≤ 10 and level N = 1, and so
pm(n) = 0 for all m,n ≥ 1 in that case.

Remark. It is possible to define the Poincaré series for weight 2. In that case, the infinite sum in
(2.7) still converges, but not absolutely [IK04, p. 358]. Alternatively, Pm can be defined as a limit
of automorphic forms

Pm,s(z) =
√
m

∑
γ∈Γ∞\Γ0(N)

(ℑ(γz))s

j(γ, z)2
e2πimγz. (2.10)

This series converges absolutely for ℜ(s) > 0 and, for fixed z ∈ H, extends meromorphically in s
to the whole complex plane [GZ99, Section 2]. One can then define Pm(z) = lims→0 Pm,s(z). The
formulas for the Fourier coefficients of Pm ∈ S2(Γ0(N)) are still as in Proposition 2.8.
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Petersson formula

An important property of the Poincaré series is that they can isolate the Fourier coefficients of
other modular forms of the same weight and level, as is made precise by the following proposition.

Proposition 2.9 (Petersson Formula). Let f ∈ Sk(Γ0(N)) be a cusp form. Write its Fourier
expansion as

f(z) =
∞∑
n=1

a(n)n
k−1
2 e2πinz.

Then for all m ≥ 1, we have

a(m) =
(4π)k−1

(k − 2)!
⟨f, Pm⟩.

Proof. We will write Γ = Γ0(N) and e(t) = e2πit. We first use (2.2), and the fact that f is modular:

⟨f, Pm⟩ =
∫
Γ\H

f(z)Pm(z)y
k dxdy

y2

= m
k−1
2

∑
γ∈Γ∞\Γ

∫
Γ\H

f(z)e(mγz)(j(γ, z)−k)yk
dxdy

y2

= m
k−1
2

∑
γ∈Γ∞\Γ

∫
Γ\H

f(γz)e(mγz)(ℑ(γz))k dxdy
y2

= m
k−1
2

∫
Γ∞\H

f(z)e(mz)yk
dxdy

y2
.

Now note that Γ∞\H is represented by the vertical strip 0 ≤ ℜ(s) < 1 with ℑ(s) > 0. Using the
Fourier expansion of f , we obtain:

m
k−1
2

∫
Γ∞\H

f(z)e(mz)yk
dxdy

y2
= m

k−1
2

∫ ∞

0

∫ 1

0

∞∑
n=1

a(n)n
k−1
2 e(nz)e(mz)yk

dxdy

y2

= m
k−1
2

∫ ∞

0

∞∑
n=1

a(n)n
k−1
2 e−2π(m+n)yyk−2

∫ 1

0

e((n−m)x)dxdy

= m
k−1
2

∫ ∞

0

a(m)m
k−1
2 e−4πmyyk−2dy

=
a(m)

(4π)k−1

∫ ∞

0

tk−2e−tdt.

Noting that the integral represents Γ(k − 1) = (k − 2)!, we immediately deduce:

a(m) =
(4π)k−1

(k − 2)!
⟨f, Pm⟩.

Remark. If f ∈ Sk(Γ0(N)) is orthogonal to every Poincaré series Pm ∈ Sk(Γ0(N)), then by the
Petersson formula, all of the Fourier coefficients of f must be zero, and so f must be zero. As
Sk(Γ0(N)) is finite dimensional, it follows that the Poincaré series span Sk(Γ0(N)).

11



2.3 Theta series

A second type of modular form that is of interest to us is a theta series. In this section, we
introduce notation related to imaginary quadratic fields and state the definition of a theta series.
In Proposition 2.14, we give a formula for slashing a theta series with any matrix in SL2(Z). This
is a generalization of [GZ86, Lemma IV.2.3]. Using this proposition, we deduce formulas for the
Fourier coefficients of a theta series and its Atkin–Lehner translates (Proposition 2.15).

Definitions

Let D be a positive and square-free integer and consider the imaginary quadratic field K =
Q(

√
−D), viewed as a subfield of C. We will assume that D ≡ 3 (mod 4), so that ∆K = −D and

OK = Z[1+
√
−D

2
]. We will write w = |O×

K |, u = w
2
, h = |ClK | and N(·) = NK/Q(·). Attached to this

field is a Dirichlet character χ modulo D, that is given by the Kronecker symbol χ(·) =
(
∆K
·

)
. For

a prime number p, it satisfies

χ(p) =


1 if p is split,

−1 if p is inert,

0 if p is ramified.

If we let rK(n) denote the number of ideals in OK of norm n, then

rK(n) =
∑
d|n

χ(d).

In particular, we find that |rK(n)| ≤ σ0(n), where σ0(n) denotes the number of divisors of n. It is
well known that for any ε > 0, we have a bound σ0(n) = O(nε) as n→ ∞. We deduce:

Lemma 2.10. The number of ideals in OK of norm n satisfies the asymptotic bound rK(n) = O(nε)
as n→ ∞ for any ε > 0.

We will write IK for the group of fractional ideals of OK . Let ψ : IK → C× be a homomorphism
and assume that there exists a positive integer t such that ψ((α)) = αt−1 for all α ∈ K×. Note
that this forces t to be odd (and t ≡ 1 (mod 6) if D = 3). This is an example of an unramified
Hecke character of infinity type (t− 1, 0). In this thesis, we will not consider other types of Hecke
characters. For the definition of a Hecke character in general, see [Neu99, Section VII.6]. In the
case that t = 1, ψ maps principal ideals to 1 and thus can be considered as a homomorphism
ψ : ClK → C×. In this case, ψ is a finite order character. Otherwise, when t > 1, ψ has infinite
order.

Let A ∈ ClK be some ideal class. Then we define coefficients rA,ψ(n) for n ≥ 1 by

rA,ψ(n) =
∑
a∈A

N(a)=n

ψ(a).

We also define

rA,ψ(0) =

{
ψ(A)
w

if t = 1,

0 if t > 1.
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These coefficients are the (unnormalized) Fourier coefficients of a modular form

θA,ψ(z) = rA,ψ(0) +
∑
a⊆OK
[a]=A

ψ(a)e2πiN(a)z =
∞∑
n=0

rA,ψ(n)e
2πinz ∈Mt(Γ0(D), χ),

which is a cusp form for t > 1. This can be proven using the Poisson summation formula. For the
case t = 1, see [IK04, Section 14.3]. We call θA,ψ the theta series associated to A and ψ. Given
some ideal a ∈ A, we have a third representation of θA,ψ given by

θA,ψ(z) =
ψ(a)

w

∑
λ∈a−1

λt−1e2πiN(λa)z, (2.11)

as any integral ideal b ∈ A is of the form b = λa with λ ∈ a−1, and ψ(λa) = λt−1ψ(a).

Remark. The reason that we restrict ourselves to unramified Hecke characters is so that (2.11)
holds. This equality plays a vital role in the proof of Proposition 2.14.

Proposition 2.11. The coefficients rA,ψ(n) satisfy a bound of the form rA,ψ(n) = O(n
t−1
2

+ε) as
n→ ∞ for any ε > 0.

Proof. Note that

|rA,ψ(n)| ≤
∑
a∈A

N(a)=n

|ψ(a)| ≤
∑
a⊆OK
N(a)=n

|ψ(a)| = n
t−1
2 · rK(n).

Here we used that |ψ(a)|2 = ψ(N(a)) = N(a)t−1. Now apply Lemma 2.10.

SL2(Z)-translates

We are interested in the behavior of slashing θA,ψ with arbitrary matrices in SL2(Z). In the works
of Gross–Zagier, they give the behavior for weight 1 theta series, see [GZ86, Lemma IV.2.3]. We
will generalize this lemma in Proposition 2.14, but first we need a few definitions.

Given a decomposition D = δ1 · δ2, we can also decompose ∆K = D1 · D2 as a product of
discriminants with |Di| = δi and Di ≡ 1 (mod 4). Given such a decomposition, we can define a
character χD1·D2 : IK → C× on a ⊆ OK by

χD1·D2(a) =

{
χD1(N(a)) if gcd(N(a), D1) = 1,

χD2(N(a)) if gcd(N(a), D2) = 1.
(2.12)

Here χDi is the unique Dirichlet character modulo |Di| such that χ = χD1 · χD2 . It turns out that
(2.12) yields a well-defined character, and that χD1·D2(a) = 1 for any principal ideal a. It follows
that χD1·D2 induces a class group character, i.e., a map ClK → C×. We will use the notation χD1·D2

for both the character on ideals and the character on classes, and we will also write χδ1·δ2 instead
of χD1·D2 , when it is more convenient to do so.

Given a divisor δ|D, we define

κ(δ) =

{
1 if χδ(−1) = 1

i if χδ(−1) = −1
=

{
1 if δ ≡ 1 (mod 4),

i if δ ≡ 3 (mod 4).
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We also need a result on Fourier transforms.

Lemma 2.12. Let a ∈ H, t ∈ Z≥0 and define ft : C → C by ft(z) = zt exp(2πi|z|2a). Then the
Fourier transform of ft is given by

f̂t(z) =
i

(2a)t+1
zt exp

(
−πi|z|

2

2a

)
.

Sketch of proof. Reduce to the case t = 0 using [SW71, (1.9)]. Write the integral defining the
Fourier transform as a product of two integrals and use the fact that the e−πx

2
is its own Fourier

transform.

Using this fact, together with the Poisson summation formula, we can prove the following lemma.

Lemma 2.13. Let b ⊆ K be a fractional ideal. Let λ ∈ K, a ∈ H and t ≥ 1 an integer. Then∑
µ∈b

(λ+ µ)t−1e (N(λ+ µ)a) =
iD− 1

2

N(b)at

∑
ν∈b̄−1d−1

νt−1e

(
−N(ν)

a

)
e
(
Tr(λ̄ν)

)
,

where we write e(x) for e2πix.

Proof. We interpret L = b as a lattice in C. The lattice dual to L is given by

L∨ = {u ∈ R2 | ∀v ∈ L, ⟨u, v⟩ ∈ Z},

where ⟨u, v⟩ is the standard scalar product on R2. This dual lattice can be identified with

L∨ = {u ∈ K | ∀v ∈ b,TrK/Q(uv̄) ∈ 2Z} = 2{u ∈ K | TrK/Q(ub̄) ⊆ Z} = 2b̄−1d−1.

Here d is the different of K and it is the unique ideal of norm D. As the co-volume of b is given by√
D
2

· N(b), we conclude using the Poisson summation formula [SW71, Thm. VII.2.4] that∑
µ∈b

(λ+ µ)t−1e (N(λ+ µ)a) =
∑
µ∈b

ft−1(λ+ µ)

=
2

D
1
2N(b)

∑
ν∈2b̄−1d−1

f̂t−1(ν) · e2πiℜ(λ̄ν)

=
i

D
1
2N(b)2t−1at

∑
ν∈2b̄−1d−1

νt−1 exp

(
−πiN(ν)

2a

)
e
(
ℜ(λ̄ν)

)
=

iD− 1
2

N(b)at

∑
ν∈b̄−1d−1

νt−1e

(
−N(ν)

a

)
e
(
Tr(λ̄ν)

)
,

We can now state and prove the generalization of [GZ86, Lemma IV.2.3]. Most of their proof
generalizes nicely, but as they are able make a few simplifications that do not hold in the general
case, we will write out the entire proof, except for the reduction step at the start. We follow their
proof closely.
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Proposition 2.14. Let γ = ( a bc d ) ∈ SL2(Z). Let δ2 = gcd(c,D) and δ1 = D/δ2. Let ∆K = D1 ·D2 be
the corresponding decomposition of fundamental discriminants, i.e., |Di| = δi and Di ≡ 1 (mod 4).
Lastly, let Di ∈ ClK denote the class of the unique ideal di ⊆ OK with d2i = (Di). Then

(θA,ψ|tγ)(z) =
χD1(c/δ2)χD2(d)

δ
1
2
1 κ(δ1)ψ(d1)

χD1·D2(A)θAD1,ψ

(
z + c̄d

δ1

)
,

where c̄ is an inverse of c modulo δ1.

Proof. Analogous to what is shown in [GZ86, Lemma IV.2.3], we may reduce to the case c = δ2
and we will use c and δ2 interchangeably.

Let ζ = − 1
c(cz+d)

and let a ⊆ OK be some ideal with [a] = A. Let A = N(a). Then by (2.11),

θA,ψ

(
az + b

cz + d

)
= θA,ψ

(a
c
+ ζ
)
=
ψ(a)

w

∑
λ∈a−1

λt−1e
(
AN(λ)

(a
c
+ ζ
))

,

where e(x) = e2πix and w = #O×
K . For λ ∈ a−1 and µ ∈ a−1d2, note that

AN(λ+ µ) = AN(λ) + AN(µ) + ATr(λµ̄),

that δ2|AN(µ) and that λµ̄ ∈ a−1 · a−1d2 =
δ2
A
d−1
2 ⊆ δ2

A
d−1. As d is the different of K, we find that

ATr(λµ̄) ∈ δ2Z. It follows that AN(λ + µ) ≡ AN(λ) (mod δ2) for all µ ∈ a−1d2, and so we can
rewrite the sum as

θA,ψ

(
az + b

cz + d

)
=
ψ(a)

w

∑
λ∈a−1/a−1d2

e
(
AN(λ)

a

c

) ∑
µ∈a−1d2

(λ+ µ)t−1e(AN(λ+ µ)ζ).

Using Lemma 2.13, we find that

∑
µ∈a−1d2

(λ+µ)t−1e(AN(λ+µ)ζ) =
(−1)tiδt−1

2 (cz + d)t

D
1
2At−1

∑
ν∈ad−1

2 d−1

νt−1e

(
N(ν)

A
c(cz+d)

)
e(Tr(λ̄ν)).

We note that (−1)t = −1, because t must be odd. As ad−1
2 d−1 = δ−1

2 · ād−1
1 and d̄1 = d1, we can

substitute ν with δ−1
2 ν̄ to obtain

(θA,ψ|tγ)(z) =
−ψ(a)i
wD

1
2At−1

∑
λ∈a−1/a−1d2

e
(
AN(λ)

a

c

) ∑
ν∈ad−1

1

ν̄t−1e

(
N(ν)

A

(
z +

d

c

))
e

(
Tr(λν)

c

)

=
−ψ(a)i
wD

1
2At−1

∑
ν∈ad−1

1

ν̄t−1C(ν)e

(
N(ν)

A

(
z +

d

c

))
,

where
C(ν) =

∑
λ∈a−1/a−1d2

ec (aAN(λ) + Tr(λν)) with ec(x) = e
(x
c

)
.
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Now choose λ0 ∈ a−1 such that (λ0)a and d2 are coprime. Then there is a one to one correspondence
between OK/d2 and a−1/a−1d2 given by µ↔ λ0µ, and so if we write R = a · A · N(λ0), then

C(ν) =
∑

µ∈OK/d2

ec(RN(µ) + Tr(λ0µν)).

The trace Tr(λ0µν) lies in Z, as λ0µν ∈ d−1
1 ⊆ d−1. Moreover, R is prime to δ2. If we let R∗ denote

an inverse of R modulo δ2 that is divisible by δ1, then it follows that

ec(RN(µ) + Tr(λ0µν)) = ec(RN(µ) +RTr(R∗λ0µν))

= ec(RN(µ+R∗λ0ν)−RN(R∗λ0ν))

= ec(RN(µ+R∗λ0ν)−R∗N(λ0ν)),

where we use the equality N(x+ y) = N(x) + N(y) + Tr(xȳ) for all x, y ∈ K. We deduce that

C(ν) = ec(−R∗N(λ0ν))
∑

µ∈OK/d2

ec(RN(µ+R∗λ0ν))

= ec(−R∗N(λ0ν))
∑

µ∈OK/d2

ec(RN(µ)),

where we use that R∗λ0ν ∈ OK , as λ0ν ∈ d−1
1 = δ−1

1 · d1 and δ1|R∗. Using Z/δ2Z as representatives
for OK/d2, we obtain∑

µ∈OK/d2

ec (RN(µ)) =
∑

n∈Z/δ2Z

ec
(
Rn2

)
= κ(δ2)δ

1
2
2 χD2(R) = κ(δ2)δ

1
2
2 χD2(d)χD1·D2(A).

Here we used that χD2(R) = χD2(d)χD1·D2(A), as R = aN(λ0a). Finally, note that

ec(−R∗N(λ0ν))e

(
N(ν)

A

(
z +

d

c

))
= e

(
N(ν)

A

(
z +

d− AR∗N(λ0)

c

))
= e

(
N(ν)

A
(z + c̄d)

)
,

because (d − AR∗N(λ0))/c ≡ c̄d (mod δ1) and N(ν)
A

= r
δ1

for some r ∈ Z≥0. As Ā−1 = A and
κ(δ1) · κ(δ2) = i, we conclude that

(θA,ψ|tγ)(z) =
ψ(a) · −i
wD

1
2At−1

κ(δ2)δ
1
2
2 χD2(d)χD1·D2(A)

∑
ν∈ad−1

1

ν̄t−1e

(
N(a−1d1)N(ν)

(
z + c̄d

δ1

))

=
1

δ
1
2
1 κ(δ1)

χD2(d)χD1·D2(A)
ψ(a)

wAt−1

∑
ν∈ād−1

1

νt−1e

(
N(ā−1d1)N(ν)

(
z + c̄d

δ1

))

=
1

δ
1
2
1 κ(δ1)

χD2(d)χD1·D2(A)
ψ(a)ψ(ā)

ψ(d1)At−1
θĀ−1D1,ψ

(
z + c̄d

δ1

)
=

χD2(d)

δ
1
2
1 κ(δ1)ψ(d1)

χD1·D2(A)θAD1,ψ

(
z + c̄d

δ1

)
.
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Fourier coefficients

We will denote the normalized Fourier coefficients of θA,ψ(z) by bA,ψ(n), so that

θA,ψ(z) = bA,ψ(0) +
∞∑
n=1

bA,ψ(n)n
t−1
2 e2πinz.

Recall from (2.5) that we defined the Atkin–Lehner operator for a decomposition D = δ · δ′ by

θδA,ψ = θA,ψ|tωδ with ωδ =

(
x y
δ′ δ

)(
δ 0
0 1

)
,

where x and y are integers satisfying xδ− yδ′ = 1. Moreover, we defined the coefficients bδA,ψ(n) via

θδA,ψ(z) = bδA,ψ(0) +
∞∑
n=1

bδA,ψ(n)n
t−1
2 e2πinz.

Proposition 2.15. The Fourier coefficients bA,ψ(n) and bδA,ψ(n) as above satisfy the following
properties:

(1) bA,ψ(nD) = (−1)
t−1
2 · bA,ψ(n) for all n ≥ 1.

(2) bA,ψ(nδ
2) = bA,ψ(n) for all n ≥ 1 and δ|D.

(3) bA,ψ(n) = 0 if OK has no ideals of norm n.

(4) bδA,ψ(n) = κ(δ)−1χδ′(δ)χδ·δ′(A)bA,ψ(nδ) for all n ≥ 1 and decompositions D = δ · δ′.

(5) bδA,ψ(0) = δ
t−1
2 κ(δ)−1χδ′(δ)χδ·δ′(A)bA,ψ(0) for all decompositions D = δ · δ′.

(6) bδA,ψ(n) = O(nε) as n→ ∞, for any ε > 0 and divisor δ|D.

Proof. (1) There is a unique ideal of norm D given by d = (
√
−D). As ψ(d) = (−D)

t−1
2 , it follows

that

(nD)
t−1
2 bA,ψ(nD) =

∑
a⊆OK
[a]=A

N(a)=nD

ψ(a) = (−D)
t−1
2

∑
a⊆OK
[a]=A
N(a)=n

ψ(a) = (−nD)
t−1
2 bA,ψ(n).

(2) Note that (δ) is the unique ideal of norm δ2. As ψ((δ)) = δt−1, it follows that

(nδ2)
t−1
2 bA,ψ(nδ

2) =
∑
a⊆OK
[a]=A

N(a)=nδ2

ψ(a) = δt−1
∑
a⊆OK
[a]=A
N(a)=n

ψ(a) = (nδ2)
t−1
2 bA,ψ(n).

(3) Clear.
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(4) Let D = δ · δ′ be a decomposition and let ∆K = D1 ·D2 be the corresponding decomposition
of fundamental discriminants. Recall that θδA,ψ is defined as θA,ψ|twδ, with wδ = ( x y

δ′ δ )(
δ 0
0 1 )

where x, y ∈ Z are chosen such that xδ − yδ′ = 1. We will write

γ1 =

(
x y
δ′ δ

)
, γ2 =

(
δ 0
0 1

)
.

Applying Proposition 2.14 with γ1 yields

(θA,ψ|tγ1)(z) =
χD2(δ)χD1·D2(A)

δ
1
2ψ(d1)κ(δ)

θAD1,ψ

(z
δ

)
,

where we write d1 for the unique ideal of norm δ and D1 for the ideal class of d1. It follows
that

θδA,ψ(z) = (θA,ψ|tγ1γ2)(z) = δ
t
2 (θA,ψ|tγ1)(δz) = δ

t−1
2
χD2(δ)χD1·D2(A)

ψ(d1)κ(δ)
θAD1,ψ (z) . (2.13)

Comparing coefficients, we find that

bδA,ψ(n) = δ
t−1
2 ψ(d1)

−1χD2(δ)κ(δ)
−1χD1·D2(A)bAD1,ψ(n)

= δt−1ψ(d1)
−2χD2(δ)κ(δ)

−1χD1·D2(A)bA,ψ(nδ)

= χD2(δ)κ(δ)
−1χD1·D2(A)bA,ψ(nδ).

Here we used that bAD1,ψ(n) = δ
t−1
2 ψ(d1)

−1bA,ψ(nδ), as

ψ(d1)rAD1,ψ(n) = ψ(d1)
∑

a∈AD1
N(a)=n

ψ(a) =
∑

a∈AD2
1

N(a)=nδ

ψ(a) = rAD2
1 ,ψ

(nδ) = rA,ψ(nδ).

(5) This follows from (2.13). In the only non-trivial case t = 1, note that the constant coefficient

of θAD1,ψ is ψ(AD1)
w

, so that the factor ψ(d1) cancels.

(6) Given a divisor δ|D, we know by (2.13) that θδA,ψ is, up to scaling, a theta series. Now use
Proposition 2.11.
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3 L-series

In this chapter, we will give the definitions and properties of various L-series. In Section 3.1,
we consider the L-series associated to a Dirichlet character. We give its functional equation and
state some results in the case that the character is associated to an imaginary quadratic field. In
Section 3.2, we consider the (twisted) L-function associated to a modular form of square-free level.
We prove that it can be extended meromorphically and that it has a functional equation. We also
give a way to bound the L-function on vertical strips of the complex plane. Lastly, in Section 3.3,
we define the Rankin–Selberg L-function of a pair of modular forms and illustrate Rankin’s method.

3.1 Dirichlet L-series

Let D ≥ 1 be an integer and let χ be a Dirichlet character modulo D. We define its associated
L-series L(χ, s) by

L(χ, s) =
∞∑
n=1

χ(n)

ns
.

It converges absolutely for ℜ(s) > 1 and defines an analytic function there. It has a meromorphic
continuation to the complex plane and is entire if χ is not principal. In the case that D = 1, χ must
be the trivial character, and it follows that L(χ, s) is given by ζ(s), the Riemann zeta function. For
ℜ(s) > 1, L(χ, s) satisfies the identity

L(χ, s) =
∏

p prime

1

1− χ(p)p−s
. (3.1)

In particular, L(χ, s) does not vanish for ℜ(s) > 1. Given some integer N ≥ 1, we define

L(N)(χ, s) =
∞∑
n=1

(n,N)=1

χ(n)

ns
. (3.2)

Note that this is the Dirichlet L-series of χ lifted to a higher modulus. By (3.1), it now follows that

L(N)(χ, s) = L(χ, s)
∏

p prime
p|N

(1− χ(p)p−s). (3.3)

We also have for ℜ(s) > 1 that

1

L(N)(χ, s)
=

∏
p prime
p∤N

(1− χ(p)p−s) =
∏

p prime
p∤N

∞∑
n=0

µ(pn)χ(pn)p−ns =
∞∑
n=1

(n,N)=1

µ(n)χ(n)

ns
. (3.4)

Functional equation

Define the Gauss sum
τ(χ) =

∑
r∈(Z/DZ)×

χ(r)e2πi
r
D , (3.5)

and take ϵ ∈ {0, 1} such that χ(−1) = (−1)ϵ. If χ is primitive, L(χ, s) satisfies the following
functional equation.
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Theorem 3.1. Let χ be a primitive Dirichlet character modulo D. Then

L(χ, s) =
τ(χ)

iϵ
√
D

(2π)s

π
D

1
2
−s sin(π

2
(s+ ϵ))Γ(1− s)L(χ̄, 1− s).

Proof. This follows from [Neu99, Thm. VII.2.8]. Their theorem is stated in terms of the completed
Dirichlet L-series. Unpacking the definition and using that

Γ( s+ϵ
2
)

Γ(1+ϵ−s
2

)
=

2s√
π
sin(π

2
(s+ ϵ))Γ(1− s),

proves this functional equation.

In particular, by taking D = 1 we obtain the functional equation for ζ(s):

ζ(s) =
(2π)s

π
sin
(πs
2

)
Γ(1− s)ζ(1− s). (3.6)

Imaginary quadratic fields

We will now consider the special case where χ is the real character associated to some imaginary
quadratic field K of discriminant −D, as in Section 2.3. As χ is primitive, L(χ, s) can be continued
analytically to the entire complex plane. We can explicitly give its value at s = 1 in terms of
invariants of K.

Proposition 3.2. Let K be an imaginary quadratic field with discriminant −D. Let w = #O×
K

be the number of units in OK, let h = #ClK be the class number of K and let χ be the character
associated to K. Then it holds that

L(χ, 1) =
2πh

w
√
D
.

Proof. Let ζK denote the zeta function of K. Then ζK(s) = ζ(s) · L(χ, s), see [BS66, p. 343]. As
ζ(s) has a simple pole with residue 1 at s = 1, it follows that

L(χ, 1) = lim
s→1

(s− 1)ζK(s) =
2πh

w
√
D
,

as is given by the class number formula, see [BS66, p. 313].

We can also give a simplified functional equation.

Theorem 3.3. Let χ be the Dirichlet character modulo D associated to an imaginary quadratic
field of discriminant −D. Then

L(χ, s) =
(2π)s

π
D

1
2
−s sin(π

2
(s+ 1))Γ(1− s)L(χ, 1− s).

Proof. By [Miy06, Lemma 4.8.1], we know that τ(χ) = i
√
D. As χ is real, we have χ̄ = χ. Lastly,

note that χ(−1) = −1. Now use Theorem 3.1.
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Using the functional equation, we can deduce that the only zeros of L(χ, s) in the region ℜ(s) < 0
are at the negative odd integers.

Proposition 3.4. Let χ be the Dirichlet character modulo D associated to an imaginary quadratic
field of discriminant −D. Then the only zeros of L(χ, s) for ℜ(s) < 0 are the points s = −(2n+ 1)
with n ∈ Z≥0.

Proof. Consider the functional equation in Theorem 3.3. By (3.1), we know that L(1− s, χ) does
not vanish for ℜ(s) < 0. Moreover, Γ(1− s) does not have any zeros or poles for ℜ(s) < 0. The
proposition now follows from the fact that the only zeros of sin(π

2
(s+1)) are at the odd integers.

3.2 L-series of modular forms

In this section, we will define the twisted L-series Lg(s,
a
c
) associated to a modular form g ∈

Mℓ(Γ0(D), χ). In Proposition 3.5, we will show that Lg(s,
a
c
) can be extended meromorphically to

the complex plane (holomorphically if g is a cusp form) and that it satisfies a functional equation
relating Lg(s,

a
c
) to the twisted L-series of an Atkin–Lehner translate of g. We conclude the section

with Proposition 3.8 by giving a bound on Lg(s,
a
c
) on certain vertical strips of the complex plane

that is polynomial in ℑ(s).

Definitions

Let g ∈ Mℓ(Γ0(D), χ) be a modular form with D a square-free integer. Consider its Fourier
expansion given by

g(z) = b(0) +
∞∑
n=1

b(n)n
ℓ−1
2 e2πinz.

Then we can associate an L-series to g given by

Lg(s) =
∞∑
n=1

b(n)

ns
. (3.7)

If we have a bound of the form b(n) = O(nγ) as n→ ∞ for some γ > 0, then the sum converges
absolutely for ℜ(s) > 1 + γ and defines an analytic function there. By Lemma 2.2, we can always
take any γ > ℓ−1

2
. More generally, given integers a and c with gcd(a, c) = 1, we can consider the

twisted L-series

Lg(s,
a
c
) =

∞∑
n=1

b(n)

ns
e2πin

a
c . (3.8)

This also defines an analytic function on ℜ(s) > 1 + γ and only depends on the class of a (mod c).

Continuation and functional equation

In this subsection, we will give the functional equation for Lg(s,
a
c
) and show that Lg(s,

a
c
) can be

continued meromorphically to the complex plane. The functional equation involves the Atkin–Lehner
operator, which is defined for a decomposition D = δ · δ′ by (2.5) as

gδ = g|ℓωδ with ωδ =

(
x y
δ′ δ

)(
δ 0
0 1

)
,
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where x and y are integers such that xδ − yδ′ = 1. We follow the approach in [GZ99, Prop. 4.2].

Proposition 3.5. Let g ∈ Mℓ(Γ0(D), χ) with D square-free. Let a, c ∈ Z with gcd(a, c) = 1.
Decompose D as D = δ · δ′, where δ′ = gcd(D, c). Then:

(1) The function Lg(s,
a
c
) can be extended meromorphically to the complex plane and its only

possible pole is a simple pole at s = ℓ+1
2

with residue

Res ℓ+1
2

(
Lg

(
s,
a

c

))
=

(2π)ℓ

Γ(ℓ)
χδ

( c
δ′

)
χ−1
δ′ (aδ)δ

− ℓ
2 iℓc−ℓbδ(0).

(2) The function Lg(s,
a
c
) satisfies the functional equation

Lg

(
s,
a

c

)
= iℓχδ

( c
δ′

)
χ−1
δ′ (aδ)

(
δc2

4π2

) 1
2
−s Γ( ℓ+1

2
− s)

Γ( ℓ−1
2

+ s)
Lgδ

(
1− s,−aδ

c

)
,

where we let aδ denote the inverse of aδ (mod c).

The proof of the proposition involves the Mellin transform∫ ∞

0

[
g
(a
c
+ iy

)
− b(0)

]
y
ℓ−1
2

+sdy

y
.

In order to manipulate this integral, we will need the following lemma.

Lemma 3.6. Let g ∈ Mℓ(Γ0(D), χ) with D square-free. Let a, c ∈ Z with gcd(a, c) = 1 and
decompose D = δ · δ′ where gcd(c,D) = δ′. Then for all real y > 0, it holds that

g
(a
c
+ iy

)
= iℓ(cy)−ℓχδ

( c
δ′

)
χ−1
δ′ (aδ)δ

− ℓ
2 gδ
(
−aδ
c

+
i

c2δy

)
,

where we let aδ denote the inverse of aδ (mod c).

Proof. Let x, y ∈ Z be integers such that xδ − yδ′ = 1. Let γ = ( a bc d ) ∈ SL2(Z) with δ|d and set

γ′ = γ

(
x y
δ′ δ

)−1

=

(
aδ − bδ′ −ay + bx
cδ − dδ′ −cy + dx

)
∈ Γ0(D).

Now observe that

γ = γ′
(
x y
δ′ δ

)
= γ′ωδ

(
δ−1 0
0 1

)
.

If we use δ|d, δ′|c, −yδ′ ≡ 1 (mod δ), xδ ≡ 1 (mod δ′) and ad ≡ 1 (mod c), we find that

χ(−cy + dx) = χδ(−cy + dx)χδ′(−cy + dx) = χδ(−cy)χδ′(dx) = χδ

( c
δ′

)
χ−1
δ′ (aδ),

and thus

(g|ℓγ)(z) = (g|ℓγ′ωδ
(
δ−1 0
0 1

)
)(z) = δ−

ℓ
2χ(−cy + dx) · (g|ℓωδ)

(z
δ

)
= χ(−cy + dx)δ−

ℓ
2 gδ
(z
δ

)
= χδ

( c
δ′

)
χ−1
δ′ (aδ)δ

− ℓ
2 gδ
(z
δ

)
. (3.9)
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Next, note that γz = a
c
− 1

c(cz+d)
. Combined with (3.9), this yields the following equality:

(cz + d)−ℓg

(
a

c
− 1

c(cz + d)

)
= χδ

( c
δ′

)
χ−1
δ′ (aδ)δ

− ℓ
2 gδ
(z
δ

)
.

We substitute z = − 1
c2w

− d
c
, and thus w = − 1

c(cz+d)
, to obtain

(−cw)ℓg
(a
c
+ w

)
= χδ

( c
δ′

)
χ−1
δ′ (aδ)δ

− ℓ
2 gδ
(
− 1

c2δw
− d

cδ

)
.

Taking w = iy and noting that d
δ
≡ (aδ)−1 (mod c) completes the proof.

We can now prove Proposition 3.5.

Proof of Proposition 3.5. Consider the integral

L∗
g

(
s,
a

c

)
=

∫ ∞

0

[
g
(a
c
+ iy

)
− b(0)

]
y
ℓ−1
2

+sdy

y
.

This is the Mellin transform of the function y 7→ (g(a
c
+ iy) − b(0))y

ℓ−1
2 . Using Lemma 3.6 and

the bound |g(a
c
+ iy) − b(0)| = O(exp(−2πy)) as y → ∞, it follows that the integral converges

absolutely and uniformly on compact subsets of {s ∈ C | ℜ(s) > ℓ+1
2
}. For such s, we have

L∗
g

(
s,
a

c

)
=

∞∑
n=1

b(n)n
ℓ−1
2 e2πin

a
c

∫ ∞

0

e−2πnyy
ℓ−1
2

+sdy

y

=
∞∑
n=1

b(n)

(2π)
ℓ−1
2

+s · ns
e2πin

a
c

∫ ∞

0

e−yy
ℓ−1
2

+sdy

y

=
Γ( ℓ−1

2
+ s)

(2π)
ℓ−1
2

+s
Lg

(
s,
a

c

)
. (3.10)

Therefore, if we can show that L∗
g(s,

a
c
) can be extended meromorphically and has a functional

equation, the corresponding properties for Lg(s,
a
c
) will follow. We can rewrite the integral defining

L∗
g

(
s, a

c

)
as ∫ 1

c
√
δ

0

[
g
(a
c
+ iy

)
− b(0)

]
y
ℓ−1
2

+sdy

y
+

∫ ∞

1

c
√
δ

[
g
(a
c
+ iy

)
− b(0)

]
y
ℓ−1
2

+sdy

y
.

We compute the left integral:∫ 1

c
√
δ

0

[
g
(a
c
+ iy

)
− b(0)

]
y
ℓ−1
2

+sdy

y
=

∫ 1

c
√
δ

0

g
(a
c
+ iy

)
y
ℓ−1
2

+sdy

y
− b(0)(c

√
δ)−s−

ℓ−1
2

1

s+ ℓ−1
2

,

and using Lemma 3.6, and abbreviating a′ = −aδ and A = χδ
(
c
δ′

)
χ−1
δ′ (aδ)δ

− ℓ
2 , we obtain∫ 1

c
√
δ

0

g
(a
c
+ iy

)
y
ℓ−1
2

+sdy

y
=

∫ 1

c
√
δ

0

[
iℓ(cy)−ℓAgδ

(
a′

c
+

i

c2δy

)]
ys+

ℓ−1
2
dy

y

= Aiℓc−ℓ
∫ ∞

1

c
√
δ

[
gδ
(
a′

c
+ iy

)
− bδ(0)

]
(c2δy)

ℓ+1
2

−sdt

y
+ Aiℓc−ℓbδ(0)(c

√
δ)−s+

ℓ+1
2

1

s− ℓ+1
2

.
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Here we used the substitution y → 1
c2δy

for the last equality. We conclude that

L∗
g

(
s,
a

c

)
=

∫ ∞

1

c
√
δ

[
g
(a
c
+ iy

)
− b(0)

]
y
ℓ−1
2

+sdy

y

+ Aiℓc1−2sδ
ℓ+1
2

−s
∫ ∞

1

c
√
δ

[
gδ
(
a′

c
+ iy

)
− bδ(0)

]
y
ℓ+1
2

−sdy

y
(3.11)

+ Aiℓc−ℓbδ(0)(c
√
δ)−s+

ℓ+1
2

1

s− ℓ+1
2

− b(0)(c
√
δ)−s−

ℓ−1
2

1

s+ ℓ−1
2

.

These integrals converge absolutely and uniformly on compact subsets of C, as we have bounds
of the form

∣∣g (a
c
+ iy

)
− b(0)

∣∣ = O (exp(−2πy)) as y → ∞. It follows immediately that L∗
g

(
s, a

c

)
defines a meromorphic function on C, with simple poles at s = ℓ+1

2
and s = 1−ℓ

2
if g is not a cusp

form. As Γ( ℓ−1
2

+ s) has a simple pole at s = 1−ℓ
2
, we find by (3.10) that Lg

(
s, a

c

)
will not have a

pole at s = 1−ℓ
2
. This proves (1).

A similar computation for L∗
gδ
(1− s, a

′

c
) shows that

L∗
gδ

(
1− s,a

′

c

)
=

∫ ∞

1

c
√
δ

[
gδ
(
a′

c
+ iy

)
− bδ(0)

]
y
ℓ+1
2

−sdy

y

+ A−1i−ℓc2s−1δs−
ℓ+1
2

∫ ∞

1

c
√
d

[
g
(a
c
+ iy

)
− b(0)

]
ys+

ℓ−1
2
dy

y

− A−1i−ℓcℓb(0)(c
√
δ)s−

3ℓ+1
2 · 1

s+ ℓ−1
2

+ bδ(0)(c
√
δ)s−

ℓ+1
2 · 1

s− ℓ+1
2

.

We conclude that

L∗
g

(
s,
a

c

)
= iℓχδ

( c
δ′

)
χ−1
δ′ (aδ)(δc

2)
1
2
−sL∗

gδ

(
1− s,

a′

c

)
,

and from this the functional equation for Lg(s,
a
c
) follows.

Polynomial bounds

Using the functional equation, we can now prove that the L-function attached to g is polynomially
bounded on certain vertical strips of the complex plane. We will make use of the Phragmen–Lindelöf
principle, see [IK04, Thm. 5.53] or [Tit39, Section 5.65].

Theorem 3.7 (Phragmen–Lindelöf Principle). Let a < b be real numbers and f be a function that is
holomorphic on an open neighborhood of a strip a ≤ σ ≤ b. Suppose that |f(σ+ it)| ≪ exp(|σ+ it|A)
for some A ≥ 0 and all a ≤ σ ≤ b, and that there are real constants Ma,Mb, α and β such that

|f(a+ it)| ≤Ma(1 + |t|)α,
|f(b+ it)| ≤Mb(1 + |t|)β,

for all t ∈ R. Then
|f(σ + it)| ≤Mλ(σ)

a M
1−λ(σ)
b (1 + |t|)αλ(σ)+β(1−λ(σ)),

for all s = σ + it in the strip, where λ is the linear function such that λ(a) = 1 and λ(b) = 0.
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In other words, given a mild bound on f on the strip and a polynomial bound on the boundaries
of the strip, a polynomial bound on the entire strip is obtained. We will apply this theorem to
Lg(s,

r
c
), but we have to deal with the fact that the L-function might have a pole at s = ℓ+1

2
.

Proposition 3.8. Let g ∈Mℓ(Γ0(D), χ) and let r, c ∈ Z with gcd(r, c) = 1. Decompose D = δ · δ′
with δ′ = gcd(c,D). Let a, b ∈ R such that Lgδ(1− s) converges absolutely for ℜ(s) < a and such
that Lg(s) converges absolutely for ℜ(s) > b. Let q denote the residue, which may be zero, of Lg(s,

r
c
)

at s = ℓ+1
2
. Then there exists some constant M such that for all s = σ + it ∈ C with a ≤ σ ≤ b, we

have the bound ∣∣∣∣∣Lg (s, rc)− q

s− ℓ+1
2

∣∣∣∣∣ ≤M · (1 + |t|)(1−2a)·λ(σ),

where λ is the linear function with λ(a) = 1 and λ(b) = 0.

Proof. Write

f(s) = Lg

(
s,
r

c

)
− q

s− ℓ+1
2

.

This is a holomorphic function on the entire complex plane. We will apply the Phragmen–Lindelöf
principle (Theorem 3.7) to f . We first note that |Lg(b+ it, rc )| ≪ 1 as |t| → ∞, because the L-series
converges absolutely there by assumption. As the quotient q/(s− ℓ+1

2
) is bounded away from its

pole, it follows that |f(b+ it)| ≪ 1 as |t| → ∞. We similarly have that |Lgδ(1− a− it,− rδ
c
)| ≪ 1

as |t| → ∞, and so by the functional equation (Proposition 3.5) and Sterling’s approximation (2.8),
we see that

|Lg(a+ it, r
c
)| ≪

(
δc2

4π2

) 1
2
−a √

2πe−|t|π/2|t| ℓ2−a(1 + o(1))
√
2πe−|t|π/2|t| ℓ2+a−1(1 + o(1))

≪ |t|1−2a as |t| → ∞.

It follows that |f(a+ it)| ≪ |t|1−2a as |t| → ∞. We can thus find a constant M such that for all
t ∈ R:

|f(a+ it)| ≤M(1 + |t|)1−2a,

|f(b+ it)| ≤M.

Lastly, we need to show that |f(σ + it)| ≪ exp(|σ + it|A) for all a ≤ σ ≤ b for some constant A. As
q/(s− ℓ+1

2
) is bounded for |s| large, it suffices to give such a bound for Lg(s,

r
c
) for |s| large. Recall

that

Lg

(
s,
r

c

)
=

(2π)
ℓ−1
2

+s

Γ( ℓ−1
2

+ s)
L∗
g

(
s,
r

c

)
.

By the integral representation (3.11) for L∗
g(s,

r
c
) and Sterling’s approximation (2.8) for Γ(s), we

conclude that Lg(σ + it, r
c
) ≪ exp(|σ + it|A) for a suitable constant A. We can now apply the

Phragmen–Lindelöf principle to conclude that |f(σ + it)| ≤M(1 + |t|)(1−2a)λ(σ) for all a ≤ σ ≤ b
and t ∈ R.

Remark. In general, one may take any a < 1−ℓ
2

and b > ℓ+1
2

by Lemma 2.2. In the specific case
that g is a theta series, we can use Proposition 2.15 (6) and take any a < 0 and b > 1.
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3.3 Rankin–Selberg L-series

In this section, we define the Rankin–Selberg L-series L(f ⊗ g, s) associated to two modular forms.
By varying f while keeping g fixed, we obtain a linear map Sk(Γ0(N)) → C. Via the Petersson
inner product, this linear map is induced by a holomorphic kernel Φs,g ∈ Sk(Γ0(N)), which is the
central object of interest in this thesis. We illustrate Rankin’s method, which was used by Gross
and Zagier to obtain their formulas for the Fourier coefficients of the holomorphic kernel [GZ86].

Definition

Let k, ℓ,D and N be positive integers and let χ be a Dirichlet character modulo D. Consider two
modular forms f ∈ Sk(Γ0(N)) and g ∈Mℓ(Γ0(D), χ), with Fourier expansions

f(z) =
∞∑
n=1

a(n)n
k−1
2 e2πinz,

and

g(z) = b(0) +
∞∑
n=1

b(n)n
ℓ−1
2 e2πinz.

We then define the Rankin–Selberg L-function for ℜ(s) > ℓ+1
2

by

L(f ⊗ g, s) =
∞∑
n=1

a(n)b(n)

ns
.

By Lemma 2.2, we have bounds a(n) = O(nε) and b(n) = O(n
ℓ−1
2

+ε) for any ε > 0, and so it follows
that L(f ⊗ g, s) converges absolutely and uniformly on compact subsets of {s ∈ C | ℜ(s) > ℓ+1

2
}

and defines a holomorphic function there. This L-function has a meromorphic continuation to the
entire complex plane and satisfies a functional equation [Li79].

Holomorphic kernel

Fix some modular form g ∈Mℓ(Γ0(D), χ) and a point s ∈ C that is not a pole of L(f ⊗ g, s) for
any f ∈ Sk(Γ0(N)). Then we have a linear map

Sk(Γ0(N)) → C

f 7→ L(f ⊗ g, s).

As the Petersson inner product is non-degenerate, we can find some modular form Φs̄,g ∈ Sk(Γ0(N))
such that

L(f ⊗ g, s) = ⟨f,Φs̄,g⟩ for all f ∈ Sk(Γ0(N)).

We refer to Φs̄,g as the holomorphic kernel (associated to g). By understanding Φs,g, it is possible to
prove properties about L(f ⊗ g, s). For example, a functional equation for Φs,g in terms of s yields
a functional equation for L(f ⊗ g, s), as we will show in Section 4.6. Naturally, we are interested in
formulas for the Fourier coefficients of the holomorphic kernel. In the next chapter, we will use the
Goldfeld–Zhang method for this. In this section, we will illustrate the alternative Rankin’s method,
which was used by Gross and Zagier to obtain their famous formulas [GZ86].
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Rankin’s method

For now, fix some f ∈ Sk(Γ0(N)). Let g be as above, and assume for simplicity that g has real
coefficients, that ℓ < k and that χ is a real character. We will make use of the following equality:

∞∑
n=1

a(n)b(n)e−4πny =
∞∑
n=0

∞∑
m=0

a(n)e−2πnyb(m)e−2πmy

∫ 1

0

e2πi(n−m)xdx. (3.12)

Using the integral representation for the gamma function, we find for ℜ(s) > ℓ+1
2

that

Γ(s+ k+ℓ
2

− 1)

(4π)s+
k+ℓ
2

−1
L(f ⊗ g, s) =

∞∑
n=1

a(n)b(n)n
k+ℓ
2

−1

∫ ∞

0

ys+
k+ℓ
2

−2e−4πnydy

(3.12)
=

∫ ∞

0

∫ 1

0

∞∑
n,m=0

a(n)n
k−1
2 b(m)m

ℓ−1
2 e2πin(x+iy)e2πim(iy−x)ys+

k+ℓ
2
dxdy

y2

=

∫
Γ∞\H

f(z)g(z)ys+
k+ℓ
2
dxdy

y2
.

We now introduce an Eisenstein series by rewriting the quotient Γ∞\H. Let D denote a fundamental
domain for the action of Γ0(ND) on H. For a matrix γ ∈ Γ0(ND), we will write dγ for the lower
right entry of γ. Using (2.2), we see that∫

Γ∞\H
f(z)g(z)ys+

k+ℓ
2
dxdy

y2
=

∑
γ∈Γ∞\Γ0(ND)

∫
D
f(γz)g(γz)(ℑ(γz))s+

k+ℓ
2
dxdy

y2

=
∑

γ∈Γ∞\Γ0(ND)

∫
D
f(z)g(z)

χ(dγ)

j(γ, z̄)k−ℓ
ys+

ℓ−k
2

|j(γ, z)|2s−k+ℓ
yk
dxdy

y2

= ⟨f, gEs̄+ ℓ−k
2
⟩Γ0(ND),

with ⟨·, ·⟩Γ0(ND) being the Petersson inner product for Γ0(ND) and

Es(z) =
∑

γ∈Γ∞\Γ0(ND)

χ(dγ)

j(γ, z)k−ℓ
ys

|j(γ, z)|2s
∈ M̃k−ℓ(Γ0(ND), χ),

a non-holomorphic Eisenstein series of weight k − ℓ and level ND. Note that gEs ∈ M̃k(Γ0(ND)),
as χ is a real character. Now one can convert the inner product for Γ0(ND) to an inner product for
Γ0(N) by using the trace map

TrNDN : M̃k(Γ0(ND)) → M̃k(Γ0(N)),

g 7→
∑

γ∈Γ0(DN)\Γ0(N)

g|kγ.

We obtain
⟨f, gEs̄⟩Γ0(ND) = ⟨f,TrNDN (gEs̄)⟩Γ0(N).

We have proved the following proposition, which is related to [GZ86, Prop. IV.1.2].
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Proposition 3.9. Let g ∈Mℓ(Γ0(D), χ) be a modular form with real Fourier coefficients and a real
quadratic nebentypus χ. Fix weights k > ℓ and a level N ≥ 1. Define the non-holomorphic function

Φnh
s,g = TrNDN (gEs+ ℓ−k

2
) ∈ M̃k(Γ0(N)).

Then for any modular form f ∈ Sk(Γ0(N)) and ℜ(s) > ℓ+1
2
, we have

L(f ⊗ g, s) =
(4π)s+

k+ℓ
2

−1

Γ(s+ k+ℓ
2

− 1)
⟨f,Φnh

s̄,g⟩.

The holomorphic kernel Φs,g can now be obtained from Φnh
s,g by taking its holomorphic projection.

Broadly speaking, this means that the Fourier coefficients of Φs,g are expressed as integrals of the
Fourier coefficients of Φnh

s,g. We will not discuss holomorphic projection in detail in this thesis and
instead refer to the paper by Gross and Zagier [GZ86, Lemma IV.5.1]. In the next chapter, we will
use the Goldfeld–Zhang method to find an expression for Φs,g without making use of traces and
holomorphic projections.
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4 Holomorphic kernel

In this chapter we use the Goldfeld–Zhang method to derive a formula for the Fourier coefficients
of the holomorphic kernel Φs,g of the Rankin–Selberg L-function [GZ99]. In Section 4.1, we detail
the main idea behind the method. In Section 4.2, we give a formula for the Fourier coefficients of
Φs,g for complex s lying in a certain vertical strip. In Section 4.3 and Section 4.4, we give explicit
expressions for the functions that occur in this formula. In Section 4.5, we modify the holomorphic
kernel by adding oldforms and obtain a modular form with nicer Fourier coefficients. Finally, in
Section 4.6, we derive an expression for the Fourier coefficients of this modified holomorphic kernel
in the case that the associated modular form g is a theta series. These expressions show that the
modified kernel satisfies a functional equation. As a consequence, we obtain a functional equation
for the Rankin–Selberg function L(f ⊗ θA,ψ, s).

4.1 Goldfeld–Zhang method

Let k, ℓ,D and N be positive integers with D square-free and let χ be a Dirichlet character modulo
D. We will assume that k ≥ 4. Let g ∈Mℓ(Γ0(D), χ) be a modular form with Fourier expansion

g(z) = b(0) +
∞∑
n=1

b(n)n
ℓ−1
2 e2πinz.

Fix a point s ∈ C such that the Rankin–Selberg L-function L(f ⊗ g, s), as defined in Section 3.3,
does not have a pole at s for all f ∈ Sk(Γ0(N)). As Sk(Γ0(N)) is finite-dimensional and the set of
poles of each L-function is discrete, we only exclude a discrete set of points in this way. Throughout
the remainder of this chapter, we will implicitly exclude such “bad” values. Recall from Section 3.3
the holomorphic kernel Φs̄,g ∈ Sk(Γ0(N)) associated to g that satisfies

L(f ⊗ g, s) = ⟨f,Φs̄,g⟩ for all f ∈ Sk(Γ0(N)). (4.1)

We denote by ϕs̄,g the normalized Fourier coefficients of Φs̄,g, so that

Φs̄,g(z) =
∞∑
n=1

ϕs̄,g(n)n
k−1
2 e2πinz.

Now, in the case that f = Pm, we find by the Petersson formula (Proposition 2.9) that

L(Pm ⊗ g, s) = ⟨Pm,Φs̄,g⟩ = ⟨Φs̄,g, Pm⟩ =
(k − 1)!

(4π)k−1
ϕs̄,g(m),

and thus

ϕs,g(m) =
(4π)k−1

(k − 2)!
L(Pm ⊗ g, s̄). (4.2)

As L(Pm ⊗ g, s) can be extended meromorphically to the complex plane, we see that ϕs,g(m) is
meromorphic in s. As we have an explicit formula for the Fourier coefficients of the Poincaré series
Pm, given by Proposition 2.8, we find for ℜ(s) > ℓ+1

2
that

L(Pm ⊗ g, s) =
b(m)

ms
+ 2πik

∞∑
n=1

b(n)

ns

∞∑
c=1
N |c

K(m,n; c)

c
Jk−1

(
4π

√
mn

c

)
.
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Here K(m,n; c) is a Kloosterman sum (Definition 2.5) and Jk−1(x) is a Bessel function of the first
kind (Definition 2.7). We will write Tm(s) for this double sum:

Tm(s) :=
∞∑
n=1

b(n)

ns

∞∑
c=1
N |c

K(m,n; c)

c
Jk−1

(
4π

√
mn

c

)
.

As L(Pm ⊗ g, s) has a meromorphic extension to the complex plane, it follows that Tm(s) can be
extended meromorphically as well. In the next section, we will manipulate this expression for Tm(s)
and thereby deriving a formula for the Fourier coefficients of the holomorphic kernel.

4.2 Fourier coefficients of the holomorphic kernel

In this section, we will obtain a formula for the Fourier coefficients of the holomorphic kernel Φs,g

that is valid for s lying in a vertical strip to the right of ℜ(s) = 1. The main result is given by
Theorem 4.4. In order to prove the theorem, we will first need a different representation of Tm(s).

For every δ|D, we have the modular form gδ defined by the Atkin–Lehner operator (2.5) with
Fourier coefficients bδ(n), see (2.6). For every δ|D, let γδ > 0 such that we have a bound of the form

bδ(n) = O(nγδ) as n→ ∞,

and let
γ = max

δ|D
γδ. (4.3)

In particular, for any divisor δ|D, it holds that Lgδ(s) converges absolutely for ℜ(s) > 1 + γ. For a
general modular form g, we will be able to take γδ, and hence γ, to be any real number greater
than ℓ−1

2
by Lemma 2.2. In the case that g is a theta series, we have a sharper bound and can take

γδ > 0 arbitrarily small by Proposition 2.15 (6). In the following lemma, we will need to fix an ϵ
satisfying 0 < ϵ < k

2
− γ − 1. As a result, we cannot apply the lemma when k = 2, or when γ > ℓ−1

2

and ℓ ≥ k − 1.

Lemma 4.1. Fix some 0 < ϵ < k
2
− γ − 1. Then for all 1 < ℜ(s) < k+ℓ

2
− ϵ, it holds that

Tm(s) =
∞∑
c=1
N |c

∑
r∈(Z/cZ)×

e2πim
r
c

 1

2πi

ϵ− k−1
2

+i∞∫
ϵ− k−1

2
−i∞

Γ(k−1
2

+ w)

Γ(k+1
2

− w)

(2π
√
m)−2w

c1−2w
Lg(s+ w, r̄

c
)dw

+
Γ(k+ℓ

2
− s)

Γ(k−ℓ
2

+ s)

(2π
√
m)2s−ℓ−1

c2s−ℓ
· Res ℓ+1

2

(Lg(s,
r̄
c
))

)
.

Here Lg(s,
r̄
c
) is the twisted L-series associated to g, defined by (3.8).

Proof. By the definition of Jk−1(x) (Definition 2.7), we have that

Tm(s) =
∞∑
n=1

∞∑
c=1
N |c

b(n)

ns
K(m,n; c)

c

1

2πi

ϵ− k−1
2

+i∞∫
ϵ− k−1

2
−i∞

Γ(k−1
2

+ w)

Γ(k+1
2

− w)

(
2π

√
mn

c

)−2w

dw.
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We will first show that this representation of Tm(s) converges absolutely and uniformly on closed
compact subsets of {s ∈ C | ℜ(s) > k+1

2
+ γ − ϵ}, so that it defines an analytic function there.

Let U be such a compact subset and let σ > k+1
2

+ γ − ϵ such that ℜ(s) ≥ σ for all s ∈ U . By

Lemma 2.6, we know for fixed m that K(m,n; c) = O(c
1
2
+α) as n, c → ∞, for all α > 0. In this

case, we choose some α with 0 < α < k − 2ϵ− 2. It now follows that Tm(s) converges absolutely
and uniformly on U , as it is absolutely bounded by (for some constant C)

|Tm(s)| ≤ C ·
∞∑
n=1

nγ+
k−1
2

−ϵ−σ ·
∞∑
c=1
N |c

cα+
1
2
+2ϵ−k ·

ϵ− k−1
2

+i∞∫
ϵ− k−1

2
−i∞

∣∣∣∣∣Γ(k−1
2

+ w)

Γ(k+1
2

− w)

∣∣∣∣∣ dw.
These sums converge as the exponents of n and c are smaller than −1, and because the integral
defining Jk−1(2) converges absolutely. The fact that Tm(s) converges absolutely allows us to change
the order of the sums and integral. Using the definition of a Kloosterman sum (Definition 2.5), we
find for ℜ(s) > k+1

2
+ γ − ϵ, that

Tm(s) =
∞∑
c=1
N |c

∑
r∈(Z/cZ)×

e2πim
r
c

1

2πic

ϵ− k−1
2

+i∞∫
ϵ− k−1

2
−i∞

Γ(k−1
2

+ w)

Γ(k+1
2

− w)

∞∑
n=1

e
2πinr̄
c
b(n)

ns

(
2π

√
mn

c

)−2w

dw

=
∞∑
c=1
N |c

∑
r∈(Z/cZ)×

e2πim
r
c
1

2πi

ϵ− k−1
2

+i∞∫
ϵ− k−1

2
−i∞

Γ(k−1
2

+ w)

Γ(k+1
2

− w)

(2π
√
m)−2w

c1−2w
Lg(s+ w, r̄

c
)dw. (4.4)

This expression converges absolutely and uniformly on compact subsets of {s ∈ C | 1
2
< ℜ(s) <

k+ℓ
2

− ϵ}, but that does not mean that we can take this expression as a representation of Tm(s)
there. In fact, if g is not a cusp form, the expression converges to a different meromorphic function
there, and a correct representation of Tm(s) is obtained by adding the difference. This difference
appears because of the pole of Lg(s + w, r̄

c
) at w = ℓ+1

2
− s, as we shall show. We first split the

integral into two integrals:

ϵ− k−1
2

+i∞∫
ϵ− k−1

2
−i∞

Γ(k−1
2

+ w)

Γ(k+1
2

− w)

(2π
√
m)−2w

c1−2w

(
Lg(s+ w, r̄

c
)−

Res ℓ+1
2
(Lg(s,

r̄
c
))

s+ w − ℓ+1
2

)
dw

+Res ℓ+1
2

(Lg(s,
r̄
c
))

ϵ− k−1
2

+i∞∫
ϵ− k−1

2
−i∞

Γ(k−1
2

+ w)

Γ(k+1
2

− w)

(2π
√
m)−2w

c1−2w

1

s+ w − ℓ+1
2

dw.

The first integral converges absolutely and uniformly on compact subsets of {s ∈ C | ℜ(s) > 1
2
}. This

can be proven using Proposition 3.8 as follows. Given a compact subset U of {s ∈ C | ℜ(s) > 1
2
},

we can choose an 1
2
< a < k−1

2
− ϵ− γ and an b > k+1

2
− ϵ+ γ such that a ≤ ℜ(s) ≤ b for all s ∈ U .

Using Proposition 3.8 with the bounds a+ ϵ− k−1
2

and b+ ϵ− k−1
2
, we obtain a bound∣∣∣∣∣Lg (s+ w,

r̄

c

)
−

Res ℓ+1
2
(Lg(s,

r̄
c
))

s+ w − ℓ+1
2

∣∣∣∣∣ ≤M · (1 + |ℑ(s) + ℑ(w)|)k−2a−2ϵ.
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Here we used that k − 2a− 2ϵ > 1 + γ > 0 and hence we omitted the linear function λ(σ) in the
exponent. Together with Sterling’s approximation (2.8), it follows that the integrand of the first
integral is O(|t|−2a) as |t| → ∞ where t = ℑ(w), and so the integral converges absolutely.

The second integral converges absolutely on both {s ∈ C | ℜ(s) > k+ℓ
2

− ϵ} and {s ∈ C | ℜ(s) <
k+ℓ
2

− ϵ}. However, it converges to different meromorphic functions on these regions. To see this,
we can compute the integral using the residue theorem. We first consider ℜ(s) > k+ℓ

2
− ϵ. The

poles of the integrand that lie to the left of the line ℜ(w) = ϵ− k−1
2

are the poles of Γ(k−1
2

+ w) at
w = −n− k−1

2
for n ∈ Z≥0, and the pole of (s+ w − ℓ+1

2
)−1 at w = ℓ+1

2
− s. Similarly to how one

can express Jk−1(x) as a series, see (2.9), we obtain for ℜ(s) > k+ℓ
2

− ϵ:

1

2πi

ϵ− k−1
2

+i∞∫
ϵ− k−1

2
−i∞

Γ(k−1
2

+ w)

Γ(k+1
2

− w)

(2π
√
m)−2w

c1−2w

1

s+ w − ℓ+1
2

dw

=
Γ(k+ℓ

2
− s)

Γ(k−ℓ
2

+ s)

(2π
√
m)2s−ℓ−1

c2s−ℓ
+

∞∑
n=0

(−1)n

n!

(2π
√
m)2n+k−1

Γ(k + n)c2n+k
1

s− n− k+ℓ
2

.

Here we assume for simplicity that s is not of the form n+ k+ℓ
2
. It is clear that this infinite sum

converges absolutely and locally uniformly for all s ∈ C (excluding obvious poles) and thus defines
a meromorphic function on the entire complex plane. When we consider ℜ(s) < k+ℓ

2
− ϵ, the pole of

(s+ w − ℓ+1
2
)−1 at w = ℓ+1

2
− s has been moved to the right of the line ℜ(w) = ϵ− k−1

2
. It follows

thus for ℜ(s) < k+ℓ
2

− ϵ that

1

2πi

ϵ− k−1
2

+i∞∫
ϵ− k−1

2
−i∞

Γ(k−1
2

+ w)

Γ(k+1
2

− w)

(2π
√
m)−2w

c1−2w

1

s+ w − ℓ+1
2

dw =
∞∑
n=0

(−1)n

n!

(2π
√
m)2n+k−1

Γ(k + n)c2n+k
1

s− n− k+ℓ
2

.

We see that the two integrals both define meromorphic functions, and that they differ by one term.
As a result, in order to obtain a correct representation of Tm(s) on 1 < ℜ(s) < k+ℓ

2
− ϵ, we will

have to add the difference to (4.4):

Tm(s) =
∞∑
c=1
N |c

∑
r∈(Z/cZ)×

e2πim
r
c

 1

2πi

ϵ− k−1
2

+i∞∫
ϵ− k−1

2
−i∞

Γ(k−1
2

+ w)

Γ(k+1
2

− w)

(2π
√
m)−2w

c1−2w
Lg(s+ w, r̄

c
)dw

+
Γ(k+ℓ

2
− s)

Γ(k−ℓ
2

+ s)

(2π
√
m)2s−ℓ−1

c2s−ℓ
· Res ℓ+1

2

(Lg(s,
r̄
c
))

)
.

Using the formula for the residue of Lg(s,
r̄
c
) at ℓ+1

2
given by Proposition 3.5, it follows that

this representation converges absolutely and uniformly on compact subsets of the vertical strip
{s ∈ C | 1 < ℜ(s) < k+ℓ

2
− ϵ} and thus defines a holomorphic function there.

Remark. It seems that the presence of this additional term corresponding to the residues of
Lg(s,

r̄
c
) was overlooked in [GZ99].
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We will use this lemma to obtain a formula for the Fourier coefficients of the holomorphic kernel.
Two functions that will appear are the following series and Mellin–Barnes type integral.

Definition 4.2. Let D and N be two levels with a decomposition D = δ · δ′. Then for an s ∈ C
with ℜ(s) > 1 and an integer B, we define

Sδ(s, B) =
∞∑
c=1
N |c

(c,D)=δ′

χδ
(
c
δ′

)
c2s

∑
r∈(Z/cZ)×

χδ′(r)e
2πiBr

c .

Definition 4.3. Let s ∈ C with ℜ(s) > 1
2
and fix some 0 < ϵ < k−1

2
. Then for x > 0, we define

Is (x) =
1

2πi

ϵ− k−1
2

+i∞∫
ϵ− k−1

2
−i∞

Γ(k−1
2

+ w)

Γ(k+1
2

− w)

Γ( ℓ+1
2

− s− w)

Γ( ℓ−1
2

+ s+ w)
x−wdw.

This integral converges absolutely, and the value of Is(x) does not depend on the choice of ϵ.

We can now give an explicit expression for the Fourier coefficients of Φs,g(z) on some vertical strip
to the right of ℜ(s) = 1.

Theorem 4.4. Let k, ℓ,N and D be positive integers with D square-free and k ≥ 4. Let χ be a
Dirichlet character modulo D and g ∈Mℓ(Γ0(D), χ) a modular form with normalized q-expansion:

g(z) = b(0) +
∞∑
n=1

b(n)n
ℓ−1
2 e2πinz.

Let γ be a bound on the coefficients of g and its Atkin–Lehner translates as in (4.3). Then:

(a) The Fourier expansion of the holomorphic kernel Φs,g(z) is given by

Φs,g(z) =
(4π)k−1

(k − 2)!

∞∑
m=1

L(Pm ⊗ g, s̄)m
k−1
2 e2πimz.

(b) For 1 < ℜ(s) < k−1
2

− γ, the Rankin–Selberg L-function L(Pm ⊗ g, s) is given by

L(Pm ⊗ g, s) =
b(m)

ms
+ 2πik

∑
δ|D

T δm(s),

where

T δm(s) = iℓ
(

δ

4π2

)1
2
−s ∞∑

n=0

bδ(n)Sδ(s,mδ − n)Vs(n,mδ),

with

Vs(n,m) =


Γ( k+ℓ

2
−s)

Γ( k−ℓ
2

+s)Γ(ℓ)
ms− ℓ+1

2 if n = 0,

Is
(
m
n

)
ns−1 if n > 0.

(4.5)

Here Sδ is given by Definition 4.2, and Is is given by Definition 4.3.
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Proof. Part (a) follows from (4.2). For part (b), consider some s ∈ C with 1 < ℜ(s) < k−1
2

− γ. It
suffices to show that

Tm(s) =
∑
δ|D

T δm(s).

Fix an ϵ > 0 such that ℜ(s) < k−1
2

− γ − ϵ and recall the representation for Tm(s) given by
Lemma 4.1:

Tm(s) =
∞∑
c=1
N |c

∑
r∈(Z/cZ)×

e2πim
r
c

 1

2πi

ϵ− k−1
2

+i∞∫
ϵ− k−1

2
−i∞

Γ(k−1
2

+ w)

Γ(k+1
2

− w)

(2π
√
m)−2w

c1−2w
Lg(s+ w, r̄

c
)dw

+
Γ(k+ℓ

2
− s)

Γ(k−ℓ
2

+ s)

(2π
√
m)2s−ℓ−1

c2s−ℓ
· Res ℓ+1

2

(Lg(s,
r̄
c
))

)
.

We will use the functional equation of Lg(s,
r̄
c
) to rewrite this expression. Fix an integer c ≥ 1

with N |c and a residue class r ∈ (Z/cZ)×. As shown in Proposition 3.5, the functional equation of
Lg(s,

r̄
c
) depends on c, and in particular on δ′ = gcd(c,D) and δ = D

δ′
In that case, we find that

Lg

(
s+ w,

r̄

c

)
= iℓχδ

( c
δ′

)
χ−1
δ′ (r̄δ)

(
δc2

4π2

) 1
2
−s−w Γ( ℓ+1

2
− s− w)

Γ( ℓ−1
2

+ s+ w)
Lgδ

(
1− s− w,−rδ̄

c

)
.

Moreover, we also know by Proposition 3.5 that

Res ℓ+1
2

(
Lg

(
s,
r̄

c

))
=

(2π)ℓ

Γ(ℓ)
χδ

( c
δ′

)
χ−1
δ′ (r̄δ)δ

− ℓ
2 iℓc−ℓbδ(0).

Given the bound bδ(n) = O(nγδ) as n→ ∞, we may replace Lgδ(s,
r̄
c
) by its series for ℜ(s) > 1+ γδ.

So, for 1 < ℜ(s) < k−1
2

− γδ − ϵ, we can use the functional equation and unfold the L-series

Lgδ(1− s− w,− rδ̄
c
) that appears. If we now sum over the different values for δ, c and r, it follows

that for 1 < ℜ(s) < k−1
2

− γ − ϵ:

Tm(s) =
∑
δ|D

∞∑
c=1
N |c

(c,D)=δ′

∑
r∈(Z/cZ)×

iℓχδ

( c
δ′

)
χ−1
δ′ (r̄δ)

(
δ

4π2

) 1
2
−s

c−2se2πim
r
c

·

 1

2πi

ϵ− k−1
2

+i∞∫
ϵ− k−1

2
−i∞

Γ(k−1
2

+ w)

Γ(k+1
2

− w)

Γ( ℓ+1
2

− s− w)

Γ( ℓ−1
2

+ s+ w)

∞∑
n=1

bδ(n)

n1−s e
−2πin rδ̄

c

(
δm

n

)−w

dw

+ bδ(0)
Γ(k+ℓ

2
− s)

Γ(ℓ)Γ(k−ℓ
2

+ s)
(δm)s−

ℓ+1
2

)
.

Using a similar argument as before, it can be shown that this expression converges absolutely and
uniformly on compact subsets of 1 < ℜ(s) < k−1

2
− γ − ϵ, and so we may exchange the order of
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summation there. We conclude that

Tm(s) =
∑
δ|D

iℓ
(

δ

4π2

) 1
2
−s ∞∑

n=0

bδ(n)Vs(n,mδ)
∞∑
c=1
N |c

(c,D)=δ′

χδ
(
c
δ′

)
c2s

∑
r∈(Z/cZ)×

χ−1
δ′ (r̄δ)e

2πi
r(m−nδ̄)

c

=
∑
δ|D

iℓ
(

δ

4π2

) 1
2
−s ∞∑

n=1

bδ(n)Vs(n,mδ)
∞∑
c=1
N |c

(c,D)=δ′

χδ
(
c
δ′

)
c2s

∑
r∈(Z/cZ)×

χδ′(r)e
2πi

r(δm−n)
c

=
∑
δ|D

iℓ
(

δ

4π2

) 1
2
−s ∞∑

n=1

bδ(n)Sδ(s,mδ − n)Vs(n,mδ).

Here we used the substitution r 7→ rδ to simplify the summation.

4.3 Ramanujan sums

In the previous section, we derived a formula for the Fourier coefficients of Φs,g in terms of the
functions Sδ(s, B) and Is(x). In the present section, we will take a closer look at Sδ(s, B), which is
given by Definition 4.2. It is a series whose terms have a factor of the form∑

r∈(Z/cZ)×
χδ′(r)e

2πiBr
c ,

which is a twisted Ramanujan sum. Given two integers n and D with n nonzero, we will write
n[D] for the largest positive divisor of n, whose prime factors also divide D. We will write n[D] for
the largest divisor of n that is coprime to D and has the same sign as n. Note that n[D] · n[D] = n.
For n = 0, we define n[D] = 0 and n[D] = 1. Recall from (3.5) that the Gauss sum associated to a
Dirichlet character with modulus D is defined as

τ(χ) =
∑

r∈(Z/DZ)×

χ(r)e2πi
r
D .

The following lemma is a restatement of [GZ99, Lemma 5.3].

Lemma 4.5. Let D be a square-free integer and χ a primitive character modulo D. Let c and B be
non-zero integers with c > 0 and D|c. Then∑

r∈(Z/cZ)×
χ(r)e2πi

Br
c =

{
τ(χ)B[D]χ

(
c[D]

B[D]

)∑
d|(c[D],B[D]) µ

(
c[D]

d

)
d if c[D] = B[D] ·D,

0 otherwise.

Proof. See the proof of [GZ99, Lemma 5.3] (or alternatively [Nel13, Lemma 2.7]). The function
G(δ) that Goldfeld and Zhang use coincides with with Gauss sum τ(χδ).

This lemma allows us to derive a different expression for Sδ(s, B), which is given by Definition 4.2
as

Sδ(s, B) =
∞∑
c=1
N |c

(c,D)=δ′

χδ
(
c
δ′

)
c2s

∑
r∈(Z/cZ)×

χδ′(r)e
2πiBr

c .
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Recall from (3.2), that for an integer e, we define the Dirichlet L-function L(e)(χ, s) by

L(e)(χ, s) =
∞∑
n=1

(n,e)=1

χ(n)

ns
.

Proposition 4.6. Let D = δ · δ′ a decomposition of a square-free positive integer. Let χ be a
primitive Dirichlet character modulo D. Let B ∈ Z be an integer and define

Sδe(s, B) =


τ(χδ′ )χδ(B[δ′])

(δ′)2sB2s−1
[δ′] χδ′ (B

[δ′])

∑
d|B
e

(d,D)=1

χ(d)d1−2s if B ̸= 0, N[δ′]|B[δ′]δ
′, e|B, (N, δ) = 1,

L(χ, 2s− 1) if B = 0, δ = D, (N,D) = 1,

0 otherwise.

Then for ℜ(s) > 1, the series Sδ(s, B) as in Definition 4.2 satisfies

Sδ(s, B) =
χ(N [D])(N [D])1−2s

L(N)(χ, 2s)

∑
e|N [D]

µ

(
N [D]

e

)
e

N [D]
Sδe(s, B).

Proof. We follow the structure of the proof of [GZ99, Prop. 7.1], but note that our definition of
Sδ(s, B) differs from theirs. We first note that we may assume that gcd(N, δ) = 1. Otherwise, we
know that Sδe(s, B) = 0 for any integer e by definition and that Sδ(s, B) = 0 due to the sum being
empty (there are no integers c with N |c and gcd(c,D) = δ′), and so the lemma follows. As a result,
we may also assume that gcd(N [δ′], D) = 1 and that N [D] = N [δ′].

We now consider the case B ̸= 0. We find by Lemma 4.5 that

Sδ(s, B) = τ(χδ′)B[δ′]

∞∑
c=1
N |c

(c,D)=δ′

c[δ′]=B[δ′]δ
′

χδ(
c
δ′
)

c2s
χδ′

(
c[δ

′]

B[δ′]

) ∑
d|(c[δ′],B[δ′])

µ

(
c[δ

′]

d

)
d.

As N |c implies that N[δ′]|c[δ′], we may assume that N[δ′]|B[δ′]δ
′ – otherwise the sum would be empty,

in which case the lemma follows trivially. As any integer c can be decomposed as c = c[δ′] · c[δ
′], we

can replace c by B[δ′]δ
′c in the sum and interchange the summations to find that

Sδ(s, B) =
τ(χδ′)χδ(B[δ′])

(δ′)2sB2s−1
[δ′] χδ′(B[δ′])

∑
d|B[δ′]

(d,D)=1

d
∞∑
c=1
N [δ′]|c
d|c

(c,D)=1

χ(c)

c2s
µ
( c
d

)
.

Fix some divisor d|B[δ′] with gcd(d,D) = 1. We now claim that

∞∑
c=1
N [δ′]|c
d|c

(c,D)=1

χ(c)

c2s
µ
( c
d

)
=

∑
e|(N [δ′],d)

∞∑
k=1

(k,De)=1

χ(dN
[δ′]

e
k)

(dN
[δ′]

e
k)2s

µ

(
N [δ′]

e
k

)
. (4.6)
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To see this, let c ≥ 1 be given with N [δ′]|c, d|c and gcd(c,D) = 1. We can then define the integers
e = dN [δ′]/ gcd(c, dN [δ′]) and k = c/ gcd(c, dN [δ′]). From the assumptions on c, it follows that
e| gcd(N [δ′], d) and gcd(k,De) = 1. By construction, it holds that c = dN [δ′]k/e.

Conversely, given e| gcd(N [δ′], d) and k ≥ 1 with gcd(k,De) = 1, we can construct c = dN [δ′]k/e.
Then N [δ′]|c, d|c and gcd(c,D) = 1.

This correspondence between integers c and pairs (e, k) is one-to-one, and as the sum on the left in
(4.6) converges absolutely, our claim follows. Next, note that

∑
e|(N [δ′],d)

∞∑
k=1

(k,De)=1

χ(dN
[δ′]

e
k)

(dN
[δ′]

e
k)2s

µ

(
N [δ′]

e
k

)
=

∑
e|(N [δ′],d)

χ(dN
[δ′]

e
)

(dN
[δ′]

e
)2s
µ

(
N [δ′]

e

)
·

∞∑
k=1

(k,DN)=1

χ(k)

k2s
µ (k) ,

Now, using (3.4) and the fact that N [δ′] = N [D], we obtain

Sδ(s, B) =
τ(χδ′)χδ(B[δ′])

(δ′)2sB2s−1
[δ′] χδ′(B[δ′])

∑
e|N [D]

∑
d|B[δ′]

e|d
(d,D)=1

d
χ(d

e
N [D])

(d
e
N [D])2s

µ

(
N [D]

e

)
1

L(N)(χ, 2s)

=
τ(χδ′)χδ(B[δ′])

(δ′)2sB2s−1
[δ′] χδ′(B[δ′])

χ
(
N [D]

)
(N [D])1−2s

L(N)(χ, 2s)

∑
e|(N [D],B)

µ

(
N [D]

e

)
e

N [D]

∑
d|B
e

(d,D)=1

χ(d)d1−2s

=
χ
(
N [D]

)
(N [D])1−2s

L(N)(χ, 2s)

∑
e|N [D]

µ

(
N [D]

e

)
e

N [D]
Sδe(s, B).

Now we consider the case B = 0. Note that:

Sδ(s, 0) =
∞∑
c=1
N |c

(c,D)=δ′

χδ(
c
δ′
)

c2s

∑
r∈(Z/cZ)×

χδ′(r).

The second sum vanishes if χδ′ is non-principal and thus if δ′ ̸= 1. We will thus assume that δ = D
and that gcd(N,D) = 1. In this case, the sum

∑
r∈(Z/cZ)× χδ′(r) reduces to φ(c) =

∑
d|c µ(

c
d
)d.

Using the same method to rewrite a sum over c to a sum over (k, e) and using (3.4), we find:

SD(s, 0) =
∞∑
d=1

(d,D)=1

∞∑
c=1
N |c
d|c

(c,D)=1

χ(c)

c2s
µ
( c
d

)
d =

χ(N)N1−2s

L(N)(χ, 2s)

∞∑
d=1

(d,D)=1

∑
e|N
e|d

χ(d/e)

(d/e)2s
µ

(
N

e

)
d

N

=
χ(N)N1−2s

L(N)(χ, 2s)

∑
e|N

µ

(
N

e

)
e

N

∞∑
d=1

(d,D)=1

χ(d)

d2s−1
=
χ(N)N1−2s

L(N)(χ, 2s)

∑
e|N

µ

(
N

e

)
e

N
SDe (s, 0).
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4.4 Mellin–Barnes integrals

The second function that occurs in the formula of the coefficients of Φs,g is the Mellin–Barnes type
integral Is(x), defined by Definition 4.3. For x > 0 and ℜ(s) > 1

2
, it is given by

Is (x) =
1

2πi

ϵ− k−1
2

+i∞∫
ϵ− k−1

2
−i∞

Γ(k−1
2

+ w)

Γ(k+1
2

− w)

Γ( ℓ+1
2

− s− w)

Γ( ℓ−1
2

+ s+ w)
x−wdw,

where 0 < ϵ < k−1
2

is fixed. The value of the integral does not depend on the choice of ϵ. Convergence
conditions of these types of integrals are discussed in [Erd+81a, p. 49-50]. We will first define a
completed version of Is(x), which has a nice functional equation.

Proposition 4.7. Let x > 0 and s ∈ C. Define

Ĩs(x) =
Γ(k−ℓ

2
+ s)

Γ(k+ℓ
2

− s)
Is(x). (4.7)

Then for x > 0 with x ̸= 1, we have a functional equation

Ĩ1−s(x)

|x− 1|1−s
= sgn(x− 1)k−ℓ

Ĩs(x)

|x− 1|s
.

Proof. See [GZ99, Prop. 8.6].

We now give an explicit expression for the value of Ĩs(x) in terms of the Gaussian hypergeometric
function F (a, b; c; z) defined by

F (a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

zn

n!
. (4.8)

By taking a countour integral and using the residue theorem, Goldfeld and Zhang show that Is(x)
naturally relates to the Gaussian hypergeometric function [GZ99, Prop. 8.3]. For the completed
function, we can give the following formula.

Proposition 4.8. Assume that ℜ(s) < k+ℓ
2
. Then Ĩs(x) is given by

Ĩs(x) =



x
k−1
2

Γ(k−ℓ
2

+ s)

Γ(k)Γ( ℓ−k
2

+ s)
(1− x)

ℓ−k
2

−1+sF
(
k−ℓ
2

+ s, k−ℓ
2

+ 1− s; k; x
x−1

)
if 0 < x < 1,

Γ(2s− 1)

Γ( ℓ−k
2

+ s)Γ( ℓ+k
2

+ s− 1)
if x = 1,

x
1−k
2

1

Γ(ℓ)
(x− 1)

k−ℓ
2

−1+sF
(
ℓ−k
2

+ 1− s, ℓ−k
2

+ s; ℓ; 1
1−x

)
if x > 1.

Proof. This follows from [GZ99, Prop. 8.3].
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4.5 Modified holomorphic kernel

By summing up the holomorphic kernel functions for different levels, we will obtain a new kernel
function that satisfies an inner product relation for newforms and has nicer Fourier coefficients.
The main result of this section is Proposition 4.11.

For any divisor e|N [D], we define

As(e) =
Γ( ℓ+k

2
− s)(2π)2sχ(e)e1−2s

Γ(k−ℓ
2

+ s)L(e)(χ, 2s)
.

Moreover, for e|N [D], δ|D, and m > 0, we define

T δm,e(s) =
δ

1
2
−siℓ

2π

∞∑
n=0

bδ(n)Sδe(s,mδ − n)Ṽs(n, δm), (4.9)

with Sδe(s,mδ − n) as in Proposition 4.6 and

Ṽs(n,m) =

{
Γ(ℓ)−1ms− ℓ+1

2 if n = 0,

Ĩs
(
m
n

)
ns−1 if n > 0.

Note that for Vs(n,m) as defined in (4.5), it holds that

Ṽs(n,m) =
Γ(k−ℓ

2
+ s)

Γ(k+ℓ
2

− s)
Vs(n,m).

Lemma 4.9. With notation as above and T δm(s) as in Theorem 4.4, we have for every δ|D that

T δm(s) = As(N
[D])

∑
e|N [D]

µ

(
N [D]

e

)
e

N [D]
T δm,e(s),

Proof. The equality follows immediately from Proposition 4.6, where it was proven that

Sδ(s, B) =
χ(N [D])(N [D])1−2s

L(N)(χ, 2s)

∑
e|N [D]

µ

(
N [D]

e

)
e

N [D]
Sδe(s, B).

We now define
Tm,e(s) =

∑
δ|D

T δm,e(s). (4.10)

Recall from Theorem 4.4 that
Tm(s) =

∑
δ|D

T δm(s).

An obvious consequence of Lemma 4.9 is the following fact.
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Lemma 4.10. With Tm(s) and Tm,e(s) as above, we have

Tm(s) = As(N
[D])

∑
e|N [D]

µ

(
N [D]

e

)
e

N [D]
Tm,e(s).

Note that the functions Sδe(s, B) and hence Tm,e(s) only (implicitly) depend on N[D], and not on
N [D]. In this sense, if e is a proper divisor of N [D], the function Tm,e(s) comes from holomorphic
kernels of a lower level, and thus from oldforms. By choosing the right linear combination of
holomorphic kernels, we are able to construct a modified kernel whose coefficients are expressible
solely in terms of Tm,N [D](s).

Proposition 4.11. Fix positive integers k, ℓ,N and D with D square-free and k ≥ 4. Let χ be
a primitive Dirichlet character modulo D. Let g ∈Mℓ(Γ0(D), χ) be a modular form with Fourier
expansion

g(z) = b(0) +
∞∑
n=1

b(n)n
ℓ−1
2 e2πinz.

Let γ be a bound on the coefficients of g and its Atkin–Lehner translates as in (4.3). For s ∈ C,
define

Φ̃s,g =
(k − 2)!

(4π)k−1

∑
e|N [D]

e

N [D]
As̄(e)−1Φs,g,e,

where Φs,g,e is the holomorphic kernel of level eN[D]. Then Φ̃s̄,g has a Fourier expansion

Φ̃s̄,g(z) =
∞∑
m=1

ϕ̃s̄,g(m)m
k−1
2 e2πimz,

whose coefficients ϕ̃s̄,g(m) for 1 < ℜ(s) < k−1
2

− γ are given by

ϕ̃s̄,g(m) =
b(m)

ms

∑
e|N [D]

e

N [D]

Γ(k−ℓ
2

+ s)L(e)(χ, 2s)

Γ(k+ℓ
2

− s)(2π)2sχ(e)e1−2s
+ 2πikTm,N [D](s),

where Tm,N [D] is defined as in (4.9). Moreover, Φ̃s̄,g ∈ Sk(Γ0(N)), and for any f ∈ Snew
k (Γ0(N)), we

have

L(f ⊗ g, s) =
(4π)k−1

(k − 2)!

Γ(k+ℓ
2

− s)(2π)2sχ(N [D])(N [D])1−2s

Γ(k−ℓ
2

+ s)L(N)(χ, 2s)
⟨f, Φ̃s̄,g⟩.

Proof. For a divisor e|N [D], let Pm,e denote the m
th Poincaré series for Γ0(eN[D]) of weight k. Recall

that

L(Pm,e ⊗ g, s) =
b(m)

ms
+ 2πikTm(e, s), (4.11)

where we write Tm(e, s) instead of Tm(s) to explicitly indicate the dependence on the level eN[D].
Now note that Sδe(s, B), and hence T δm,e(s) and Tm,e(s), only depend on N[D] and not on N [D].
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Together with the observation that (eN[D])[D] = N[D], this shows that the coefficients Tm,e(s) are
equal for all levels that we consider. We find by Lemma 4.10 that for every divisor e|N [D],

Tm(e, s) = As(e)
∑
d|e

µ
(e
d

) d
e
Tm,d(s).

This allows us to compute:∑
e|N [D]

e

N [D]
As(e)

−1Tm(e, s) =
∑
d|N [D]

d

N [D]
Tm,d(s)

∑
e|N [D],d|e

µ
(e
d

)
=
∑
d|N [D]

d

N [D]
Tm,d(s)

∑
e|N [D]

d

µ (e) = Tm,N [D](s), (4.12)

where we use that ∑
d|n

µ(d) =

{
1 if n = 1,

0 otherwise.

If we now write ϕs,g,e(m) for the mth Fourier coefficient of Φs,g,e(z), it follows that

ϕ̃s̄,g(m) =
(k − 2)!

(4π)k−1

∑
e|N [D]

e

N [D]
As(e)

−1ϕs̄,g,e(m)

(4.2)
=

∑
e|N [D]

e

N [D]
As(e)

−1L(Pm,e ⊗ g, s)

(4.11)
=

∑
e|N [D]

e

N [D]
As(e)

−1

(
b(m)

ms
+ 2πikTm(e, s)

)
(4.12)
=

b(m)

ms

∑
e|N [D]

e

N [D]
As(e)

−1 + 2πikTm,N [D](s).

This proves the formula for the coefficients of Φ̃s̄,g. As each of the holomorphic kernels Φs̄,g,e is a cusp
form of weight k for Γ0(eN[D]), each of them can be lifted to a cusp form of weight k for Γ0(N). It

follows that Φ̃s̄,g(z) is a cusp form of weight k for Γ0(N). Moreover, for a newform f ∈ Snew
k (Γ0(N)),

we have that ⟨f,Φs̄,g,e⟩ = 0 for all e|N [D] with e ̸= N [D], as newforms are orthogonal to oldforms by
definition, see (2.4). We conclude that

⟨f, Φ̃s̄,g⟩ =
(k − 2)!

(4π)k−1

∑
e|N [D]

e

N [D]
As(e)

−1⟨f,Φs̄,g,e⟩

=
(k − 2)!

(4π)k−1
As(N

[D])−1L(f ⊗ g, s),

as only ⟨f,Φs̄,g,N [D]⟩ (4.1)
= L(f ⊗ g, s) survives in the sum. It follows that

L(f ⊗ g, s) =
(4π)k−1

(k − 2)!

Γ(k+ℓ
2

− s)(2π)2sχ(N [D])(N [D])1−2s

Γ(k−ℓ
2

+ s)L(N)(χ, 2s)
⟨f, Φ̃s̄,g⟩.
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4.6 Modified holomorphic kernel for theta series

In this section, we will derive a formula for the Fourier coefficients of the modified holomorphic
kernel Φ̃s,g in the case that g is a theta series (Theorem 4.13). From that formula, we deduce that
Φ̃s,g satisfies a functional equation in s centered at 1

2
(Theorem 4.15). We conclude this section

with a functional equation for the Rankin–Selberg L-function L(f ⊗ θA,ψ, s) (Theorem 4.16). In
particular, we recover [LS24, Thm. 3.1].

Fourier coefficients

We will now additionally assume that D ≡ 3 (mod 4) and that N is coprime to D. Consider the
imaginary quadratic field K = Q(

√
−D) of discriminant ∆K = −D. It has an associated Dirichlet

character χ modulo D given by the Kronecker symbol χ(·) =
(
∆K
·

)
. To state the final formula for

the coefficients, we need the following arithmetic function.

Definition 4.12. Let D = δ · δ′ be a decomposition. We define the multiplicative arithmetic
function χ̂δ·δ′ : Z → C by

χ̂δ·δ′(n) = χδ(n[δ′]) · χδ′(n[δ′]).

Note that χ̂δ·δ′(n) = ±1 if n ̸= 0 and that χ̂δ·δ′(0) = 0. For a decomposition D = δ1 · δ2 · δ3, it
satisfies

χ̂δ1δ2·δ3(n) · χ̂δ1δ3·δ2(n) · χ̂δ1·δ2δ3(n) = 1. (4.13)

By taking δ1 = 1, it follows that χ̂δ·δ′ depends on the order of the decomposition in the following
way:

χ̂δ·δ′(n) = χ(n[D]) · χ̂δ′·δ(n). (4.14)

Recall from (2.12) the character on ideals χδ·δ′ . Given a non-zero ideal a ⊆ OK , it relates to χ̂δ·δ′
via

χδ·δ′(a) = χ̂δ·δ′(N(a)). (4.15)

In fact, if one extends χ̂δ·δ′ to Q via χ̂δ·δ′(
m
n
) = χ̂δ·δ′(mn), then (4.15) holds for any fractional ideal

a of OK .

We can now give a formula for the Fourier coefficients of Φ̃s̄,g in the case that the modular form g
is the theta series associated to an unramified Hecke character, as considered in Section 2.3. As we
assume that the Hecke character has infinity type (ℓ− 1, 0), it follows that the weight of g must be
odd.

We will write Φ̃s,θ instead of Φ̃s,θA,ψ to make the notation more concise.

Theorem 4.13. Let k, ℓ,D and N be positive integers, with k ≥ 4 even, ℓ odd, D square-free and
gcd(D,N) = 1. Assume furthermore that D ≡ 3 (mod 4). Let χ be the Dirichlet character modulo
D given by the Kronecker symbol corresponding to the imaginary quadratic field K = Q(

√
−D).

Let ψ be an unramified Hecke character of infinity type (ℓ− 1, 0), and consider for a class A ∈ ClK
the associated theta series

θA,ψ(z) = b(0) +
∞∑
n=1

b(n)n
ℓ−1
2 e2πinz ∈Mℓ(Γ0(D), χ).
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Then for 3−k
2
< ℜ(s) < k−1

2
, the holomorphic kernel function Φ̃s̄,θ(z) has Fourier coefficients whose

complex conjugates are given by:

ϕ̃s̄,θ(m) = ik+ℓ−1χ(−N)L(χ, 2s)
N2s−1

(2π)2s
Γ(1

2
− s)Γ(1

2
+ s)

Γ( ℓ−k
2

+ 1− s)Γ( ℓ+k
2

− s)

b(m)

ms

+ ik+ℓ−1L(χ, 2− 2s)
D1−2s

(2π)2−2s

Γ(s− 1
2
)Γ(3

2
− s)

Γ( ℓ−k
2

+ s)Γ( ℓ+k
2

− 1 + s)

b(m)

m1−s

+ ikD
1
2
−s

∑
n≥1,n̸=mD

n≡mD (mod N)

b(n)

n1−sMs,A

(
mD − n

N

)
Ĩs

(
mD

n

)

+ ik+ℓ−1 m
s− ℓ+1

2

Γ(ℓ)
√
D
b(0)Ms,A

(
mD

N

)
,

with
Ms,A(t) =

∑
d|t

(d,D)=1

χ(d)d1−2s ·
∑
δ′|(D,t)

χ̂δ·δ′(−Nt)χδ·δ′(A)t1−2s
[δ′] . (4.16)

Proof. By the assumption that N and D are coprime, we have that N decomposes as N[D] = 1
and N [D] = N . Moreover, we have a bound bδ(n) = O(nε) as n→ ∞, for any ε > 0 and δ|D. By
Proposition 4.11, we find for 1 < ℜ(s) < k−1

2
that

ϕ̃s̄,g(m) =
b(m)

ms

∑
e|N

e

N

Γ(k−ℓ
2

+ s)L(e)(χ, 2s)

Γ(k+ℓ
2

− s)(2π)2sχ(e)e1−2s
+ 2πikTm,N(s).

Recall by (3.3) that

L(e)(χ, 2s) = L(χ, 2s)
∏
p|e

(
1− χ(p)

p2s

)
.

Moreover, we have∑
e|N

χ(e)e2s
∏
p|e

(
1− χ(p)

p2s

)
=
∑
e|N

χ(e)e2s
∑
d|e

µ(d)χ(d)d−2s =
∑
d|N

µ(d)
∑
e|N,d|e

χ( e
d
)
(e
d

)2s
=
∑
d|N

µ(d)
∑
e|N
d

χ(e)e2s =
∑
e|N

χ(e)e2s
∑
d|N
e

µ(d) = χ(N)N2s. (4.17)

It follows that∑
e|N

e

N

L(e)(χ, 2s)

χ(e)e1−2s

(3.3)
=

L(χ, 2s)

N

∑
e|N

χ(e)e2s
∏
p|e

(
1− χ(p)

p2s

)
(4.17)
= χ(N)L(χ, 2s)N2s−1.

This allows us to obtain the first term:

b(m)

ms

Γ(k−ℓ
2

+ s)

Γ(k+ℓ
2

− s)(2π)2s

∑
e|N

e

N

L(e)(χ, 2s)

χ(e)e1−2s
=
b(m)

ms
χ(N)L(χ, 2s)N2s−1 Γ(k−ℓ

2
+ s)

Γ(k+ℓ
2

− s)(2π)2s

= ik+ℓ−1 b(m)

ms
χ(−N)L(χ, 2s)

N2s−1

(2π)2s
Γ(1

2
− s)Γ(1

2
+ s)

Γ( ℓ−k
2

+ 1− s)Γ(k+ℓ
2

− s)
.
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Here we used that χ(−1) = −1, and we used the following equality, which follows from the reflection
formula for Γ(s):

Γ

(
k − ℓ

2
+ s

)
Γ

(
ℓ− k

2
+ 1− s

)
=

(−1)
k−ℓ−1

2 π

cos(πs)
= −ik+ℓ−1Γ

(
1

2
− s

)
Γ

(
1

2
+ s

)
.

Now recall from (4.9) and (4.10) that

Tm,N(s) =
∑
δ|D

δ
1
2
−siℓ

2π

∞∑
n=0

bδ(n)SδN(s,mδ − n)Ṽs(n, δm). (4.18)

In order to obtain the second and third term of ϕ̃s̄,θ(m), we consider the summands for n ≥ 1 in
the series above. After multiplying by 2πik and substituting n 7→ n

δ′
, these summands yield

ik+ℓ
∑
δ|D

D
1
2
−s

∞∑
n=1
δ′|n

bδ( n
δ′
)

n1−s

√
δ′SδN

(
s,
mD − n

δ′

)
Ĩs

(
mD

n

)
.

By Proposition 4.6, the term corresponding to some n ≥ 1 is only non-zero if N divides mD−n
δ′

and
thus only if N divides mD − n. Moreover, using Proposition 2.15 (with the corresponding property
above each equal sign below), we know that

bδ( n
δ′
)
(4)
= κ(δ)−1χδ′(δ)χδ·δ′(A)b( n

δ′
δ)

(2)
= κ(δ)−1χδ′(δ)χδ·δ′(A)b(nD)

(1)
= iℓ−1κ(δ)−1χδ′(δ)χδ·δ′(A)b(n),

and so we obtain the two terms that will lead to the second and third term:

ik+1
∑
δ|D

D
1
2
−s

∞∑
n=1
δ′|n

κ(δ)−1χδ′(δ)χδ·δ′(A)b(n)

n1−s

√
δ′SδN

(
s,
mD − n

δ′

)
Ĩs

(
mD

n

)

= ikD
1
2
−s

∞∑
n=1

N |mD−n

b(n)

n1−s

∑
δ′|(D,n)

κ(δ′)χδ′(δ)χδ·δ′(A)
√
δ′SδN

(
s,
mD − n

δ′

)
Ĩs

(
mD

n

)

= ik+ℓ−1 1

D
1
2

b(m)

m1−sM
∗
s,A(mD)Ĩs(1) + ikD

1
2
−s

∞∑
n=1,n ̸=mD

n≡mD (mod N)

b(n)

n1−sM
∗
s,A(n)Ĩs

(
mD

n

)
,

where we let

M∗
s,A(n) =

∑
δ′|(D,n)

κ(δ′)χδ′(δ)χδ·δ′(A)
√
δ′SδN

(
s,
mD − n

δ′

)
.

By Proposition 4.6, we know that SδN(s, 0) = 0 for δ ≠ D, and that SDN (s, 0) = L(χ, 2s− 1). From
this, it follows that M∗

s,A(mD) reduces to L(χ, 2s− 1). Using the functional equation for L(χ, s) as
given in Theorem 3.3, we obtain the second term:

ik+ℓ−1 1

D
1
2

b(m)

m1−sM
∗
s,A(mD)Ĩs(1) = ik+ℓ−1 1

D
1
2

b(m)

m1−sL(χ, 2s− 1)Ĩs(1)

= ik+ℓ−1 1

D
1
2

b(m)

m1−s2
2s−1π2s−2D

3
2
−2s sin(πs)

Γ(2− 2s)Γ(2s− 1)

Γ( ℓ−k
2

+ s)Γ( ℓ+k
2

− 1 + s)
L(χ, 2− 2s)

= ik+ℓ−1L(χ, 2− 2s)
D1−2s

(2π)2−2s

b(m)

m1−s
Γ(s− 1

2
)Γ(3

2
− s)

Γ( ℓ−k
2

+ s)Γ( ℓ+k
2

− 1 + s)
.
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Here we used Proposition 4.8 to rewrite Ĩ(1), and we used the following equality, which follows
from the reflection formula for Γ(s):

2 sin(πs)Γ(2− 2s)Γ(2s− 1) =
−2π sin(πs)

sin(2πs)
=

−π
cos(πs)

= Γ(s− 1
2
)Γ(3

2
− s).

We will derive the third term from

ikD
1
2
−s

∞∑
n=1,n ̸=mD

n≡mD (mod N)

b(n)

n1−sM
∗
s,A(n)Ĩs

(
mD

n

)
,

and so it suffices to show that M∗
s,A(n) = Ms,A(

mD−n
N

) for all n ≥ 1 with n ≡ mD (mod N) and

n ̸= mD. Write t = mD−n
N

, so that mD−n
δ′

= Nt
δ′
. By definition of SδN (see Proposition 4.6), we then

have for δ′| gcd(D,n):

SδN
(
s, Nt

δ′

)
=

τ(χδ′)χδ((Nt/δ
′)[δ′])

(δ′)2s(t[δ′]/δ′)2s−1χδ′((Nt/δ′)[δ
′])

∑
d| t
δ′

(d,D)=1

χ(d)d1−2s.

First, we note that we may replace t
δ′
with t in the subscript of the summation, due to the coprimality

condition. Next, we note that

χδ((Nt/δ
′)[δ′])

χδ′((Nt/δ′)[δ
′])

= χδ((Nt/δ
′)[δ′]) · χδ′((Nt/δ′)[δ

′]) = χ̂δ·δ′(Nt/δ
′) = χ̂δ·δ′(Ntδ

′).

Lastly, by [Miy06, Lemma 4.8.1], we know that τ(χδ′) = κ(δ′)
√
δ′. We find that

M∗
s,A(n) =

∑
δ′|(D,n)

κ(δ′)χδ′(δ)χδ·δ′(A)
√
δ′SδN

(
s,
mD − n

δ′

)
=

∑
δ′|(D,n)

χδ′(−1)χδ′(δ)χδ·δ′(A)χ̂δ·δ′(Ntδ
′)t1−2s

[δ′]

∑
d|t

(d,D)=1

χ(d)d1−2s

=
∑
δ′|(D,t)

χ̂δ·δ′(−Nt)χδ·δ′(A)t1−2s
[δ′]

∑
d|t

(d,D)=1

χ(d)d1−2s

=Ms,A(t).

Here we used that χδ′(δ) · χ̂δ·δ′(δ′) = χ̂δ·δ′(D) = 1.

For the fourth term, we consider the summands for n = 0 occurring in (4.18), namely

∑
δ|D

δ
1
2
−siℓ

2πΓ(ℓ)
bδ(0)SδN(s,mδ)(mδ)

s− ℓ+1
2 .

Note that this sum is only non-zero if θA,ψ is not a cusp form, i.e., if ℓ = 1. Moreover, the terms of this
sum are only nonzero if N |mδ, or equivalently if N |m or if N |mD. In that case, by Proposition 4.6,
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we know that

SδN(s,mδ) =

√
δ′κ(δ′)χ̂δ·δ′(mδ)

δ′2sm2s−1
[δ′]

∑
d|m
N

(d,D)=1

χ(d)d1−2s.

Together with Proposition 2.15 (5), we find that the fourth term is given by

ik+ℓ
∑
δ|D

δ
1
2
−siℓ

Γ(ℓ)
b(0)δ

ℓ−1
2 κ(δ)−1χδ′(δ)χδ·δ′(A)(mδ)s−

ℓ+1
2

√
δ′κ(δ′)χ̂δ·δ′(mδ)

δ′2sm2s−1
[δ′]

∑
d|m
N

(d,D)=1

χ(d)d1−2s

=
ik+ℓ−1ms− ℓ+1

2

Γ(ℓ)
√
D

b(0)
∑
δ′|D

(mD)1−2s
[δ′] χ̂δ·δ′(−mD)χδ·δ′(A)

∑
d|mD

N
(d,D)=1

χ(d)d1−2s.

We have now shown the theorem for 1 < ℜ(s) < k−1
2
. For a more general 3−k

2
< ℜ(s) < k−1

2
,

we appeal to the uniqueness of a meromorphic extension. It is clear that the first, second and
fourth term have a meromorphic extension to the whole complex plane. For the third term, we first
consider 1

2
≤ ℜ(s) < k−1

2
. In that case, we have the bounds b(n) = O(nε), Ĩs

(
mD
n

)
= O(n

1−k
2 ) and

Ms,A(n) = O(nε) as n → ∞. It follows that the summand of the third term satisfies the bound

O(ns+ϵ−
k+1
2 ) as n→ ∞, for any ε > 0. In particular, we see that the third term converges absolutely

and uniformly on compact subsets of {s ∈ C | 1
2
≤ ℜ(s) < k−1

2
} (excluding obvious poles of the

summand).

Now consider 3−k
2
< ℜ(s) ≤ 1

2
. In that case we have the same bounds for b(n) and Ĩs

(
mD
n

)
. For

Ms,A(n), we have the bound Ms,A(n) = O(n1−2s+ε) as n → ∞. We see that the summand is

bounded by O(nε+
1−k
2

−s) as n → ∞, for any ε > 0. It follows that the sum converges absolutely
and uniformly on compact subsets of {s ∈ C | 3−k

2
< ℜ(s) ≤ 1

2
} (once again, excluding obvious

poles of the summand). We see that the third term is meromorphic on both regions and as they
overlap on the line ℜ(s) = 1

2
, we conclude that the third term defines a meromorphic function on

3−k
2
< ℜ(s) < k−1

2
. This concludes the proof.

Functional equation of Φ̃s,θ

This special version of the modified holomorphic kernel satisfies a functional equation relating
Φ̃1−s,θ to Φ̃s,θ. We prove this using the formulas we have obtained in Theorem 4.13. As such, we
need a functional equation for Ms,A(t).

Lemma 4.14. Let s ∈ C and let t be a non-zero integer. Decompose D = D1 · D2 with |D1| =
gcd(t,D). Then

M1−s,A(t) = sgn(t)χ(−N)|t|2s−1χ̂D1·D2(−Nt)χD1·D2(A)Ms,A(t).

Proof. Let n be the norm of any ideal in A, so that χδ·δ′(A) = χ̂δ·δ′(n) by (4.15) for any decom-
position D = δ · δ′. Note that as d ranges over the divisors of t that are coprime to D, so does
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|t|/(t[D]d) = sgn(t)|t|[D]/d. Using the substitution d 7→ |t|/(t[D]d) in the formula (4.16) forM1−s,A(t),
we see that

M1−s,A(t) =
∑
d|t

(d,D)=1

χ(|t|/(t[D]d))

(
|t|
t[D]d

)2s−1 ∑
δ′|(D,t)

χ̂δ·δ′(−Nt)χδ·δ′(A)t2s−1
[δ′]

= sgn(t)χ(t[D])|t|2s−1
∑
d|t

(d,D)=1

χ(d)d1−2s
∑
δ′|(D,t)

χ̂δ·δ′(−Ntn)t1−2s
[δ] .

As δ′ ranges over the divisors of (D, t), we can write δ = D[t] · δ∗, where δ∗ ranges over the divisors
of (D, t). Note that t1−2s

[δ] = t1−2s
[δ∗] , as t and D[t] do not have any divisors in common. It follows that∑

δ′|(D,t)

χ̂δ·δ′(−Ntn)t1−2s
[δ] =

∑
δ∗|(D,t)

χ̂D[t]δ∗·δ′(−Ntn)t1−2s
[δ∗]

(4.13)
= χ̂D[t]·D[t]

(−Ntn)
∑

δ∗|(D,t)

χ̂D[t]δ′·δ∗(−Ntn)t1−2s
[δ∗] .

Now note that χ(t[D]) = χ(−N · (−Nt)[D]). If we let D = D1 ·D2 with |D1| = D[t] = gcd(D, t), we
conclude that

M1−s,A(t) = sgn(t)χ(t[D])|t|2s−1χ̂D2·D1(−Nt)χD2·D1(A)Ms,A(t)

(4.14)
= sgn(t)χ(−N)|t|2s−1χ̂D1·D2(−Nt)χD1·D2(A)Ms,A(t).

Theorem 4.15. Under the assumptions of Theorem 4.13, Φ̃s,θ satisfies the functional equation
given by

Φ̃1−s,θ = χ(−N)D2s−1N1−2sΦ̃s,θ.

Proof. It suffices to show for m ≥ 1 that

ϕ̃1−s,θ(m) = χ(−N)D2s−1N1−2sϕ̃s̄,θ(m).

It is clear that the first two terms of ϕ̃s̄,θ(m) as in Theorem 4.13 are swapped up to multiplication by
χ(−N)D2s−1N1−2s under the transformation s 7→ 1−s. For the third term, we will use the functional
equations of Ms,A(t) and Ĩs(x) to show that every summand satisfies the functional equation. Let
n ≥ 1 with n ̸= mD and n ≡ mD (mod N). Decompose D = D1 ·D2 with |D1| = gcd(D, n−mD

N
).

Note that gcd(D, n−mD
N

) = gcd(D,n), as N is coprime to D. If b(n) = 0, then the entire term
corresponding to n vanishes and we are done. We will thus assume b(n) ̸= 0, and may in particular
assume that there is some ideal a ∈ A with N(a) = n. This tells us that

χ̂D1·D2(n−mD) · χD1·D2(A) = χD2(n−mD) · χD2(n) = χD2(n)
2 = 1,

as D2 = D[n−mD] = D[n], which is coprime to both n and n−mD. It follows by Lemma 4.14 that

M1−s,A

(
mD − n

N

)
= sgn (mD − n)χ(−N)

∣∣∣∣mD − n

N

∣∣∣∣2s−1

Ms,A

(
mD − n

N

)
.
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By the functional equation of Ĩs(x) (Proposition 4.7), we have

Ĩ1−s

(
mD

n

)
=

∣∣∣∣mD − n

n

∣∣∣∣1−2s

sgn (mD − n) Ĩs

(
mD

n

)
.

We conclude for every n ≥ 1 that

ikDs− 1
2
b(n)

ns
M1−s,A

(
mD − n

N

)
Ĩ1−s

(
mD

n

)
= χ(−N)D2s−1N1−2s · ikD

1
2
−s b(n)

n1−sMs,A

(
mD − n

N

)
Ĩs

(
mD

n

)
.

For the fourth term, we use the functional equation of Ms,A
(
mD
N

)
. As gcd(D, mD

N
) = D, we find

that

M1−s,A

(
mD

N

)
= χ̂D·1(−mD)χD·1(A)

(
mD

N

)2s−1

χ(−N)Ms,A

(
mD

N

)
.

As χ̂D·1(−mD) = 1 and χD·1(A) = 1, we deduce that

ik+ℓ−1 m
ℓ−1
2

−s

Γ(ℓ)
√
D
b(0)M1−s,A

(
mD

N

)
= χ(−N)D2s−1N1−2sik+ℓ−1 m

s− ℓ+1
2

Γ(ℓ)
√
D
b(0)Ms,A

(
mD

N

)
.

Functional equation of L(f ⊗ θA,ψ, s)

Using Proposition 4.11 and Theorem 4.15, we can now deduce a functional equation for L(f⊗θA,ψ, s)
for a newform f ∈ Snew

k (Γ0(N)). Define the completed L-function

Λ(f ⊗ θA,ψ, s) = L(N)(χ, 2s)DsN s(2π)−2sΓ(k+ℓ
2

+ s− 1)Γ( |k−ℓ|
2

+ s)L(f ⊗ θA,ψ, s). (4.19)

Theorem 4.16. Let k, ℓ,D and N be positive integers, with D square-free and gcd(D,N) = 1.
Assume furthermore that k ≥ 4 is even, that ℓ is odd, and that D ≡ 3 (mod 4). Let χ be the Dirichlet
character modulo D given by the Kronecker symbol corresponding to the imaginary quadratic field
K = Q(

√
−D). Let ψ be an unramified Hecke character of infinity type (ℓ − 1, 0), and consider

for a class A ∈ ClK the theta series θA,ψ. Then for a newform f ∈ Snew
k (Γ0(N)), the completed

Rankin–Selberg L-function Λ(f ⊗ θA,ψ, s) satisfies the functional equation

Λ(f ⊗ θA,ψ, 1− s) = χ(ϵN)Λ(f ⊗ θA,ψ, s),

with

ϵ =

{
−1 if k > ℓ,

1 if ℓ > k.

Proof. We first consider the case k > ℓ. By Proposition 4.11, we know that

L(f ⊗ θA,ψ, s) =
(4π)k−1

(k − 2)!

Γ(k+ℓ
2

− s)(2π)2sχ(N)N1−2s

Γ(k−ℓ
2

+ s)L(N)(χ, 2s)
⟨f, Φ̃s̄,θ⟩,
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and so

Λ(f ⊗ θA,ψ, s) =
(4π)k−1

(k − 2)!
χ(N)DsN1−sΓ(k+ℓ

2
− s)Γ(k+ℓ

2
+ s− 1)⟨f, Φ̃s̄,θ⟩.

Next, note that by Theorem 4.15, we have

⟨f, Φ̃1−s̄,θ⟩ = χ(−N)D2s̄−1N1−2s̄⟨f, Φ̃s̄,θ⟩ = χ(−N)D2s−1N1−2s⟨f, Φ̃s̄,θ⟩.

We conclude that

Λ(f ⊗ θA,ψ, 1− s) =
(4π)k−1

(k − 2)!
χ(N)D1−sN sΓ(k+ℓ

2
+ s− 1)Γ(k+ℓ

2
− s)⟨f, Φ̃1−s̄,θ⟩

= − (4π)k−1

(k − 2)!
DsN1−s(2π)2−2sΓ(k+ℓ

2
s− 1)Γ(k+ℓ

2
− s)⟨f, Φ̃s̄,θ⟩

= χ(−N)Λ(f ⊗ θA,ψ, s).

In the case that ℓ > k, the gamma functions do not cancel and following the same steps yields

Λ(f ⊗ θA,ψ, 1− s) = χ(−N)
Γ( ℓ−k

2
+ 1− s)Γ(k−ℓ

2
+ s)

Γ(k−ℓ
2

+ 1− s)Γ( ℓ−k
2

+ s)
Λ(f ⊗ θA,ψ, s).

This quotient of gamma functions is equal to −1, as can be shown using the reflection formula.

Remark. This recovers [LS24, Thm. 3.1] by the Goldfeld–Zhang method.
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5 Special values and derivatives

In this chapter, we will derive formulas for the values and derivatives of Rankin–Selberg L-series at
specific points. In this way, we recover the results of Gross–Zagier [GZ86] and Lilienfeldt–Shnidman
[LS24] via the Goldfeld–Zhang method, thereby verifying the claim made in the final remark
of [GZ99]. To facilitate the comparison with these papers, we will introduce their notation and
normalizations and relate it to ours in Section 5.1. Then, in the remainder of this chapter, we
deduce a formula for the special values (Section 5.2), the central value (Section 5.3) and the central
derivative (Section 5.4) of the Rankin–Selberg L-function. We remark here that both Gross–Zagier
and Lilienfeldt–Shnidman write 2k for the weight of the newforms, whereas we use k.

5.1 Preliminaries

Fix positive coprime integers D and N with D square-free. We will assume that D ≡ 3 (mod 4).
Let k and ℓ be positive integers with k even, ℓ odd and ℓ < k. Consider the imaginary quadratic
field K = Q(

√
−D) of discriminant ∆K = −D with the corresponding Dirichlet character χ modulo

D. Finally, let ψ : IK → C× be an unramified Hecke character of infinity type (ℓ− 1, 0) and fix a
class A ∈ ClK .

Given a cusp form f ∈ Snew
k (Γ0(N)), we will write its Fourier expansion as

f(z) =
∞∑
n=1

af (n)e
2πinz =

∞∑
n=1

a(n)n
k−1
2 e2πinz.

So far, we have used the second normalization, whereas Gross–Zagier and Lilienfeldt–Shnidman use
the first normalization. We also have a theta series θA,ψ ∈Mℓ(Γ0(N), χ) given by

θA,ψ(z) = rA,ψ(0) +
∞∑
n=1

rA,ψ(n)e
2πinz = b(0) +

∞∑
n=1

b(n)n
ℓ−1
2 e2πinz.

Recall that we defined the Dirichlet L-function L(N)(χ, s) by

L(N)(χ, s) =
∞∑
n=1

(n,DN)=1

χ(n)

ns
.

We can then define the L-function

LA(f, ψ, s) = L(N)(χ, 2s− k − ℓ+ 2) ·
∞∑
n=1

af (n)rA,ψ(n)

ns

= L(N)(χ, 2s− k − ℓ+ 2) · L(f ⊗ θA,ψ, s− k−1
2

− ℓ−1
2
). (5.1)

Gross–Zagier and Lilienfeldt–Shnidman obtain a formula for LA(f, ψ, s), respectively, when ℓ = 1
and ℓ > 1, while we have given a formula for L(f ⊗ θA,ψ, s) for any ℓ ≥ 1 (see Proposition 4.11).
Note that Gross–Zagier use the notation LA(f, s), which coincides with LA(f, ψ, s) if ψ is the trivial
unramified finite order Hecke character.
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Evaluating Ms,A(n)

Given a non-zero integer n ∈ Z and a divisor d|n, we define

χA(n, d) =

{
0 if gcd(d, n

d
, D) ̸= 1,

χD1(d)χD2(−N n
d
)χD1·D2(A) if gcd(d, n

d
, D) = 1,

where ∆K = D1 ·D2 is a decomposition of discriminants with |D2| = gcd(d,D). For some s ∈ C,
we now define for n ∈ Z,

σs,A(n) =

{
(−D)

ℓ−1
2
χ(−N)

2
L(χ,−s) if n = 0,∑

d|n χA(n, d)(n/d)
s if n ̸= 0,

(5.2)

and for n > 1,

σ̃A(n) =
∑
d|n

χA(n, d) log
( n
d2

)
.

These functions appear in the analytic formulas in [GZ86] and [LS24]. Recall that our final formula
for the coefficients of Φ̃s,θA,ψ , given in Theorem 4.13, used the function

Ms,A(t) =
∑
d|t

(d,D)=1

χ(d)d1−2s
∑
δ′|(D,t)

χ̂δ·δ′(−Nt)χδ·δ′(A)t1−2s
[δ′] .

Lemma 5.1. Let n be a non-zero integer. Then Ms,A(n) = n1−2sσ2s−1,A(n) for all s ∈ C.

Proof. Any divisor d|n that satisfies gcd(d, n
d
, D) = 1 can be uniquely written as d = d′ · n[δ′] where

d′|n[D] and δ′|(D,n). Decompose ∆K = D1 ·D2 with |D1| = δ and |D2| = δ′, so that

χA(n, d
′n[δ′]) = χD1(d

′n[δ′])χD2(−N n
d′n[δ′]

)χD1·D2(A) = χ(d′)χ̂D1·D2(−Nn)χD1·D2(A).

Here we used that

χD1(d
′n[δ′]) = χ̂D2·D1(d

′n[δ′])
(4.14)
= χ(d′)χ̂D1·D2(d

′n[δ′]).

We conclude that

Ms,A(n) =
∑
d′|n

(d′,D)=1

χ(d′)d′1−2s
∑

δ′|(D,n)

χ̂δ·δ′(−nN)χδ·δ′(A)n1−2s
[δ′]

=
∑
d′|n

(d′,D)=1

∑
δ′|(D,n)

χ(d′)χ̂δ·δ′(−Nn)χδ·δ′(A)(d′n[δ′])
1−2s

= n1−2s
∑
d|n

χA(n, d)(n/d)
2s−1

= n1−2sσ2s−1,A(n).
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By taking the derivative with respect to s, we obtain the following.

Lemma 5.2. Let n ≥ 1 be an integer. Then ∂
∂s
Ms,A(n)

∣∣
s= 1

2

= σ̃A(n)− log(n)σ0,A(n).

Proof. We first note that

∂

∂s
σ2s−1,A(n) = 2

∑
d|n

χA(n, d) log
(n
d

)(n
d

)2s−1

=
∑
d|n

χA(n, d)
(n
d

)2s−1 (
log
( n
d2

)
+ log(n)

)
,

and so
∂

∂s
σ2s−1,A(n)

∣∣∣∣
s= 1

2

= σ̃A(n) + log(n)σ0,A(n).

Differentiating both sides of Ms,A(n) = n1−2sσ2s−1,A(n) yields

∂

∂s
Ms,A = n1−2s

(
∂

∂s
σ2s−1,A(n)− 2 log(n)σ2s−1,A(n)

)
,

and evaluating at s = 1
2
proves the lemma.

Evaluating Is(x)

Next, we take a look at the function Is(x) given by Definition 4.3 that occurs in our formulas. By

evaluating it or its derivative at special points, we can relate it to the Jacobi polynomials P
(α,β)
n (x)

and to the Jacobi functions of the second kind Q
(α,β)
n (x).

Definition 5.3 ([Erd+81b, 10.8 (12)]). Let α, β ∈ R and n ∈ Z≥0. Then we define the Jacobi

polynomial P
(α,β)
n by

P (α,β)
n (x) =

1

2n

n∑
m=0

(
n+ α

m

)(
n+ β

n−m

)
(x− 1)n−m(x+ 1)m.

It is immediate that

P (α,β)
n (1) =

(
n+ α

n

)
, (5.3)

and that

P (α,β)
n (−1) = (−1)n

(
n+ β

n

)
. (5.4)

Moreover, as stated in [Erd+81b, 10.8 (16)], one can relate P
(α,β)
n to the Gaussian hypergeometric

function (see (4.8)) via

P (α,β)
n (x) =

Γ(n+ β + 1)

Γ(n+ 1)Γ(β + 1)

(
x− 1

2

)n
F

(
−n− α,−n; β + 1;

x+ 1

x− 1

)
. (5.5)

Definition 5.4. Let α, β ∈ R and n ∈ Z≥0. Then we define the Jacobi function of the second kind

Q
(α,β)
n for x ∈ C outside of the real segment [−1, 1] by

Q(α,β)
n (x) =

2−n−1

(x− 1)α(x+ 1)β

∫ 1

−1

(1− u)n+α(1 + u)n+β

(x− u)n+1
du.
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As proven in [Sze75, Thm. 4.61.2], we have the relation

Q(α,β)
n (x) = 2n+α+β

Γ(n+ α + 1)Γ(n+ β + 1)

Γ(2n+ α + β + 2)
(x− 1)−n−α−1(x+ 1)−β

· F
(
n+ α + 1, n+ 1; 2n+ α + β + 2;

2

1− x

)
. (5.6)

Lemma 5.5. Let 0 < ℓ < k be integers with k even and ℓ odd. Let 0 ≤ r ≤ k−ℓ−1
2

an integer. Let

x ∈ R with x ̸= 1. If 0 < x < 1, then Ĩ k−ℓ
2

−r(x) = 0. If x > 1, then

Ĩ k−ℓ
2

−r(x) = (−1)rx
1−k
2

+r(x− 1)k−ℓ−1−2rΓ(r + 1)

Γ(r + ℓ)
P (k−ℓ−1−2r,ℓ−1)
r ( 2

x
− 1).

Here P
(k−ℓ−1−2r,ℓ−1)
r is a Jacobi polynomial as in Definition 5.3.

Proof. The case 0 < x < 1 follows from Proposition 4.8 and the fact that Γ( ℓ−k
2

+ s) has a pole at
s = k−ℓ

2
− r. In the case that x > 1, we find by Proposition 4.8 that

Ĩ k−ℓ
2

−r(x) = x
1−k
2

1

Γ(ℓ)
(x− 1)k−ℓ−1−rF

(
ℓ− k + 1 + r,−r; ℓ; 1

1− x

)
.

Using (5.5) with α = k − ℓ− 1− 2r, β = ℓ− 1 and n = −r, and then substituting x 7→ 2
x
− 1, we

know that

P (k−ℓ−1−2r,ℓ−1)
r ( 2

x
− 1) =

Γ(r + ℓ)

Γ(r + 1)Γ(ℓ)

(
1− x

x

)r
F

(
ℓ− k + 1 + r,−r; ℓ; 1

1− x

)
.

We conclude that

Ĩ k−ℓ
2

−r(x) = (−1)rx
1−k
2

+r(x− 1)k−ℓ−1−2rΓ(r + 1)

Γ(r + ℓ)
P (k−ℓ−1−2r,ℓ−1)
r ( 2

x
− 1).

For the derivative at s = 1
2
, we have the following formulas.

Lemma 5.6. Let 0 < ℓ < k be integers with k even and ℓ odd. Let x ∈ R with x ̸= 1.
If 0 < x < 1, then

∂

∂s
Ĩs(x)

∣∣∣∣
s= 1

2

= (−1)
k−ℓ−1

2 x−
ℓ
2
Γ(k−ℓ+1

2
)

Γ(k+ℓ−1
2

)
· 2Q(0,ℓ−1)

k−ℓ−1
2

(
2

x
− 1

)
,

with Q
(0,ℓ−1)
k−ℓ−1

2

a Jacobi function of the second kind as in Definition 5.4.

If x > 1, then
∂

∂s
Ĩs(x)

∣∣∣∣
s= 1

2

= log(x− 1)x−
ℓ
2
Γ(k−ℓ+1

2
)

Γ(k+ℓ−1
2

)
P

(0,ℓ−1)
k−ℓ−1

2

(1− 2
x
).

with P
(0,ℓ−1)
k−ℓ−1

2

a Jacobi polynomial as in Definition 5.3.
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Proof. For 0 < x < 1, recall the formula for Is(x) as given in Proposition 4.8

Ĩs(x) = x
k−1
2

Γ(k−ℓ
2

+ s)

Γ(k)Γ( ℓ−k
2

+ s)
(1− x)

ℓ−k
2

−1+sF

(
k − ℓ

2
+ s,

k − ℓ

2
+ 1− s; k;

x

x− 1

)
.

Note that Γ( ℓ−k
2

+ s) has a simple pole at s = 1
2
and that

d

ds
Γ( ℓ−k

2
+ s)−1

∣∣
s= 1

2

=
(
Res 1

2
(Γ( ℓ−k

2
+ s))

)−1

= (−1)
k−ℓ−1

2 Γ(k−ℓ+1
2

).

It follows that

Ĩ ′1
2
(x) = (−1)

k−ℓ−1
2 x

k−1
2
Γ(k−ℓ+1

2
)2

Γ(k)
(1− x)

ℓ−k−1
2 F

(
k − ℓ+ 1

2
,
k − ℓ+ 1

2
; k;

x

x− 1

)
.

Using (5.6) with α = 0, β = ℓ− 1 and n = k−ℓ−1
2

, and substituting x 7→ 2
x
− 1 yields

Q
(0,ℓ−1)
k−ℓ−1

2

(
2

x
− 1

)
=

2
k+ℓ−3

2 Γ(k−ℓ+1
2

)Γ(k+ℓ−1
2

)

Γ(k)( 2
x
− 2)

k−ℓ+1
2 ( 2

x
)ℓ−1

F

(
k − ℓ+ 1

2
,
k − ℓ+ 1

2
; k;

x

x− 1

)
.

We conclude for 0 < x < 1, that

∂

∂s
Ĩs(x)

∣∣∣∣
s= 1

2

= (−1)
k−ℓ−1

2 x
k−1
2 (1− x)

ℓ−k−1
2 2

−k−ℓ+3
2 ( 2

x
− 2)

k−ℓ+1
2

(
2
x

)ℓ−1 Γ(
k−ℓ+1

2
)

Γ(k+ℓ−1
2

)
Q

(0,ℓ−1)
k−ℓ−1

2

(
2

x
− 1

)
= (−1)

k−ℓ−1
2 x−

ℓ
2 ·

Γ(k−ℓ+1
2

)

Γ(k+ℓ−1
2

)
· 2Q(0,ℓ−1)

k−ℓ−1
2

(
2

x
− 1

)
.

For x > 1, we know by Proposition 4.8 that

Ĩs(x) = x
1−k
2 (x− 1)

k−ℓ
2

−1+sF

(
ℓ− k

2
+ 1− s,

ℓ− k

2
+ s; ℓ;

1

1− x

)
.

As F ( ℓ−k
2

+ 1 − s, ℓ−k
2

+ s; ℓ; 1
1−x) is invariant under s ↔ 1 − s, its derivative with relation to s

vanishes at s = 1
2
. Using Lemma 5.5 with r = k−ℓ−1

2
, we deduce that

∂

∂s
Ĩs(x)

∣∣∣∣
s= 1

2

= log(x− 1) · Ĩ 1
2
(x) = log(x− 1)x−

ℓ
2
Γ(k−ℓ+1

2
)

Γ(k+ℓ−1
2

)
P

(0,ℓ−1)
k−ℓ−1

2

(1− 2
x
).

Final preparations

The final result we need is the following lemma.

Lemma 5.7. For 1 ≤ ℓ < k with ℓ odd and k even, define

f(s) =
Γ(1

2
− s)Γ(1

2
+ s)

Γ( ℓ−k
2

+ 1− s)Γ( ℓ+k
2

− s)
.
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Then, for any integer 0 ≤ r ≤ k−ℓ−1
2

,

f(k−ℓ
2

− r) = (−1)
k−ℓ−1

2
Γ(k − ℓ− r)

Γ(ℓ+ r)
,

and

f ′(1
2
) = (−1)

k−ℓ−1
2

Γ(k−ℓ+1
2

)

Γ(k+ℓ−1
2

)

(
Γ′

Γ
(k+ℓ−1

2
) +

Γ′

Γ
(k−ℓ+1

2
)

)
.

Sketch of proof. Given an integer 0 ≤ r ≤ k−ℓ−1
2

, both Γ(1
2
− s) and Γ( ℓ−k

2
+ 1− s) have a pole at

s = k−ℓ
2

− r. Computing the residues and evaluating yields the first part of this lemma.

The second part can be proven using the Laurent expanion of the four gamma functions around
s = 1

2
. As this computation is not very insightful, we have omitted it.

We now have all the results that we need to derive the analytic results in [GZ86] and in [LS24]. To
make the notation more concise, we will write Φ̃s,θ instead of Φ̃s,θA,ψ and use Theorem 4.13 to write

ϕ̃s̄,θ = tm,1(s) + tm,2(s) + tm,3(s) + tm,4(s),

with

tm,1(s) = ik+ℓ−1χ(−N)L(χ, 2s)
N2s−1

(2π)2s
Γ(1

2
− s)Γ(1

2
+ s)

Γ( ℓ−k
2

+ 1− s)Γ( ℓ+k
2

− s)

b(m)

ms
,

tm,2(s) = ik+ℓ−1L(χ, 2− 2s)
D1−2s

(2π)2−2s

Γ(s− 1
2
)Γ(3

2
− s)

Γ( ℓ−k
2

+ s)Γ( ℓ+k
2

− 1 + s)

b(m)

m1−s ,

tm,3(s) = ikD
1
2
−s

∑
n≥1,n̸=mD

mD≡n (mod N)

b(n)

n1−sMs,A

(
mD − n

N

)
Ĩs

(
mD

n

)
,

tm,4(s) = ik+ℓ−1 m
s− ℓ+1

2

Γ(ℓ)
√
D
b(0)Ms,A

(
mD

N

)
.

(5.7)

5.2 Special values

In [GZ86, Thm. IV.5.5], the value of LA(f, ψ, k − r − 1) is derived for integers 0 ≤ r < k−2
2

in the
case that ℓ = 1. We generalize this theorem by allowing ℓ > 1 in the following way.

Theorem 5.8. Let K = Q(
√
−D) be an imaginary quadratic field with D ≡ 3 (mod 4). Fix a level

N coprime to D and fix weights 1 ≤ ℓ < k with k ≥ 4 even and ℓ odd. Let ψ be an unramified Hecke
character of infinity type (ℓ− 1, 0). Finally, let 0 ≤ r < k−ℓ−1

2
be an integer. For m ≥ 1, define

bm,r = (mD)r
∑

0≤t≤mD
N

rĀ,ψ(mD − tN)σk−ℓ−2r−1,A (t)P (k−ℓ−1−2r,ℓ−1)
r

(
1− 2tN

mD

)
,

with P
(k−ℓ−1−2r,ℓ−1)
r a Jacobi polynomial as in Definition 5.3 and σs,A(n) as in (5.2). Then∑

m≥1 bm,re
2πimz ∈ Sk(Γ0(N)) and for any f ∈ Snew

k (Γ0(N)), we have

LA(f, ψ, k − r − 1) =
(−1)

k
2
−r(2π)2k−ℓ−2r−1

(k − ℓ− r − 1)!

2k−1

(k − 2)!

χ(N)r!

Dk− ℓ
2
−r−1

〈
f,
∑
m≥1

bm,re
2πimz

〉
,
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Proof. By (5.1), we know that

LA(f, ψ, k − r − 1) = L(N)(χ, k − ℓ− 2r) · L(f ⊗ θA,ψ,
k−ℓ
2

− r).

Now Proposition 4.11 tells us that

L(f ⊗ θA,ψ,
k−ℓ
2

− r) =
(4π)k−1

(k − 2)!

Γ(ℓ+ r)(2π)k−ℓ−2rχ(N)N2r+ℓ+1−k

Γ(k − ℓ− r)L(N)(χ, k − ℓ− 2r)
⟨f, Φ̃ k−ℓ

2
−r,θ⟩.

It follows that

LA(f, ψ, k − r − 1) =
(−1)

k
2
−r(2π)2k−ℓ−2r−1

(k − ℓ− r − 1)!

2k−1

(k − 2)!

χ(N)r!

Dk− ℓ
2
−r−1

⟨f, Cr · Φ̃ k−ℓ
2

−r,θ⟩,

with

Cr = (−1)
k
2
−rN2r+ℓ+1−kDk− ℓ

2
−r−1 (r + ℓ− 1)!

r!
.

We will now calculate the Fourier coefficients of Cr · Φ̃ k−ℓ
2

−r,θ. Fix some m ≥ 1, and consider the

complex conjugate of the mth coefficient, given by (5.7) as

ϕ̃ k−ℓ
2

−r,θ(m) = tm,1(
k−ℓ
2

− r) + tm,2(
k−ℓ
2

− r) + tm,3(
k−ℓ
2

− r) + tm,4(
k−ℓ
2

− r).

For the first term, we need the functional equation of L(χ, s) given by Theorem 3.3 as

L(χ, s) =
(2π)s

π
D

1
2
−s sin

(π
2
(s+ 1)

)
Γ(1− s)L(χ, 1− s).

A simple computation with Laurent series reveals that

lim
s→k−ℓ−2r

sin
(π
2
(s+ 1)

)
Γ(1− s) = (−1)

k−ℓ−1
2

−r · π
2
· 1

(k − ℓ− 2r − 1)!
,

and so we find that

L(χ, k − ℓ− 2r) = (−1)
k−ℓ−1

2
−r (2π)

k−ℓ−2r−1D
1
2
+ℓ+2r−k

(k − ℓ− 2r − 1)!
L(χ, 2r + ℓ− k + 1).

Using Lemma 5.7, we deduce that

tm,1(
k−ℓ
2

− r) = (−1)k−1χ(−N)L(χ, k − ℓ− 2r)
Nk−ℓ−2r−1

(2π)k−ℓ−2r

Γ(k − ℓ− r)

Γ(ℓ+ r)

b(m)

m
k−ℓ
2

−r

= (−1)
k+ℓ−1

2
−rχ(−N)

2
L(χ, 2r + ℓ− k + 1)Nk−ℓ−2r−1D

1
2
+ℓ+2r−k

· (k − ℓ− r − 1)!

(k − ℓ− 2r − 1)!(ℓ+ r − 1)!

rA,ψ(m)

m
k−1
2

−r
,

and hence, by (5.3), we conclude that

Crtm,1(
k−ℓ
2

− r)m
k−1
2 = (mD)rrA,ψ(m)(−D)

ℓ−1
2
χ(−N)

2
L(χ, 2r + ℓ− k + 1)

(k − ℓ− r − 1)!

(k − ℓ− 2r − 1)!r!

= (mD)rrA,ψ(m)σk−2r−ℓ−1,A(0)P
(k−ℓ−1−2r,ℓ−1)
r (1).
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For the second term, we note that tm,2(
k−ℓ
2

− r) = 0, as 2 + 2r + ℓ− k is a negative odd integer,
and so L(χ, 2− 2s) vanishes at s = k−ℓ

2
− r by Proposition 3.4.

For the third term, we first note by Lemma 5.5 that the terms of the summation for n > mD
vanish. We can then make the substitution n 7→ mD − tN where 1 ≤ t < mD

N
, to obtain

tm,3(
k−ℓ
2

− r) = ikD
ℓ−k+1

2
+r

∑
1≤t<mD

N

rA,ψ(mD − tN)

(mD − tN)1+r+ℓ−
1+k
2

Mk−ℓ
2

−r,A
(t) Ĩk−ℓ

2
−r

(
mD

mD − tN

)
.

As a consequence of Lemma 5.5, it holds that

Ĩk−ℓ
2

−r

(
mD

mD − tN

)
= (−1)r(mD − tN)1+r+ℓ−

1+k
2 (mD)

1−k
2

+r(tN)k−ℓ−1−2r

r!

(r + ℓ− 1)!
P (k−ℓ−1−2r,ℓ−1)
r

(
1− 2tN

mD

)
.

Together with Lemma 5.1, which shows that

M k−ℓ
2

−r(t) = t1+ℓ+2r−kσk−ℓ−2r−1,A(t),

we conclude that

Crtm,3(
k−ℓ
2

− r)m
k−1
2 = (mD)r

∑
1≤t<mD

N

rA,ψ(mD − tN)σk−ℓ−2r−1,A (t)P (k−ℓ−1−2r,ℓ−1)
r

(
1− 2tN

mD

)
.

For the fourth and final term, we calculate

tm,4(
k−ℓ
2

− r) = ik+ℓ−1m
k−1
2

−r−ℓ

Γ(ℓ)
√
D
b(0)Mk−ℓ

2
−r,A

(
mD

N

)
= ik+ℓ−1m

1−k
2

+r

Γ(ℓ)
rA,ψ(0)N

k−ℓ−2r+1D
1
2
+ℓ+2r−kσk−ℓ−2r−1,A

(
mD

N

)
,

and hence, by (5.4), we find

Crtm,4(
k−ℓ
2

− r)m
k−1
2 = (−1)r(−D)

ℓ−1
2
(r + l − 1)!

(l − 1)!r!
rA,ψ(0)(mD)rσk−ℓ−2r−1,A

(
mD

N

)
= (−D)

ℓ−1
2 rA,ψ(0)σk−ℓ−2r−1,A

(
mD

N

)
(mD)rP (k−ℓ−1−2r,ℓ−1)

r (−1) .

As the fourth term is only non-zero if ℓ = 1, we may drop the factor (−D)
ℓ−1
2 from the formula

above.

Summing up all the terms yields

Crϕ̃ k−ℓ
2

−r(m)m
k−1
2 = (mD)r

∑
0≤t≤mD

N

rA,ψ(mD − tN)σk−ℓ−2r−1,A (t)P (k−ℓ−1−2r,ℓ−1)
r

(
1− 2tN

mD

)
.

57



To obtain a formula for the coefficients, we can now take the complex conjugate of the right hand
side, as Cr and m

k−1
2 are both real. The only factors that may not be real are the factors rA,ψ(n).

We can conjugate these as follows:

rA,ψ(n) =
∑
a⊆OK
[a]=A
N(a)=n

ψ(a) =
∑
a⊆OK
[a]=A
N(a)=n

ψ(ā) =
∑
a⊆OK
[a]=Ā
N(a)=n

ψ(a) = rĀ,ψ(n).

The theorem immediately follows.

Remark. In the case that ℓ = 1 and ψ is the trivial finite order Hecke character, we recover [GZ86,
Thm. IV.5.5]. Note that the polynomial P k

2
,r(Nn,mD) that they use relates to a Jacobi polynomial

via

P k
2
,r(Nn,mD) = (mD)rP (k−2−2r,0)

r

(
1− 2tN

mD

)
.

Moreover, for ψ trivial, it holds that rA,ψ(n) = rĀ,ψ(n), as the norm of an ideal is invariant under
conjugation. We note that from the result for the trivial character, one can recover the result for
any class group character ψ, as one has the relation

L(f ⊗ θA,ψ, s) = ψ(A) · L(f ⊗ θA, s),

where θA is the theta series associated with the trivial class group character.

5.3 Central value

We shall now derive an expression for the L-function LA(f, ψ, s) at s =
k+ℓ−1

2
. This point corresponds

to the central point s = 1
2
of L(f ⊗ θA,ψ, s), and by the functional equation (Theorem 4.16), we

know that L(f ⊗ θA,ψ,
1
2
) vanishes for χ(N) = 1. As such, we will assume that χ(N) = −1. In the

case that ℓ = 1 and ψ is trivial, we recover [GZ86, Thm. IV.5.6] for k ≥ 4.

Theorem 5.9. Let K = Q(
√
−D) be an imaginary quadratic field with D ≡ 3 (mod 4). Fix a level

N coprime to D and fix weights 1 ≤ ℓ < k with k ≥ 4 even and ℓ odd. Assume that χ(N) = −1.
Let ψ be an unramified Hecke character of infinity type (ℓ− 1, 0). For m ≥ 1, define

bm = m
k−ℓ−1

2

(−D)
ℓ−1
2 rĀ,ψ(m)

h

u
+

∑
1≤t≤mD

N

σA(t)rĀ,ψ(mD − tN)P
(0,ℓ−1)
k−ℓ−1

2

(
1− 2tN

mD

) ,

with P
(0,ℓ−1)
k−ℓ−1

2

a Jacobi polynomial as in Definition 5.3, and

σA(n) =
∑
d|n

χA(n, d).

Then
∑

m≥1 bme
2πimz ∈ Sk(Γ0(N)), and for any f ∈ Snew

k (Γ0(N)), we have

LA(f, ψ,
k+ℓ−1

2
) =

(2π)k2k−1

(k − 2)!
√
D(−D)

ℓ−1
2

〈
f,
∑
m≥1

bme
2πimz

〉
.
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Proof. By (5.1), we know that

LA(f, ψ,
k+ℓ−1

2
) = L(N)(χ, 1) · L(f ⊗ θA,ψ,

1
2
).

As Proposition 4.11 gives us that

L(f ⊗ θA,ψ,
1
2
) =

(2π)k2k−1

(k − 2)!

Γ(k+ℓ−1
2

)χ(N)

Γ(k−ℓ+1
2

)L(N)(χ, 1)
⟨f, Φ̃ 1

2
,θ⟩,

it follows that

LA(f, ψ,
k+ℓ−1

2
) =

(2π)k2k−1

(k − 2)!
√
D(−D)

ℓ−1
2

⟨f, Cψ · Φ̃ 1
2
,θ⟩,

with

Cψ = (−1)
ℓ+1
2 D

ℓ
2
Γ(k+ℓ−1

2
)

Γ(k−ℓ+1
2

)
.

Fix some m ≥ 1, and consider the complex conjugate of the mth coefficient, given by (5.7) as

ϕ̃ 1
2
,θ(m) = tm,1(

1
2
) + tm,2(

1
2
) + tm,3(

1
2
) + tm,4(

1
2
).

Using Proposition 3.2 and Lemma 5.7, we find that

tm,1(
1
2
) = − h

w
√
D

Γ(k−ℓ+1
2

)

Γ(k+ℓ−1
2

)

b(m)

m
1
2

= − h

w
√
D

Γ(k−ℓ+1
2

)

Γ(k+ℓ−1
2

)

rA,ψ(m)

m
ℓ
2

.

We deduce that

Cψtm,1(
1
2
)m

k−1
2 = m

k−ℓ−1
2 (−D)

ℓ−1
2
h

w
rA,ψ(m).

As tm,1(1− s) = χ(−N)D2s−1N1−2stm,2(s) for all s ∈ C, it follows that tm,2(
1
2
) = tm,1(

1
2
), and thus

Cψ(tm,1(
1
2
) + tm,1(

1
2
))m

k−1
2 = m

k−ℓ−1
2 (−D)

ℓ−1
2
h

u
rA,ψ(m).

For the third term, it follows by Lemma 5.5 that the terms in the summation for n > mD vanish.
Using the substitution n 7→ mD − tN for 1 ≤ t < mD

N
, we obtain

tm,3(
1
2
) = ik

∑
1≤t<mD

N

b(mD − tN)

(mD − tN)
1
2

M 1
2
,A(t)Ĩ 1

2

(
mD

mD − tN

)
.

By Lemma 5.5 with r = k−ℓ−1
2

, we know that

Ĩ 1
2

(
mD

mD − tN

)
= (−1)

k−ℓ−1
2 (mD − tN)

ℓ
2 (mD)−

ℓ
2
Γ(k−ℓ+1

2
)

Γ(k+ℓ−1
2

)
P

(0,ℓ−1)
k−ℓ−1

2

(
1− 2tN

mD

)
.

Moreover, by Lemma 5.1, we see that M 1
2
,A(t) = σA(t), and so

Cψtm,3(
1
2
)m

k−1
2 = m

k−ℓ−1
2

∑
1≤t<mD

N

rA,ψ(mD − tN)σA(t)P
(0,ℓ−1)
k−ℓ−1

2

(
1− 2tN

mD

)
.
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For the final term, we see that

tm,4(
1
2
) = ik+ℓ−1 m− ℓ

2

Γ(ℓ)
√
D
rA,ψ(0)σA

(
mD

N

)
,

and so by using (5.4), we obtain

Cψtm,4(
1
2
)m

k−1
2 = m

k−ℓ−1
2 (−1)

k
2
+ℓ Γ(k+ℓ−1

2
)

Γ(k−ℓ+1
2

)Γ(ℓ)
D

ℓ−1
2 rA,ψ(0)σA

(
mD

N

)
= m

k−ℓ−1
2 (−D)

ℓ−1
2 rA,ψ(0)σ0,A

(
mD

N

)
P

(0,ℓ−1)
k−ℓ−1

2

(−1).

As this term is only present for ℓ = 1, we may drop the factor (−D)
ℓ−1
2 . As a final step, we conjugate

all of the terms, which means that we replace rA,ψ(n) by rĀ,ψ(n), just as in the proof of Theorem 5.8.
This proves the theorem.

Remark. In the case that ψ is the trivial finite order Hecke character with ℓ = 1, one obtains [GZ86,
Thm. IV.5.6] by using [GZ86, Prop. IV.4.6] to replace σA(t) by δ(t)R{An}(t) (defined in [GZ86, p.
285]). Note that rA(mD) = rA(m), as there is a unique ideal of norm D, which is principal. We
believe that the factor (k − 1)! in the numerator of the equation in [GZ86, Thm. IV.5.6] should be
omitted. As our results are restricted to weight k ≥ 4, we do not recover the case k = 2.

5.4 Central derivative

In this section, we will calculate the derivative of LA(f, ψ, s) a s =
k−ℓ−1

2
in the case that χ(N) = 1.

For ℓ = 1 and ψ trivial, we obtain [GZ86, Thm. IV.5.8]. For ℓ > 1, we obtain [LS24, Thm. 3.6].

Theorem 5.10. Let K = Q(
√
−D) be an imaginary quadratic field with D ≡ 3 (mod 4). Fix a

level N coprime to D and fix weights 1 ≤ ℓ < k with k ≥ 4 even and ℓ odd. Assume that χ(N) = 1.
Let ψ be an unramified Hecke character of infinity type (ℓ− 1, 0). For m ≥ 1, define

am = m
k−ℓ−1

2

− ∑
1≤t≤mD

N

rĀ,ψ(mD − tN)σ̃A(t)P
(0,ℓ−1)
k−ℓ−1

2

(
1− 2tN

mD

)

+ (−D)
ℓ−1
2 rĀ,ψ(m)

h

u
·
(
Γ′

Γ
(k+ℓ−1

2
) +

Γ′

Γ
(k−ℓ+1

2
) + log

(
DN

4π2m

)
+ 2

L′(χ, 1)

L(χ, 1)

)
−

∞∑
t=1

rĀ,ψ(mD + tN)σA (−t) 2Q(0,ℓ−1)
k−ℓ−1

2

(
1 +

2tN

mD

)]
,

with P
(0,ℓ−1)
k−ℓ−1

2

a Jacobi polynomial as in Definition 5.3, Q
(0,ℓ−1)
k−ℓ−1

2

a Jacobi function of the second kind

as in Definition 5.4 and

σA(n) =
∑
d|n

χA(n, d) and σ̃A(n) =
∑
d|n

χA(n, d) log
( n
d2

)
.
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Then
∑

m≥1 ame
2πimz ∈ Sk(Γ0(N)), and for any f ∈ Snew

k (Γ0(N)), we have LA(f, ψ,
k+ℓ−1

2
) = 0 and

L′
A(f, ψ,

k+ℓ−1
2

) =
(2π)k2k−1

(k − 2)!
√
D(−D)

ℓ−1
2

〈
f,
∑
m≥1

ame
2πimz

〉
.

Proof. By (5.1), we know that

LA(f, ψ, s+
k+ℓ−2

2
) = L(N)(χ, 2s) · L(f ⊗ θA,ψ, s).

As Proposition 4.11 shows that

L(f ⊗ θA,ψ, s) =
(4π)k−1

(k − 2)!

Γ(k+ℓ
2

− s)(2π)2sχ(N)N1−2s

Γ(k−ℓ
2

+ s)L(N)(χ, 2s)
⟨f, Φ̃s̄,θ⟩,

it follows that

LA(f, ψ, s+
k+ℓ−2

2
) =

(4π)k−1

(k − 2)!

Γ(k+ℓ
2

− s)(2π)2sN1−2s

Γ(k−ℓ
2

+ s)
⟨f, Φ̃s̄,θ⟩.

As Φ̃s,θ vanishes at s =
1
2
, we obtain

L′
A(f, ψ,

k+ℓ−1
2

) =
(2π)k2k−1

(k − 2)!
√
D(−D)

ℓ−1
2

〈
f, Cψ · ∂

∂s
Φ̃s,θ

∣∣∣∣
s= 1

2

〉
,

where

Cψ = (−1)
ℓ−1
2 D

ℓ
2
Γ(k+ℓ−1

2
)

Γ(k−ℓ+1
2

)
.

The normalized Fourier coefficients of ∂
∂s
Φ̃s,θ

∣∣
s= 1

2

are given by (5.7) as

∂

∂s
ϕ̃s,θ(m)

∣∣∣∣
s= 1

2

= t′m,1(
1
2
) + t′m,2(

1
2
) + t′m,3(

1
2
) + t′m,4(

1
2
).

Using Proposition 3.2 and Lemma 5.7, we first calculate

t′m,1(
1
2
) = (mD)−

1
2
h

w
b(m)

Γ(k−ℓ+1
2

)

Γ(k+ℓ−1
2

)
·
(
2
L′(χ, 1)

L(χ, 1)
+ 2 log

(
N

2π
√
m

)
+

Γ′

Γ
(k+ℓ−1

2
) +

Γ′

Γ
(k−ℓ+1

2
)

)
.

From tm,2(1−s) = χ(−N)D2s−1N1−2stm,1(s), it follows that t
′
m,2(

1
2
) = t′m,1(

1
2
)+2 log(DN−1)tm,1(

1
2
).

As in the case of the central value (Theorem 5.9), one calculates

tm,1(
1
2
) =

h

w
√
D

Γ(k−ℓ+1
2

)

Γ(k+ℓ−1
2

)

b(m)

m
1
2

,

and so

t′m,1(
1
2
) + t′m,2(

1
2
)

= (mD)−
1
2
h

u
b(m)

Γ(k−ℓ+1
2

)

Γ(k+ℓ−1
2

)
·
(
2
L′(χ, 1)

L(χ, 1)
+ log

(
ND

4π2m

)
+

Γ′

Γ
(k+ℓ−1

2
) +

Γ′

Γ
(k−ℓ+1

2
)

)
.
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We deduce that

Cψ
(
t′m,1(

1
2
) + t′m,2(

1
2
)
)
m

k−1
2

= m
k−ℓ−1

2 (−D)
ℓ−1
2
h

u
rA,ψ(m) ·

(
Γ′

Γ
(k+ℓ−1

2
) +

Γ′

Γ
(k−ℓ+1

2
) + log

(
DN

4π2m

)
+ 2

L′(χ, 1)

L(χ, 1)

)
.

For the third term, we split the sum into two parts: a finite sum for n < mD and an infinite sum
for n > mD. After a substitution, we obtain tm,3(s) = S1(s) + S2(s), with

S1(s) = ikD
1
2
−s

∑
1≤t<mD

N

b(mD − tN)

(mD − tN)1−s
Ms,A (t) Ĩs

(
mD

mD − tN

)
,

S2(s) = ikD
1
2
−s

∞∑
t=1

b(mD + tN)

(mD + tN)1−s
Ms,A (−t) Ĩs

(
mD

mD + tN

)
.

We first calculate S ′
1(

1
2
). By Lemma 5.5 and Lemma 5.6, we know that

Ĩ 1
2

(
mD

mD − tN

)
= (−1)

k−ℓ−1
2

(
mD − tN

mD

) ℓ
2 Γ(k−ℓ+1

2
)

Γ(k+ℓ−1
2

)
P

(0,ℓ−1)
k−ℓ−1

2

(
1− 2tN

mD

)
,

and
∂

∂s
Ĩs

(
mD

mD − tN

) ∣∣∣∣
s= 1

2

= log

(
tN

mD − tN

)
Ĩ 1

2

(
mD

mD − tN

)
.

Using Lemma 5.2 and keeping track of all the logarithms that appear yields

S ′
1(

1
2
) = ik log

(
N

D

) ∑
1≤t<mD

N

b(mD − tN)

(mD − tN)
1
2

M 1
2
,A(t)Ĩ 1

2

(
mD

mD + tN

)

+ (−1)
ℓ+1
2 (mD)−

ℓ
2
Γ(k−ℓ+1

2
)

Γ(k+ℓ−1
2

)

∑
1≤t<mD

N

rA(mD − tN)σ̃A(t)P
(0,ℓ−1)
k−ℓ−1

2

(
1− 2tN

mD

)
.

Note that all terms of the first sum vanish. This follows from (the proof of) the functional equation
of Φ̃s,θ, see Theorem 4.15. For the computation of S ′

2(
1
2
), we note that Ĩs(

mD
mD+tN

) vanishes at s = 1
2

by Lemma 5.5. Using Lemma 5.1 and Lemma 5.6, it follows that

S ′
2(

1
2
) = (−1)

ℓ+1
2 (mD)−

ℓ
2
Γ(k−ℓ+1

2
)

Γ(k+ℓ−1
2

)

∞∑
t=1

rA(mD + tN)σA (−t) 2Q(0,ℓ−1)
k−ℓ−1

2

(
1 +

2tN

mD

)
.

We find that

Cψt
′
m,3(

1
2
)m

k−1
2 = −m

k−ℓ−1
2 ·

 ∑
1≤t<mD

N

rA(mD − tN)σ̃A(t)P
(0,ℓ−1)
k−ℓ−1

2

(
1− 2tN

mD

)

+
∞∑
t=1

rA(mD + tN)J 1
2
(−t) 2Q(0,ℓ−1)

k−ℓ−1
2

(
1 +

2tN

mD

)]
.
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For the fourth term, we calculate using Lemma 5.2:

t′m,4(
1
2
) = ik+ℓ−1 m− ℓ

2

Γ(ℓ)
√
D
rA,ψ(0)(σ̃A

(
mD
N

)
− log

(
mD
N

)
σ0,A(

mD
N

))

= ik+ℓ−1 m− ℓ
2

Γ(ℓ)
√
D
rA,ψ(0)σ̃A

(
mD
N

)
,

where we used that tm,4(s) vanishes at s =
1
2
. It follows that

Cψt
′
m,4(

1
2
)m

k−1
2 = m

k−ℓ−1
2 (−D)

ℓ−1
2 rA,ψ(0)σ̃A

(
mD

N

)
P

(0,ℓ−1)
k−ℓ−1

2

(−1).

As in the previous two theorems, we may drop the factor (−D)
ℓ−1
2 , as this term is only present for

ℓ = 1.

Summing up the four terms and taking the complex conjugate finishes the proof.
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6 Conclusion and further research

In this thesis, we corrected and solidified the method introduced by Goldfeld and Zhang in [GZ99].
We have recovered their main results, but with an additional term coming from the residues of the
twisted L-functions Lg(s,

a
c
). By evaluating the obtained expressions at special points, we were able

to recover [GZ86, Thms. IV.5.5, IV.5.6, IV.5.8] and [LS24, Thm. 3.6]. In particular, for k > 2, we
have validated the final claim in [GZ99]. This substantiates the correctness of our results.

However, the Gross–Zagier formula for the derivative when k = 2 [GZ86, Thm. IV.6.9] is the one
that is needed to obtain their results on L-series of elliptic curves. With the current approach, we
are unable to recover this formula, as interchanging the summations in the proof of Theorem 4.4 is
not allowed when k = 2. Therefore, it might prove interesting to find a way to adapt the approach
and recover a formula for the case k = 2 as well. One way this might be done is by replacing the
Poincaré series Pm by a non-holomorphic Poincaré series Pm,s (as in (2.10)) and taking a limit.

One way the method has already been extended is by Nelson [Nel13], as they consider f ∈
Sk(Γ0(N), ε) with nebentypus ε. In particular, this allows the weight k of f to be odd. This also
essentially covers the case where f ∈ Sk(Γ1(N)), as any such f decomposes as a linear combination
of modular forms with nebentypus. They prove this generalization by using a formula for the
coefficients of the Poincaré series for Sk(Γ0(N), ϵ), which is similar to the one for the coefficients of
the Poincaré series Pm that we consider, but involves a Kloosterman sum that is twisted by the
character ϵ. Perhaps it is possible to look at even more general congruence subgroups Γ instead of
Γ0(N) and Γ1(N).

One assumption we make is that the level D ≥ 1 is square-free, which forces us to assume D ≡ 3
(mod 4) in the case of theta series. The reason for this is that we need to understand the behavior of
g at the various cusps of Γ1(D), and for that we use the Atkin–Lehner operator. This operator only
allows for a decomposition of D into two coprime factors. As such, if D is divisible by any square,
then there is not an Atkin–Lehner operator for all decompositions of D. It would be interesting to
find a way to overcome this restriction. Note that in [GZ86] a similar assumption is used.

When talking about theta series, we only consider unramified Hecke characters of infinity type
(t− 1, 0). We need this assumption on the ramification to prove that the associated theta series
behaves nicely when slashed with any matrix in SL2(Z), as in Proposition 2.14. If this proposition
generalizes to ramified Hecke characters, then all results in Chapter 5 could be generalized to any
Hecke character of infinity type (t− 1, 0), as long as the norm of its conductor is square-free and
coprime to ND. We have not found a generalization of Proposition 2.14 in the literature.

Finally, when deriving the special values, the central value and the central derivative in Chapter 5,
we only consider the case where ℓ < k. Using the Goldfeld–Zhang method, it should be possible
to also obtain a formula for ℓ > k. In that case, it is perhaps more natural to replace the

modified holomorphic kernel Φ̃s,θ by
Γ( ℓ−k

2
+s)

Γ( k−ℓ
2

+s)
Φ̃s,θ. More generally, in the construction of the modified

holomorphic kernel in Proposition 4.11, a factor Γ(k−ℓ
2

+ s) is introduced. As suggested by the
definition of the completed L-function Λ(f ⊗ θ, s) in (4.19), it might be more natural to use a factor

Γ( |k−ℓ|
2

+ s) instead. For ℓ > k, this changes the sign of the functional equation of Φ̃s,θ, and ensures

that Φ̃s,θ does not have a pole at s = 1
2
. Our final claim is that it should not be hard to derive a

formula for the value and the derivative of L(f ⊗ θ, s) at the center in this case.
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A Geometric context

In this appendix, we give some additional context and motivation behind the main results of this
thesis. Most of the results mentioned can be found in [Sil09] and in [Dar04].

A.1 Modular curves

In this section, we list some important properties and constructions related to elliptic curves. We
describe two examples of moduli spaces: the modular curve X0(1) and its generalization X0(N).

Elliptic curves

An elliptic curve E over a field K is a smooth, projective curve of genus 1, together with a
distinguished point O ∈ E(K). It can always be given by a non-singular affine Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with ai ∈ K and O being the point at infinity. The set of K-rational points E(K) has a natural
abelian group structure, with the point O being the identity element. In the case that K is a
number field, this abelian group is finitely generated.

Theorem A.1 (Mordell–Weil, [Sil09, Thm. VIII.6.7]). Let E be an elliptic curve over a number
field K. Then E(K) is finitely generated. In particular, there exists some integer r ≥ 0 such that

E(K) ∼= Zr × E(K)tors,

where E(K)tors is the finite torsion group.

By the work of Mazur [Maz78] and Merel [Mer96], we understand E(K)tors well. We call r the
(algebraic) rank of an elliptic curve. The proof of Theorem A.1 uses the Néron–Tate height of a
point. This height can be used to define a positive definite quadratic form on the R-vector space
E(K)⊗R. In particular, the height of a point is zero if and only if the point is torsion.

L-series

Let E be an elliptic curve over a number field K. For a prime p of K, one can reduce E modulo p
and look at the curve Ẽp over kp, the residue field of p. For only finitely many primes p this curve
is singular, in which case we say that E has bad reduction modulo p. One can associate an ideal
N ⊆ OK to E such that p divides N if and only if E has bad reduction modulo p. We call N the
conductor of E and two isogenous elliptic curves have the same conductor. As kp is a finite field,
Ẽp contains finitely many points and so we define for p ∤ N the coefficient ap = N(p) + 1−#Ẽp.
For each prime p with bad reduction, we can choose some ap ∈ {−1, 0, 1} depending on the type of
bad reduction. We now define the L-series L(E/K, s) for ℜ(s) > 3

2
by

L(E/K, s) =
∏
p∤N

(1− apN(p)
−s +N(p)1−2s)−1

∏
p|N

(1− apN(p)
−s)−1. (A.1)

We write L(E, s) for L(E/Q, s) if E is defined over Q. In the latter case, this L-function can be
continued analytically to the complex plane, but this is a very deep result. The key ingredient here
is the modularity theorem, as we will see in the next section. But first, we will consider a method
for classifying elliptic curves over C.
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Complex elliptic curves

Over the complex numbers, one can classify elliptic curves using lattices. These are discrete
subgroups of the complex plane and can be written as Λ = Zω1 ⊕ Zω2 with ω1, ω2 ∈ C linearly
independent over R. It turns out that any elliptic curve E over C is isomorphic (as a complex Lie
group) to the quotient C/Λ for some lattice Λ. Moreover, the following correspondence holds.

Proposition A.2 ([Sil09, Corollary VI.4.1.1]). Let E1 and E2 be two elliptic curves over C that
correspond to lattices Λ1 and Λ2. Then E1 and E2 are isomorphic over C if and only if Λ1 and Λ2

are homothetic, i.e., if there is some α ∈ C× such that Λ1 = αΛ2.

Given a lattice Λ ⊆ C, it is homothetic to a lattice of the form Λτ = Z ⊕ τZ with τ ∈ H, the
complex upper half-plane. We write Eτ for the complex elliptic curve associated to Λτ . One can
define an action of SL2(Z) on H by the Möbius transformation(

a b
c d

)
τ =

aτ + b

cτ + d
.

Now, two lattices Λτ and Λτ ′ with τ, τ ′ ∈ H are homothetic if and only if there exists some
γ ∈ SL2(Z) with τ

′ = γτ . In this way, the quotient SL2(Z)\H naturally classifies all complex elliptic
curves up to isomorphism.

Modular curves

In a more general way, we can create a moduli space for complex elliptic curves with a cyclic
subgroup of a fixed size. Let N ≥ 1 be an integer and consider the subgroup of SL2(Z) given by

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N)

}
.

Definition A.3. An enhanced elliptic curve for Γ0(N) is a pair (E,C) consisting of a complex
elliptic curve E and a cyclic subgroup C ⊆ E(C) of order N .

Two enhanced elliptic curves (E,C) and (E ′, C ′) for Γ0(N) are said to be equivalent if there is an
isomorphism ϕ : E → E ′ such that ϕ(C) = C ′. In that case we write (E,C) ∼ (E ′, C ′). Now define
the moduli space

S0(N) =
{
enhanced elliptic curves for Γ0(N)

}/
∼,

and the quotient
Y0(N) = Γ0(N)\H.

Theorem A.4 ([DS05, Thm 1.5.1 (a)]). The moduli space for Γ0(N) is given by

S0(N) = {[Eτ , ⟨1/N + Λτ ⟩] : τ ∈ H}.

Two classes [Eτ , ⟨1/N + Λτ ⟩] and [Eτ ′ , ⟨1/N + Λτ ′⟩] are equal if and only if [τ ] = [τ ′] ∈ Y0(N). In
particular, there is a bijection

ψ0 : S0(N) → Y0(N), [C/Λτ , ⟨1/N + Λτ ⟩] 7→ [τ ].
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We see that Y0(N) naturally classifies equivalence classes of enhanced elliptic curves for Γ0(N).
Instead of a pair (E,C), we could also consider a cyclic N -isogeny, that is, a homomorphism of
complex elliptic curves ϕ : E → E ′ with a cyclic kernel of order N . Given a enhanced elliptic curve
(E,C), we can construct the cyclic N -isogeny E → E/C given by the quotient map. Conversely,
given a cyclic N -isogeny ϕ : E → E ′, the pair (E, ker(ϕ)) is an enhanced elliptic curve for Γ0(N).
As such, we see that Y0(N) naturally classifies (equivalence classes of) cyclic N -isogenies as well.

One can compactify Y0(N) by adding finitely many cusps. In this way, we obtain a compact Riemann
surface X0(N) = Γ0(N)\H∗, where H∗ = H∪P1(Q). We call X0(N) a modular curve. It is possible
to define X0(N) as a smooth projective curve over Q whose complex points are Γ0(N)\H∗.

Modular forms

Given a modular form f ∈ S2(Γ0(N)), one can define a holomorphic differential form on X0(N)(C)
given by

ωf = 2πif(τ)dτ ∈ ΩX0(N).

This is well-defined for two reasons. The modularity of f guarantees that the form is invariant
under the action of Γ0(N), and the fact that f is a cusp form means that the differential form is
holomorphic at the cusps of X0(N). Every holomorphic differential form on X0(N)(C) arises in
this way, and so we may identify S2(Γ0(N)) with ΩX0(N). By the Riemann–Roch theorem, it follows
that dimC S2(Γ0(N)) is finite and given by the genus g of X0(N).

Fix a cusp form f ∈ S2(Γ0(N)) with integer Fourier coefficients. If f is a normalized eigenform
(see [Dar04, Section 2.3]), it is possible to construct a special elliptic curve Ef over Q using the
Eichler–Shimura construction. The construction defines Ef as a certain quotient of the Jacobian
J0(N) of X0(N). This Jacobian can be defined as an abelian variety over Q of dimension g and its
points can be identified with the zero divisors on X0(N) quotiented by the principal divisors. The
elliptic curve Ef is special, as the L-series of Ef is equal to the L-series L(f, s) associated to f . For
ℜ(s) > 3

2
, this L-series is given by

L(f, s) =
∞∑
n=1

af (n)

ns
,

where af (n) is the n
th Fourier coefficient of f .

Remark. Here we used a different normalization for the coefficients than in the rest of the thesis.
This L-series is related to the L-series Lf (s) given by (3.7) via L(f, s) = Lf (s− 1

2
). In particular,

L(f, s) has a functional equation with center s = 1 (see Proposition 3.5).

To summarize:

Theorem A.5 ([Dar04, Thm. 2.10]). Let f ∈ S2(Γ0(N)) be a normalized eigenform with integer
Fourier coefficients. Then there exists an elliptic curve Ef over Q, given by the Eichler–Shimura
construction, such that

L(Ef , s) = L(f, s).

Due to the nature of the construction of the elliptic curve Ef , there is a modular parametrization
map ΦN : X0(N) → Ef , sending a point P to the equivalence class of (P )− (∞) viewed in J0(N)
followed by the quotient to Ef . This is a non-constant morphism of curves defined over Q.
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A.2 The Birch and Swinnerton-Dyer conjecture

As stated in the previous section, we would like to be able to analytically continue the L-series
L(E, s). For this, we use a converse to Theorem A.5, which is known as the modularity theorem.
One way to phrase it, as in [DS05, Thm. 2.5.1], is that for any elliptic curve E/Q, there exists
some integer N ≥ 1 and a surjective morphism of curves over C,

ΦN : X0(N)C → EC.

An equivalent way to phrase it is the following.

Theorem A.6 (Modularity Theorem, [Dar04, Thm. 2.12]). Let E/Q be an elliptic curve of
conductor N . Then there exists a newform f ∈ Snew

2 (Γ0(N)) such that

L(E, s) = L(f, s).

Furthermore, E and Ef are isogenous.

From the theory of modular forms, it is known that L(f, s) can be extended analytically to the
complex plane. In fact, we prove a generalization of this in Proposition 3.5. By the modularity
theorem, it now follows that the L-function L(E, s) of any elliptic curve E has an analytic
continuation. There are currently no known methods to obtain this result without using the
modularity theorem in some way. As L(E, s) can be extended analytically, we can study its behavior
around s = 1. We call the order of vanishing of L(E, s) at s = 1 the analytic rank of the curve
E. A central conjecture by Birch and Swinnerton-Dyer, and now a Millennium Prize Problem,
hypothesizes that the analytic rank is equal to the algebraic rank.

Conjecture A.7 (Birch and Swinnerton-Dyer). Let E/Q be an elliptic curve. Let r denote the
algebraic rank of E(Q). Then ords=1L(E, s) = r.

The conjecture has been extended to also state a precise formula for the leading coefficient of the
Taylor expansion of L(E, s) at s = 1.

Conjecture A.8 (Birch and Swinnerton-Dyer, [Sil09, Conjecture 16.5]). Let E/Q be an elliptic
curve with algebraic rank r. Then

lim
s→1

L(E, s)

(s− 1)r
=

2rΩ#X(E/Q)R(E/Q)
∏

p cp

(#E(Q)tors)2
. (A.2)

Here Ω is the real period, X(E/Q) is the Tate–Shafarevich group, R(E/Q) is the regulator of E
and cp are Tamagawa numbers related to E(Qp).

One thing to note about this conjecture is that we do not know whether the Tate–Shafarevich
group X(E/Q) is finite. Of course, its finiteness would follow if the Birch and Swinnerton-Dyer
conjecture were proven. At this point in time, the best result we have towards the conjecture is the
following statement.

Proposition A.9 (Gross, Zagier; Kolyvagin). Let E be an elliptic curve with ords=1L(E, s) ≤ 1.
Then the analytic rank and the algebraic rank of E agree. Moreover, the Tate–Shafarevich group
X(E/Q) is finite.

In the next section, we will discuss the idea behind the contribution of Gross and Zagier to
Proposition A.9.
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A.3 Heegner points

In this section we will discuss Heegner points. Using the modularity of elliptic curves, they allow for
the construction of algebraic points on an elliptic curve over Q. Under the right conditions, it turns
out that these points are also Q-rational. In this way, we learn something about the Mordell–Weil
group E(Q).

Fix some elliptic curve E over Q of conductor N . Let K be an imaginary quadratic field of
discriminant D coprime to N . We are interested in points x ∈ X0(N)(C) that correspond to an
N -isogeny E1 → E2, where both E1 and E2 have complex multiplication by OK . This means that
End(E1) and End(E2) are both isomorphic to OK . In order to guarantee the existence of these
points, we will need the necessary and sufficient Heegner hypothesis : if p is a prime number dividing
N , then p is split in K. Given such a point x, we can then use the modular parametrization
map ΦN : X0(N) → E to obtain a point on E(C). In fact, something stronger holds by complex
multiplication theory: if H is the Hilbert class field of K, then x ∈ X0(N)(H) and so ΦN (x) lies in
E(H). The Hilbert class field of K is the largest unramified abelian extension of K and satisfies
Gal(H/K) ∼= Pic(OK) = ClK . We call a point on E(H) of the form ΦN(x) a Heegner point (of
conductor 1). See [Dar04, Chapter 3] for the construction of Heegner points of larger conductor.

Let P = ΦN(x) ∈ E(H) be a Heegner point. We now define

PK = TrH/K(P ) =
∑

σ∈Gal(H/K)

P σ ∈ E(K).

We want to know wether PK is torsion or not. Under the right assumptions, this is decided by the
work of Gross and Zagier.

Theorem A.10 (Gross, Zagier, [GZ86, Thm. V.2.1]). Let E be an elliptic curve over Q of and let
K be an imaginary quadratic field satisfying the Heegner hypothesis relative to E. Let P ∈ E(H) be
a Heegner point. Then for some non-zero α ∈ R×,

L′(E/K, 1) = α · ĥ(PK),

where ĥ(PK) is the Néron–Tate height of PK.

They prove this in two parts, one algebraic and one analytic. The first, algebraic part of their
paper is devoted to computing height pairings on J0(N)(H)⊗C of the form ⟨c, Tmcσ⟩. Here c is
the divisor class of (P ) − (∞), Tm is a Hecke operator and σ is an element of Gal(H/K). Via
the isomorphism Gal(H/K) ∼= ClK , this element σ corresponds to an ideal class A. In the second,
analytic part, they compute explicit Fourier coefficients am,A of a cusp form ΦA ∈ S2(Γ0(N)) that
satisfies

L′
A(f, 1) =

8π2√
|D|

⟨f,ΦA⟩, (A.3)

for any newform f ∈ Snew
2 (Γ0(N)). Here LA(f, s) is a Rankin–Selberg L-function (see Section 5.1).

From the formulas they obtain, it follows that am,A = u2⟨c, Tmcσ⟩, where 2u is the number of units
in OK . Given a class group character χ : ClK → C×, one can sum over all the classes and obtain

L′(f, χ, 1) :=
∑

A∈ClK

χ(A)L′
A(f, 1) =

8π2⟨f, f⟩
hu2
√
|D|

ĥ(cχ,f ),

69



where cχ,f is the projection of

cχ =
∑

σ∈Gal(H/K)

χ−1(σ)cσ ∈ J0(N)(H)⊗C,

onto the f -isotypical component of J0(N)(H)⊗C for the action of the Hecke algebra T (see [GZ86,
p. 230]). Here χ is interpreted as a character on Gal(H/K) via the Artin map ClK ∼= Gal(H/K).
In the case that χ is trivial and f corresponds to E via modularity, the L-series L(f, χ, s) coincides
with L(E/K, s). The fact that ĥ(PK) = ĥ(c1,f ) · deg(ΦN) now leads to Theorem A.10.

Given an elliptic curve E/Q of conductor N and analytic rank one, we can always find a number
field K satisfying the Heegner hypothesis such that ords=1L(E/K, s) = 1 [Dar04, p. 41]. In that
case, E(K) must have at least algebraic rank one by Theorem A.10. Using the known behavior of
PK under the action of Gal(K/Q) (see [Dar04, Prop. 3.11]), one can deduce that PK lies in E(Q)
up to torsion if and only if L(E, s) has odd order of vanishing at s = 1. Under our assumptions,
this order of vanishing is odd and so we deduce that the algebraic rank of E(Q) is at least one.

In order to conclude that E(Q) has an algebraic rank of exactly one and to deduce the analytic
rank zero part of Proposition A.9, a result of Kolyvagin is needed [Kol88]. This result requires the
full power of the Euler system of Heegner points.

In Chapter 5, we compute the values and derivatives of the Rankin–Selberg L-function LA(f, s),
thereby deducing parts of the analytic side of [GZ86]. Instead of Rankin’s method, which is used
by Gross and Zagier, we use the Goldfeld–Zhang method [GZ99]. As our approach is limited to
modular forms f ∈ Sk(Γ0(N)) with weight k > 2, we are unable to deduce (A.3).
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B Changes to the Goldfeld–Zhang method

In this appendix, we give a list of adjustments and corrections we had to make while deriving a
formula for the holomorphic kernel, when compared to [GZ99]. This includes both differences in
definitions and corrections to formulas.

(1) [GZ99, Section 3]: When defining the holomorphic kernel, the inner product ⟨Φs,g, f⟩ should
be ⟨f,Φs̄,g⟩ instead, as f 7→ ⟨Φs,g, f⟩ is not a linear map. As a result, all formulas for the
coefficients of the holomorphic kernel should be conjugated.

(2) [GZ99, Proposition 3.6]: The formula for γ(m,n; s) when n > m should contain m
m−n instead

of n
m−n . Note that we do not derive this in the thesis.

(3) [GZ99, Proposition 4.2]: Lg(s,
a
c
) does not have a pole at s = 1−ℓ

2
with residue −b(0). Instead,

L∗
g(s,

a
c
) satisfies that description. Moreover, the functional equation should contain the factor

iℓ instead of i−ℓ. See Proposition 3.5.

(4) [GZ99, Definition 5.2]: We use τ(χδ) instead of G(δ). This is because we define Sδ(s, B)
differently, see point (6) below. Note that G(δ) = τ(χδ).

(5) [GZ99, Lemma 5.3]: The statement of the lemma is incorrect and should use ϵ−1
δ′ (r) instead of

ϵδ′(r) in the generalized Ramanujan sum. From their proof, it is clear that this is a typing
error.

(6) [GZ99, Equation (6.4)]: We define Sδ(s, B) with ϵδ′(r) instead of ϵ−1
δ′ (r). See Definition 4.2.

This difference stems from a mistake in the proof of [GZ99, Thoerem 6.5], where they use the
functional equation of Lg(s,

r̄
c
), but write ā where r should be used instead.

(7) [GZ99, Theorem 6.5]: In part (a), the coefficients should be conjugated. In part (b), the
formula should contain iℓ instead of i−ℓ and no factor ϵ−2

D/δ′(δ). Moreover, the formula holds
only for s in a certain vertical strip. See Theorem 4.4.

(8) [GZ99, Proposition 7.1]: Due to the difference in the definition of Sδ(s, B), occurrences of ϵδ′
should be replaced by ϵ−1

δ′ . In particular, ϵδ becomes ϵ−1 and LδN2
(2s) becomes LN2(2s). See

Proposition 4.6. We use the notation N [δ′] instead of N2.

(9) [GZ99, Proposition 8.3]: In the case that x > 1, the hypergeometric function should have ℓ as
the third argument instead of k.

(10) [GZ99, Proposition 9.1]: The formula for ϕ̃s,g should be conjugated, not contain µ
(
N2

e

)
, and

contain iℓ instead of i−ℓ. The formula for Tm,N2 should use SδN2
instead of Sδe . Also, ⟨Φ̃s,g, f⟩

should be ⟨f, Φ̃s̄,g⟩. The assumption that χ must be a real character can be dropped. Lastly,
the formula holds only for s in a certain vertical strip. See Proposition 4.11.

(11) [GZ99, Proposition 10.1]: See Theorem C.1 for the corrected formula for the coefficients.

(12) [GZ99, Theorem 11.5]: See Theorem 4.13 for the corrected formula for the coefficients.
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C Modified holomorphic kernel for D = 1

We give an adjusted version of [GZ99, Thm. 10.1]. In particular, it contains an additional term
that we believe to have been overlooked.

Theorem C.1. Let k and ℓ be integers with k ≡ ℓ ≡ 0 (mod 2). Let N ≥ 1 be some level and
g ∈Mℓ(SL2(Z)). Let γ > 0 be a bound on the coefficients of g and its Atkin–Lehner translates as
in (4.3) and assume that k > 2γ + 3. Let Φ̃s̄,g be as in Proposition 4.11 with D = 1. Then Φ̃s̄,g has
Fourier coefficients whose complex conjugates for 3−k

2
+ γ < ℜ(s) < k−1

2
− γ are given by

ϕ̃s̄,g(m) = ik+ℓ
N2s−1

(2π)2s
b(m)

ms

Γ(1− s)Γ(s)

Γ( ℓ−k
2

+ 1− s)Γ( ℓ+k
2

− s)
ζ(2s)

+ ik+ℓ(2π)2s−2 b(m)

m1−s
Γ(1− s)Γ(s)

Γ( ℓ−k
2

+ s)Γ( ℓ+k
2

− 1 + s)
ζ(2− 2s)

+ ik+ℓN s−1
∑

n≥1,n̸=m
n≡m (mod N)

b(n)
∑

d1·d2=|m−n
N |

1

ds1d
1−s
2

∣∣∣m
n

− 1
∣∣∣1−s Ĩs (m

n

)

+ ik+ℓ
b(0)

Γ(ℓ)
ms− ℓ+1

2

∑
d|m
N

d1−2s.

Furthermore, Φ̃s,g satisfies the functional equation

Φ̃1−s,g = N1−2sΦ̃s,g.

Proof. We remark that g has the trivial nebentypus χ0 modulo 1. As N [D] = N , we have by
Proposition 4.11, for 1 < ℜ(s) < k−1

2
− γ, that

ϕ̃s̄,g(m) =
b(m)

ms

∑
e|N

e

N

Γ(k−ℓ
2

+ s)L(e)(χ0, 2s)

Γ(k+ℓ
2

− s)(2π)2se1−2s
+ 2πikTm,N(s).

To obtain the first term, we first calculate

∑
e|N

e

N

L(e)(χ0, 2s)

e1−2s

(3.3)
=
∑
e|N

e2s

N
ζ(2s)

∏
p|e

(
1− 1

p2s

)
=
ζ(2s)

N

∑
e|N

e2s
∑
d|e

µ(d)d−2s

=
ζ(2s)

N

∑
d|N

µ(d)
∑
e|N
d

e2s =
ζ(2s)

N

∑
e|N

e2s
∑
d|N
e

µ(d) = ζ(2s)N2s−1.

This yields the first term, as

b(m)

ms

∑
e|N

e

N

Γ(k−ℓ
2

+ s)L(e)(χ0, 2s)

Γ(k+ℓ
2

− s)(2π)2se1−2s
=
b(m)

ms

Γ(k−ℓ
2

+ s)

Γ(k+ℓ
2

− s)(2π)2s
ζ(2s)N2s−1

= ik+ℓ
N2s−1

(2π)2s
b(m)

ms

Γ(1− s)Γ(s)

Γ( ℓ−k
2

+ 1− s)Γ(k+ℓ
2

− s)
ζ(2s).
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Here we used that

Γ

(
k − ℓ

2
+ s

)
Γ

(
ℓ− k

2
+ 1− s

)
= ik+ℓΓ(1− s)Γ(s).

Next, recall that

2πikTm,N(s) = ik+ℓ
∞∑
n=0

b(n)S1
N(s,m− n)Ṽs(n,m). (C.1)

By Proposition 4.6, we have

S1
N(s,m− n) =


∑

d|m−n
N

d1−2s if m ̸= n,N |(m− n),

ζ(2s− 1) if m = n,

0 else.

Taking the term in (C.1) for n = m and using Proposition 4.8, yields the second term:

ik+ℓ
b(m)

m1−s ζ(2s− 1)Ĩs (1) = ik+ℓ
b(m)

m1−s ζ(2s− 1)
Γ(2s− 1)

Γ( ℓ−k
2

+ s)Γ( ℓ+k
2

+ s− 1)

= ik+ℓ(2π)2s−2 b(m)

m1−s
Γ(1− s)Γ(s)

Γ( ℓ−k
2

+ s)Γ( ℓ+k
2

+ s− 1)
ζ(2− 2s).

Here we used the functional equation of ζ(s) (given by (3.6)) together with the reflection property
of Γ(s). For the third term, we consider the terms for n ≥ 1 with n ̸= m in (C.1). This yields

ik+ℓ
b(n)

n1−s

∑
d|m−n

N

d1−2sĨs

(m
n

)
= ik+ℓ

b(n)

n1−s

∑
d1d2=|m−n

N |
d−s1 ·

(∣∣∣∣m− n

N

∣∣∣∣ · d−1
2

)1−s

Ĩs

(m
n

)
= ik+ℓN s−1 · b(n)

∑
d1d2=|m−n

N |

1

ds1d
1−s
2

∣∣∣m
n

− 1
∣∣∣1−s Ĩs (m

n

)
.

The fourth term is simply given by the term corresponding to n = 0 in (C.1):

ik+ℓ
b(0)

Γ(ℓ)
ms− ℓ+1

2

∑
d|m
N

d1−2s.

Using the fact that k > 2γ +3, one can now show that the series in the third term converges locally
absolutely and uniformly for 3−k

2
+ γ < ℜ(s) < k−1

2
− γ. See also the proof of Theorem 4.13. This

proves the first part of the theorem.

For the functional equation, we note that the first two terms of ϕ̃1−s,g(m) are swapped up to
multiplication by N1−2s under the transformation s 7→ 1− s. Each term in the sum of the third
term is kept invariant under the transformation s 7→ 1− s due to the functional equation of Ĩs, see
Proposition 4.7. Lastly, for the fourth term, a simple calculation reveals that

ik+ℓ
b(0)

Γ(ℓ)
m

1−ℓ
2

−s
∑
d|m
N

d2s−1 = ik+ℓ
b(0)

Γ(ℓ)
m

1−ℓ
2

−s
∑
d|m
N

( m
dN

)2s−1

= ik+ℓN1−2s b(0)

Γ(ℓ)
ms− ℓ+1

2

∑
d|m
N

d1−2s.
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