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Introduction

The study of Diophantine equations, that is, the problem of finding rational solutions to

polynomial equations in several variables with integer coefficients, occupies a central place

in Mathematics both by its long history, which can be traced back to ancient Greece, and by

its apparent simplicity in spite of the complexity of the problems induced by these equations.

To cite an example, there is the famous Fermat’s Last Theorem proved in 1995 by Andrew

Wiles. But even though the problems considered are ancient, Diophantine equations, and

especially Diophantine geometry, are rich areas of research still today. The term Diophantine

geometry describes the study of Diophantine equations through a combination of techniques

from Algebraic Geometry and Algebraic Number Theory.

Consider an equation in two variables of the form y2 = P (x) where P is a polynomial

in one variable. Such a polynomial relation defines a curve Ca in the affine plane. If the

polynomial has rational coefficients, then one can ask for rational solutions to the equation

y2 = P (x) with x, y in Q. In other words, one asks for rational points of the curve Ca. Hence

the problem becomes geometrical. The natural questions that arise are the following:

(i) Are there any rational points ?

(ii) If yes, how many are there ? Finitely many or infinitely many ?

One can consider the projective closure C of Ca, which is a plane projective curve. Suppose

in this example that the curve C is smooth. Attached to this curve is a number g called the

genus of the curve.

If P is a polynomial of degree 2, then the equation y2 = P (x) defines a conic in the plane

and C is a curve of genus g = 0. If P is a polynomial of degree 3, then C is a curve of genus

g = 1 and such a curve is known as an elliptic curve. In the case where P is of degree greater

than or equal to 4, the curve C has genus g ≥ 2.

The case g = 0 was proved by Hurwitz and Hilbert [HH] around 1890:

Theorem (Hurwitz-Hilbert). Let C be a curve of genus zero. If it has a rational point over

Q, then it has an infinite number of rational points over Q.

The case of g ≥ 2 was conjectured by Mordell [Mor] in 1922 and proved by Faltings [Fal]

in 1983.

Theorem (Faltings). Let C be a curve of genus greater than or equal to 2. Then C(Q) is

finite.
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This leaves us with the case when g = 1. In this case, the above considered curve C is a

smooth plane projective curve of genus 1. It is what is called an elliptic curve. These curves

are particular in the sense that the rational points on the curve can be given a group structure

via a geometric group law. Around 1901, Poincaré [Poi] conjectured that the rational points

of an elliptic curve formed a finitely generated group. This was proved in 1922 by Mordell

[Mor] and became known as the Mordell’s Theorem.

Theorem (Mordell). Let E/Q be an elliptic curve. The group of rational points E(Q) is

finitely generated.

In this paper we are concerned with a slightly more general result:

Theorem (Mordell-Weil Theorem). Let K be a number field and E/K an elliptic curve.

The group of rational points E(K) is finitely generated.

The aim of this paper is to present the proof of this theorem with the stated goal of

being mostly self-contained. Some notions and theories are not developed in full generality

but introduced and proved in the special cases we need. When this is the case, it will be

indicated and a reference for the more general case will be provided. Most importantly,

all notions and results needed to understand the proofs are included except in a few cases

where we make use of general theorems whose demonstration would lead us too far away. Of

course, there is only a limit to which one can pretend to be self-contained : we make free use

of basic tools from Algebraic Number Theory, the theory of elliptic curves as well as finite

Galois Theory.

The paper is organized in the following way : after a brief introduction to the theory of

elliptic curves, we turn to the proof of the Mordell-Weil Theorem. We start by deriving the

result from two theorems and the rest of the proof is concerned with the demonstration of

these two results. The first part is purely technical while the second one is more conceptually

demanding. Throughout, we closely follow the exposition in [Sil]. We have organized the

proof in a way that we find more convenient and have tried to fill in the details as much as

possible. Our treatment of the Weak Mordell-Weil Theorem slightly differs in the sense that

we have reformulated all results in order to work only in finite extensions.

We have left quite a few appendices concerning discrete valuation rings, ramification

theory, completion of fields and formal groups. These have been part of the learning process

of the author. The reader who is familiar with these concepts should be able to read through

the proof of Mordell-Weil without much effort.

The Mordell-Weil Theorem opens the way to a lot of interesting both solved and unsolved

problems. One direction for further work is to ask questions concerning rational points of
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more general objects than elliptic curves. This question was considered by Weil in 1928 in

his thesis. He considered a curve of genus greater than 1 over a number field with jacobian

J . His result concerns the group of points J(K) rational over K and states that it is finitely

generated. He later generalized this statement to any abelian variety and this theorem is

also known as the Mordell-Weil Theorem (see [Se1]).

Another possible direction is to stay focused on elliptic curves. The structure of finitely

generated abelian groups being well-known, we can restate the Mordell-Weil Theorem as

follows:

Theorem. Let E be an elliptic curve defined over a number field K. Then

E(K) ∼= Etors(K)⊕ Zr

where r, which is called the rank of the elliptic curve, is some natural number and Etors(K)

denotes the torsion subgroup of E(K).

One can ask about the structure of the finite group Etors(K). The case K = Q was

completely answered in 1977 in a theorem due to Mazur [Maz]. He proved that up to

isomorphism, the torsion group Etors(Q) could either be of the form Z/nZ for 1 ≤ n ≤ 10

or n = 12, or of the form (Z/2Z) ⊕ (Z/2nZ) for 1 ≤ n ≤ 4. The case of a general number

field has been discussed by Merel [Mer].

One can also ask questions concerning the rank of an elliptic curve. This leads to many

still unanswered problems. Most famous is the Birch and Swinnerton-Dyer Conjecture which

is one of the seven Millennium Prize Problems. It states that for an elliptic curve E defined

over K, the order of the zero of the Hasse-Weil L-function L(E, s) of E at s = 1 is exactly

the rank of E. This is still an open problem. One of the great advances toward a proof of

this conjecture is the Gross-Zagier formula [GZ], which relates heights of Heegner points to

the derivative of L(E, s) at s = 1.
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1 Elliptic curves

We define and briefly discuss the objects that we are going to be working with, namely

elliptic curves. This is a brief introduction to the subject and we leave out most of the

proofs.

1.1 Definition

For the definition of the notions in this section we refer to [Har].

Definition 1.1. An elliptic curve (E,OE) over a field K consists of a non-singular projective

curve E over K of genus 1 together with a point OE ∈ E(K).

By abuse of language, we will often use the notation E/K to refer to an elliptic curve

defined over K without specifying the K-point OE. Its existence will be implicit.

Because elliptic curves are curves of genus one, one can show that E is isomorphic to

its Jacobian Pic0(E) and, more precisely, each choice of a point OE ∈ E(K) gives a natural

isomorphism E
∼−→ Pic0(E) ([Sil] ch. 3 § 3 prop. 3.4, p. 61). Since Pic0(E) has the structure

of an abelian group, this isomorphism provides (E,OE) with two morphisms of varieties

µ : E × E −→ E and ι : E −→ E

making E into a group scheme over K. For all extensions L of K, these morphisms make

E(L) into an abstract abelian group where µ is the addition, ι is the inverse and OE the

identity.

1.2 Example : Weierstrass curves

Definition 1.2. A Weierstrass curve C defined over a field K is a curve in P2
K which is

defined by an equation of the following form:

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

where all the coefficients ai belong to K. Such an equation is called a long Weierstrass

equation.
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Remark 1.3. Let K̄ be a fixed algebraic closure of K. If C is such a Weierstrass curve, one

checks by setting Z = 0 that the only K̄-point C that does not belong to the chart Z = 1 is

the point [0, 1, 0] that we will denote by OC . For this reason we will often directly refer to

C using the dehomogenized equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We will talk about a point P of C(K̄) given by coordinates (x0, y0) when we actually mean

the point in P2
K(K̄) with coordinates [x0, y0, 1].

Definition 1.4. Consider a long Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6..

We introduce the following constants associated to this equation:

b2 = a2
1 + 4a2

b4 = a1a3 + 2a4

b6 = a2
3 + 4a6

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4

c4 = b2
2 − 24b4

c6 = −b3
2 + 36b2b4 − 216b6.

Proposition 1.5. Let C be a Weierstrass curve over a field K defined by the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

If we suppose that the characteristic of K is neither 2 nor 3, then this equation takes the

simpler form

y2 = x3 + Ax+B,

where A = − c4
48

and B = − c6
864

and the constants c4 and c6 are the ones of Definition 1.4.

Such an equation is called a short Weierstrass equation.

Proof. This is simple algebra.

Definition 1.6. Let C be a Weierstrass curve over a field K given by the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.
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To this equation we associate a quantity ∆, called the determinant, defined by:

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 =

c3
4 − c2

6

123
,

where the constants are the ones of Definition 1.4. If further the characteristic of K is neither

2 nor 3, the discriminant is equal to −16(4A3 + 27B2), where A and B are the constants

defined in Proposition 1.5.

Proposition 1.7. Let C be a Weierstrass curve over K. Then C is non-singular if and only

if its discriminant ∆ is non-zero.

Proof. [Sil] ch. 3 prop. 1.4 (a) (i), p. 45.

Proposition 1.8. Let C be a Weierstrass curve over K with non-zero discriminant and let

OC = [0, 1, 0]. Then (C,OC) is an elliptic curve over K.

Proof. [Sil] ch. 3 prop. 3.1 (c), p. 59.

Proposition 1.9. Let K be a field and K̄ a fixed algebraic closure of K. Let E/K be an

elliptic curve over K given by a Weierstrass equation and with base point OE = [0, 1, 0].

The group law induced on E(K̄) by Pic0(E) is given by the following geometrical law: three

points of E(K̄) sum to zero if and only if they are colinear in P2
K(K̄) and OE is the neutral

element.

Proof. [Sil] ch. 3 prop. 3.4, p. 61.

Using this proposition, one can derive explicit formulas. We illustrate this for the inver-

sion. Let E/K be an elliptic curve given by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let P0 be a point of C(K̄) with coordinates (x0, y0). Let L be the vertical line through

P0 and OC . It is given by the equation L : x− x0 = 0. Substituting in the equation of C we

obtain a polynomial equation of degree two in the variable y :

y2 + y + (−x3
0 − a2x

2
0 − a4x0 − a6) = 0.

We already know of one solution, namely y0. Extracting the other solution y′0, we find that

y′0 = −y0 − a1x0 − a3.
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Whence the inverse −P0 has coordinates given by

−P0 = [x0,−y0 − a1x0 − a3, 1]. (1.9.1)

By similar arguments, one derives formulas for addition. This is summed up in the

following proposition.

Proposition 1.10. Let K be a field and K̄ a fixed algebraic closure of K. Let E/K be an

elliptic curve given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

(a) Let P0 = (x0, y0) be a point of E(K̄). Then

−P0 = [x0,−y0 − a1x0 − a3, 1]. (1.10.1)

Let P1 = (x1, y1), P2 = (x2, y2) be points of E(K̄) and denote by P3 their sum.

(b) If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then P3 = OE. Otherwise define the quantities

λ and ν as in the following table:

λ ν

x1 6= x2
y2−y1
x2−x1

y1x2−y2x1
x2−x1

x1 = x2
3x21+2a2x1+a4−a1y1

2y1+a1x1+a3

−x31+a4x1+2a6−a3y1
2y1+a1x1+a3

(c) Denote by (x3, y3) the coordinates of P3. Then{
x3 = λ2 + a1λ− a2 − x1 − x2

y3 = −(λ+ a1)x3 − ν − a3

(1.10.2)

(d) The duplication formula for P = (x, y) ∈ E(K̄) is given by

x(P + P ) =
x4 − b4x

2 − 2b6 − b8

4x3 + b2x2 + 2b4x+ b6

, (1.10.3)

where the constants bi are the ones given in Definition 1.4.

Proof. [Sil] ch. 3 prop. 2.3, p. 53-54.
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1.3 Embedding of elliptic curves

The above example concerning elliptic curves defined by Weierstrass equations is not as

restrictive as one might initially think. In fact, all elliptic curves can be embedded in the

projective plane and can be shown to be isomorphic to a Weierstrass curve. This is made

precise in the following proposition.

Proposition 1.11. Let (E,OE) be an elliptic curve over a field K. There exists an iso-

morphism defined over K from (E,OE) to an elliptic curve (E ′, OE′) in P2
K given by a

Weierstrass equation and such that OE is mapped to OE′.

Moreover, any isomorphism between Weierstrass curves defined over K that preserves

the base point [0, 1, 0] is of the form

[u2X + r, u3Y + sX + t, Z].

where u, r, s, t belong to K and u is non-zero. We say that (u, r, s, t) is an admissible change

of coordinates.

Proof. [Sil] ch. 3 prop. 3.1. p. 59.

Let E/K be an elliptic curve given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Applying an admissible change of coordinates (u, r, s, t) gives a new Weierstrass equation

with coefficients a′i given by the following relations:

ua′1 = a1 + 2s

u2a′2 = a3 − sa1 + 3r − s2

u3a′3 = a3 + ra1 + 2t

u4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st

u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1

u4c′4 = c4

u6c′6 = c6

u12∆′ = ∆.

(1.11.1)

Remark 1.12. Embedding an elliptic curve (E,OE) into P2
K involves the choice of an iso-

morphic Weierstrass curve. Since the group law of an elliptic curve is induced by the group

law of Pic0(E) and the bijection between the curve and the Picard group depends only on the
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chosen base point, the group laws on different isomorphic Weierstrass curves are preserved

by isomorphism if we impose that the base point is [0, 1, 0]. It therefore suffices to prove the

Mordell-Weil Theorem for elliptic curves in P2
K given by a fixed Weierstrass equation. In

the rest of this paper, we will always present an elliptic curve given by a fixed Weierstrass

equation.

1.4 The m-torsion subgroup

Let K be a field and K̄ a fixed algebraic closure of K. Let E/K be an elliptic curve given

by a Weierstrass equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

with coefficients in K. We define the multiplication-by-m map and introduce the m-torsion

subgroup of E(K̄). The goal of this section is to prove that this subgroup is finite. We start

with a general definition concerning abstract groups.

Definition 1.13. Let G be an abstract group. For any natural number m, we define the

m-torsion subgroup of G to be

G[m] := {g ∈ G | gm = 1}.

Definition 1.14. Let m be an integer. We define the multiplication-by-m map [m] :

E(K̄) −→ E(K̄) by setting [0](P ) = OE and then for m positive,

[m](P ) = P + . . .+ P︸ ︷︷ ︸
m times

.

For m negative we set [m](P ) = [−m](−P ).

Since addition is a morphism, it follows by induction that the multiplication-by-m map

is a morphism and it is clear that it is also a homomorphism of abelian groups. Since E(K̄),

by the above definition applied to E(K̄),

E(K̄) = {P ∈ E(K̄) | [m](P ) = OE}.

One can prove finiteness of the m-torsion subgroup of an elliptic curve defined over any field

K, but since we are mainly interested in number fields, we will restrict ourselves to the case

where K has characteristic zero. The general proof is not conceptually more demanding but

this restriction will save us some timely calculations. We state and prove a result concerning

morphisms of projective varieties.
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Lemma 1.15. Let φ be a morphism of embedded projective varieties between a projective

variety V and a curve C. Then φ is either constant of surjective.

Proof. By ([Sha], ch. 1 § 5.1 Theorem 2), the image φ(V ) is a (non-empty) closed subset of

C. Decompose φ(V ) into irreducible closed components :

φ(V ) =
r⋃
i=1

Vi

where the Vi’s are non-empty closed irreducible subsets of C and none of them contains

another. This decomposition exists and is unique. Let Pi be a point of Vi. Then {Pi} is a

closed subset of C and we have the following chain of closed irreducible sets {Pi} ⊂ Vi ⊂ C.

Since the dimension of C is 1, we must either have Vi = {P} or Vi = C. Suppose that φ

is not surjective. Then all the Vi’s are strictly contained in C and therefore we must have

Vi = {Pi} and as a consequence φ(V ) = {P1, . . . , Pr}. Since any morphism is continuous

and V being irreducible implies that V is connected, we have that φ(V ) is connected and

therefore φ(V ) must be a single point. In other words, φ is constant.

Proposition 1.16. Let E/K be an elliptic curve defined over a field of characteristic zero

and given by a Weierstrass equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

with coefficients in K. Then the multiplication-by-m map m : E(K̄) −→ E(K̄) is non-

constant. As a consequence, it is surjective.

Proof. The last part of this result follows from Lemma 1.15.

We start by proving that [2] is not constant. Consider a point P = (x, y) of E(K̄). The

duplication formula 1.10.3 states that

x([2](P )) =
x4 − b4x

2 − 2b6 − b8

4x3 + b2x2 + 2b4x+ b6

.

It is not well-defined if P is a two-torsion point. In order for [2](P ) to be equal to OE it is

necessary that

4x3 + b2x
2 + 2b4x+ b6 = 0.

Thus there are finitely many possible choices for x and as a consequence finitely many points

of 2-torsion. Since E(K̄) contains infinitely many points, [2] can therefore not be constant.

This reduces the proof to the case where m is odd. Indeed, suppose that we have shown

the result for n odd. Then [2] and [n] are surjective. Let m be any positive integer. We may

write it as m = 2kn for some integer k and n odd. Since the composition of surjective maps
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is surjective and by definition of the multiplication-by-m map [m] = [2]k ◦ [n], we see that

[m] is also surjective.

In order to treat the case of an odd integer we search for a non-trivial point of 2-torsion.

Dividing x4 − b4x
2 − 2b6 − b8 by 4x3 + b2x

2 + 2b4x+ b6 we obtain x/4− b2/16 with a rest

R(x) =

(
b2

2

16
− 3b4

2

)
x2 +

(
b2b4

8
− 9

4
b6

)
x+

(
b2b6

16
− b8

)
.

One can check by computation that R(x) = 0 if and only if the discriminant ∆ is zero. Since

E is non-singular, this is impossible. We conclude that 4x3 + b2x
2 +2b4x+ b6 does not divide

x4 − b4x
2 − 2b6 − b8 and therefore there must exist an element x0 in K̄ such that the first

polynomial vanishes at a higher order than the second at x0. Let y0 be any solution in K̄ to

the second degree polynomial equation

y2 + (a1x0 + a3)y = x3
0 + a2x

2
0 + a4x0 + a6

and define P0 to be the point of E(K̄) with coordinates (x0, y0). This is a non-zero element

of 2-torsion.

Let m be an odd integer which we write as m = 2n+ 1. Then

[m](P0) = [2n](P0) + P0 = P0 6= O

and consequently [m] is non-constant.

Corollary 1.17. Let E/K be an elliptic curve defined over a field of characteristic zero

given by a Weierstrass equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

with coefficients in K. If m is any positive integer, then E(K̄)[m] is finite.

Proof. By Proposition 1.16, the multiplication-by-m map is surjective. By ([Sha], ch. 1 §
6.3 Theorem 7 (ii)), there exists a non-empty open set U of E(K̄) such that for all points

P in U

dim[m]−1(P ) = dimE − dimE = 0. (1.17.1)

In other words, the fiber of [m] over P in U is finite. The torsion subgroup is by definition

the fiber of [m] over OE. Let Q be any point of E(K̄). By surjectivity of [m], there exists a

point Q′ in E(K̄) such that [m](Q′) = Q. Then the fiber over Q becomes

[m]−1(Q) = {P ∈ E(K̄) | [m](P −Q′) = OE}
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and thus restricting the translation-by-−Q′ map τ−Q′ to [m]−1(Q) gives a morphism of pro-

jective varieties between [m]−1(Q) and [m]−1(OE) which is actually an isomorphism with

inverse τQ′ . Thus the dimension of [m]−1(Q) is the same as the dimension of [m]−1(OE).

Since Q is arbitrary, all fibers of [m] have the same dimension which is zero by equation

1.17.1. So all fibers are finite and in particular E(K̄)[m] is finite.
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2 Sketch of the proof

We give two results concerning elliptic curves that will be proved respectively in Section 3

and Section 4. Using these results, we derive the Mordell-Weil Theorem using a descent

argument.

Theorem 2.1 (Height Theorem). Let K be a number field and E/K an elliptic curve. There

exists a function hE : E(K) −→ R, called a height function, that satisfies the following three

conditions:

(i) For any point Q of E(K) there exists a constant CQ depending only on Q and such

that for every P belonging to E(K), h(P +Q) ≤ 2h(P ) + CQ.

(ii) There exists a natural number m greater or equal to 2 and a constant C2 such that

h(mP ) ≥ m2h(P )− C2 for all P in E(K).

(iii) For any constant C3, the set of all points P of E(K) for which h(P ) is bounded by C3

is finite.

Theorem 2.2 (Weak Mordell-Weil Theorem). Let K be a number field and E/K be an

elliptic curve defined over K. If m is a natural number greater than 2, then the quotient

group E(K)/mE(K) is finite.

Theorem 2.3 (Mordell-Weil Theorem). Let E/K be an elliptic curve over a number field.

Then E(K) is a finitely generated abelian group.

Proof. Let Q1, . . . , Qr be representatives of the quotient E(K)/mE(K) which is finite by

Theorem 2.2. Let P be a point of E(K). Then there exists P1 in E(K) and an index

i1 between 1 and r such that P = mP1 + Qi1 . Similarly for P1, there exists P2 in E(K)

and an index i2 between 1 and r such that P1 = mP2 + Qi2 . Proceeding inductively, at

the nth stage we obtain a element Pn of E(K) and an index in between 1 and r such that

Pn−1 = mPn + Qin . We may then write P as a linear combination of the point Pn and the

representatives Q1, . . . , Qr. Consider h : E(K) −→ R a function satisfying the properties of

Theorem 2.1. If we can bound h(Pn) by a constant, taking n large if necessary, we will be able

to conclude that E(K) is finitely generated by using property (iii) of Theorem 2.1. So our

goal is to find a suitable bound. By property (ii), h(Pn) is bounded by m−2(h(mPn) + C2).

Applying the definition of Pn, this is equal to m−2(h(Pn−1−Qin)+C2) and by property (i) we

see that this is in turn bounded by m−2(2h(Pn−1)+CQin +C2). We define C = max1≤i≤r CQi .
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Thus, h(Pn) is bounded by m−2(2h(Pn−1)+C+C2). Applying the same result but for n−1,

we obtain

h(Pn) ≤ m−2(2m−2(2h(Pn−2) + C + C2) + C + C2)

=

(
2

m2

)2

h(Pn−2) + (C + C2)

(
1

m2
+

2

m4

)
Repeating n times yields

h(Pn) ≤
(

2

m2

)n
h(P ) +

C + C2

m2

n−1∑
i=0

(
2

m2

)i
.

and this bound is equal to(
2

m2

)n
h(P ) +

(
1−

(
2
m2

)n)
(C + C2)

m2 − 2
.

Using the fact that m is greater than 2 and taking n large enough so that (2/m2)nh(P ) ≤ 1,

we finally obtain

h(Pn) ≤ 1 +
C + C2

2
=: C3.

Every point in E(K) is a linear combination of points from the set

{Q1, . . . , Qr} ∪ {P ∈ E(K) : h(P ) ≤ C3},

which is finite by property (iii) of Theorem 2.1. We conclude that E(K) is finitely generated.
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3 Height Theory

We prove Theorem 2.1. From now on until the end of this chapter, K will denote a number

field and MK will be the set of standard absolute values on K (see Appendix C § 7.2). We

first introduce a height function defined on PnQ(Q̄). We will then use this function to define

the desired height function on E(K). We closely follow [Sil] ch. 8, p. 224-239.

3.1 Heights in projective space

Definition 3.1. Let P be a point in PnQ(K) with homogeneous coordinates [x0, . . . , xn]. We

define the height associated to K, which we denote by HK , by

HK(P ) =
∏
v∈MK

max
0≤i≤n

{|xi|v}nv ,

where nv = [Kv : Qv|Q ].

Remark 3.2. Let P be a point of PnQ(K) given by homogeneous coordinates [x0, . . . , xn].

For each i, there are only finitely many discrete valuations v in MK for which v(xi) is non-

zero. So there are only finitely many discrete valuations for which v(xi) is non-zero for at

least one i, which is to say that max0≤i≤n{|xi|v}nv is not 1. On the other hand, there are

only finitely many archimedean absolute values in MK . As a consequence, the seemingly

infinite product in our definition of the height is actually a finite product so there is no need

to worry about convergence.

We show that HK is well-defined (i.e. it does not depend on the choice of coordinates)

and give some first properties of this function.

Proposition 3.3. Let P be a point of Pn(K).

(i) The value HK(P ) does not depend on the chosen homogeneous coordinates of P .

(ii) The height satisfies HK(P ) ≥ 1.

(iii) Let L/K be a finite extension. Then HL(P ) = HK(P )[L:Q]/[K:Q].

Proof. Let [x0, . . . , xn] be homogeneous coordinates for P and let λ be a non-zero element

of K. Then

HK([λx0, . . . , λxn]) =

( ∏
v∈MK

|λ|nvv

)
HK([x0, . . . , xn])
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and by the Product Formula (Appendix C § 7.2 Proposition 7.20) this is equal toHK([x0, . . . , xn])

and we have proved (i).

We can always choose homogeneous coordinates for P such that one of the xi’s equals 1.

Since |1|v = 1 for all v ∈ MK , we immediately see that HK(P ) is greater or equal to 1 and

thus we have proved (ii).

In order to prove (iii) we compute

HL(P ) =
∏
w∈ML

max
0≤i≤n

{|xi|w}nw =
∏
v∈MK

∏
w∈ML
w|v

max
0≤i≤n

{|xi|w}nw

Since the xi’s are in K and w restricts to v, we obtain

HL(P ) =
∏
v∈MK

∏
w∈ML
w|v

max
0≤i≤n

{|xi|v}nw =
∏
v∈MK

max
0≤i≤n

{|xi|v}
∑
w|v nw .

Using the Extension Formula (Appendix C § 7.2 Proposition 7.19), this becomes

HL(P ) =
∏
v∈MK

max
0≤i≤n

{|xi|v}[L:K]nv = HK(P )[L:Q]/[K:Q].

We introduce a height function that is not relative to a particular number field K.

Definition 3.4. Let P be a point of PnQ(Q̄) and choose a number field K such that P belongs

to PnQ(K). We define the absolute height function H to be H(P ) = HK(P )1/[K:Q].

This function is well-defined, independent of the choice of K by point (iii) of Proposition

3.3 and H(P ) is greater or equal to 1.

Our first goal is to prove that if K is a number field, then the set of points in Pn(K)

whose height is bounded by a given constant is finite. In order to prove this we need some

properties of the height function. We start by investigating the relation between the height

of a polynomial and the heights of its roots.

Notation If x belongs to Q̄, we set H(x) = H([x, 1]) and if x belongs to a number field

K, we set HK(x) = HK([x, 1]).

Proposition 3.5. Let f(X) = a0X
d + a1X

d−1 + . . . + ad be a polynomial with coefficients

in Q̄ and roots α1, . . . , αd in Q̄. Then

2−d
d∏
j=1

H(αj) ≤ H([a0, . . . , ad]) ≤ 2d−1

d∏
j=1

H(αj).

17



Proof. Multiplying the polynomial by a non-zero scalar does not change the conclusion of

the theorem since we are working with homogeneous coordinates and this operation has no

effect on the roots. We may therefore suppose that a0 = 1. Let K = Q(α1, . . . , αd). Since

the coefficients of the polynomial F can be expressed as polynomials in the roots, K contains

them. Define

ε(v) =

2, if v ∈M∞
K

1, otherwise.

so that the triangle inequality becomes |x + y|v ≤ ε(v) max{|x|v, |y|v} whether or not v is

archimedean.

For v ∈MK , we will prove that

ε(v)−d
d∏
j=1

max{|αj|v, 1} ≤ max
0≤i≤d

{|ai|v} ≤ ε(v)d−1

d∏
j=1

max{|αj|v, 1}. (3.5.1)

The result will then follow by elevating to the power nv, taking the product over all v ∈MK

and then the [K : Q]th root since∏
v∈MK

ε(v)nv(d−1) = 2
(d−1)

∑
v∈M∞

K
nv = 2(d−1)[K:Q]

by the Extension Formula (Appendix C § 7.2 Proposition 7.19.

We will prove the above inequality by induction on the degree d of f . If d = 1, then

a1 = −α1 and the inequalities are obvious. Suppose now that the inequalities 3.5.1 hold for

polynomials of degree d− 1 and pick k such that |αk|v is largest among the absolute values

of the roots. Define the polynomial

g(X) =
d∏
j=1
j 6=k

(X − αj) = Xd−1 + b1X
d−2 + . . .+ bd−1.

Since f(X) = (X − αk)g(X), by comparing the coefficients we see that

ai = bi − αkbi−1

for i ranging between 0 and d if we additionally set b0 = 1, b−1 = 0 and bd = 0. We then see

that

max
0≤i≤d

{|ai|v} = max
0≤i≤d

{|bi − αkbi−1|v} ≤ ε(v) max
0≤i≤d

{|bi|v, |αkbi−1|v}

by the triangle inequality. This in turn is bounded by

ε(v) max
0≤i≤d

{|bi|v}max{|αk|v, 1}.
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Using the induction hypothesis for the polynomial g, we obtain the inequality

max
0≤i≤d

{|bi|v} ≤ ε(v)d−2

d∏
j=1
j 6=k

max{|αj|v, 1}

and injecting this into the previous bound, we obtain the desired upper bound

max
0≤i≤d

{|ai|v} ≤ ε(v)d−1

d∏
j=1

max{|αj|v, 1}.

In order to prove the lower bound, we distinguish between two cases. If |αk|v is less than

ε(v), then
d∏
j=1

max{|αj|v, 1} ≤ max{|αk|v, 1}d ≤ ε(v)d

and on the other hand since a0 = 1, we have that max{|ai|v} is greater than 1 from which

we deduce the lower bound :

ε(v)−d
d∏
j=1

max{|αj|v, 1} ≤ 1 ≤ max
0≤i≤d

{|ai|v}.

If |αk|v is strictly greater than ε(v) we distinguish between the archimedean and non-

archimedean cases. Suppose that v is archimedean. Then by the triangle inequality

|bj − αkbj−1|v ≥ −|bj|v + |αk|v|bj−1|v

so that

|αk|v|bj−1|v ≤ max
1≤i≤d

{|bi − αkbi−1|v}+ max
1≤i≤d

{|bi|v}.

This holds for all j ranging from 1 to d, so taking the maximum over all j’s, we obtain

(|αk|v − 1) max
1≤i≤d

{|bi|v} ≤ max
1≤i≤d

{|bi − αkbi−1|v}.

Rewriting the left hand side as |αk|v(1 − |αk|−1
v ) max1≤i≤d{|bi|v} and using the fact that

αk > ε(v) = 2, we see that

max
1≤i≤d

{|bi − αkbi−1|v} ≥ ε(v)−1|αk|v max
1≤i≤d

{|bi|v}.

Suppose that v is non-archimedean. If all bi’s have the same absolute value, using the

fact that |αk|v > ε(v) = 1, we see that |bi − αkbi−1|v = |αk|v|bi−1|v for all i. If the bi’s do

not all have the same absolute value, let i0 be such that |bi0|v is the maximal absolute value

among the bi’s. Then

max
1≤i≤d

{|bi − αkbi−1|v} ≥ |bi0+1 − αkbi0|v = |αk|v|bi0|v = |αk|v max
1≤i≤d

{|bi|v}.
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So for all v in MK , we have the inequality

max
0≤i≤d

{|ai|v} ≥ ε(v)−1|αk|v max
0≤i≤d

{|bi|v}

and applying the induction hypothesis ends the proof.

Notation Let P be a point in PnQ(Q̄) and σ be an element of Gal(Q̄|Q). We shall write

P σ to denote the coordinate-wise action of σ on P .

Proposition 3.6. Let P be a point in PnQ(Q̄) and let σ be an element of the absolute Galois

group Gal(Q̄|Q). Then H(P σ) = H(P ).

Proof. Let [x0, . . . , xn] be homogeneous coordinates of P and let K be a number field that

contains these coordinates. The restriction of σ to K induces a Q-isomorphism from K

to σ(K) (K is not necessarily a normal extension). We now prove that it also induces a

bijection

MK
∼−→ Mσ(K)

v 7−→ vσ.

It follows that |σ(x)|vσ = |x|v for all x in K and we can then compute that

HK(P σ) =
∏

w∈Mσ(K)

max
0≤i≤n

{|σ(xi)|w}nw

=
∏
v∈MK

max
0≤i≤n

{|σ(xi)|vσ}nvσ =
∏
v∈MK

max
0≤i≤n

{|xi|v}nv = HK(P )

and since the degrees of K and σ(K) over Q are equal, we obtain equality between H(P σ)

and H(P ) as desired.

It remains to prove our claim. First, we prove that σ induces a ring isomorphism between

OK and Oσ(K). On one hand, σ(OK) is contained in Oσ(K) since algebraic integers are

mapped via isomorphisms to algebraic integers. On the other hand, suppose that x belongs

to Oσ(K). By surjectivity of σ, there exists an element y in K such that σ(y) = x. But

then y belongs to OK since y equals σ−1(x) and σ−1 is an isomorphism. As a consequence,

the prime ideals of OK are in bijection with those of Oσ(K). In other words, the discrete

valuations on K are in bijection with those of σ(K).

In order to conclude, we need to show that the archimedean absolute values are also in

bijection. Let | | be such an absolute value on K. It is induced by an embedding f of K into

K̄, such that for every x in K, |x| = |f(x)|∞ where | |∞ is the standard absolute value on C.

But then f ◦σ−1 is an embedding of σ(K) into K̄ and thus defines an archimedean absolute

value on σ(K). This defines a map M∞
K −→M∞

σ(K). Starting from an absolute value on σ(K)

induced by an embedding f , f ◦ σ defines an embedding of K and therefore an archimedean

absolute value on K. This defines the inverse map and thus we have a bijection.
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Definition 3.7. Let P = [x0, . . . , xn] be a point in PnQ(Q̄). We define the minimal field of

definition of P over a number field K to be

K(P ) := K

(
x0

xi
, . . . ,

xn
xi

)
for any i with xi 6= 0.

Proposition 3.8. Let P = [x0, . . . , xn] be a point in PnQ(Q̄) and K a number field. Then

K(P ) is well-defined in the sense that it neither depends on the choice of homogeneous

coordinates of P nor on the choice of the index i such that xi is non-zero.

Proof. Let [y0, . . . , yn] be another choice of homogeneous coordinates for P . Then there

exists a non-zero element λ of Q̄ such that xj = λyj for all j ranging from 0 to n. Suppose

that xi is non-zero. Then yi is non-zero and for all j we have xj/xi = λxj/(λxi) = yj/yi.

This proves that K(P ) does not depend on the choice of coordinates.

We now show that K(P ) does not depend on the choice of the index. Suppose that i and

j are two indexes such that both xi and xj are non-zero. Let k be any other index than i

and j. Then
xk
xi

=
xk
xj

xj
xi

=
xk
xj

(
xi
xj

)−1

∈ K
(
x0

xj
, . . . ,

xn
xj

)
since xi/xj is an element of this field and is therefore invertible in this field. Since this holds

for all k, it proves that

K

(
x0

xi
, . . . ,

xn
xi

)
⊂ K

(
x0

xj
, . . . ,

xn
xj

)
and the same reasoning shows the other inclusion. We conclude that K(P ) is well-defined.

Theorem 3.9. Let C and d be constants. Then

AC,d = {P ∈ PnQ(Q̄) |H(P ) ≤ C, [Q(P ) : Q] ≤ d}

is a finite set. In particular, if K is a number field,

{P ∈ PnQ(K) |HK(P ) ≤ C}

is a finite set.

Proof. Let P be a point in PnQ(Q̄) given by homogeneous coordinates [x0, . . . , xn]. We

may suppose that one of the coefficients, say xj, equals 1. Then we can take Q(P ) to

be Q(x0, . . . , xn) and

HQ(P )(P ) =
∏

v∈MQ(P )

max
0≤i≤n

{|xi|v}nv =
∏

v∈MQ(P )

max
0≤i≤n

{|xi|v, 1}nv
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since xj = 1. This is clearly greater or equal to

max
0≤i≤n

 ∏
v∈MQ(P )

max{|xi|v, 1}nv
 = max

0≤i≤n
HQ(P )(xi).

Thus, if H(P ) is less than C then the same is true for max0≤i≤nH(xi). Moreover, since

Q(P ) contains all of the Q(xi), we have that max0≤i≤n[Q(xi) : Q] is bounded by [Q(P ) : Q].

We conclude that AC,d is contained in

{[x0, . . . , xn] ∈ Pn(Q̄) | max
0≤i≤n

H(xi) ≤ C, max
0≤i≤n

[Q(xi) : Q] ≤ d}

and it therefore suffices to prove that the set

C := {x ∈ Q̄ |H(x) ≤ C, [Q(x) : Q] ≤ d}

is finite. So we have reduced to the case n = 1.

Let x be an element of this set and let e be the degree of Q(x) over Q so that e is less

than or equal to d by assumption. Denote by α1, . . . , αe the conjugates of x in Q̄. We set

α1 = x. Consider the minimal polynomial F of x over Q :

F (X) = Xe + a1X
e−1 + . . .+ ae ∈ Q[X].

Using Proposition 3.5, we obtain

H([1, a1, . . . , ae]) ≤ 2e−1

e∏
i=1

H(αi).

By Proposition 3.6, all αi’s have the same height which is the height of x. The above

inequality then becomes

H([1, a1, . . . , ae]) ≤ 2e−1H(x)e ≤ (2C)d

since H(x) is bounded by C and e is less than d. Remember that all the coefficients ai belong

to Q. We therefore need to study the height HQ.

Let P = [y0, . . . , yn] be a point in PnQ(Q). Multiplying by the homogeneous coordinates

by a/b where b is the greatest common divisor of the numerators of the yi’s and a is the least

common multiple of the denominators, we may suppose that the coordinates are integers and

their greatest common divisor is 1. Then for every prime p we have |yi|p ≤ 1 for all i’s and

for at least one i we have |yi|p = 1. Thus, the maximum of |yi|p over i equals 1. Therefore

the non-archimedean absolute values do not contribute to the product defining HQ and we

get

HQ(P ) = max{|y0|∞, . . . , |yn|∞}
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where | · |∞ denotes the archimedean absolute value on Q. For any C, one can bound the

size of the set of points in PnQ(Q) whose height is bounded by C by for example (2C + 1)n+1.

Returning to our initial problem, we recall the inequality

H([1, a1, . . . , ae]) ≤ (2C)d.

It follows from our discussion that there are only finitely many possibilities for the coefficients

a1, . . . , ae. This implies that there are only finitely many possibilities for the minimal poly-

nomial of an element of C. But each such polynomial contributes with at most d elements

to our set and we therefore conclude that C is finite, which ends the proof.

Let K be a number field of degree d. If P = [x0, . . . , xn] is an element of Pn(K) then

Q(P ) = Q(x0, . . . , xn) is contained in K so that its degree over Q is less than d. Therefore

the set {P ∈ PnQ(K) |HK(P ) ≤ C} is contained in AC,d and is therefore finite.

The next result will be of use in a short while.

Proposition 3.10. Let F : PnQ(Q̄) −→ PmQ (Q̄) be a morphism of degree d (i.e. a morphism

of projective varieties defined by homogeneous polynomials of degree d). There exist positive

constants C1 and C2 depending only on n, d and F and such that

C1H(P )d ≤ H(F (P )) ≤ C2H(P )d

for all P in PnQ(Q̄).

Proof. Since F is a morphism of degree d, there exist homogeneous polynomials f0, . . . , fm

of degree d such that F = [f0, . . . , fm] and the only common zero of these polynomials is

zero. Let P be a point of PnQ(Q̄) given by homogeneous coordinates [x0, . . . , xn]. Choose K

to be a number field that contains the coordinates of P and the coefficients of all the fi’s.

Let v be a valuation in MK . To ease notations, we introduce the following :

|P |v = max
1≤i≤n

|xi|v and |F (P )|v = max
1≤j≤m

|fj(P )|v

so that HK(P ) =
∏

v∈MK
|P |nvv and HK(F (P )) =

∏
v∈MK

|F (P )|nvv . We also introduce

|F |v = max{|a|v : a is a coefficient of some fi}

and define HK(F ) =
∏

v∈MK
|F |nvv . Finally, we define

ε(v) =

1, if v ∈M∞
K

0, otherwise.
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This enables us to use the triangle inequality

|s1 + . . .+ sk|v ≤ kε(v) max{|s1|v, . . . , |sk|v}

without distinguishing between whether or not v is archimedean.

We now turn to the proof and start with the upper bound. Let I be the set of vectors

k = (k0, . . . , kn) of natural numbers that satisfy
∑n

i=0 ki = d. One sees that the size of the

set I is the number of monomials of degree d in n + 1 variables which is C = ( n+d
n ). For v

in MK , we have

|fi(P )|v =

∣∣∣∣∣∑
k∈I

λi,kx
k0
0 . . . xknn

∣∣∣∣∣
v

where the λi,k’s are the coefficients of fi (some of them may be zero). Using the triangle

inequality, this expression is bounded by

Cε(v) max
k∈I
{|λi,k|v|x0|k0v . . . |xn|knv }.

We bound |λi,k|v by |F |v and we bound each |xi|v by |P |v. Since the kj’s sum to d, we get

the following bound

|fi(P )|v ≤ Cε(v)|F |v|P |dv.

This inequality holds for all i and the right hand side is independent of i. Taking the

maximum over i, we obtain

|F (P )|v ≤ Cε(v)|F |v|P |dv.

Taking the nth
v power and taking the product over all v in MK , we obtain

HK(F (P )) ≤ C
∑
v∈MK

nvε(v)HK(F )HK(P )d.

Note that by definition of ε, ∑
v∈MK

ε(v)nv =
∑
v∈M∞

K

nv = [K : Q],

by the Extension Formula (Appendix C § 7.2 Proposition 7.19). So taking the [K : Q]th

root, we finally get

H(F (P )) ≤ CH(F )H(P )d.

Taking C2 to be CH(F ) which only depends on m,n, d and F , we have proved the upper

bound.

We now prove the lower bound. Let IF be the ideal in Q̄[X0, . . . , Xn] generated by the

polynomials f0, . . . , fm. The ideal IF is a homogeneous ideal and since F is a morphism, we
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have that the projective algebraic set Vp(IF ) generated by IF is empty. By the homogeneous

Nullstellensatz, there exists a natural number N depending possibly on F , n and m and

such that INirr ⊂ IF where Iirr is the irrelevant ideal (X0, . . . , Xn). Thus for each i ranging

from 0 to n, there exist polynomials gij ∈ Q[X0, . . . , Xn] for j = 0, . . . ,m such that

XN
i =

m∑
j=0

gijfj.

By taking a finite extension of K if necessary, we may suppose that the coefficients of the gij’s

lie in K. Since the left hand side is homogeneous of degree N and the fi’s are homogeneous

of degree d, we may suppose that all the gij’s are homogeneous of degree N − d since non-

homogeneous terms will eventually cancel out. Imitating our notations from before, we

set

|G|v = max{|a|v : a is a coefficient of some gij}

and HK(G) =
∏

v∈MK
|G|nvv . Since P = [x0, . . . , xn], the above formula implies that

|xi|Nv =

∣∣∣∣∣
m∑
j=0

gij(P )fj(P )

∣∣∣∣∣
v

≤ mε(v) max
0≤j≤m

{|gij(P )fj(P )|v}

by the triangle inequality. This quantity is bounded by

mε(v) max
0≤j≤m

{|gij(P )|v} max
0≤j≤m

{|fj(P )|v} = mε(v) max
0≤j≤m

{|gij(P )|v}|F (P )|v.

Taking the maximum over i, we obtain

|P |Nv ≤ mε(v) max
i,j
{|gij(P )|v}|F (P )|v.

Since the gij’s are homogeneous of degree N − d, using the same argument as for the upper

bound we proved before, we obtain

|gij(P )|v ≤ ( n+N−d
n )ε(v) |G|v|P |N−dv

and we can take the maximum over i and j which does not affect the right hand side. Define

C3 to be the constant m ( n+N−d
n ). Then regrouping the above expressions, we have shown

that

|P |Nv ≤ C
ε(v)
3 |G|v|P |N−dv |F (P )|v.

Multiplying this expression by |P |d−Nv yields

|P |dv ≤ C
ε(v)
3 |G|v|F (P )|v.

Elevating to the power nv, taking the product over all v in MK and taking the [K : Q]th

root, we obtain H(P )d ≤ C3H(G)H(F (P )). Letting C1 be (C3H(G))−1 yields

H(F (P )) ≥ C1H(P )d.
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Note that C3 depends on m,n,N and d. But N and H(G) can be bounded in terms of

m,n, d and H(F ) and therefore C1 only depends on m,n, d and F so we have proved the

desired result.

3.2 Heights on elliptic curves

We now define a height on elliptic curves and show that it satisfies the three properties of

Theorem 2.1. Throughout this section, E/K will denote an elliptic curve defined over a

number field K, given by a Weierstrass equation

E : Y 2Z = X3 + AXZ2 +BZ3

and with base point OE = [0, 1, 0]. Consider the morphism of projective varieties x : E −→
P1
K defined by

P 7−→

[x0, 1], if P = [x0, y0, 1]

[1, 0], if P = OE.

To see that this is indeed a morphism, note that [x, 1] is simply the projection on the first

coordinate restricted to the open subset E \ {OE} so this is a morphism and it extends in a

unique way to the whole curve E. We now show that it in fact extends to [1, 0] when evaluated

at OE. First, note that if P = [x0, y0, z0] and z is non-zero, then x(P ) = [x0/z0, 1] = [x0, z0].

Dehomogenizing with respect to Y yields the equation z = x3 +Axz2 +Bz3 and OE = (0, 0)

belongs to this chart. Rewriting this equation as z(1 − Bz2) = x(x2 + Az2) we see that

[x0, z0] = [1−Bz2
0 , x

2
0 +Az2

0 ] which is well-defined at OE so that x(OE) = [1, 0]. We conclude

that x is indeed a morphism.

Moreover, it is a non-constant morphism and by Proposition 1.15 it is surjective. In view

of the additive structure on E, we introduce the following definition.

Definition 3.11. We define the logarithmic height function on Pn(Q̄) as follows :

h : PnQ(Q̄) −→ R
P 7−→ log(H(P )).

By Proposition 3.3 (ii), we have that h(P ) is non-negative. We define the height on an

elliptic curve to be

hE : E(Q̄) −→ R
P 7−→ h(x(P )).

We start by proving that property (iii) of Theorem 2.1 is satisfied.
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Proposition 3.12. Let C be a positive constant. Then the set of points P of E(K) whose

height is bounded by C is finite.

Proof. Clearly, x maps points of E(K) to points of P1
K(K). Moreover, for any fixed point

[a, b] of P1
K(K), there are only finitely many points of E(K) that are mapped to [a, b]. If

b = 0, then the preimage consists only of OE. Otherwise, we suppose b = 1. We are then

looking at the fiber of x at [a, 1]. Elements of this fiber are points [a, y, 1] which satisfy the

Weierstrass equation for E. Having fixed a, this gives a polynomial equation in y of degree

2 which has at most two roots in K. So x is a finite-to-one map from the set in question to

the set

{P ∈ P1
K(K) |H(P ) ≤ eC}

which is finite by Theorem 3.9. It follows that the set in question is finite.

In order to prove the remaining properties (i) and (ii) of Theorem 2.1, we need the

following theorem.

Theorem 3.13. For all P and Q in E(K̄) we have

hE(P +Q) + hE(P −Q) = 2hE(P ) + 2hE(Q) +O(1)

where the constant involved in the big-O notation are independent of the points considered.

Proof. Recall that E is given by the Weierstrass equation

E : Y 2Z = X3 + AXZ2 +BZ3

where A and B are in K.

First, we consider the case where either P or Q is the origin. Recall that x(OE) = [1, 0]

and therefore H(x(OE)) = 1 which brings us to hE(OE) = 0. If P is the origin then the left

hand side is exactly 2hE(P ) so we get a real equality without any constant involved. Using

the fact that hE(P ) = hE(−P ) since x(P ) = x(−P ) be the inversion formula 1.10.1, we see

that the case where Q is OE is similar.

From now on we suppose that neither P nor Q is the origin. We set the following notation

x(P ) = [x1, 1], x(P +Q) = [x3, 1],

x(Q) = [x3, 1], x(P −Q) = [x4, 1].

Notice that we may have ”blow-ups” in the cases where Q equals ±P in which case we assign

an infinite value to x3 or x4. Using Proposition 1.10 and doing some computations yields

x3 + x4 = 2(x1+x2)(A+x1x2)+4B
(x1+x2)2−4x1x2

,

x3x4 = (x1x2−A)2−4B(x1+x2)
(x1+x2)2−4x1x2

.
(3.13.1)
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Define the following composition of morphisms :

σ : E(K̄)× E(K̄) −→ P1
K(K̄)× P1

K(K̄) −→ P2
K(K̄)

(P1, P2) 7−→ (x(P1), x(P2))

([α1, β1], [α2, β2]) 7−→ [β1β2, α1β2 + α2β1, α1α2].

We also define the morphism

G : E(K̄)× E(K̄) −→ E(K̄)× E(K̄)

(P1, P2) 7−→ (P1 + P2, P1 − P2).

This is a morphism since addition is a morphism. Finally, we define a map g from P2
K(K̄)

to P2
K(K) by

g([t, u, v]) = [u2 − 4tv, 2u(At+ v) + 4Bt2, (v − At)2 − 4Btu].

With these definitions and the relations in equation 3.13.1, one checks that the following

diagram commutes :

E(K̄)× E(K̄) E(K̄)× E(K̄)

P2
K(K̄)P2

K(K̄)

G

σ

g

σ

We will now prove that g is a morphism. It is given by three homogeneous polynomials

of degree 2 in t, u and v so all we need to do it to check that these polynomials do not have a

common zero. In other words, the equation g([t, u, v]) = 0 must not have any other solution

than (0, 0, 0). If t = 0, then the equation becomes

u2 = 0, 2uv = 0, v2 = 0

so that u = v = 0 is the only possible solution. Thus we may suppose t is non-zero and

define a new variable z = u/2t. Then the equation u2− 4tv = 0 becomes z2 = v/t. The two

remaining equations are

2u(At+ v) + 4Bt2 = 0 and (v − At)2 − 4Btu = 0.

Dividing by t2 and rewriting in terms of the new variable z, we obtain

ψ(z) = 4z3 + 4Az + 4B = 0

φ(z) = z4 − 2Az2 − 8Bz + A2 = 0.
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We need to check that these two polynomials have no common roots. Computing the gcd

of φ and ψ we find 4(4A3 + 27B2) which is −∆/4, where ∆ is the discriminant of the

Weierstrass equation. Since E is non-singular, the discriminant is non-zero and therefore the

two polynomials cannot have any common roots. This proves that g is indeed a morphism.

The map g is a morphism of degree 2 from P2
K(K̄) to P2

K(K̄). Using Proposition 3.10,

there exist constants C1 and C2 such that for all S ∈ P2
K(K̄),

C1H(S)2 ≤ H(g(S)) ≤ C2H(S)2

and the constants are independent of S. Taking the logarithm, we see that

logC1 + 2h(S) ≤ h(g(S)) ≤ 2h(S) + logC2.

In other words, h(g(S)) = 2h(S) +O(1) and this holds for all S in P2
K(K̄).

Using the fact that the above diagram commutes, we see that

h(σ(P +Q,P −Q)) = h(σ ◦G(P,Q)) = h(g ◦ σ(P,Q)) = 2h(σ(P,Q)) +O(1).

It remains to prove that if P1 and P2 are two point of E, then

h(σ(P1, P2)) = hE(P1) + hE(P2) +O(1).

Applying this to both sides of the above equality ends the proof. If P1 and P2 are equal

to the origin, then σ(P1, P2) = [1, 0, 0] so that hE(σ(P1, P2)) = 0. On the other hand,

hE(O) = 0 so we have equality. If P1 is the origin and P2 is not, write x(P2) = [α, 1]. Then

σ(P1, P2) = [0, 1, α] so that hE(σ(P1, P2)) = h(x(P2)) = hE(P2) and we have the desired

equality since the height of the origin is zero.

Finally, suppose neither P1 nor P2 is the origin and write x(P1) = [α1, 1] and x(P2) =

[α2, 1]. Then σ(P1, P2) = [1, α1 + α2, α1α2]. Consider the polynomial

F (X) = X2 + (α1 + α2)X + α1α2 = (X + α1)(X + α2).

Applying Proposition 3.5 to F , we see that

2−2H(α1)H(α2) ≤ H([1, α1 + α2, α1α2]) ≤ 2H(α1)H(α2).

Taking the logarithm, this becomes

− log 4 + h(α1) + h(α2) ≤ h(σ(P1, P2)) ≤ log 2 + h(α1) + h(α2).

As a consequence, h(σ(P1, P2)) = hE(P1)+hE(P2)+O(1) and we this finishes the proof.
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Corollary 3.14. Let E/K be an elliptic curve over a number field.

(i) For any point Q of E(K̄) we have

hE(P +Q) ≤ 2h(P ) +O(1) for all P ∈ E(K̄),

where the constant depends only on Q.

(ii) Let m be any integer. Then

h([m]P ) = m2hE(P ) +O(1) for all P ∈ E(K̄),

where the constant depends only on m.

Combined with Proposition 3.12 this proves Theorem 2.1.

Proof. To prove (i), we use the fact that the height on E is always non-negative and the

result from Theorem 3.13 in order to obtain

hE(P +Q) ≤ hE(P +Q) + hE(P −Q) = 2hE(P ) + 2hE(Q) +O(1).

Bringing 2hE(Q) into the big O yields the desired result.

To prove (ii), note that since x(P ) = x(−P ), we only need to prove this for m non-

negative. The cases m = 0 and m = 1 are trivial and involve no constants. We proceed by

induction. For m greater than 2, suppose that the result is true for n less than m. Using

Theorem 3.13 with P and [m− 1]P , we get

hE([m]P ) = hE([m− 1]P + P )

= −hE([m− 1]P − P ) + 2hE([m− 1]P ) + 2hE(P ) +O(1)

= (−(m− 2)2 + 2(m− 1)2 + 2)hE(P ) +O(1) (by induction)

= m2hE(P ) +O(1)

and this completes the proof of (ii).
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4 The Weak Mordell-Weil Theorem

We prove Theorem 2.2. This constitutes the technical heart of the proof of Mordell-Weil.

The proof is articulated in several steps. We start by reducing the problem to the one

of proving finiteness of a Galois extension. This first reduction is made via the Kummer

pairing. We then study some general field theory and this will reduce the problem to proving

a ramification property. For this, we will need some technology from the theory of elliptic

curves which involves reduction of elliptic curves and the formal group of an elliptic curve.

4.1 The Kummer pairing

We start with a lemma that we will need in order to define the Kummer pairing.

Lemma 4.1. Let K be a number field, E/K an elliptic curve. Suppose L/K is a finite

Galois extension such that E(L)/mE(L) is finite. Then E(K)/mE(K) is finite.

Proof. The inclusion of E(K) in E(L) provides us with a natural homomorphism of groups

ψ : E(K)/mE(K) −→ E(L)/mE(L). Denoting by Φ the kernel of ψ, we have the following

short exact sequence

0 −→ Φ −→ E(K)/mE(K) −→ Im(ψ) −→ 0.

By assumption, the image of ψ is finite so it suffices to prove that the kernel is finite in order

to have that E(K)/mE(K) is finite.

We have reduced the argument to proving that Φ is finite. We will do this by embedding it

into Map(Gal(L|K), E(K̄)[m]), which is finite since both Gal(L|K) and E(K̄)[m] are finite,

the latter being Corollary 1.17.

First, note that the kernel Φ is equal to (E(K) ∩ mE(L))/mE(K). For each element

P +mE(K) of Φ, there exists a point QP in E(L) such that P equals mQP . We define the

following map

λP : Gal(L|K) −→ E(K̄)[m]

σ 7−→ Qσ
P −QP .

To see that this is well-defined, we need to verify that the image of λP is indeed in E(K̄)[m].

Letting σ be an element of the Galois group, we see that mλP (σ) is equal to mQσ
P −mQP .

Since addition is a morphism defined over K, (P + Q)σ is equal to P σ + Qσ. In particular,

mP σ is equal to (mP )σ. Consequently, mλP (σ) is equal to (mQP )σ−mQP which, by choice

of QP , is P σ − P . Since P is an element of E(K), the action of the Galois group on P is

trivial. Whence P σ equals P and this proves that the image of λP is indeed in E(K̄)[m].
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We have now constructed a map

λ : Φ −→ Map(Gal(L|K), E[m])

P 7−→ λP .

To see that this is an injection, let P and P ′ be two elements of the kernel Φ such that the

maps λP and λP ′ coincide. Then for every element σ of the Galois group, we have equality

between Qσ
P −QP and Qσ

P ′ −QP ′ which is equivalent to equality between (QP −QP ′)σ and

QP − QP ′ . Whence QP − QP ′ is an element of E(K). But then P − P ′ = m(QP − QP ′) is

an element of mE(K) so that P equals P ′ in Φ.

Corollary 4.2. Let K be a number field, E/K an elliptic curve. In order to prove that

E(K)/mE(K) is finite, we may suppose that E(K) contains E(K̄)[m].

Proof. Let L/K be a finite Galois extension such that E(L) contains E(K̄)[m], which is

possible since E(K̄)[m] is finite by Corollary 1.17. By Lemma 4.1, in order to prove that

E(K)/mE(K) is finite it suffices to show that E(L)/mE(L) and thus we may directly work

with L instead of K.

Proposition-Definition 4.3 (Kummer Pairing). Let K be a number field and E/K an

elliptic curve. Suppose that E(K̄)[m] is contained in E(K). Consider the following map,

which is called the Kummer pairing,

κ : E(K)×Gal(K̄|K) −→ E(K̄)[m]

(P, σ) 7−→ Qσ −Q,

where Q ∈ E(K̄) is a point such that mQ = P . This is a well-defined map.

Proof. First, the existence of such an element Q of E(K̄) is guaranteed by Proposition 1.16.

Secondly, we need to verify that the image of κ is indeed an element of the m-torsion

subgroup of E(K̄). The proof of this is similar to the one in the proof of Lemma 4.1.

Finally, we need to show that the definition of κ is independent of our choice of Q. So let

Q and Q′ be two points in E(K̄) such that mQ = P = mQ′. Then m(Q−Q′) equals zero.

This implies that Q−Q′ is an element of E(K̄)[m]. So Q = Q′+ T for some T in E(K̄)[m].

But then

Qσ −Q = Q′σ −Q′ + T σ − T = Q′σ −Q′

because T σ equals T since T is in particular an element of E(K) by our assumption that

E(K) contains E(K̄)[m]. We conclude that the pairing is well-defined.
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Definition 4.4. Let K be a number field and E/K and elliptic curve. For any point Q in

[m]−1(E(K)), i.e. any Q in E(K̄) such that mQ belongs to mE(K), we denote by KG(Q) the

compositum of the minimal fields of definition K(Qσ) (Definition 3.7), where σ is an element

of the absolute Galois group Gal(K̄|K). The fields KG(Q) are finite Galois extensions of

K. We further define Km,E to be the compositum of all the KG(Q)’s where Q belongs to

[m]−1(E(K)).

Proposition 4.5. Let K be a number field and E/K an elliptic curve. Suppose that E(K̄)[m]

is contained in E(K). The Kummer pairing enjoys the following properties :

(i) It is bilinear.

(ii) We have the equality

mE(K) = {P ∈ E(K) | κ(P, σ) = OE, ∀σ ∈ Gal(K̄|K)}.

(iii) We have the equality

Gal(K̄|Km,E) = {σ ∈ Gal(K̄|K) | κ(P, σ) = OE, ∀P ∈ E(K)}.

Proof. (i) For linearity in the first variable, let P and P ′ be elements of E(K). Then for all

σ belonging to Gal(K̄|K),

κ(P + P ′, σ) = (Q+Q′)σ − (Q+Q′) = Qσ −Q+Q′σ −Q′ = κ(P, σ) + κ(P ′, σ).

For linearity in the second variable, let σ and τ belong to Gal(K̄|K). Then for all P in

E(K),

κ(P, στ) = Qστ −Q = Qστ −Qτ +Qτ −Q = (Qσ −Q)τ + κ(P, τ).

But Qσ −Q belongs to E[m] so in particular to E(K). Hence, it is fixed by τ . Therefore we

obtain the sum of κ(P, σ) and κ(P, τ) as desired.

(ii) Let P belong to mE(K). Let Q be an element of E(K) such that mQ equals P .

Then for any σ in Gal(K̄|K),

κ(P, σ) = Qσ −Q = OE

since Q is fixed by σ. This proves that mE(K) is contained in the set in question. On the

other hand, if κ(P, σ) is zero for all σ, then Qσ = Q for all σ. In other words, Q is fixed by

all elements of the absolute Galois group, so that Q is an element of E(K) and P is in turn

an element of mE(K). This proves the remaining inclusion.
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(iii) Let σ belong Gal(K̄|Km,E). If P is in E(K) and Q is an element of [m]−1(E(K))

such that mQ = P , then Q belongs to Km,E. In particular, Q is a Km,E-rational point of

E. Therefore Q is fixed by σ and κ(P, σ) = OE. On the other hand, if κ(P, σ) is zero for all

K-rational points P of E, then σ fixes all elements of m−1E(K̄). This implies that σ fixes

all elements of E(Km,E) and must therefore be an element of Gal(K̄|Km,E).

Corollary 4.6. Let K be a number field and E an elliptic curve defined over K such that

E(K̄)[m] is contained in E(K). Then E(K)/mE(K) is finite if and only if Km,E/K is

finite.

Proof. By Proposition 4.5 (iii), Gal(K̄|Km,E) is the kernel of the homomorphism

Gal(K̄|K) −→ Hom(E(K), E(K̄)[m])

σ 7−→ κ( · , σ)

which implies that Gal(K̄|Km,E) is a normal subgroup of Gal(K̄|K). As a consequence, Km,E

is a Galois extension of K and we have an isomorphism between Gal(K̄|K)/Gal(K̄|Km,E)

and Gal(Km,E|K). It follows that the Kummer pairing induces a bilinear pairing

E(K)/mE(K)×Gal(Km,E|K) −→ E(K̄)[m]

for which the two following homomorphisms are injective :

E(K)/mE(K) −→ Hom(Gal(Km,E|K), E(K̄)[m])

Gal(Km,E|K) −→ Hom(E(K)/mE(K), E(K̄)[m]).

As a consequence, E(K)/mE(K) is finite if and only if Gal(Km,E|K) is finite.

4.2 Some general field theory

Having reduced the problem of proving of the Weak Mordell-Weil Theorem 2.2 to the one of

proving finiteness of the field extension Km,E/K, we turn to some general field theory. The

goal here is to prove the following theorem.

Theorem 4.7. Let K be a number field, m a natural number greater than 2 and S a finite set

of places in MK containing the archimedean places M∞
K . Then there exists a finite abelian

field extension Kab
m,S of K such that all finite Galois extensions of K that are abelian of

exponent m and unramified outside S are contained in Kab
m,S.
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Proposition 4.8. Let K be a number field, E an elliptic curve defined over K and m a

natural number greater than 2. Then for all Q in [m]−1(E(K)), the extension KG(Q)/K is

abelian of exponent m.

Proof. By Corollary 4.6, we have an injective homomorphism of groups

Gal(Km,E|K) −→ Hom(E(K), E(K̄)[m])

σ 7−→ κ( · , σ).

Thus Gal(Km,E|K) identifies with a subgroup of Hom(E(K), E(K̄)[m]) which is abelian

since both E(K) and E(K̄)[m] are abelian. Moreover, let σ be any element of the Galois

group of Km,E/K. The image of σm via the above homomorphism is the homomorphism

mκ( · , σ) which is zero since its target is E(K̄)[m]. Thus σ has order dividing m.

Let Q be in [m]−1(E(K)). Since KG(Q)/K is a Galois extension, its Galois group is

isomorphic to a quotient of the Galois group of Km,E/K. It is therefore abelian and of

exponent m. Since Q is arbitrary this proves the desired assertion.

Corollary 4.9. Let K be a number field and E an elliptic curve defined over K such that

E(K̄)[m] is contained in E(K). Suppose that there exists a finite set S of places in MK

containing M∞
K such that for all Q in [m]−1(E(K)), the field KG(Q) is unramified outside

S. Then Km,E/K is a finite extension.

Proof. By Proposition 4.8 and Theorem 4.7, there exists a finite abelian field extension Kab
m,S

of K that contains KG(Q) for all Q be in [m]−1(E(K)). It therefore contains the compositum

of these fields which is Km,E. In particular, Km,E is a finite extension of K.

Quite amazingly, the key argument in the proof of the Weak Mordell-Weil Theorem comes

from general field theory. Once we have proved Theorem 4.7, all that remains is to find a

set of places S and show that the extensions KG(Q)/K are unramified outside this set. The

rest of this section is concerned with the proof of Theorem 4.7. The question of finding a

suitable set S is left for the sections to come. We need a few simplifying lemmas.

Lemma 4.10. Let K be a number field, m a natural number greater than 2 and S a finite set

of places in MK containing the archimedean places M∞
K . Let K̃ be a finite Galois extension

of K, and let S̃ be the set of places in MK̃ that lie above the places in S. Suppose that there

exists a field K̃ab
m,S̃

satisfying the conclusion of Theorem 4.7 for the field K̃ and the set S̃.

Then K̃ab
m,S̃

also satisfies the conclusion of Theorem 4.7 for the field K and the set S. We

may therefore take Kab
m,S to be K̃ab

m,S̃
.
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Proof. By assumption, the field K̃ab
m,S̃

is a finite extension of K̃ that contains all finite abelian

extensions of exponent m of K̃ that are unramified outside S̃. Let L be a finite abelian

extension of exponent m of K that is unramified outside S. Consider the compositum L̃ of

L and K̃ in a fixed algebraic closure K̄ of K. We claim that L̃ is a finite abelian extension

of exponent m of K̃ that is unramified outside S̃. From this, it follows that L̃ is contained

in K̃ab
m,S̃

and in particular L is contained in K̃ab
m,S̃

. Since this holds for all such L, we may

conclude that K̃ab
m,S̃

satisfies the conclusion of Theorem 4.7 for the field K and the set S.

It remains to prove our claim. First, being the compositum of two finite Galois extensions,

L̃ is necessarily a finite Galois extension of K̃. Consider the restriction map

φ : Gal(L̃|K̃) −→ Gal(L|K)

σ 7−→ σ|L.

Since L/K is Galois, σ|L(L) = L and therefore σ|L is an automorphism of L. Since σ fixes

K̃ and K is contained in K̃ and L, σ|L fixes K. Therefore σ|L is an element of Gal(L|K)

and the above map is well-defined. Moreover, the restriction φ is clearly a homomorphism

of groups. We now prove that it is an injective homomorphism of groups : suppose σ is an

element of Gal(L̃|K̃) such that σ|L is the identity. In other words, σ fixes L. But it also

fixes K̃ and must therefore be the identity on the compositum of L and K̃, which is L̃. So

we have proved that σ is the identity and this proves injectivity. Since the above map is

an injective homomorphism of groups, Gal(L̃|K̃) is isomorphic to a subgroup of Gal(L|K).

Since Gal(L|K) is an abelian group of exponent m, the same is true for all its subgroups and

we conclude that Gal(L̃|K̃) is abelian of exponent m. We have shown that L̃ is an abelian

extension of exponent m of K̃.

We now prove that L̃/K̃ is unramified outside S̃. We will do this using the theory of

inertia groups (Appendix B § 6.3). Let ṽ be a place outside S̃ and let p̃ be the corresponding

prime ideal of OK̃ . Let q̃ be any prime ideal of OL̃ that lies above p̃. Define p = p̃∩OK and

q = q̃∩OL, which are prime ideals of OK and OL respectively and q lies above p. The prime

ideal p corresponds to a place v in MK which lies below ṽ. By definition of S̃, v does not

belong to S. Since L/K is unramified outside S, the inertia group Iq/p is trivial (Appendix

B § Corollary 6.27). In order to prove that L̃/K̃ is unramified at p̃, it suffices to prove that

the inertia group Iq̃/p̃ is trivial (Appendix B § Corollary 6.27). We will prove this by showing

that the restriction of the above homomorphism φ to Iq̃/p̃ is an injective homomorphism onto

Iq/p = {1} and therefore Iq̃/p̃ = {1}.

We now prove that φ(Iq̃/p̃) is contained in Iq/p. Let therefore σ be an element of Iq̃/p̃. We

first prove that σ|L(q) = q. In other words we prove that σ|L is in the decomposition group

of q. Since q is contained in q̃ and σ(q̃) = q̃, we have that σ|L(q) is contained in q̃. Moreover,
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since automorphisms map algebraic integers to algebraic integers, we also have that σ|L(q)

is contained in OL, hence in the intersection q̃∩OL which is q. Applying the same argument

to σ−1 which is also in the inertia group Iq̃/p̃, we get that σ−1|L(q) is contained in q from

what we conclude that q is contained in σ|L(q). Thus σ|L(q) = q.

Next, we prove that σ|L(x)− x belongs to q for all x in OL. Let x be an element of OL.

Since OL is contained in OL̃ we know by assumption on σ that σ|L(x)− x belong to q̃. But

automorphisms map algebraic integers to algebraic integers and thus σ|L(x) belong to OL.

Since this is a ring, σ|L(x)−x also belongs to OL, hence it belongs to the intersection q̃∩OL
which is q by definition. This holds for all x in OL so we have prove that σ|L belongs to Iq/p.

We therefore have a well-defined homomorphism

Iq̃/p̃ −→ Iq/p

σ 7−→ σ|L.

which is injective since φ is injective. We conclude that Iq̃/p̃ is isomorphic to a subgroup of

Iq/p. But this is the trivial group, so L̃/K̃ is unramified at ṽ. This is true for all ṽ that is

outside S̃ and therefore L̃/K̃ is unramified outside S̃.

Corollary 4.11. Let K be a number field, m a natural number greater than 2 and S a finite

set of places in MK containing the archimedean places M∞
K . If Theorem 4.7 holds in the case

of a field that contains the group of mth roots of unity µm, then it also holds for K and S.

Proof. Since µm is a finite group, we may choose K̃ to be a finite Galois extension of K

that contains µm. Take S̃ to be the set of places above the ones in S. By assumption, there

exists a field K̃ab
m,S̃

satisfying the conclusion of Theorem 4.7 for the field K̃ and the set S̃.

By Lemma 4.10, Theorem 4.7 is also satisfied for K and S.

Being able to suppose that K contains the group µm allows us to use general results from

Kummer Theory. We prove the next three results in a general setting.

Theorem 4.12. Let F be a field an m a natural number such that the characteristic of F

does not divide m. Suppose that F contains the group of mth roots of unity µm. Let L/F be

a cyclic extension of degree m. Then L = F (β) where β is an element of L and a root of

Xm − a for some a in F .

Proof. Let σ be a generator of the Galois group of L over F . Choose ζ to be a primitive mth

root of unity. By assumption ζ belongs to F and so does its inverse ζ−1 which is therefore

fixed by σ. Thus

NL
F (ζ−1) = ζ−1σ(ζ1)σ2(ζ−1) . . . σm−1(ζ−1) = ζ−m = 1.
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By Hilbert’s Theorem 90 ([Hil] § 54 Theorem 90 p. 104), there exists β in L such that ζ−1

equals βσ(β)−1. In other words, σ(β) equals ζβ. Since σ is a generator of the Galois group,

we see that the Galois conjugates of β are the ζ iβ’s where i ranges from 0 to m−1 and these

are all distinct because of our assumption concerning the characteristic of F . Furthermore,

σ(βm) equals ζmβm which is βm. Thus βm is fixed by all elements of Gal(L|F ) and therefore

belongs to K. Taking a to be βn, β is a root of Xm − a and this is the minimal polynomial

of β over K.

Proposition 4.13. Let F be a field an m a natural number such that the characteristic of

F does not divide m. Suppose that F contains the group of mth roots of unity µm. Any field

extension of the form F ( m
√
ai | 1 ≤ i ≤ r) for some natural number r and elements ai in F

is abelian of exponent m.

Proof. Since F contains µm it is clear that all such extensions are Galois. Each Galois

morphism is uniquely determined by the images of the m
√
ai’s. Fixing ζ a primitive m-root

of unity, the image of m
√
ai is given by ζdi m

√
ai for some non-negative integer di less than m.

The set of such integers {di : 1 ≤ i ≤ r} uniquely determines a Galois morphism. Consider

two morphisms σ and τ which are respectively determined by the sets {di} and {d′i}. Then

τ(σ( m
√
ai)) = τ(ζdi m

√
ai) = ζdiτ( m

√
ai) = ζdi+d

′
i m
√
ai = σ(τ( m

√
ai))

by symmetry of the expression in di and d′i. This holds for each i and it follows that the

extension is abelian. Keeping the same notation for σ and composing it m times with itself,

we obtain

σm( m
√
ai)) = (ζm)di m

√
ai = m

√
ai

and since this holds for all i and all σ, this shows that the extension is of exponent m.

Theorem 4.14. Let F be a field an m a natural number such that the characteristic of F

does not divide m. Suppose that F contains the group of mth roots of unity µm. Every finite

abelian extension of F which has exponent m is of the form F ( m
√
ai | 1 ≤ i ≤ r) for some

natural number r and elements ai in F .

Proof. Let L be any abelian extension of exponent m of F . Let n denote the degree of the

extension L/F . The Galois group of L over F is a finite abelian group of exponent m and

thus, by the Structure Theorem of finite abelian groups ([Sam] ch. 1 § 5 Corollary 1 and

2 p. 22), there exist natural numbers d1, . . . , dr such that di divides dj for every j greater

than i, dr divides m and

Gal(L|F ) ∼= Z/d1Z⊕ . . .⊕ Z/drZ.
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For i ranging between 1 and r, define Hi to be the quotient of Gal(L|F ) by the subgroup

corresponding to Z/diZ via the above isomorphism. It follows that

Hi
∼= Z/d1Z⊕ . . .⊕ Ẑ/diZ⊕ . . .⊕ Z/drZ

where the hat indicates that the term is not in the sum. This is a normal subgroup of

Gal(L|F ) and we denote by Li the subfield of elements of L which are fixed by Hi. This is

a Galois extension of F with Galois group over F isomorphic to Z/diZ. It is thus a cyclic

extension of F of degree di. Since di divides m and F contains µm, it also contains µdi . By

Theorem 4.12, Li = F ( di
√
ai) for some ai in F . Since di divides m, we may define bi to be

a
m/di
i which is in F . Then Li = F ( m

√
bi). All these fields are distinct and they do not contain

one another by construction.

The extension L contains Li as a sub-extension for each i. Thus L contains the com-

positum of these fields which is the field M := F ( m
√
bi | 1 ≤ i ≤ r). Since L/F is a Galois

extension, L/M is also a Galois extension. The Galois group Gal(L|M) consists exactly of

the elements of Gal(L|F ) that fix M . Consider an element σ of Gal(L|M). It fixes M if and

only if it fixes Li for all i since M is the compositum of these fields. Thus σ|Li is the identity

for all i. But the Galois group Gal(Li|F ) is isomorphic to Z/diZ and thus σ becomes trivial

in this group for all i. But

Gal(L|F ) ∼= Z/d1Z⊕ . . .⊕ Z/drZ

and therefore σ is the identity in Gal(L|F ). This proves that the Galois group Gal(L|M) is

trivial and as a consequence

L = M = F ( m
√
bi : 1 ≤ i ≤ r),

which concludes the proof.

We now return to the proof of Theorem 4.7. Let K, m and S as in the assumptions of

this theorem. As we have seen, we may supose that K contains µm. Since K is a number

field, its characteristic is zero and we may apply Theorem 4.14 to K which implies that all

finite abelian extension of exponent m of K are contained in K( m
√
a | a ∈ K). We will now

exploit the ramification assumption we made and it will become clear why this assumption

is crucial.

Definition 4.15. Let K be a number field, m a natural number greater than 2 and S a

finite set of places in MK containing the archimedean places M∞
K . We define the ring of

S-integers of K to be

OK,S = {a ∈ K | v(a) ≥ 0 for all v ∈MK \ S} =
⋂

v∈MK\S

OK,pv ,
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where pv denotes the prime ideal of OK corresponding to v.

We will briefly study the structure of OK,S and show that it can be realized as a local-

ization of OK .

Proposition 4.16. Let K be a number field, m a natural number greater than 2 and S a

finite set of places in MK containing the archimedean places M∞
K .

(i) There exists a non-zero element a of OK such that the finite set of non-archimedean

places v for which v(1/a) is negative is exactly S \M∞
K .

(ii) Let a be a non-zero element of OK such that the finite set of non-archimedean places

v for which v(1/a) is negative is exactly S \M∞
K . Then OK,S = OK [1/a].

Proof. In order to prove (i), let h(K) be the ideal class number of K. It is finite (Theorem

2, ch.4, § 3, p.58 [Sam], ch.4 § 3 Theorem 2 p.58) and for any prime ideal p of OK , the ideal

ph(K) is principal. Hence the finite product
∏

v∈S\M∞
K
p
h(K)
v is a principal ideal of OK . Let aS

be a generator of this ideal. This is a non-zero element of OK for which v(1/aS) is negative

for exactly the discrete valuations in S.

To prove (ii), let a be a non-zero element of OK such that v(1/a) is negative for all v in

S \M∞
K and v(1/a) is non-negative for all v outside S. Then 1/a belongs to OK,S. Since

OK is contained in OK,S, we get that OK [1/a] is contained in OK,S. We want this to be an

equality. Let therefore x be an element of OK,S. Since a belongs to OK , the element anx

belongs to OK,S for all positive n and thus v(anx) is positive for all v outside S. Let v be in

S \M∞
K . Then v(anx) = nv(a) + v(x). But v(a) is positive for such a v, so letting nv be a

large enough number, we get that v(anvx) is positive. Since S is finite, we may take N to be

the maximum of all nv where the maximum is taken over all v in S \M∞
K . Then v(aNx) is

non-negative for all discrete valuations in MK and thus aNx belongs to OK so that x belongs

to OK [1/a]. This prove that OK [1/a] contains OK,S and ends the proof of (i).

Lemma 4.17. Let A be a commutative ring and let S be a multiplicative subset of A that

does not contain 0. Then the prime ideals of S−1A are exactly pS−1A where p is a prime

ideal of A such that p ∩ A is empty.

Proof. Let p be a prime ideal of A such that p ∩ A is empty. Let x
s

and y
s′

be two elements

of S−1A such that xy
ss′

belongs to pS−1A. Then xy belongs to p and therefore either x or y is

in p, say x. But then x
s

belongs to pS−1A. This proves that pS−1A is indeed a prime ideal

of S−1A.
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Let I be a prime ideal of S−1A. Then I ∩ A is a prime ideal of A, say p. Clearly, I

contains pS−1A. Thus, if p ∩ S was non-empty, then I = A. Therefore p ∩ S is empty.

Let x be an element of I. There exists s an element of S such that sx belongs to A and

therefore also to p. It follows that x belongs to pS−1A and we have proved the equality

I = pS−1A.

Corollary 4.18. Let K be a number field, m a natural number greater than 2 and S a finite

set of places in MK containing the archimedean places M∞
K . The prime ideals of OK,S are

exactly the ideals pOK,S where p is a prime ideal of OK that corresponds to a place v outside

S.

Proof. By Proposition 4.16, OK,S = S−1OK where S is the multiplicative set of power of aS

where aS is the generator of the ideal
∏

v∈S\M∞
K
p
h(K)
v . By Lemma 4.17, the prime ideals of

OK,S are exactly the ideals pOK,S where p is a prime ideal of OK for which p ∩ S is empty.

By definition of aS, an ideal p satisfies this intersection property if and only if it corresponds

to a place v outside S.

Proposition 4.19. Let K be a number field, m a natural number greater than 2 and S a

finite set of places in MK containing the archimedean places M∞
K . Then OK,S is a Dedekind

domain.

Proof. The ring OK,S contains the Dedekind domain OK . The fact that OK,S is of dimension

1 follows from the preceding lemma and the fact that OK is of dimension 1.

The fact that OK,S is integrally closed follows from the fact that is is the intersection of

the localizations OK,p which are all integrally closed by Proposition 6.8 (Appendix B § 6.1).

Finally, OK,S is Noetherian since by Proposition 4.16 it is the localization of the Noethe-

rian ring OK .

Proposition 4.20. Let K be a number field, m a natural number greater than 2 and S a

finite set of places in MK containing the archimedean places M∞
K . Let K ′/K be a finite

extension of K and let S ′ be the set of places in MK′ that lie above the ones in S. This is

a finite set of places that does not contain M∞
K′ and the integral closure of OK,S in K ′ is

OK′,S′.

Proof. It is clear that S ′ is a finite set of places that does not contain M∞
K′ . Let a be a non-

zero element of OK such that the finite set of non-archimedean places v for which v(1/a) is

negative is exactly S\M∞
K . By Proposition 4.16, such an element exists andOK,S = OK [1/a].
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Let v′ be a place of S ′ \M∞
K′ . It lies above a place v in S \M∞

K . Thus there exists a positive

constant c such that v′(1/a) = cv(1/a). In particular, v′(1/a) is negative. Now let v′ be a

place in MK′ outside S ′. For the same reason, v′(1/a) is non-negative. Since OK is contained

in OK′ , by Proposition 4.16, OK′,S′ = OK′ [1/a]. By Proposition 6.10 (Appendix B § 6.1),

OK′ [1/a] is the integral closure of OK [1/a] in K ′.

Proposition 4.21. Let K be a number field, m a natural number greater than 2 and S a

finite set of places in MK containing the archimedean places M∞
K . Let K ′/K be a finite

extension of K and let S ′ be the set of places in MK′ that lie above the ones in S. Then

K ′/K is unramified outside S if and only if OK,S does not ramify in OK′,S′.

Proof. From Proposition 4.20, OK′,S′ is the integral closure of OK,S and the prime ideals

of OK,S are the ideals pOK,S where p is a prime ideal of OK that corresponds to a place

outside S. Similarly, the prime ideals of OK′,S′ are the ideals qOK′,S′ where q is a prime

ideal of OK′ that corresponds to a place outside S ′. It is clear that q divides p if and only

if qOK′,S′ divides pOK,S. Moreover, the localization of OK,S away from pOK,S is equal to

the localization of OK away from p. Since ramification properties can be studied through

localization away from the given prime ideal, the result is now clear.

Lemma 4.22. Let K be a number field, m a natural number greater than 2 and S a finite

set of places in MK containing the archimedean places M∞
K . Let S ′ be another finite set of

places that contains S. If the conclusion of Theorem 4.7 holds for K and S ′, then it also

holds for K and S.

Proof. Let Kab
m,S′ be a finite abelian field extension of K that contains all finite abelian

extensions of exponent m of K that are unramified outside S ′. Since S ′ is larger than S,

being unramified outside S implies being unramified outside S ′ and we may therefore take

Kab
m,S to be Kab

m,S′ .

Proposition 4.23. Let K be a number field, m a natural number greater than 2 and S a

finite set of places in MK containing the archimedean places M∞
K . There exists a finite set

of places S ′ containing S such that OK,S′ is principal.

Proof. By finiteness of the ideal class group (Theorem 2, ch.4, § 3, p.58 [Sam], ch.4 § 3

Theorem 2 p.58) we may choose integral ideals I1, . . . , Ir that represent the ideal classes of

K. We may take these to be ideals of OK . We decompose these ideals into products of prime

ideals. Then we define S ′ to be S together with the places corresponding to these prime
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ideals. To see that OK,S′ is indeed principal, consider an ideal I of OK,S′ . In particular it is

an OK,S′-module and can be seen as an OK-module since OK,S′ contains OK and as such it

is a fractional ideal in K. Thus there exists f in K∗ and some j such that I = fIj. Note

that this is an equality of OK-modules. As OK,S′-modules, we get I = fIjOK,S′ . To see

that I is principal, it suffices to prove that IjOK,S′ is principal. Decomposing Ij into prime

ideals, it suffices to see that pOK,S′ is principal where p is a prime ideal dividing Ij. Let x

be an element of this pOK,S′ and let v be the place corresponding to p. Then v′(x) = 0 for

all other discrete valuations in MK . In particular, v′(x) is zero for all discrete valuations

outside S ′ and thus x is invertible in OK,S. Hence, pOK,S′ = OK,S′ . This proves that OK,S′

is a principal ideal domain.

We have reduced the initial problem to the case where K contains the group µm and

OK,S is principal. We complete this section with this final result.

Theorem 4.24. Let K be a number field, m a natural number greater than 2 and S a finite

set of places in MK containing the archimedean places M∞
K . Suppose that K contains µm

and that OK,S is principal. Then there exists a finite abelian field extension Kab
m,S of K such

that all finite Galois extensions of K that are abelian of exponent m and unramified outside

S are contained in Kab
m,S.

Proof. From Theorem 4.14, we know that all such extensions are contained in K( m
√
a|a ∈ K)

but this did not use the ramification assumption. Note that it suffices to adjoin the mth roots

of elements in OK since K is the fraction field of OK . Also note that it suffices to adjoin one

representative of each class in OK/(OK)m. We claim that it actually suffices to adjoin one

representative of each class in O∗K,S/(O∗K,S)m. By the S-unit Theorem ([Coh], ch. 3 Theorem

3.3 p. 102), O∗K,S is a finitely generated group, hence O∗K,S/(O∗K,S)m is finite and we may

take Kab
m,S to be K( m

√
a | a ∈ O∗K,S/(O∗K,S)m).

We now prove the claim. Let K ′/K be a finite abelian extension of exponent m that is

unramified outside S. By Theorem 4.14, K ′ = K( m
√
ai | 1 ≤ i ≤ r). As already mentioned,

me may take the ai’s to be elements of OK . Let a be an element of OK such that there

exists b in K ′ such that bm = a. Let S ′ be the set of places in MK′ that lie above the ones in

S. From Proposition 4.21, being unramified outside S is equivalent to OK,S not ramifying

in OK′,S′ . Consider the ideal of OK,S generated by the element a. Since OK,S and OK′,S′ are

Dedekind, we may write

aOK,S = pf11 . . . pfrr and bOK′,S′ = qe11 . . . qess

where the pi’s are prime ideals of OK,S and qi’s are prime ideals of OK′,S′ . Consider the ideal

of OK′,S′ generated by a. Since K ′/K is unramified outside S and bm = a, we must have for
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all i that fi = meji for some 1 ≤ ji ≤ s. Thus

aOK,S = p
mej1
1 . . . pmejrr .

Consider the ideal p
ej1
1 . . . p

ejr
r in OK,S. Since OK,S is principal, there exists, c ∈ OK,S

such that p
ej1
1 . . . p

ejr
r = cOK,S. Thus a = cmu for some unit u in O∗K,S and it follows that

K( m
√
a) = K( m

√
u). Thus K ′ = K( m

√
ai | 1 ≤ i ≤ r, ai ∈ O∗K,S/(O∗K,S)m). In particular, K ′

is contained in the field K( m
√
a | a ∈ O∗K,S/(O∗K,S)m) which is a finite extension of K and

abelian by Proposition 4.13. This is true for all K ′, so the proof is complete.

4.3 Reduction modulo π

By Corollaries 4.6 and 4.9, the proof of the Weak Mordell-Weil Theorem 2.2 has been reduced

to finding a finite set S of places in MK that contains the archimedean absolute values and

proving that the fields KG(Q) are unramified outside this set. We will need some technical

tools from the general theory of elliptic curves in order to complete the proof.

From now until the end of the next section we will use the following notation unless

otherwise stated:

K a field that is complete with respect to a normalized discrete valuation v

R the valuation ring of v

M the maximal ideal of R

π a uniformizing parameter for v

ordv the normalized valuation in [v]

k the residue field k = R/πR.

Proposition 4.25. Let E/K be an elliptic curve. The following statements hold:

(i) In the class of Weierstrass curves that are isomorphic to E, there exists a Weierstrass

curve for which v(∆) ≥ 0 is minimal subject to the constraint that all the coefficients

of its Weierstrass equation are elements of R.

(ii) A Weierstrass equation as described in (i) is unique up to the change of coordinates

x′ = u2x+ r y′ = u3y + sx+ t

where u is a unit of R and r, s, t are elements of R.
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(iii) If one starts with an equation with coefficients in R, then any admissible change of

coordinates used to produce a Weierstrass equation as in (i) is subject to the condition

that u, r, s, t belong to R.

Proof. (i) We claim that we can always choose a representative Weierstrass curve with

equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

in the class of Weierstrass curves that are isomorphic to E that has all coefficients ai in R.

To see this, start with any Weierstrass curve isomorphic to E given by an equation

y2 + a′1xy + a′3y = x3 + a′2x
2 + a′4x+ a′6

with coefficients in K. Let u be an element ofK∗ and apply the admissible change of variables

(x′, y′) = (u2x, u3y). We obtain an isomorphic Weierstrass curve given by the equation:

y2 + ua′1xy + u3a′3y = x3 + u2a′2x
2 + u4a′4x+ u6a′6.

So choosing u to be a sufficiently large power of π yields new coefficients which are all

elements of R. This proves the claim.

Now consider any Weierstrass curve that is isomorphic to E and that is given by an

equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with coefficients in R. By Definitions 1.6 and 1.4, the discriminant ∆ of this equation is a

polynomial in the coefficients ai. Since R is a ring, this implies that ∆ is an element of R.

Thus v(∆) is positive. But the valuation v is discrete, hence among the Weierstrass curves

isomorphic to E given by equations with coefficients in R, there exists at least one such that

v(∆) is minimal. This proves (i).

(ii) Suppose we have started with a Weierstrass curve as in (i) and apply an admissible

change of coordinates to its equation giving an equation for a new Weierstrass curve that

also satisfies (i). By the formulas 1.11.1, u12∆′ = ∆, so if this new equation is to be as in

(i), then necessarily v(∆′) must be equal to v(∆) which in turn implies that v(u) is 0 and

as a consequence u is a unit of R. The new coefficients a′i must be elements of R. Using for

example the first equation of 1.11.1, ua′1 = a1 + 2s, we must have that s belongs to R. Using

the other equations, one can deduce that r and t also must belong to R.

(iii) Suppose we start from any Weierstrass curve given by an equation with coefficients in

R and perform a change of variables resulting in an equation for a Weierstrass curve satisfying

(i). Then v(∆′) is less than or equal to v(∆). Meanwhile, v(∆) equals 12v(u) + v(∆′) so

that v(u) is non-negative and therefore u belongs to R. As in (ii), one can use the remaining

equations of 1.11.1 to show that r, s, t also belong to R.
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Definition 4.26. Let E/K be an elliptic curve. An equation for a Weierstrass curve that

is isomorphic to E and that satisfies Proposition 4.25 (i) is called a minimal Weierstrass

equation for E/K.

Definition 4.27. The ring R comes equipped with a reduction-modulo-π map

R −→ k

r 7−→ r̃.

Let E/K be an elliptic curve given by a minimal Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The curve Ẽ/k defined in P2
k by the equation

y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6

is called the reduced curve modulo π of E. It is unique up to isomorphism.

Remark 4.28. To see why the concept of minimal Weierstrass equation is important, we

give the following example: take K to be Q5, v to be the 5-adic valuation and consider the

two Weierstrass curves given by

y2
1 = x3

1 + 1 y2
2 = x3

2 + 56.

These two Weierstrass curves are isomorphic by the change of variables (5−2x, 5−3y). Com-

puting the discriminant gives ∆1 = −432 and ∆2 = −432.512. Reducing the two equations

gives two Weierstrass curves defined in P2
F5

but only the first one is smooth so they cannot

be isomorphic.

Requiring the Weierstrass equation to be minimal ensures that the reduced curve is

unique up to isomorphism. But it does not necessarily imply that the class of isomorphic

curves we obtain is non-singular.

Definition 4.29. Let E/K be the elliptic curve given by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Denote by Ẽ/k the reduced curve associated to this equation. If the reduced curve is non-

singular, then we say that E/K has good reduction at v. Otherwise, we say that E/K has

bad reduction at v. It makes sense to talk about the reduction of the curve E/K since

different choices of a minimal Weierstrass equation give rise to isomorphic reduced curves

and non-singularity is preserved via isomorphisms.
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Definition 4.30. Let P = [x, y, z] be a point in P2
K(K). Multiplying by a suitable power of

π, we may find coordinates [x0, y0, z0] for P where x0, y0, z0 all belong to R and at least one

of them is a unit in R. We define the reduction of P to be the point P̃ = [x̃0, ỹ0, z̃0] which

is a point in P2(k). This gives a map

P2(K) −→ P2(k)

P 7−→ P̃

which we will call the reduction-modulo-π map. Let E/K be an elliptic curve in P2
K . The

above map restricts to a map from E(K) to Ẽ(k) which is called the reduction-modulo-π

map on E.

Definition 4.31. Let E/K be an elliptic curve in P2
K . We define E1(K) to be the following

set:

E1(K) := {P ∈ E(K) | P̃ = OẼ}.

Proposition 4.32. Let E/K be an elliptic curve in P2
K given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with coefficients in R. We have the following equality:

E1(K) = {[x, y, 1] ∈ E(K) | v(x) < 0} ∪ {OE}

and if [x, y, 1] is an element of E1(K), then 2v(y) = 3v(x).

Proof. Suppose P is a point of E1(K) with coordinates [x0, y0, z0] which all belong to R

and at least one of the coordinates is a unit. If z0 is zero, then P is OE. If this is not

the case, then necessarily z0 belongs to (π) since z̃0 must be zero. But one of the other two

coordinates is a unit, so dividing by z0, the coordinates of P become [x, y, 1] where x = x0/z0

and y = y0/z0. Whence x or y has valuation equal to −v(z0) which is negative. On the

other hand, if P has coordinates [x, y, 1] where either x or y has negative valuation, then

multiplying by z0 = πmax(|v(x)|,|v(y)|) we get new coordinates [x0, y0, z0] that are all in R and

either x0 or y0 is a unit. Then z̃0 is zero, so P̃ = OẼ. We conclude that

E1(K) = {[x, y, 1] ∈ E(K) | v(x) < 0 or v(y) < 0} ∪ {OE}}.

The result now follows by proving that 2v(y) = 3v(x) for all [x, y, 1] in E1(K).

Using the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,
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we take the valuation of both sides. Using the multiplicative property (ii) and the non-

archimedean property (iii) of discrete valuations (see Appendix B § 6.1 Definition 6.2),

v(a2x
2 +a4x+a6) is greater than min(v(a2)+2v(x), v(a4)+v(x), v(a6)). Since all coefficients

ai are elements of R, their valuations are non-negative. Thus, v(a2) + 2v(x) is greater or

equal to 2v(x) which in turn is strictly greater than 3v(x) since v(x) is less or equal −1. The

same argument shows that v(a4) + v(x) is strictly greater than 3v(x). As a consequence,

v(a2x
2 + a4x + a6) is strictly greater than 3v(x) so v(x3 + a2x

2 + a4x + a6) is equal to

min(3v(x), v(a2x
2 +a4x+a6)) which is 3v(x). We have shown that the valuation of the right

hand side is equal to 3v(x). Suppose by contradiction that the valuation of y is positive.

Using the same properties of the valuation as above, the valuation of the left hand side is

greater than min(2v(y), v(a1y) + v(x), v(a3) + v(y)). But, 2v(y) and v(a3) + v(y) are both

non-negative and v(a1y) + v(x) is equal to min(v(x), v(a1y)) which is v(x). So the valuation

on the left hand side is greater than the valuation of x. Putting everything together we

see that v(x) is less than or equal to 3v(x) which is a contradiction. We conclude that the

valuation of y is negative.

Suppose next that the valuation of x is non-negative. This would imply that

v(x3 + a2x
2 + a4x+ a6)

is non-negative. Suppose by contradiction that the valuation of y is negative. Then the

valuation of the left hand side would be equal to 2v(y) which is negative and this would be

a contradiction. We conclude that the valuation of y is non-negative.

Now, suppose that the valuation of both x and y is negative. Then we have already seen

that the valuation of the right hand side is 3v(x). Using the same properties as above, we

see that the valuation of the left hand side is min(2v(y), v(x)). If this is v(x) we would have

a contradiction, so it necessarily equals 2v(y). Finally, we conclude that in this case we have

the equality 2v(y) = 3v(x).

Proposition 4.33. Let E/K be an elliptic curve in P2
K and suppose that E/K has good

reduction at v. Then the reduction-modulo-π map is a homomorphism of abelian groups.

Proof. The proof is not particularly enlightening and quite long. We have therefore placed

it in Appendix A.

Remark 4.34. Let E/K be an elliptic curve in P2
K . If the reduced curve Ẽ/k is non-singular,

then E1(K) is exactly the kernel of the reduction-modulo-π homomorphism.
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Proposition 4.35. Let E/K be an elliptic curve in P2
K and let m be a natural number that is

relatively prime to the characteristic of K. Suppose that E1(K) has no non-trivial m-torsion

points and that E/K has good reduction at v. Then the reduction-modulo-π homomorphism

gives an injective homomorphism E(K)[m] ↪→ Ẽ(k).

Proof. Consider the homomorphism E(K)[m] ↪→ E(K) � E(K)/E1(K) which has kernel

equal to E(K)[m] ∩E1(K). By the assumption on E1(K), this intersection is trivial, so the

above homomorphism is injective. Since E1(K) is by definition the kernel of the reduction-

modulo-π map, we have an injective homomorphism E(K)/E1(K) ↪→ Ẽ(k) and composing

the two homomorphisms above yields an injective homomorphism from E(K)[m] to Ẽ(k).

4.4 Formal group of an elliptic curve

The goal in this section is to prove the following:

Proposition 4.36. Let E/K be an elliptic curve in P2
K and let m be a natural number that

is relatively prime to the characteristic of the residual field k. Then E1(K) does not contain

any non-trivial m-torsion points.

As a consequence of Proposition 4.35 and 4.36, we will have proved the following result:

Proposition 4.37. Let E/K be an elliptic curve in P2
K and let m be a natural number that

is relatively prime to the characteristic of the residual field k. Suppose that E/K has good

reduction at v. Then the reduction-modulo-π homomorphism gives an injective homomor-

phism

E(K)[m] ↪→ Ẽ(k).

As we will see in the next section, this result is a key argument in the proof of the Weak

Mordell-Weil Theorem 2.2. The strategy to the proof of Proposition 4.36 is to construct the

formal group Ê(M) of the elliptic curve E. This formal group contains no non-trivial m-

torsion points (Appendix D Proposition 8.9). Then we will prove that Ê(M) is isomorphic

as a group to E1(K).

If one takes an elliptic curve E/K in P2
K given by a Weierstrass equation, then the tangent

line to E(K̄) at OE is defined by the equation Z = 0. This leads to the intuitive idea that

we should be able to parametrize the points of the curve E locally around OE using the
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x-coordinate as a parameter. As it happens, this can be done using formal power series and

this will lead us to the definition of the formal group of the elliptic curve.

Parametrization Let E/K be the elliptic curve in P2
K given by the Weierstrass equation

Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3 = 0.

As mentioned above, the idea is to study the curve locally around OE which is given by

homogeneous coordinates [0, 1, 0]. We dehomogenizing the above equation with respect to

Y , placing ourselves in the affine chart Y = 1 where OE is given by the coordinates (0, 0).

In this chart, the Weierstrass equation becomes

z + a1xz + a3z
2 − x3 − a2x

2z − a4xz
2 − a6z

3 = 0.

Define g(x, z) to be the polynomial x3 − a1xz + a2x
2z − a3z

2 + a4xz
2 + a6z

3. Then the

Weierstrass equation is

z = g(x, z). (4.37.1)

Consider the ring of regular functions A := A(EY ) = K[x, z]/(g(x, z) − z) and localize

it with respect to the origin. Denote the localization AO. This is a local ring with maximal

ideal mOA where mO is the ideal of K[x, z] of polynomials that vanish at the origin. Take the

completion ÂO of AO with respect to its maximal ideal. Since E is smooth at the origin, we

know by the Cohen Structure Theorem ([Har] ch.1, Theorem 5.5A p. 34) that ÂO = K[[π]]

for some uniformizing parameter π at the origin.

Once can show that x is a uniformizing parameter at the origin. We express z as a

formal power series in x by iteratively replacing z by g(x, z) in equation 4.37.1. Formally,

we recursively define a sequence

g1(x, z) = g(x, z) gm+1(x, z) = gm(x, g(x, z))

and then define wm(x) = gm(x, 0) which belongs to Z[a1, . . . , a6][x]. Explicitly, the two first

terms of this sequence are

w1(x) = x3, w2(x) = x3 − a1x
4 + a2x

5 − a3x
6 + a4x

7 + a6x
9.

Proposition 4.38. The sequence wm(x) converges in Z[a1, . . . , a6][[x]] and

z(x) := lim
m→+∞

wm(x) = x3(1 + . . .) ∈ Z[a1, . . . , a6][[x]]

is the unique element satisfying z(x) = g(x, z(x)).
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Proof. We apply Hensel’s Lemma ([Sil], ch. 4 Lemma 1.2 p. 117) to the ring Z[a1, . . . , a6][[x]]

which is complete with respect to its maximal ideal (x). Consider the polynomial F (X) in

the variable X defined by X − g(x,X). We check that the assumptions of the lemma hold.

Since F (0) is equal to −x3 it is an element of (x3). Computing the derivative of F ,

F ′(X) = 1 + a1x− a2x
2 + 2a3X − 2a4xX − 3a6X

2

we see that F ′(0) is 1− a1x− a2x
2 which is not an element of (x). This implies that F ′(0) is

a unit in Z[a1, . . . , a6][[x]] since this is a local ring with maximal ideal (x). Hensel’s Lemma

implies that there exists an element z(x) of (x3) that satisfies F (z(x)) = 0 = z(x)−g(x, z(x)).

Since Z[a1, . . . , a6][[x]] is integral it also implies the uniqueness of z(x).

This proposition tells us that (x, z(x)) is a solution to the equation defining EY . Note

that for each positive integer n, z(x) is equal to wn(x) modulo (xn+3) and wn+1(x) = wn(x)+

A(x)xn+3 for some polynomial A. Computing the first terms of z(x), we get

z(x) = x3 − a1x
4 + (a2

1 + a2)x5 − (a3
1 + 2a1a2 + a3)x6

+ (a4
1 + 3a2

1a2 + 3a1a3 + a2
2 + a4)x7 + (h.o.t.)

From now on we will denote Ai the coefficients of z(x) so that

z(x) =
∞∑
i=3

Aix
i ∈ Z[a1, . . . , a6][[x]].

Furthermore, z(x) is zero if and only x is zero since O is the unique point of E with last

coordinate zero.

Formal addition law We now turn to constructing the power series formally giving the

addition law on E. Let x1 and x2 be two independent variables. From Proposition 4.38, we

know that for i = 1, 2 there exists a unique zi := z(xi) belonging to Z[a1, . . . , a6][[xi]] such

that Pi := (xi, zi) is a point of EY . Let L be the line in the plane Y = 1 through P1 and P2.

This line has equation L : z = λx+ v with

λ =
z2 − z1

x1 − x2

=
∞∑
i=3

Ai
xi2 − xi1
x2 − x1

∈ Z[a1, . . . , a6][[z1, z2]].

and v = z1 − λx1. We are looking for the third intersection of L with E. Substituting

z = λx+ v in equation 4.37.1 gives a polynomial equation of degree three in the variable x:

t(x) := x3(1 + a6λ
3 + a2λ+ a4λ

2) + x2(−a1λ+ a2v − a3λ
2 + 2a4λv + 3a6λ

2v)

+ x(−a1v − 2a3λv + a4v
2 + 3a6λv

2 − λ) + (v2 + v3 − v) = 0.
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We already know two roots, namely x1 and x2. Let a, b, c and d be the coefficients of t

so that t(x) = ax3 + bx2 + cx + d. Let x3 be the third root. We compute x3 by solving

t(x) = a(x− x1)(x− x2)(x− x3). Identifying the coefficients of x2 on either side we see that

x1 + x2 + x3 = −b/a. Thus,

x3 = −x1 − x2 −
−a1λ+ a2v − a3λ

2 + 2a4λv + 3a6λ
2v

1 + a6λ3 + a2λ+ a4λ2
.

Using the formal equality 1/(1 − X) =
∑

k≥0X
k, we see that x3(x1, x2) is an element of

Z[a1, . . . , a6][[x1, x2]]. Defining

z3(x1, x2) = λ(x1, x2)x3(x1, x2) + v(x1, x2),

we have found the third point of intersection P3 = (x3(x1, x2), z3(x1, x2)). Thus g(x3, z3) = z3

and by Proposition 4.38, z3 = z(x3). So z3 can be computed using only x3 so this variable

suffices to describe P3. Now, by construction, the points P1, P2 and P3 are colinear and

therefore by the properties of the group law on E, they sum to zero. The inversion formula

we derived in chapter one says the following : −[x, y, z] = [x,−y − a1x− a3z, z]. If we want

to invert a point [x, 1, z] of E in the plane Y = 1, then the formula becomes

−[x, 1, z] =

[
−x

1 + a1x+ a3z
, 1,

−z
1 + a1x+ a3z

]
.

We define the inverse of x to be x(−[x, 1, z(x)]). Explicitly,

ι(x) =
−x

1 + a1x+ a3z(x)

which is an element of Z[a1, . . . , a6][[x]] (this can easily be checked by using the formula for

geometric series).

Definition 4.39. We define the formal group operation F ∈ Z[a1, . . . , a6][[x1, x2]] as follows:

F (x1, x2) = ι(x3(x1, x2)).

Proposition 4.40. The above defined power series F is a formal group law (Appendix D

Definition 8.1).

Proof. By construction, the sum of P1 and P2 equals (F (x1, x2), w(F (x1, x2))) and therefore

F immediately inherits properties (ii)− (v) of Definition 8.1 from the geometric group law

on E. Using the formulas for x3 and ι(x3), we see that

F (x1, x2) = −x3(1 + (h.o.t.)) = x1 + x2 + (h.o.t.)

so F satisfies property (i), making F into a formal group over E.

52



Definition 4.41. Let K be local field complete with respect to a discrete valuation v and

M be the maximal ideal of its valuation ring R. Let E/K be an elliptic curve in P2
K defined

by a given minimal Weierstrass equation. The formal group of E, denoted Ê(M), is the set

M with the group law induced by the formal group law F ∈ R[[X, Y ]] from Definition 4.39.

Remark 4.42. Note that since E is given by a minimal equation for E, the coefficients ai

are all elements of R and thus Z[a1, . . . , a6] is included in R. So it makes sense to talk about

the formal group F defined over R.

Proposition 4.43. Let E/K be an elliptic curve in P2
K and let m be a natural number that

is relatively prime to the characteristic of k. Then Ê(M) does not contain any non-trivial

m-torsion points.

Proof. This is general result concerning formal groups, see Appendix D Proposition 8.9.

The next result concludes this section and proves Proposition 4.36 by our considerations

from the beginning of this section.

Proposition 4.44. Let E/K be an elliptic curve embedded into P2(K̄). With the same

notations as in the previous section, the map

φ : Ê(M) −→ E1(K)

x 7−→ [x, 1, z(x)]

is an isomorphism of groups. In particular, if m is a natural number that is relatively prime

to the characteristic of k, then E1(K) does not contain any non-trivial m-torsion points.

Proof. To see that this is a well-defined map, recall from our constructions in the last section

that φ(x) is a point of E. Furthermore, φ(x) has coordinates in R by completeness (as

discussed in Appendix D when defining groups associated to formal groups) so in particular

it is a K-rational point of E. It remains to prove that it reduces to O. If x is zero, then φ(x)

is O so there is nothing to prove. If x is non-zero then z(x) is also non-zero. We rewrite the

coordinates as [x/z(x), 1/z(x), 1]. Now, recall from Remark 4.32 that it suffices to prove that

x/z(x) or 1/z(x) has negative valuation. Since x belongs toM, we know that the valuation

of x is positive. Using the formula

z(x) = x3

(
1 +

∑
n≥1

An+3z
n

)
∈ R[[z]]
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we see that the valuation of 1/z(x) is equal to −v(z(x)) which is less than or equal to −3v(z)

which in turn is negative. As a consequence, φ(z) belongs to E1(K) and we conclude that φ

is well-defined.

To see that it is a homomorphism of groups, let x and y belong to Ê(M). If either one

of these two elements, say x, is zero, then

φ(x⊕F y) = φ(y) = O + φ(y) = φ(x) + φ(y).

Otherwise, φ(x ⊕F y) is the point [x ⊕F y, 1, z(x ⊕F y)]. By definition of the group law

induced by F , this is [F (x, y), 1, z(F (x, y))]. This is, by construction of F , equal to the sum

of [x, 1, z(x)] and [y, 1, z(y)].

In order to prove that this is a bijection, we provide the inverse

ψ : E1(K) −→ Ê(M)

that sends a point [x, y, z] of E1(K) to x/y. Either z is zero and then the point is O, or

else z is non-zero in which case we rewrite the coordinates as [x/z, y/z, 1]. We know from

Remark 4.32 that the valuations of both x/z and y/z are negative. Thus neither x or y can

be zero and we can divide by y. Moreover, using the same remark as before, we know that

twice the valuation of y/z is three times the valuation of x/z. So there must exist a positive

integer r such that

2v(y/z) = 3v(x/z) = −6r.

But then the valuation of x/y is exactly r which is positive. We conclude that x/y does

indeed belong to M and therefore the map ψ is well-defined.

Now, let x be an element of Ê(M). Then

ψ(φ(x)) = ψ([x, 1, z(x)]) = x.

Let [x, y, z] be a point of E1(K). Then

φ(ψ([x, y, z])) = φ(x/y) = [x/y, 1, z(x/y)].

Recall that w(x/y) is the unique element of R such that [x/y, 1, w(x/y)] belongs to E by

Proposition 4.38. On the other hand, [x/y, 1, z/y] already belongs to E. As a consequence,

w(x/y) is equal to z/y and φ(ψ([x, y, z])) is the point [x, y, z]. This ends the proof and this

section.
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4.5 Non-ramification of the extensions KG(Q)

We are now ready to conclude the proof of the Weak Mordell-Weil Theorem 2.2. In this

section, K denotes a number field. The fields Km,E and KG(Q) are the ones from Definition

4.4. By Corollaries 4.6 and 4.9, in order to conclude the proof, we must find a finite set S

of places in MK that contains M∞
K and such that all the extensions KG(Q) are unramified

outside S.

We are now working on global fields in contrast to the last two sections where we were

concerned with local fields. We therefore start by adjusting some definitions and restating

Proposition 4.36 in this new setting. The definition of a minimal Weierstrass equation with

respect to a discrete valuation v in MK is the same as Definition 4.26.

Definition 4.45. Let v be a discrete valuation in MK with a uniformizing parameter π. The

discrete valuation v̂ on the completion Kv also has π as a uniformizing parameter (Appendix

C § 7.1). Let E/K be the elliptic curve in P 2
K defined by the minimal Weierstrass equation

(with respect to v)

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We define the reduced curve Ẽv/kv modulo π of E/K with respect to v to be the reduced

curve modulo π of E/Kv in PKv with respect to v̂ in the sense of Definition 4.27.

Definition 4.46. Let E/K be an elliptic curve defined over a number field K and v be a

discrete valuation in MK . Let v̂ be the valuation on Kv that extends v. We will say that

E/K has good (resp. bad) reduction at v if the elliptic curve E/Kv has good (resp. bad)

reduction at v̂ in the sense of Definition 4.29.

Proposition 4.47. Let E/K be the elliptic curve given by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where the coefficients belong to K. Then E/K has good reduction at v for all but finitely

many discrete valuations v’s in MK.

Proof. The coefficients ai’s and the discriminant ∆ all belong to K. Looking at the denomi-

nators of the ai’s and ∆, there can only be a finite number of prime ideals of OK that contain

each of them and again only a finite number of prime ideals that contain the numerator of

∆. Thus, for all but finitely many valuations v in M0
K , we have

v(ai) ≥ 0 for i = 1, . . . , 6 and v(∆) = 0.
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For all valuations satisfying this, the equation is already minimal and since v(∆) = 0, the

reduction of E at such a v is good. There can therefore only be finitely many places v in

M0
K at which the reduction of E is bad.

We reformulate Proposition 4.36 in the case of a number field.

Proposition 4.48. Let E/K be an elliptic curve in P2
K and v a discrete valuation in MK

such that E/K has good reduction at v. Let m be a natural number such that v(m) = 0.

Then we have an injective homomorphism

E(K)[m] ↪→ E(Kv)[m] ↪→ Ẽ(kv).

Proof. The condition v(m) = 0 is just a reformulation of the fact that m is relatively prime

tho the characteristic of kv. The result is now immediate from Proposition 4.36.

The next result concludes the proof of the Weak Mordell-Weil Theorem 2.2.

Proposition 4.49. Let E/K be an elliptic curve in P2
K. Let m be a natural number greater

than 2 and define

S = {v ∈M0
K | E has bad reduction at v} ∪ {v ∈M0

K | v(m) 6= 0} ∪M∞
K .

This is a finite set of place in MK and for all Q in [m]−1(E(K)), the extension KG(Q) is

unramified outside S.

Proof. We start by proving that S is a finite set of places. The set S is union of three set:

the first one is finite by Proposition 4.47, the second is finite since the integer m can only

belong to finitely many prime ideals and the third is M∞
K which is finite.

Let Q be an element of [m]−1(E(K)). We now prove that KG(Q) is unramified outside

S. From Definition 4.4, KG(Q) is the compositum of the fields K(Qσ) where σ is an element

of the absolute Galois group Gal(K̄|K) and KG(Q) is therefore a finite Galois extension of

K. We will prove the result using the theory of inertia groups (Appendix B § 6.3).

Let v be a place in MK \ S and let p be the corresponding ideal of OK . Consider any

prime ideal q of OKG(Q) that divides p and let w be the corresponding valuation in MKG(Q).

Denote by k̃w the residual field of KG(Q) at w. Consider a minimal Weierstrass equation

of E over the completion Kv and let ∆ be the associated discriminant. The fact that v is

outside S implies that E has good reduction at v and therefore v(∆) is zero. Since w extends

v, we also have that w(∆) is zero and therefore this equation is also a minimal Weierstrass
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equation of E over KG(Q)w and E/KG(Q)w has good reduction at w. By Proposition 4.33,

the reduction map

E(KG(Q)) −→ Ẽw(k̃w)

is a homomorphism. Let σ be an element of the inertia group Iq/p. By Definition 6.25, the

action of σ on k̃w and therefore on Ẽw(k̃w) is trivial. Let τ be an element of Gal(K̄)|K)).

Using the fact that the reduction is a homomorphism, we get that:

˜(Qτ )σ −Qτ = (Q̃τ )σ − Q̃τ = Õ.

On the other hand, m((Qτ )σ − Qτ ) is equal to (mQτ )σ − mQτ . The fact that mQτ

belongs to E(K) implies that this is zero and therefore (Qτ )σ−Qτ belongs to E(KG(Q))[m]

which injects into Ẽ(k̃w) by Proposition 4.48 since w(m) = 0. Therefore we must have that

(Qτ )σ = Qτ and this equality holds for all τ in Gal(K̄|K). In other words, σ fixes all the

conjugates of Q and since KG(Q) is the compositum of the conjugate fields of K(Q), σ must

be the identity. Since this argument is valid for all σ in Iq/p, it proves that the inertia group

is trivial and KG(Q)/K is unramified at v. This holds for all v that does not belong to S

and therefore KG(Q)/K is unramified outside S.
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5 Appendix A - Reduction-modulo-π is a homomor-

phism of groups

Let K be a field that is complete with respect to a discrete valuation v. We will use the

notation introduced in Section 4.3. We prove that the reduction-modulo-π map on E/K is

a homomorphism of groups in the case where Ẽ/k is non-singular. We will need to treat

several different cases but first we prove two useful lemmas.

Definition 5.1. For any line L in P2
K(K̄) defined over K, it is always possible to find an

equation

L : aX + bY + cZ = 0

where the coefficients a, b and c are all in R and at least one of them is a unit (it suffices to

multiply the equation by a well-chosen power of π). We define the reduced line L̃ to be the

line in P2(k) defined by the equation

L̃ : ãX + b̃Y + c̃Z = 0.

Clearly, if a point P belongs to L, then the reduced point P̃ belongs to the reduced curve L̃.

Lemma 5.2. Let E/K be the elliptic curve in P2
K given by the minimal Weierstrass equation

Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3.

and suppose that the reduced curve Ẽ/k is non-singular. Let P and Q be two distinct K-

rational points of E that reduce to the same point and let L be the line through P and Q.

Then the reduced line L̃ is tangent to Ẽ at P̃ .

Proof. Suppose first that P̃ is not OẼ. Then P has coordinates [α, β, 1] with α and β

belonging to R (see Proposition 4.32). Since Q reduces to the same point as P , this point

necessarily has coordinates of the form [α + µ, β + ν, 1] where µ and ν both belong to (π).

Since neither P , Q nor P̃ is OE, we dehomogenize the Weierstrass equation with respect to

the variable Z and place ourselves in the affine chart Z = 1. The equation of the elliptic

curve in this chart is

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We define f(x, y) = y2 +a1xy+a3y− (x3 +a2x
2 +a4x+a6). Since P̃ is a non-singular point

of Ẽ(k), either ∂xf̃(P̃ ) or ∂yf̃(P̃ ) is non-zero.
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We start by considering the case where ∂yf̃(P̃ ) is non-zero. We compute the Taylor

expansion of f(x, y) around the point P and evaluate it at Q :

f(Q) = f(P ) + ∂xf(P )µ+ ∂yf(P )ν − (3α− a2)µ2 + a1µν + ν2 − µ3.

Since f(P ) and f(Q) are zero, we obtain

∂yf(P )ν = −∂xf(P )µ+ (3α− a2)µ2 − a1µν − ν2 + µ3.

By assumption, ∂yf(P ) is a unit in R. Thus the valuation of ν is the same as the one of

∂yf(P )ν. Using the above equality, this valuation is the same as

v(∂xf(P )µ+ (3α− a2)µ2 + a1µν + ν2 + µ3).

But this is greater than the minimum of the valuations of each term of the sum. Since

v(∂xf(P )) belongs to R, the valuation of ∂xf(P )µ is necessarily greater than the one of µ.

The same is true for the valuation of (3α− a2)µ2, a1µν and µ3. Finally, it is impossible for

the minimum to be the valuation of ν2 since this would lead to the contradiction that v(ν)

is greater than 2v(ν). So the minimum is necessarily greater than the valuation of µ. To

sum up, we have shown that v(ν) is larger than v(µ). As a consequence, ν/µ belongs to R.

Therefore we may divide the Taylor expansion by µ and reduce it modulo π. From this we

obtain

∂xf̃(P̃ ) + ∂yf̃(P̃ )ν̃/µ ≡ 0 mod π.

As a consequence, the slope of the tangent line to Ẽ at P̃ is given by

−∂xf̃(P̃ )

∂yf̃(P̃ )
= ν̃/µ.

On the other hand, the equation of L is given by

L : y − β =
ν

µ
(x− α).

So the reduced line L̃ is the line through P̃ with slope ν̃/µ. Thus, it is the tangent line to

Ẽ at P̃ .

Now consider the case where ∂xf̃(P̃ ) is non-zero and ∂yf̃(P̃ ) is zero. Then the tangent

line to Ẽ at P̃ is the vertical line x− α̃ = 0. Looking again at the Taylor expansion, we see

that

∂xf(P )µ− (3α− a2)µ2 + a1µν + ν2 − µ3 = 0

and by reasoning in the same way as before, one can easily see that the valuation of µ is

greater than the one of ν, whence µ/ν belongs to R. Dividing by ν and reducing modulo π,

we obtain

∂xf̃(P̃ )µ̃/ν ≡ 0 mod π
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and therefore µ/ν is in (π). Since the line L is given by the equation

L : µ/ν(y − β) = x− α,

the equation of the reduced line L̃ is x− α̃ = 0 so it is the tangent line to Ẽ at P̃ .

We now turn to the case where P̃ is OẼ. The tangent line to Ẽ at this point is given

by the equation Z = 0 since the gradient of F̃ evaluated at OẼ is (0, 0, 1). Since P and Q

are both in E1(K), neither of them can have Y -coordinate equal to zero as a consequence

of Proposition 4.32. We place ourselves in the affine chart Y = 1 by dehomogenizing the

Weierstrass equation with respect to the variable Y . The equation of the elliptic curve in

this chart is

z + a1xz + a3z
2 − x3 − a2x

2z − a4xz
2 − a6z

3 = 0.

We define g(x, z) = z+a1xz+a3z
2−x3−a2x

2z−a4xz
2−a6z

3. First, suppose that P is OE

and the coordinates of Q are [α, 1, β]. From Proposition 4.32, the valuation of β is positive

and strictly greater than the one of α. The line through P and Q in this plane is given by

L : z = β
α
x. Note that α is non-zero and therefore the division makes. In fact, suppose α

is zero. Then β satisfies β(1 + a3β) = 0. But β is in (π), so the only possibility is β = 0.

But then P and Q coincide and this contradicts our assumption that P and Q are distinct.

Since the valuation of β is strictly larger than the one of α, β/α belongs to (π) and therefore

reduces to zero modulo π. As a consequence, the reduced line L̃ is indeed the tangent line

to Ẽ at OẼ.

Now, suppose none of the two points P and Q are OE. Let [α1, 1, β1] and [α2, 1, β2] be

the respective coordinates of P and Q. Necessarily, the valuation of βi must be positive and

strictly greater than the one of αi (see Proposition 4.32). The line through P and Q in the

chart Y = 1 is given by

L : z − β1 =
β2 − β1

α2 − α1

x− β2 − β1

α2 − α1

α1.

Suppose the valuations of the αi’s are distinct and without loss of generality that the min-

imum of the two is the one of α1. As already noted, β1 is an element of (π), so it reduces

to zero modulo π. Moreover, the valuation of β2 − β1 is greater than min(v(β1), v(β2). But

the valuation of βi is strictly greater than the one of αi. So this minimum is strictly greater

than min(v(α1), v(α2)) which is the valuation of α1 which in turn is the valuation of the sum

of the αi’s. Hence, (β2 − β1)/(α2 − α1) is an element of (π) and reduces to zero modulo π.

Finally, the valuation of the last term is

v(α1) + v(β1 + β2)− v(α1 + α2) = v(β1 + β2) > 0

so this term also reduces to zero and therefore the reduced line is indeed the tangent line to

Ẽ at OẼ.
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Lemma 5.3. Let E/K be the elliptic curve in P2
K given by the minimal Weierstrass equation

Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3 = 0

and suppose that the reduced curve Ẽ/k is non-singular. If P is a point of E(K) and L is

the tangent line to E at P , then the reduced line L̃ is tangent to Ẽ at P̃ .

Proof. If P is OE, then L is defined by the equation Z = 0 which reduces to the same

equation. Thus L̃ is tangent to Ẽ at OẼ.

Suppose that P belongs to E1(K) \ {OE}. Let the coordinates of P be [α, β, γ] where all

coordinates are in R and at least one of then is a unit of R. By Proposition 4.32, we must

have that the valuation of γ is strictly greater than the ones of α and β so in particular it

is positive. Note that the partial derivatives of F evaluated at P all lie in R. The equation

for L is given by

L : ∂xF (P )(X − α) + ∂yF (P )(Y − β) + ∂zF (P )(Z − γ) = 0.

Reducing modulo π, we see that ∂xF̃ (P̃ ) and ∂yF̃ (P̃ ) are both zero whereas ∂zF̃ (P̃ ) equals

1 since P reduces to the origin of Ẽ. Finally, γ reduces to zero and therefore the equation

of the reduced line L̃ is given by Z = 0 which is the tangent line to Ẽ at OẼ.

Finally, suppose P is not an element of E1(K). We work directly in the affine chart

Z = 1. Let [α, β, 1] be the coordinates of P . Then the valuations of α and β must be non-

negative, and therefore the coordinates of the reduced point P̃ are [α̃, β̃, 1]. The equation of

L in the chart Z = 1 is given by

L : ∂xF (P )(X − α) + ∂yF (P )(Y − β) = 0

which reduces to

L̃ : ∂xF̃ (P̃ )(X − α̃) + ∂yF̃ (P̃ )(Y − β̃) = 0

which is the tangent line to Ẽ at P̃ in Z = 1.

Proposition 5.4. Let E/K be the elliptic curve in P2
K given by the Weierstrass equation

Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3 = 0

and suppose Ẽ/k is non-singular. Then the reduction-modulo-π map is a homomorphism of

abelian groups.

Proof. We will show that if P1, P2 and P3 are points of E(K) that sum to OE, then necessarily

the reduced points also sum to OẼ. There are six cases to consider.
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(1) Suppose all three points are distinct and the reduced points are also distinct. Let L

be the line through P1, P2 and P3. Then the reduced points all belong to the reduced line L̃

and since they are distinct, there can be no more intersection points of Ẽ with L̃ by Bézout’s

Theorem ([Ful] ch.5 § 3 p. 57). Hence, the reduced points sum to zero.

(2) Suppose all three points are distinct and that P1 and P2 reduce to the same point that

is distinct from P̃3. Let L be the line through P1, P2 and P3. By Lemma 5.2, the reduced

line L̃ is tangent to Ẽ at P̃1. The reduced point P̃3 also belongs to L̃, so the intersection

with Ẽ has multiplicity three and therefore 2P̃1 + P̃3 is zero by Bézout’s Theorem ([Ful] ch.5

§ 3 p. 57). Since P̃1 equals P̃2, this is the same as to say that P̃1, P̃2 and P̃3 sum to zero.

(3) Suppose all three points are distinct and that they all reduce to the same point P̃1

with coordinates [α̃, β̃, γ̃]. We know from Lemma 5.2 that the reduced line L̃ is tangent to

Ẽ at P̃1. Now suppose, there is a point P̃ distinct from P̃1 that belongs to the intersection

of L̃ with Ẽ. The intersection of L with E is determined by a homogeneous polynomial f in

two variables, say X and Y (the other cases are done similarly). Let f̃ denote the reduced

polynomial. Then the intersection L̃ ∩ Ẽ is given by the equation f̃ = 0. Let [x̃0, ỹ0, z̃0] be

the coordinates of the new point P̃ . Consider points x0 and y0 in R that reduce to x̃0 and

ỹ0 respectively. Since Ẽ is smooth, either ∂xf̃(x̃0, ỹ0) or ∂yf̃(x̃0, ỹ0) is non-zero. Suppose

without loss of generality that the latter is true. Consider the polynomial h(Y ) = f(x0, Y ).

Since f̃(x̃0, ỹ0) equals zero, h(y0) belongs to (π). The ring R is complete with respect to the

ideal (π). We just saw that h(y0) belongs to (π). Moreover, h′(y0) is a unit of R by our

assumption on the partial derivative of f̃ . By Hensel’s Lemma (Appendix C § 7.1 Lemma

7.9), there exists a unique element b of R such that h(b) = f(x0, b) is zero. Then the point P

defined by the coordinates x0 and b is a point in the intersection of L and E which reduces

to P̃ , so it is necessarily distinct from P1, P2 and P3. This contradicts Bézout’s Theorem

([Ful] ch.5 § 3 p. 57). Consequently, 3P̃3 = OẼ.

(4) Suppose that P1 and P2 coincide but are distinct from P3 which reduces to a point

distinct from P̃1. By Lemma 5.3, the reduced line L̃ is tangent to P̃1. Furthermore, P̃3 belongs

to L̃ and is distinct from P̃1. Counting intersection multiplicities, we see that 2P̃1 + P̃3 equals

zero.

(5) Suppose that P1 and P2 coincide but are distinct from P3 which in this case reduces

to P̃1. Playing the same game as before where we used Hensel’s Lemma (Appendix C § 7.1

Lemma 7.9), we see that necessarily 3P̃1 is zero.

(6) Suppose that P1, P2 and P3 all coincide. By a similar argument using Hensel’s Lemma

(Apendix C § 7.1 Lemma 7.9), we see that 3P̃1 is zero.
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6 Appendix B - Discrete valuations and ramification

We establish the link between the classical theory of ramification and discrete valuations

associated to a Galois extension. We essentially follow Chapter 1 of [Se2] and Chapter 6 of

[Sam]. We then discuss completion of number fields, where we follow Chapter 2 of [Se2] and

Chapter 2 of [Lan].

6.1 Discrete valuation rings

In what follows we will suppose that all rings are domains.

Definition 6.1. A ring R is said to be a discrete valuation ring if it is a Noetherian local

domain and its maximal ideal m is principal.

Definition 6.2. A valuation on a field K is a map

v : K −→ R ∪ {+∞}

that enjoys the following properties:

(i) For each element x of K, v(x) = +∞ if and only if x = 0.

(ii) The application v : K∗ −→ Z is a homomorphism of groups.

(iii) For all elements x and y in K, v(x+ y) ≥ min{v(x), v(y)}.

Definition 6.3. A valuation v on K is said to be discrete if v(K∗) = sZ for some real

positive number s. If s = 1, we say that v is normalized.

Definition 6.4. Two valuations v and w on K are said to be equivalent if there exists a

positive number s such that v = sw. This is clearly an equivalence relation. An equivalence

class of valuations is called a place of K and is denoted by brackets.

Notation Let v be a discrete valuation on K with v(K∗) = sZ. Dividing v by s gives an

equivalent normalized valuation. So for all places there exists a normalized representative

that we will denote by ordv or simply ord when there is no confusion in the notations.
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Proposition 6.5. Let R be a domain and K be its fraction field. The following statements

are equivalent:

(i) R = v−1(R≥0) for some discrete valuation v. This is called the valuation ring of v.

(ii) R is a discrete valuation ring.

(iii) The exists a uniformizing parameter of R. In other words, there exists an element π of

R such that for all non-zero elements r of R there exists a unique unit u and a positive

integer n such that r = πnu.

Proof. We start by proving that (i) implies (ii). Suppose that R = v−1(R≥0) for some

discrete valuation v on K and let s > 0 be such that v(K∗) = sZ.

In order to prove that R is a local ring consider the set m = v−1(Z>0). We claim that

this is an ideal of R. Let x be an element of m so that v(x) > 0. Let y be an element of R

so that v(y) ≥ 0. Then v(xy) = v(x) + v(y) > 0 and thus xy belongs to m. This proves our

claim.

We now prove that m is a maximal ideal. Let x be an element of R \m. In other words,

x is an element of R for which v(x) = 0. But then v(x−1) = 0 and thus x−1 belongs to R.

Consequently, x is a unit in R. Thus m is an ideal of R that contains all of R but the units.

Let I be any ideal of R that contains m strictly. Then there exists an element x in I \ m.

This is a unit and therefore I contains 1, so that I = R. This proves that m is indeed a

maximal ideal.

We now prove that m is the unique maximal ideal. Let m′ be another maximal ideal. It

cannot be contained in m since otherwise we would have m = R which is a contradiction.

Thus there is a point x in m′ \m. But then x is a unit and m′ = R. We conclude that m is

the unique maximal ideal. We have then proved that R is a local ring. It remains to show

that R is Noetherian and that m is principal.

We prove that m is principal. We may pick an element π of m such that v(π) = s since

v(K∗) = sZ. Let x be a non-zero element of m and let sn = v(x). Write x = πn x
πn

. Then

v( x
πn

) = v(x)− nv(π) = 0 so that x
πn

is a unit in R. This proves that x belong to the ideal

generated by π. Since x is an arbitrary element of m, we conclude that m is contained in (π)

and therefore m = (π).

We prove that R is Noetherian. Let I be any proper ideal of R. Being proper implies

that I does not contain any units and must therefore be contained in m. In particular, all

elements of I have positive valuation and since the valuation is discrete, there must exist a

minimum value to the set {v(y) | y ∈ I}. Let sn be this number. We claim that I = (πn).

First of all, let x be an element of I for which v(x) = sn. Then as in the previous paragraph,

we can write x = πnu where u is a unit in R. Thus πn belongs to I and we have the inclusion

(πn) ⊂ I. For the other inclusion, let z be any element of I and let sm = v(z). By definition
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of n, we have that m is greater or equal to n. As in the previous paragraph, we can write

z = πmu where u is a unit. We get that z = πnπm−nu and v(πm−nu) = s(m − n) ≥ 0 so

πm−nu belongs to R. Thus z belong to (πn). Since z is an arbitrary element of I, we have

proved that I ⊂ (πn). We conclude that I = (πn). We have prove that the only ideals of R

are the ones of the form (πn) with n a natural number. In particular, R is Noetherian.

We conclude that R is a discrete valuation ring.

We prove that (ii) implies (iii). Let π be a generator of the maximal ideal m of R. We

will prove that π is a uniformizing parameter of R.

Let r be an element of R. We prove that we can write r = πnu for some n and some unit

u. If r does not belong to (π), then it is necessarily a unit so there is nothing to prove. If r

does belong to (π), then there exists r1 in R such that r = πr1. If r1 does not belong to m it

is a unit and we are done. Other wise r1 = πr2 for some r2 in R. By contradiction suppose

all ri’s belong to m. Then we have an increasing sequence of ideals

(r) ⊂ (r1) ⊂ (r2) ⊂ . . . (ri) ⊂ . . .

and since R is Noetherian this sequence must become stationary. That is, for some integer

n, (rk) = (rn) for all k greater than n. Hence rn = πrn+1 and rn+1 = arn for some element

a of R. It follows that rn+1 equals aπrn+1 so that rn+1(1− aπ) is zero. Since R is a domain

and 1− aπ does not belong to m (since 1 is not in m), we must have rn+1 = 0 and therefore

all ri’s are zero which is a contradiction.

We prove the uniqueness of the equality r = πnu. Suppose that r = πnu = πms where u

and s are both units and suppose without loss of generality that n is greater than m. Then

πm(πn−mu − s) is zero and since R is a domain, πn−mu = s which does not belong to m.

Thus n = m and consequently u = s.

We prove that (iii) implies (i). Let π be a uniformizing parameter of R and consider the

map

ord : K −→ Z ∪ {+∞}

defined by sending r/s = (πar0)/(πbs0) (where r0 and s0 are units) to a − b and 0 to +∞.

One can check that this is a discrete valuation and that R = ord−1(Z ≥ 0).

Corollary 6.6. Let K be a field with two discrete valuations v and w. Then v and w

determine the same place if and only if their valuation rings are equal.

Proof. The direct implication is clear.

For the converse, denote by Rv and Rw the respective valuation rings of v and w and

mv and mw the corresponding maximal ideals. Suppose that Rv = Rw. Then also R∗v = R∗w
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and mv = mw. By Proposition 6.5, there exists π a uniformizing parameter such that

mv = πRv = πRw = mw. Since π generates the maximal ideals, π must have the minimal

valuation among the elements in mv = mw. Set v(π) = s and w(π) = s′. Since the valuations

are discrete, this gives v(K∗) = sZ and w(K∗) = s′Z. Clearly, for all x in R∗v = R∗w,

v(x) = w(x) = 0. Let x be a non-zero element in K \R∗v = K \R∗w. By Proposition 6.5 (iii)

and the fact that K is the fraction field of Rv = Rw, we can write x uniquely as x = πnu for

some n ∈ Z and u in R∗v = R∗w. So, v(x) = ns and w(x) = ns′ and this gives w(x) = s
s′
v(x).

This equality holds for all x and therefore v and w are equivalent.

The goal of this section is to prove the following: if A is a Dedekind domain ([Sam] ch.

3 § 3 p. 49 Definition 1), then for any non-zero prime ideal p of A, the local ring Ap is a

discrete valuation ring. This is important in the sense that the fields we are interested in

are number fields that the ring of algebraic integers OK of a number field K is a Dedekind

domain ([Sam] ch. 3 § 3 p. 49 Theorem 1 since OK is the integral closure of Z and Z is a

Dedekind domain).

Lemma 6.7. Let R be a discrete valuation ring with valuation v defined on the fraction field

K of R. Let x1, . . . , xn be elements of K such that v(xi) > v(x1) for all i larger than 2.

Then the sum of the xi’s is non-zero.

Proof. Dividing all xi’s by x1, we may assume that x1 = 1 and therefore v(xi) > 0 for all

i. In other words, each xi for i greater than 2 belongs to m. But then the sum of the xi’s

does not belong to m since x1 is not an element of the maximal ideal. In particular, the sum

cannot be equal to zero.

Proposition 6.8. Let R be a Noetherian domain and K is fraction field. In order for R to

be a discrete valuation ring it is necessary and sufficient that it satisfies the following two

conditions :

(i) R is integrally closed.

(ii) R possesses one and only one non-zero prime ideal.

Proof. We prove the ”necessary direction”. Let R be a discrete valuation ring. By Propo-

sition 6.5, there exists a discrete valuation v such that R = v−1(Z≥0) and we may pick a

uniformizing parameter π of R. By Corollary 6.6, we may take v to be ordv. Then the ideals

of R are exactly the ideals (πn) where n is a natural number (see proof of Proposition 6.5).

Thus the maximal ideal (π) is the unique prime ideal.
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We now prove that R satisfies (i). Let x be an element of K that satisfies an equation

of integral dependence xn + an−1x
n−1 + . . . + a0 = 0 where the coefficients ai are elements

of R. Suppose by contradiction that x does not belong to R. Then v(x) = −m for some

positive integer m. Then the first term of the above equation has valuation equal to −nm
while for each i between 0 and n − 1, v(an−ix

i) = v(an−1) − im which is greater than −im
and therefore strictly greater than −nm. By Lemma 6.7, the sum cannot be zero which is a

contradiction. Thus x ∈ R and R is integrally closed.

We prove the ”sufficient” direction. Suppose that R is a Noetherian domain that satisfies

(i) and (ii). The second property implies that R is a local ring since R is commutative and

must therefore possess a maximal ideal which is in particular prime, hence unique.

It remains to prove that the maximal ideal m of R is principal. Let m′ be set of all

elements x in K such that xm is contained in R. It is an R-submodule of K. If y is a non-

zero element of m, then m′ is contained in y−1R and since R is Noetherian, m′ is a finitely

generated R-module. Since m′ contains R, the product m.m′ contains m. By definition of m′,

m.m′ is contained in R. But m.m′ is an ideal of R hence by maximality of m, we necessarily

have that m.m′ is either equal to m or R.

We prove that properties (i) and (ii) imply that m.m′ equals R. By contradiction, suppose

the product equals m. Let x be an element of m′. Then xm is contained in m. Thus x(xm) is

contained in xm which is in m. Repeating this, we see that xnm is contained in m for every

non-negative integer n. Let an be R-submodule of K generated by the elements 1, x, . . . , xn.

This defines an increasing sequence of modules all contained in the finitely generated module

m′. Since R is Noetherian this sequence becomes stationary. Hence for some large enough n,

xn belongs to an−1 and thus has an equation of integral dependence over R. Thus x belongs

to the integral closure of R which is R by property (i). As a consequence m′ = R.

We will now see that property (ii) makes this into a contradiction. Let x be any element

of m and let S be the multiplicative set of powers xn of x with n a non-negative integer. Let

Rx = S−1R be the ring of elements y/xn with y in R. Suppose by contradiction that Rx is

not K. Then it is not a field and thus possesses a proper prime ideal p. Since x is a unit in

Rx it cannot belong to p. Hence p ∩R is not equal to m. If y/xn is an element of p, then y

is an element of the intersection p ∩ R. In particular, this intersection is non empty. Thus

p∩R is a proper prime ideal of R that is different from m. This is not possible by property

(ii). So we may conclude that Rx equals K. As a consequence, any element of K may be

written as y/xn for some y in R and some non-negative integer n. Let r be an element of

R. Write 1/r = y/xn so that xn equals ry which belongs to the ideal of R generated by r.

Let x1, . . . , xm be generators of m. Then for each i there exists an integer ni such that xnii
belongs to rR. Define n to be the maximum of all the ni’s so that xni belongs to rR for all

i. For any positive integer N , the ideal mN is generated by all monomials of degree N in
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the xi’s. Taking N to be mn, in each of these monomials there will always be one individual

power that exceeds n so the whole monomial will belong to rR. Thus for this choice of N ,

we see that mN is contained in rR. Take r to be an element of m. There must be a smallest

integer N for which mN is contained in rR. Take y to be an element of mN−1−mN . Then y

does not belong to rR but ym is contained in rR. Then y/r belongs to m′ by definition of the

latter but it is not an element of R. So m′ is not equal to R, which is a direct contradiction.

As a conclusion, we necessarily have that m.m′ equals R. So there exist elements

x1, . . . , xn of m and y1, . . . , yn of m′ such that
∑
xiyi = 1. All products xiyi belong to

A and since 1 is not in m there is at least one product xiyi which is not in m. Rename xi

and y1 respectively x and y. The product xy is a unit of R say u, so (xu−1)y = 1. Replace

xu−1 with π. This is an element of m. Now let z be any element of m. Then z = π(yz)

belongs to πm. We conclude that m = πR and thus m is principal.

Corollary 6.9. Let R be a Dedekind domain and K its field of fractions. If p is a non-zero

prime ideal of R then the localization Rp is a discrete valuation ring.

Proof. The localization Rp is an integral local ring with maximal ideal pRp. In order to see

that it is Noetherian, let I be an ideal of Rp. Then I ′ = I ∩ R is an ideal of R which is

Noetherian so there exist elements x1, . . . , xn of R that generate I ′. Let x be an element of

I. Then x is the quotient a/b of an element in R by an element in R− p. Since a equals xb,

we see that a is an element of I ′ so there exist elements a1, . . . , an of R such that a =
∑
aixi.

But then x =
∑n

i
ai
b
xi and the ai/b’s are all in Rp. Consequently, I is generated by the xi’s.

This proves that Rp is Noetherian.

By the previous proposition, it remains to check that Rp is integrally closed. Note that

the field of fractions of Rp is K. Let x be an element of K that satisfies an equation of

integral dependence over Rp :

xn + an−1x
n−1 + . . .+ a1x+ a0 = 0

where the ai’s all belong to Rp. All the ai’s can be written as a fraction bi/c where bi belongs

to R and c belongs to R− p. Multiplying the above equation by cn, we obtain

(cx)n + bn−1(cx)n−1 + . . .+ b1c
n−2(cx) + b0c

n−1 = 0

which is an equation of integral dependence for cx over R. Since R is integrally closed, we

obtain that cx belongs to R and thus x belongs to Rp.

Notation We shall denote by vp the normalized valuation coming from Rp.

The proof of the above result almost immediately proves the more general:
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Proposition 6.10. Let R be a subring of a field K and let S be a multiplicative subset of

R that does not contain zero. In order for an element of K to be integral over S−1R it is

necessary and sufficient for it to be of the form r/s where r is integral over R and s belongs

to S. In other words, localization at S commutes with the integral closure.

Proof. In order to see that this is necessary, let x be an element of K that satisfies an

equation of integral dependence over S−1R :

xn + an−1x
n−1 + . . .+ a1x+ a0 = 0

where the ai’s all belong to S−1R. All the ai’s can be written as a fraction ri/s where ri

belongs to R and s belongs to S. Multiplying the above equation by sn, we obtain

(sx)n + rn−1(sx)n−1 + . . .+ r1s
n−2(cx) + r0s

n−1 = 0

which is an equation of integral dependence for sx over R. Since R is integrally closed, we

obtain that sx belongs to R and thus x can be written as r/s where r is integral over R.

In order to see that this is sufficient, let x be of the form r/s with r integral over R and

s in S. Then r satisfies an equation of integral dependence over R:

rn + an−1r
n−1 + . . .+ a1r + a0 = 0

where the ai’s belong to R. Dividing by sn yields a equation of integral dependence for r/s

over S−1R, so that r/s is integral over S−1R.

6.2 Extensions and ramification

We recall some definitions and basic facts about ramification. Throughout this part, K is a

field of characteristic zero. Let A be a Dedekind domain whose field of fractions is K. Let

K ′ be a finite extension of degree n of K and let A′ denote the integral closure of A in K ′.

Since we supposed that the characteristic of K is zero, A′ is a finitely generated A-module

(Theorem 1, § 2.7 in [Sam] ch. 2 § 7 Theorem 1 p. 40) and is therefore Noetherian. One can

show that in characteristic zero, A′ is actually a Dedekind domain ([Se2], ch. 1 § 4 prop.

9). It is well known that any ideal of a Dedekind domain factors uniquely as a product of

powers of prime ideals ([Sam] ch. 3 § 4 ).

Definition 6.11. Let p be a prime ideal of A. If q is a prime ideal of A′ such that q∩A = p,

we say that q divides p or lies above p and write q|p.
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Proposition-Definition 6.12. Let p be a prime ideal in A. A prime ideal in A′ divides p

if and only if it appears in the decomposition of pA′ in prime ideals of A′. As a consequence,

p decomposes in A′ as follows:

pA′ =
∏
q|p

qeq .

The positive integer eq is called the ramification index of q at p. If there exists a prime

ideal q|p with ramification index eq strictly greater than one, then the extension K ′/K is said

to be ramified at p. Otherwise, the extension is said to be unramified at p. The extension is

said to be unramified if it is unramified at every prime ideal of A.

Proof. This is clear from Definition 6.11.

Definition 6.13. With the above notations, the field A′/q contains A/p as a subfield and

since A′ is finitely generated over A this is a finite extension. The degree fq of this extension

is called the residual degree of q at p.

Proposition 6.14. Let K be a field of characteristic zero and K ′ be a finite field extension

of K of degree n. Let A be a Dedekind domain whose field of fraction is K and let A′ be the

integral closure of A in K ′. For any prime ideal p of A, we have that:

n =
∑
q|p

eqfq.

Proof. [Se2] ch. 1 § 4 prop. 10.

Lemma 6.15. Any discrete valuation ring B is a maximal subring of its field of fractions.

Proof. Let L be the field of fractions of B. Let C be a subring of L containing B and suppose

it is not contained in B. Let v be the normalized discrete valuation representing the place

coming from B. Pick x an element of C \ B. Then v(x) is some negative integer. Let y be

any element of L. Necessarily, there exists a positive integer n such that v(y) is greater or

equal to nv(x). But then y/xn belongs to B and in particular it is an element of C. Writing

y = y
xn
xn, we see that y belongs to C and therefore C = L. Thus B is a maximal subring of

L.
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Definition 6.16. Let K and L be two fields and let v and w be two discrete valuations

defined respectively on K and L. Suppose that L contains K. We say that w extends v or

lies above v and write w|v if there exists a positive constant c such that w(x) = cv(x) for

all x in K. In we want to specify the constant we say that w extends v with index c. In

more symbolic notation, w extends v if [w|K ] = [v]. If w does extend v, then clearly all the

valuations in [w] extend the ones in [v]. We say that [w] extends [v] and write [w]|[v].

Since A and A′ are Dedekind domains, by Corollary 6.9 their localizations away from

prime ideals are discrete valuation rings.

Proposition 6.17. With the above notations, the following statements hold:

(i) Let p be a prime ideal of A and q a prime ideal of A′ that lies above p. Then the

valuation vq extends the valuation vp with index eq.

(ii) Let v be a normalized valuation on K ′ that extends the valuation vp with index e. Then

there exists a prime ideal q|p of A′ such that v = vq and e = eq.

Proof. We prove (i). From Proposition 6.14, if x belongs to K, then vq(x) = eqvp(x). This

proves (i).

We prove (ii). Let R be the ring of integers of v and m be its maximal ideal. By

Proposition 6.8, the ring R is integrally closed. Moreover, its field of fractions is K ′ and R

contains A. Indeed, let x be an element of A. We have the inclusions A ⊂ Ap = v−1
p (Z≥0).

Thus vp(x) is non-negative and therefore v(x) is also non-negative, hence x belongs to R.

It follows that R contains A′ since this is by definition the integral closure of A in K ′. We

may therefore set q = m ∩ A′. This is a prime ideal of A′ and the intersection of q with A

is the intersection of m with A which is p. Thus q divides p. Furthermore, R contains the

discrete valuation ring A′q. From Lemma 6.15, we have that R = A′q = v−1
q (Z≥0). Thus vq

and v belong to the same place. Since both are normalized, we have v = vp′ and it follows

that e = ep′ since by (i), vq extends vp with index eq.

Remark 6.18. As a consequence, the places in K ′ that lie above [vp] are exactly the places

[vq] where q is a prime ideal of A′ that lies above p. In other words, the prime ideals q of A′

that lie above p are in bijection with the places in K ′ that lie above [vp].
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6.3 Galois extensions and inertia groups

Let A be a Dedekind domain with field of fractions K and K ′/K a finite Galois extension

of degree n. Throughout this section, we suppose that K is a field of characteristic zero

since we are interested in number fields. Let G denote the Galois group of K ′ over K and

A′ denote the integral closure of A in K ′.

Lemma 6.19. Let R be a ring and consider a finite set of prime ideals p1, . . . , pq. Let q be

an ideal of R such that none of the pi’s contain q. Then there exists an element b of q that

does not belong to any of the pi’s.

Proof. We may of course assume that pi is not contained in pj when i is different from j. Let

xij be an element of pj − pi for i and j different. Since none of the pi’s contain q, for each i

we may pick an element ai of q− pi. Define bi = ai
∏

i 6=j xij. This is an element that belongs

to q since ai belongs to q. The element bi also belongs to pj for every j not equal to i since

xij belongs to pj for every j not equal to i. But it does not belong to pi since neither ai nor

any of the xij’s belong to pi. Now define b = b1 + . . .+ bq. It is an element of q that belongs

to none of the pi’s.

Lemma 6.20. The ring A′ is stable under the action of G. In other words, we have the

equality

σ(A′) = A′ for all elements σ of G.

Proof. Let σ be an element of G and let x be in A′. Then there exists a monic polynomial

P with coefficients in A that vanishes at x. Since the coefficients are in A, we have the

equality P σ = P . Therefore, we get that P (σ(x)) = σ(P (x)) = 0. As a consequence, σ(A′)

is contained in A′ and this inclusion holfds for all σ in G. In particular, σ−1(A′) is contained

in A′. But then A′ = σ(σ−1(A′)) which is included in σ(A′). We conclude that, σ(A′) = A′

for all elements σ of G.

Let σ be an element of G and q be a prime ideal of A′ that lies above a fixed prime ideal

p of A. Then σ(q) is a prime ideal of A′ that divides p. This is a consequence of the fact

that σ is an automorphism that fixes K and thus also p. Moreover, p′ and σ(p′) must have

the same ramification index. A consequence is that the Galois group G acts on the set of

prime ideals q of A′ that lie above p.

Proposition 6.21. Let p be a prime ideal in A. The action of the Galois group G on the

set of primes ideals q that lie above p is transitive.
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Proof. Let q|p be a prime ideal of A′ and suppose by contradiction that there is a prime

ideal q′|p that is not in the orbit of q. Then none of the σ(q)’s contain q′. By Lemma 6.19,

there is an element x of q′ that does not belong to any of the σ(q). Consider the norm of x

associated to the extension K ′/K : N(x) =
∏

σ∈G σ(x) which is an element of A. By Lemma

6.20, each σ(x) is in A′ and therefore the norm of x belongs to q′ since x belongs to q′. Thus

the norm belongs to the intersection A ∩ q′ which is the ideal p. But x does not belong to

σ−1(q) hence σ(x) does not belong to q. Since this is a prime ideal, we obtain that N(x) is

not an element of q. This contradicts the fact that N(x) belongs to p and q lies above p.

Corollary 6.22. Let p be a prime ideal in A and let q be a prime ideal in A′ that lies above

p. Then p decomposes in A′ as follows:

pA′ =

(∏
σ∈G

σ(p′)

)e

,

where e is the ramification index of q.

Proof. Immediate from Proposition-Definition 6.12 and Proposition 6.21.

Definition 6.23. Let p be a prime ideal in A and let q be a prime ideal of A′ that lies above

p. We define the decomposition group Dq associated to q to be the subgroup of G consisting

of elements that fix q. Explicitly,

Dq = {σ ∈ G | σ(q) = q}.

Proposition 6.24. Let p be a prime ideal in A and let q be a prime ideal of A′ that lies

above p. Let e and f denote the ramification index and the residual degree of q. Then the

cardinality of Dq is equal to ef .

Proof. Consider the map of sets from the quotient G/Dq to the set S = {σ(q) | σ ∈ G} that

sends [σ] to σ(q). This is a bijection of sets. Let g be the size of S. Then the cardinality

of G/Dq is g. By Corollary 6.22 and Proposition 6.14, [K ′ : K] = gef . But the size of G is

exactly [K ′ : K] so we conclude that the cardinality of Dq is ef .

For any element σ of the decomposition group Dq we have σ(q) = q and σ(A′) = A′ by

Lemma 6.20. We therefore have a well-defined map

σ̄ : A′/q −→ A′/q

x+ q 7−→ σ(x) + q.
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One realizes that this defines an A/p-automorphism and therefore σ̄ belongs to the Galois

group of A′/q over A/p. We therefore get a well-defined homomorphism of groups

Φ : Dq −→ Gal((A′/q)|(A/p))

σ 7−→ σ̄.
(6.24.1)

Definition 6.25. Let p be a prime ideal in A and let q be a prime ideal of A′ that lies above

p. We define the inertia group Iq associated to q to be kernel of Φ (6.24.1). Explicitly,

Iq = {σ ∈ Dq | σ(x)− x ∈ q, ∀x ∈ A′}

and this is a normal subgroup of the decomposition group.

Proposition 6.26. Let p be a prime ideal in A and let q be a prime ideal of A′ that lies

above p. Suppose that A/p is either finite or of characteristic zero. The field A′/q is a Galois

extension of A/p of finite degree f and Φ (6.24.1) is surjective.

Proof. To ease the notations we replace Dq simply by D. Let KD be the subfield of K ′

that is fixed by D. Then D is the Galois group of the extension K ′/KD. Let AD be the

integral closure of A in KD and pD be the intersection of q with AD. Note that pD is a

prime ideal of AD and that q divides it. Thus q appears in the decomposition of pDA
′. By

Proposition 6.21, the only other prime ideals of A′ that appear in the decomposition of pD

are conjugates of q via D. By definition of the decomposition group, all these conjugates

are q itself. We conclude that pDA
′ = qe

′
, where e is the ramification index of q at pD. Let

f ′ the residual degree of q at pD. Then ef = e′f ′ since the degree of the extension K ′/KD

equals the cardinality of D which we saw is ef . Since we have the inclusions

A/p ⊂ AD/pD ⊂ A′/q,

we must have that f ′ is less than or equal to f . Since p is contained in pD by definition of

the latter, we see that pA′ is contained in pDA
′ which is equal to qe

′
. Thus e′ is less than or

equal to e. The equality ef = e′f ′ then forces the equalities f = f ′ and e = e′. We conclude

that

AD/pD = A/p. (6.26.1)

We now come to the proof that A′/q is a Galois extension of degree f of A/p. Since

A/p is either finite or of characteristic zero, the extension is automatically separable and

we only need to check that the extension is normal. Let x̄ be a primitive element of A′/q

over A/p. In other words, A′/q = (A/p)(x̄). Pick x an element of A′ that reduced modulo
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q equals x̄. Recall that A′ is the integral closure of A in K. Thus there exists a monic

polynomial with coefficients in A that vanishes at x. In particular, this is a polynomial with

coefficients in AD. Let P (X) = Xr + ar−1X
r−1 + . . . + a0 be the minimal polynomial of x

over AD. Its other roots are given by the conjugates of x via the Galois group D. Let P̃ be

the reduced polynomial modulo pD. The coefficients of this new polynomial are elements of

AD/pD. But by (6.26.1), they are actually in A/p. If σ is an element of D, then Φ(σ) = σ̄ is

an A/p-automorphism of A′/q and thus fixes the coefficients of P̃ . Hence the roots of P̃ are

the elements σ̄(x̄) where σ belongs to D. Since all these roots are in A′/q, we deduce that

A′/q is the splitting field of P̃ and as a consequence it is a normal extension of A/p and its

degree is by definition f .

Since the minimal polynomial of x̄ over A/p must divide P̃ , its roots are of the form σ̄(x̄).

Let τ be any element of the Galois group of A′/q over A/p. It is completely determined by

the image of x̄ and must send x̄ to a root of its minimal polynomial. So there exists σ in D

such that τ(x̄) = σ̄(x̄) and therefore τ = σ̄ and this proves the surjectivity.

Corollary 6.27. Let p be a prime ideal in A and let q be a prime ideal of A′ that lies above

p. Suppose that A/p is either finite or of characteristic zero. Then the cardinality of the

inertia group Iq is e, the ramification index of q at p. As a consequence, K ′ is unramified at

p if and only if for all prime ideal q of A′ that lies above p, the inertia group Iq is trivial.

Proof. As an immediate consequence of Proposition 6.26, the quotient group Dq/Iq is iso-

morphic to the Galois group of A′/q over A/p which has cardinality f by definition. Thus

the cardinality of Iq is equal to e.

Remark 6.28. Let K be a number field and K ′ a finite Galois extension of K. We can

apply the results of this section in this case by taking A = OK and A′ = OK′ . If p is a prime

ideal of OK , then the field OK/p is finite since it is a finite extension of Z/(p) ∼= Fp where

(p) = p ∩ Z. In particular, the results from Proposition 6.26 and Corollary 6.27 apply.
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7 Appendix C - Completion

We present briefly completion of fields with respect absolute values and discuss the particular

case of non-archimedean absolute values. We then focus on completion of number fields.

7.1 Completion of fields with respect to an absolute value

We briefly sketch the construction of the completion of a field with an absolute value and

discuss the case of fields with discrete valuations. We conclude this section with a particular

case of Hensel’s Lemma.

Definition 7.1. Let K be a field. An absolute value on K is a function | | : K −→ R that

satisfies the following properties: for all a, b in K,

(i) |a| ≥ 0 and |a| = 0 if and only if a = 0.

(ii) |ab| = |a||b|.

(iii) |a+ b| ≤ |a|+ |b| (triangle inequality).

An absolute value that satisfies these properties is called archimedean. If in addition it

satisfies the following property:

(iv) |a+ b| ≤ max{|a|, |b|} (strong triangle inequality),

then it is called a non-archimedean absolute value.

Definition 7.2. Let (K, | |) be a field with an absolute. A completion of K with respect to

| | is a field (K̂, ‖ ‖) with an absolute value that is complete with respect to this absolute

value and there exists an embedding ι : K −→ K̂ that respects absolute values in the sense

that ‖ι(k)‖ = |k| and such that ι(K) is dense in K̂.

Proposition 7.3. Let (K, | |) be a field with an absolute value. There exists a unique com-

pletion of K with respect to | |.

Sketch of proof. We start by proving uniqueness. Suppose (K̂, ‖ · ‖) and (K̂ ′, ‖ · ‖′) are two

completions of (K, | · |). Let x be an element of K̂. By density, there exists a sequence (xn)

in K such that x = limn→∞{(ι(xn))}. Define λ(x) to be limn→∞{ι′(xn)}. One sees that

‖ι′(xm) − ι′(xn)‖′ = ‖ι(xm) − ι(xn)‖ so that the sequence {ι′(xn)} is a Cauchy sequence in
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K̂ ′ and hence converges in K̂ ′ by completeness. One checks easily that λ(x) does not depend

on the chosen sequence xn. We therefore have a well-defined morphism λ : K̂ −→ K̂ ′.

Repeating the argument, we construct another morphism λ′ : K̂ ′ −→ K̂ and we see that it

is the inverse of λ and vice-versa.

We now sketch the proof of the existence part. Let K be a field and v and absolute value

on K. Consider the set C of Cauchy sequences in K. This is a ring and the set M of null

sequences, meaning the sequences that converge to zero, forms a maximal ideal. Thus the

residue class ring C/M is a field that we shall denote Kv. There is a natural embedding

ι of K into Kv by sending and element x of K to the constant sequence (x mod M) in

Kv. We define the norm of an element (xn) of Kv by setting ‖(xn)‖v = limn→∞ |xn|v which

makes sense since R is complete. One checks that this is well-defined and that (Kv, ‖ ‖v) is

a completion of K.

Remark 7.4. Consider a field K with a discrete valuation v. Choosing any real number c in

the interval ]0, 1[ gives rise to an absolute value on K by defining |x|v = cv(x) for any x in K

and one can check that this absolute value is non-archimedean. Note that different choices

of c give rise to different absolute values which all yield the same topology on K, so the

choice does not really matter. Conversely, one can show that all non-archimedean absolute

values are constructed like this from a discrete valuation. We shall therefore indifferently

talk about the completion of field with respect to a discrete valuation or with respect to a

non-archimedean absolute value.

Let K be a field with a discrete valuation v. In this case, one can construct the completion

of K with respect to v by first completing the discrete valuation ring A of v. There exists

a theory of completion for abitrary rings, but we restrict ourselves to the case of discrete

valuation rings since this is the only case we need and it requires less work. For general

completion theory, see for example [AM] ch. 10, p. 100-105.

Definition 7.5. Let R be any ring and let I be a proper ideal of R. We define the completion

of R with respect to I to be the ring

R̂I = lim
←−

R/In.

There is a canonical homomorphism of rings from R to R̂I which sends and element r to the

sequence (r mod In)n≥1. The kernel of this map is
⋂
n≥1 I

n.
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Why is the case of a discrete valuation ring A simpler than the general case ? There are

mainly two reasons. The first one is that we know the proper ideals of a discrete valuation

ring. If π is a uniformizing element, then the proper ideals of A are the ideals (πn) where

n is a natural number (see proof of Proposition 6.5). The second reason is that discrete

valuation rings are special cases of Noetherian domains and therefore Krull’s Intersection

Theorem ([AM] ch. 10 Corollary 10.18, p. 110) applies.

Proposition 7.6. Let K be a field with a discrete normalized valuation v. Let A be the

discrete valuation ring of v. The completion Â of A with respect to its maximal ideal is also

a discrete valuation ring. Denote by v̂ the normalized valuation of Â. The ring A is embedded

in Â via the canonical homomorphism and v̂ extends v with index 1 and A and Â share the

same uniformizing parameter. Moreover, Â is complete with respect to the topology induced

by v̂. Let K̂ be the fraction field of Â and extend v̂ to K̂. Then (K̂, v̂) is the completion of

(K, v).

Sketch of proof. By Krull’s Intersection Theorem ([AM] ch. 10 Corollary 10.18, p. 110)⋂
n≥1

πnA = {0}. (7.6.1)

This is the kernel of the canonical homomorphism from A to Â and therefore this homomor-

phism is injective and A is embedded in Â.

Define a function v̂ : Â −→ Z ∪ {∞} as follows. Let x be an element of Â. Then x is

an infinite sequence (xn) of elements in A such that xm ≡ xn mod πn for all n and m with

m ≥ n. Define

v̂(x) =

inf{n ∈ N | xn 6= 0} − 1, if x 6= 0

∞, if x = 0.

It is not to difficult to check that this does indeed define a discrete valuation. Note that

(7.6.1) guarantees that v̂(x) = 0 if and only if x = 0. All the remaining results can now be

proved without to much effort.

Proposition 7.7. Let A be a discrete valuation ring with uniformizing parameter π. Let

Â be the completion of A with respect to its maximal ideal. Then for all n, we have an

isomorphism of rings: A/πnA ∼= Â/πnÂ.

Proof. In order to prove this, consider the natural projection maps ρn : Â −→ A/πnA that

send an element (am) of Â to its nth component an. These projection maps are obviously

surjective homomorphisms. We have the following exact sequence :

0 −→ Â
.πn−→ Â

ρn−→ A/πnA −→ 0.
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The multiplication-by-πn is clearly injective and the image of Â via this map is πnÂ which

is clearly contained in the kernel of ρn. Let (am) be an element of this kernel. Then an is

zero and by coherence of the sequence, am is zero for all m ≤ n. Thus v̂((am)) is greater or

equal to n. Since π is a uniformizing element of Â, this implies that (am) belongs to πnÂ.

Thus πnÂ = ker(ρn) and the sequence is exact. We conclude that Â/πnÂ ∼= A/πnA for all

n.

Lemma 7.8. Let A be a discrete valuation ring with uniformizing parameter π and let Â be

the completion of A with respect to its maximal ideal πA. Let u be a unit of Â and let α be

an element of Â such that α = u+ i for some element i in (π). Then α is a unit in Â.

Proof. Consider the sequence in Â defined by

vn =
n∑
k=0

(
− i
u

)k
.

The difference vn+1 − vn is equal to (− i
u
)n+1 which belongs to (πn+1). So the sequence (vn)

defines an element of Â which we call v. For each natural number n, v is equal to vn modulo

(πn). Now,

α
v

u
= (u+ i)

v

u
≡ vn −

i

u
vn mod (πn) ≡ 1 mod (πn)

and this holds for all n. Thus α v
u

= 1 in Â and consequently α is invertible.

We provide the proof of the well known lifting lemma by Hensel but restrict ourselves to

the case of a discrete valuation ring.

Lemma 7.9 (Hensel). Let A be a discrete valuation ring with uniformizing parameter π and

let Â be the completion of A with respect to its maximal ideal πA. Let F be a polynomial

in one variable with coefficients in Â and suppose that there exist an element a in Â and

a positive integer n such that F (a) belongs to πÂ and F ′(a) belongs to Â∗. Then, for any

element α in Â that is equal to F ′(a) modulo (π), the sequence defined by

w0 = a, wm+1 = wm −
F (wm)

α

converges to a unique element b of Â which satisfies

F (b) = 0 and b ≡ a mod (πn).
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Proof. We first proceed to a simplification: replacing the polynomial F (X) by F (X + a)/α,

the assumptions of the lemma become

F (0) ∈ (πn), F ′(0) ∈ Â∗, F ′(0) ≡ 1 mod (π)

and the sequence is simply defined by w0 = 0 and wn+1 = wn − F (wn).

First, remark that if wm belongs to (πn), then it is also true for wm+1. Indeed, by

definition wn+1 is equal to wm − F (wn) which in turn equals −F (0) modulo (πn). But F (0)

belongs to (πn) by assumption which concludes the argument. Now, since the initial term

of the sequence equals 0 which is certainly an element of (πn), we may conclude that wm

belongs to (πn) for any non-negative integer m.

Next, we prove that the sequence (wm) is defines an element of Â. In other words, we

prove by induction that the difference wm+1 − wm belongs to (πn+m) for any non-negative

integer m. If m equals 0, the same goes for w0 and since w1 is equal to −F (0) which, by

assumption, belongs to (πn), there is nothing to prove. Now, let m be greater than 1 and

suppose the relation is true for m − 1. Using the definition of the sequence we obtain an

equality between wm+1−wm and (wm−F (wm))−(wm−1−F (wm−1)). Rearranging the terms

this is (wm − wm−1)− (F (wm)− F (wm−1)). We perform a trick by letting X and Y be two

independent variables and decomposing F (X)− F (Y ) as follows :

F (X)− F (Y ) = (X − Y )(F ′(0) +XG(X, Y ) + Y H(X, Y ))

where G and H are elements of Â[X, Y ]. By linearity, we need only to check this decompo-

sition on polynomials of the form Xk−Y k and for the latter it is clear. Using this we obtain

an equality with

(wm − wm−1)(1− F ′(0)− wmG(wm, wm−1)− wm−1H(wm, wm−1)).

From our induction hypothesis we know that wm−wm−1 belongs to (πn+m−1). Furthermore,

by assumption F ′(0)− 1 belongs to (π) and from our observation above, wj ∈ (πn) for any

j. As a consequence, wm+1 − wm belongs to (πn+m).

We have proved that the sequence (wm) defines an element of Â. We will call this element

b. Since wm belongs to (πn) for all non-negative m, we must have that b is also an element

of (πn). Using the recursive definition of the sequence and taking the limit as m goes to

infinity, we see that b equals b− F (b) so that F (b) is necessarily 0.

We now prove the uniqueness assertion. Let c be another element of (πn) such that F (c)

is 0. Then

0 = F (b)− F (c) = (b− c)(F ′(0) + bG(b, c) + c(Hb, c)).

Since Â is a domain, we must have that F ′(0) + bG(b, c) + c(Hb, c)0 equals 0. Whence

the equality between F ′(0) and −bG(b, c) − cH(b, c) which is an element of (πn). But this

contradicts the fact that F ′(0)− 1 belongs to (π). This proves uniqueness.
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Remark 7.10. In the case where K is a number field, with the same notations as above,

the valuation ring A of v is the localization OK,p of the ring of algebraic integers OK away

from the prime ideal corresponding to v. We have a natural isomorphism between OK/pOK
and OK,p/pOK,p. In fact, both these quotient rings are fields. The first one because OK is a

Dedekind domain and the second one because OK,p is a local ring with maximal ideal pOK,p.
The isomorphism is given by

OK/pOK −→ OK,p/pOK,p
a −→ a

ab−1 ←− a/b.

Using Proposition 7.7 with n = 1, we get that

ÔK,p/pÔK,p ∼= OK,p/pOK,p ∼= OK/pOK .

7.2 Completion of number fields

Let K denote a number field of degree n. By Ostrowski’s Theorem ([AM] ch 1 § 4 prop. 4.3

p. 23, § 3 Theorem 3.4, 3.5 p. 15-17), all non-archimedean absolute values on Q arise from

the p-adic absolute values. For any prime p, we let | · |p denote the absolute value defined by

Q −→ R
x 7−→ |x|p = p−vp(x)

where vp(x) denotes the p-adic valuation of x, that is the order of x at p. Moreover we let

| · |∞ denote the standard archimedean absolute value on Q which is defined via the inclusion

of Q in R.

Definition 7.11. The set MQ = {| · |p : p prime} ∪ {| · |∞} is called the set of standard

absolute values on Q.

Let p be a prime ideal of the ring of algebraic integers OK and let π be a uniformizing

parameter for the localization OK,p which by Corollary 6.9 is a discrete valuation ring. Let

p be the prime such that p∩Z = pZ. Then p = πe(p/p)u where u is a unit of OK,p and e(p/p)

is the ramification index of p at p. We define an absolute value that we shall denote | · |p by

K −→ R
x 7−→ |x|p = (p−1/e(p/p))vp(x)

where vp(x) denotes the p-adic valuation of x, that is the order of x at π. As we have already

discussed, all non-archimedean absolute values on K arise from prime ideals of OK .
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Moreover, we let M∞
K denote the archimedean absolute values on K. These absolute

values are obtained through embedding of K into C in the following way. Let σ : K −→ C
be a homomorphism of fields that fixes Q. Define the following function

| |σ : K −→ R
x 7−→ |σ(x)|∞

where | |∞ denotes the standard absolute value on C (|a+ bi|∞ =
√
a2 + b2). One can check

that this defined an archimedean absolute value on K and that all archimedan absolute value

on K is equivalent to an absolute value defined from such an embedding σ. If the image

σ(K) is contained in R, we say that σ is a real embedding. Otherwise, we say that it is a

complex embedding. Different real embeddings give rise to inequivalent absolute values on

K, whereas complex embeddings always come in pairs through complex conjugations and

two conjugated embeddings define the same absolute value. If r1 and r2 respectively are the

number of real embeddings of K and the number of conjugate pairs of complex embeddings

of K, then n = r1 + 2r2 and the size of M∞
K is r1 + r2.

Definition 7.12. The set MK = {| · |p : p prime ideal of OK} ∪M∞
K is called the set of

standard absolute values on K. These are the absolute values on K whose restriction to Q
is one of the absolute values in MQ. We denote by M0

K the set of non-archimedean absolute

values in MK . We will indifferently talk about the absolute value | |p in M0
K or the valuation

vp and we will write vp ∈M0
K .

If L is a finite extension of K, then using a similar construction as above, one defines ML

to be the absolute values on L whose restriction to Q is one of the absolute values in MQ.

This construction being consistent by multiplicativity of the ramification index, this is also

those absolute values on L whose restriction to K is one of the absolute values in MK .

Let v be in M0
K and let L be a finite extension of K. We would like to understand the

relation between Kv and the different completions Lw where w ∈ML extends v. In order to

do this, we first need to know more about extensions of complete fields.

Proposition 7.13. Let K be a field of characteristic zero with a discrete valuation v, let A

be its valuation ring and suppose that K is complete with respect to v. Let L/K be a finite

extension of K of degree n and let B denote the integral closure of A in B. Then B is a

discrete valuation ring, it is a free A-module of rank n and L is complete with respect to the

topology defined by B. In particular, v extends uniquely to a place [w] of L.

Proof. Since A is the valuation ring of v, it is a discrete valuation ring by Proposition 6.5.

By Proposition 6.8, it is integrally closed and therefore A is a Dedekind domain. Thus B is
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also a Dedekind domain. Moreover we know that B is a finitely generated A-module. But A

is principal and B is torsion free, so by the Structure Theorem for finitely generated modules

over a principal ring ([Sam] ch. 1 § 5 Corollary 1 and 2 p.22), B is a free A-module of rank

n.

Consider the prime ideals qi of B and the corresponding normalized valuations wi. By

Proposition 6.17, these valuations extend ordv with index eqi so in particular they extend v.

Each of the wi’s defines an absolute value on L making L into a normed K-vector space of

dimension n. But K is complete, so all norms on L are equivalent. In particular, (L, | |wi) is

isomorphic to (Kn, | |sup) which is complete. Thus L is complete with respect to any norm

on L. By Corollary 6.6, [wi] is uniquely determined by its valuation ring. But the valuation

ring is entirely determined by the topology defined by [wi] : it is the set of elements x of

L for which the sequence (xn) converges to zero when n goes to infinity. Since the norms

defined by the wi’s are all equivalent, they define the same topology on L and therefore have

the same valuation ring. Thus all the wi’s are equivalent and determine the same place [w].

So there is only one place [w] of L that extends v. By Remark 6.18, the Dedekind domain B

has a unique non-zero prime ideal and by Proposition 6.8 it is therefore a discrete valuation

ring.

Remark 7.14. With the same notations as in Proposition 7.13, by Proposition 6.14, we

have n = ef where e is the ramification index of B over A and f is the residual degree.

There is no ambiguity in the notations when talking about ramification since both A and B

are discrete valuation rings and therefore only have one prime ideal each.

Corollary 7.15. Let K be a field of characteristic zero with a discrete valuation v and

suppose that K is complete with respect to v. Let L/K be a finite extension of K of degree n

and let [w] be the unique place of L that extends v. Then two conjugate elements of L have

the same normalized valuation.

Proof. It suffices to prove this for a finite extension L′ of L since, by Proposition 7.13, L

is complete and the place [w] extends uniquely to a place of L′. We may therefore suppose

that L is a Galois extension of K. Let σ be an element of Gal(L|K). The composition

w ◦ σ defines another discrete valuation on L which extends v since K is fixed by σ. By

uniqueness, we must have that [w ◦ σ] = [w]. In particular, ordw◦σ(x) = ordw(x) for all x in

L. But ordw◦σ = ordw ◦ σ so that ordw(σ(x)) = ordw(x) for all x in L. This equality holds

for all σ and since the conjugates of an element x are exactly the elements σ(x) where σ is

a K-homomorphism of L, we have proved the claim.
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Corollary 7.16. Let K be a field of characteristic zero with a discrete valuation v and

suppose that K is complete with respect to v. Let L/K be a finite extension of K of degree

n and let [w] be the unique place of L that extends v. We have ordw(x) = 1
f

ordv(NL/K(x))

for all x in L. Here f is the residual degree of L/K.

Proof. Let Σ be the set of K-homomorphisms of L. Using the previous corollary, we have

ordv(NL/K(x)) = ordv

(∏
σ∈Σ

σ(x)

)
=

1

e
ordw

(∏
σ∈Σ

σ(x)

)

=
1

e

∑
σ∈Σ

ordw(σ(x)) =
1

e

∑
σ∈Σ

ordw(x) = fordw(x)

since the size of Σ is n and n = ef by Remark 7.14.

Proposition 7.17. Let L/K be an extension of number fields of degree n. Consider v

a discrete valuation on K, let wi be the different extensions of v to L and let ei and fi

be respectively the ramification index and the residual degree of wi at v (meaning of the

corresponding prime ideals). Let Kv and Lwi be the completions of K and L with respect to

v and wi and denote by v̂ and ŵi the normalized valuations on the completions that extend

v and wi.

(i) We have : ei = eŵi/v̂ and fi = fŵi/v̂.

(ii) The field Lwi is an extension of Kv of degree ni = eifi.

(iii) We have an isomorphism : L⊗K Kv
∼=
∏

i Lwi.

Proof. Fix i and to simplify notation we write w instead of wi. We need to understand

the ramification index and residual degree of the extension Lw/Kv. Let A and B be the

valuation rings of v and w and let Av and Bv be the respective valuation rings of Kv and

Lw. They are all Dedekind domains since they are discrete valuation rings and Bw is the

integral closure of Av in Lw just as B is the integral closure of A in L. The equality of the

ramification degrees is a consequence of the fact that A and Av (resp. B and Bw) share the

same uniformizing parameter.

Concerning the residual degrees, we have

f = [B/q : A/p] and f̂ = [Bw/q̂ : Av/p̂].

The equality between f and f̂ is a direct consequence of Remark 7.10. We have proved (i).
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Property (ii) is a consequence of (i). By Remark 7.14, the degree ni of Lwi/Kv is

ewi/vfwi/v. By (i), this is exactly eifi. Note that by Proposition 6.14, if n is the degree of

L/K, then

n =
∑
i

eifi =
∑
i

ni.

We now prove (iii). By the Primitive Element Theorem, there exists α an element of L

such that L = K(α) = K[X]/(min(α,K)), where min(α,K) denotes the minimal ploynomial

of α over K. This is an irreducible polynomial of degree n. Let F be the polynomial

min(α,K) viewed as a polynomial with coefficients in Kv via the embedding of K into Kv.

Decompose F into irreducible components Fi with i ranging between 1 and say d. Since the

characteristic of Kv is zero, all roots of F are distinct and the tensor product then becomes

a product of fields

L⊗K Kv
∼= Kv[X]/(F ) ∼= Kv[X]/(F1)× . . .×Kv[X]/(Fd).

The fields in the product are exactly the different compositums of L and Kv. Let w be a

valuation on L that extends v. We now prove that Lw is a compositum of L and Kv. Clearly,

Kv is contained in Lw and the same is true for L via the embedding given by the completion.

Thus the compositum LKv is contained in Lw. The compositum is uniquely defined in this

context since both fields are contained in the larger field Lw. The compositum LKv is a

finite degree extension of the complete field Kv and is therefore complete by Proposition

7.13, hence closed in Lw. But it contains L and we know that L is dense in Lw. Thus

LKv = Lw. Consequently, all the Lwi ’s appear in the above product of fields.

We now prove that the Lwi ’s are all distinct. By definition of the completion, ŵi extends

the valuation wi. Suppose that Lwi
∼= Lwj . Then [ŵi|L] = [wi] = [wj] and thus i = j since

[wi] = [wj] if and only if i = j by assumption. We conclude that the Lwi ’s are indeed distinct.

The tensor product L ⊗K Kv is a Kv-algebra of dimension n and by the remark in our

proof of (ii) the product
∏

i Lwi is a Kv-algebra of dimension
∑

i ni = n. We conclude that

the above product of fields is exactly the product of the Lwi ’s, hence the result.

Corollary 7.18. With the same hypothesis as in the proposition and the same notation,

NL/K(x) =
∏

iNLwi/Kv
(x) for all x in L.

Proof. Let x be an element of L and denote by F its characteristic polynomial over K.

Consider F as a polynomial with coefficients in L⊗KKv. This the characteristic polynomial

of x viewed in this tensor product. By the above isomorphism, F factorizes as a product of

polynomials Fi who are the characteristic polynomials of x in Lwi/Kv. In particular, since

we can read off the norm of x on the constant coefficient of its characteristic polynomial, the

result follows.
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Notation If K is a number field, we shall denote by nv the degree [Kv : Qv|Q ] where

v ∈MK .

Corollary 7.19 (Extension formula). Let L/K be an extension of number fields of finite

degree and v a valuation in MK. Then∑
w∈ML
w|v

nw = [L : K]nv.

Proof. Suppose first that v belongs to M0
K . By Formula 6.14 and Proposition 7.17 (ii), we

have the following formula :

n =
∑
w|v

eb/pfb/p =
∑
w|v

[Lw : Kv].

Multiplying both sides of this equality by [Kv : Qp] we obtain the desired result.

Now, let v be an archimedean absolute value on K. We distinguish two cases. Suppose

that v comes from a real embedding σ of K into C. If r1 and r2 respectively are the number

of real embeddings of L into C and the number of conjugate pairs of complex embeddings

of L whose restriction to K is σ, then n = r1 + 2r2. Thus,∑
w∈ML

nw =
∑

w∈M∞
L

nw = r1 + 2r2 = n = [L : K]nv

since nw = 2 if w results from a pair of complex embeddings of K and nw = 1 if w results

from a real embedding. Suppose that v comes from a pair of embeddings σ and σ̄. If r1

and r2 (resp. r̄1 and r̄2) respectively are the number of real embeddings of L into C and the

number of conjugate pairs of complex embeddings of L whose restriction to K is σ (resp.

σ̄), then n = r1 + 2r2 = r̄1 + 2r̄2. Then∑
w∈ML

nw =
∑

w∈M∞
L

nw = r1 + 2r2 + r̄1 + 2r̄2 = 2n = [L : K]nv.

Proposition 7.20 (Product Formula). Let K be a number field. For every non-zero element

x of K, we have the following formula:∏
v∈MK

|x|nvv = 1.
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Proof. We first prove it in the case K = Q. The general case will follow. Recall that

MQ = {| |p | p prime} ∪ {| |∞}. Let x be a non-zero element of Q. We decompose it into its

prime factorization:

x = ±
∏
p

pvp(x).

Then |x|∞ =
∏

p p
vp(x) and |x|p = p−vp(x). Thus

∏
v∈MQ

|x|v = |x|∞
∏

p |x|p = 1.

Let K be any number field. By Remark 7.14, for v ∈M0
K , we have nv = [Kv : Qv] = evfv

where ev and fv are the ramification and residual indexes of Kv/Qv. Let v̂ be the discrete

valuation on Kv. By Corollary 7.16, v̂(x) = v̂(NKv/Qv(x))/fv. Remembering our convention

for the absolute value defined by v,∏
v∈MK
v|p

|x|nvv =
∏
v∈MK
v|p

p−nvv(x)/ev =
∏
v∈MK
v|p

p−v̂p(NKv/Qp (x)) = p−v̂p(
∏
NKv/Qp (x)) = |NK/Q(x)|p

where the last equality is the application of Corollary 7.18.

Now consider v ∈M∞
K . Either there is s : K −→ R an embedding such that |x|v = |s(x)|∞

or there are two conjugate embeddings s, s̄ : K −→ C such that |x|v = |s(x)|∞ = |s̄(x)|∞.

In the first case, nv = 1 whereas in the second case, nv = 2. Thus

|NK/Q(x)|∞ =

∣∣∣∣∣∏
s

s(x)

∣∣∣∣∣
∞

=
∏
s real

|s(x)|∞
∏

s complex

|s(x)|∞|s̄(x)|∞

=
∏
s real

|s(x)|∞
∏

s complex

|s(x)|2∞ =
∏

v∈M∞
K

|x|nvv .

Since x is non-zero, its norm is also non-zero. By the case K = Q, we have

1 =
∏
v∈MQ

|NK/Q(x)|v =
∏
v∈M0

Q

∏
w∈MK
w|v

|x|nww
∏

w∈M∞
K

|x|nww =
∏

w∈MK

|x|nww .
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8 Appendix D - Formal Groups

Definition 8.1 (Formal group). Let A be a ring. A formal group defined over A is a formal

power series in two variables F ∈ A[[X, Y ]] that satisfies the following conditions :

(i) F (X, Y ) = X + Y+(higher order terms) ;

(ii) F (X,F (Y, Z)) = F (F (X, Y ), Z) ;

(iii) F (X, Y ) = F (Y,X) ;

(iv) ∃ι(T ) ∈ A[[T ]] such that F (ι(T ), T ) = 0 ;

(v) F (X, 0) = X and F (0, Y ) = Y .

Notation For notational ease (to be understood later), we shall often denote the formal

group by (F , F ).

Remark 8.2. In other words, a formal group over A is an operation that imitates the law

of an abelian group but that has no underlying elements : we have associativity (ii), com-

mutativity (iii), existence of an inverse (iv) and a neutral element (v). So these conditions

seem natural to impose if one wants to create an abstract notion of group. Only condition

(i) remains a mystery and seems in some way non-intuitive.

Definition 8.3 (Morphism of formal groups). A morphism of formal groups f : (F , F ) −→
(G, G) where both are defined over a ring A is a formal power series f ∈ A[[T ]] such that

f(F (X, Y )) = G(f(X), f(Y )). The two formal groups are said to be isomorphic if there

exists a morphism g : (G, G) −→ (F , F ) such that f(g(T )) = g(f(T )) = T .

Definition 8.4. Let m be an integer and (F , F ) be a formal group over a ring. We define

an element [m] in A[[T ]] inductively by :

[0](T ) = 0 ; [m+ 1](T ) = F ([m](T ), T ) ; [m− 1](T ) = F ([m](T ), ι(T )).

Proposition 8.5. For any integer m, the power series [m] is a morphism of formal groups

from (F , F ) to itself.

88



Proof. Case m = 0 : [0](F (X, Y )) = 0 and F ([0](X), [0](Y )) = F (0, 0) = 0.

Case m > 0 : By induction, suppose that [m] is a morphism. We prove that [m+ 1] is also a

morphism. Using the definition of the multiplication-by-m map yields an equality between

[m+ 1](F (X, Y )) and

F ([m](F (X, Y )), F (X, Y )).

Applying the induction hypothesis, this is in turn equal to

F (F ([m](X), [m](Y )), F (X, Y )).

Using the associativity and then the commutativity of F , this is

F ([m](X), F (F (X, Y ), [m](Y ))).

Another use of associativity yields F ([m](X), F (X,F (Y, [m](Y )))). Commutativity and the

definition of the map give F ([m](X), F (X, [m+ 1](Y ))) which is equal to

F (F ([m](X), X), [m+ 1](Y ))

by associativity. Finally, by definition of the map we obtain F ([m+1](X), [m+1](Y )) which

ends the proof.

Case m < 0 : Also by induction and analogous to the previous case.

Proposition 8.6. The multiplication-by-m map is of the form

[m](T ) = mT + (higher order terms).

From now on we shall write h.o.t. for higher order terms.

Proof. Case m = 0 : Nothing to prove.

Case m > 0 : Suppose [m] has the required form. We prove that it is also the case for

m+ 1. Observe that by definition of the map, [m+ 1](T ) = F ([m](T ), T ). By the induction

hypothesis, this is F (mT + (h.o.t.), T ). Using property (i) of Definition 8.1, we see that it

is equal to

(mT + (h.o.t.)) + T + (h.o.t.)

which is (m+ 1)T + (h.o.t.).

Case m < 0 : Also by induction and analogous to the previous case.
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Lemma 8.7. Let A be a ring and f be an element of A[[T ]] of the form

f(T ) = aT + (h.o.t.)

where a is a unit of A. Then there exists a unique element g of A[[T ]] such that f(g(T )) = T .

We also have g(f(T )) = T .

Proof. We construct a sequence of polynomials (gn) ∈ A[T ] enjoying the following properties:

(i) gn+1(T ) ≡ gn(T ) mod T n+1

(ii) f(gn(T )) ≡ T mod T n+1.

This is a quite natural idea, since (i) will ensure that the sequence (gn) belongs to the inverse

limit lim
←−

A[[T ]]/(Tm) which is isomorphic to A[[T ]] since the latter is complete. Thus the

limit g(T ) of the sequence is a well-defined element of A[[T ]]. The condition (ii) ensures

that f(g(T )) equals f(gn(T )) modulo T n+1 which is equal to T modulo T n+1 for any positive

integer n and therefore we obtain equality between f(g(T )) and T .

Proceeding to the construction we define g1(T ) to be a−1T . By the assumption made on

f , we see that

f(g1(T )) = a(a−1T ) + (h.o.t.) ≡ T mod T 2

so g1 satisfies (ii).

Now, suppose that we have constructed gn−1 satisfying the above conditions. In view of

the first condition, we must find some element λ of A so that

gn(T ) = gn−1(T ) + λT n.

By our assumption on gn−1, there is some b belonging to A such that f(gn−1(T )) = T + bT n.

Now, we must determine λ so that f(gn(T )) equals T modulo T n+1. We compute

f(gn(T )) = f(gn−1(T ) + λ(T )T n)

= a(gn−1(T ) + λ(T )T n) + α(gn−1(T ) + λ(T )T n)2 + (h.o.t.)

for some α that belongs to A. By construction, the degree of gn−1 is n− 1, so by examining

degrees when opening the square, we see that

α(gn−1(T ) + λ(T )T n)2 ≡ α(gn−1(T ))2 mod T n+1.

Therefore,

f(gn(T )) ≡ agn−1(T ) + α(gn−1(T ))2 + aλT n mod T n+1

≡ f(gn−1(T )) + aλT n mod T n+1

≡ T + (b+ aλ)T n mod T n+1.
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Choosing λ to be −a−1b, we get the desired result.

Since g(T ) = a−1T + (h.o.t.), applying the same reasoning as above we may find an

element h of A[[T ]] such that g(h(T )) equals T . Then

g(f(T )) = g(f(g(h(T )))) = g ◦ (f ◦ g)(h(T )) = g(h(T )) = T.

To prove uniqueness, let ĝ be in A[[T ]] and suppose that f(ĝ(T )) equals T . Then

g(T ) = g(f(ĝ(T ))) = ĝ(T )

and this completes the proof.

Groups associated to formal groups Let A be a complete local ring, M its maximal

ideal and k = A/M the residue field. Let (F , F ) be a formal group over A. As already noted,

(F , F ) is a ”group operation” with no underlying group. In general, there is no obvious way

to assign values to a formal power series. But evaluating F in elements x and y ofM yields

an element F (x, y) which belongs to A. To see this, define polynomials Fn in A[X, Y ] by

cutting off terms of order greater or equal to n + 1. Then each Fn(x, y) belongs to M and

it follows immediately from the definition of this sequence that it is coherent. It is therefore

an element of the inverse limit lim
←−

A/Mm, so it converges in A by completeness. It is clear

that the limit is F (x, y) and as a consequence F (x, y) belongs to A. This makes M into a

group under the operation F . This is made precise in the following definition.

Definition 8.8. The group associated to (F , F ), denoted by F(M), is the set M with the

group law defined by :

x⊕F y = F (x, y) 	F x = ι(x)

for elements x and y in M.

Proposition 8.9. Let m be a positive integer that is relatively prime to char(k)= p (we may

have p = 0). Then the group F(M) has no non-trivial points of order m.

Proof. We know already that the multiplication-by-m map

[m] : F(M) −→ F(M)

is a homomorphism of abelian groups. We have also seen already that [m] is of the form

[m](T ) = mT + (h.o.t.).

The fact that m and p are relatively prime implies that p does not divide m. So m̃ is not

zero in the residue field k. Thus m does not belong to M. But A is a local ring so this

implies that m is a unit in A. Lemma 8.7 then implies that [m] is an isomorphism. So, if x

is an element of F(M) such that [m](x) is zero, then x must also be zero.
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