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Introduction

There are two classes of L-series. One is comprised of L-functions associated to
ray-class and Grössen-characters and L-functions associated to Hecke operators.
These are defined in the region <s > 1 as infinite sums, have an expression as
an Euler product in the region <s > 1, can be analytically continued to the
whole complex plane as meromorphic funtions and satisfy a functional equation
centered at s = 1/2. These we will call Hecke type L-functions. The other class
contains Artin L-functions and L-functions associated to algebraic varieties over
number fields. One first defines local L-factors at all finite places and then
takes their product to form an Euler product in some right half-plane. These L-
functions encode arithmetic data of number fields and data concerning rational
points on algebraic varieties. These we will call Artin type L-functions.

It is often difficult to prove analytic properties from the definition of an
L-function of Artin type and thus it becomes an important problem to show
that these are of Hecke type. This is the purpose and importance of reciprocity
laws. For instance, the quadratic reciprocity law relates the Dedekind zeta-
function of a quadratic number field to the Dirichlet L-function of the Legendre
symbol. Via a more general reciprocity law, the Dedekind zeta-function of a
cyclotomic field is connected to general Dirichlet L-functions. Artin reciprocity
in class field theory connects the Artin L-function of a 1-dimensional character
to the L-function of a ray-class character, known as a Weber L-function. Fi-
nally, modularity relates the L-function of an eliptic curve defined over Q to
the L-function of a Hecke form. Thus every time one equates L-functions, an
important reciprocity theorem is involved. These reciprocity laws constitute the
bridge between the complex analytic world of Hecke type L-functions with the
arithmetic world of Artin type L-functions. The introduction of L-functions in
number theory has proven to bring great insight in the arithmetic of numbers.

The first examples of L-series bear the name of Dirichlet L-series and were
introduced in 1837 by Pierre Gustave Lejeune Dirichlet in his paper [Dir]. These
are functions in the complex variable s defined for <s > 1 by

L(s, χ) =

∞∑
n=1

χ(n)

ns

where χ is a so-called Dirichlet character. In his paper, Dirichlet used these
newly introduced functions to prove a purely arithmetic result, the theorem on
primes in arithmetic progressions, which says that if a and q are two positive
coprime integers, then there are infinitely many primes in the progression a+Zq.
Dirichlet proved that his L-functions have an Euler product in the region <s > 1,
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that they can be extended to the whole complex plane via analytic continuation
and that they admit a functional equation centered at the point s = 1/2.

Perhaps more important is the work of Dirichlet and Richard Dedekind on
the Dedekind zeta-function of a number field k. This type of function was
introduced by Dedekind and is defined for <s > 1 by

ζk(s) =
∑
a

1

N(a)s

where the sum is over all non-zero integral ideals of k. A major theorem in
algebraic number theory says that this function has a simple pole at the point
s = 1 with residue given by the formula

Ress=1(ζk(s)) =
2r1(2π)r2Rk

ωk|dk|
1
2

hk

where r1, r2, ωk, Rk and hk are respectively the number of real embeddings
of k, the number of pairs of complex embeddings of k, the number of roots of
unity in k, the regulator of k and the ideal class number of k. This formula
is known as the analytic class number formula. It was proved in the case of
a quadratic field by Dirichlet and later extended to arbitrary number fields by
Dedekind. It relates important arithmetic invariants of the number field k with
a special value of an Artin type L-function. The Dedekind zeta-function was
shown by Erich Hecke to admit analytic continuation to the complex plane as a
meromorphic function via a functional equation centered at the point s = 1/2.
The analytic class number formula was then transferred to the point s = 0 and
gave the neater formula

ζk(s) ∼ −hkRk
ωk

sr1+r2−1, as s→ 0.

We remark that the order of the Dedekind zeta-function at s = 0 is the rank of
the unit group of k by Dirichlet’s Unit Theorem and that the leading coefficient
of the Taylor expansion of ζk around s = 0 is the product of an algebraic number
with the determinant of a square matrix of size r1 + r2 − 1 whose entries are
logarithms of the absolute values of a system of fundamental units of k.

Emil Artin introduced Artin L-functions in his 1923 paper [Ar1]. If K/k is a
finite Galois extension of number fields with Galois group G, then to a character
χ of G, Artin associated the L-function denoted by

L(s, χ,K/k).

This new class of functions encompasses Dirichlet L-functions and Dedekind
zeta-functions. Artin proved his Artin Reciprocity Theorem and hereby com-
pleted class field theory. This enabled him to show that Artin L-functions
of 1-dimensional characters are Weber L-functions which are of Hecke type.
Based on this observation and on a result he proved in representaton theory
called Artin’s Induction Theorem, he was led to conjecture that his L-functions
admitted an analytic continuation to the whole complex plane as meromor-
phic functions and holomorphic functions in the case of a non-trivial character.
This is today known as Artin’s Conjecture and remains unproven. However, in
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1947 Richard Brauer proved a stronger version of Artin’s theorem, now called
Brauer’s Induction Theorem, which made it possible to show that Artin L-
functions admit an analytic continuation to the complex plane as meromorphic
functions via a functional equation centered at the point s = 1/2. Artin proved
the following formula

ζK(s) =
∏
χ

L(s, χ,K/k)χ(1)

where the product is over all irreducible character of the Galois group G.

In the beginning of the 1970’s it occurred to Harold Stark in view of the
above decomposition that there might exist and analogue of the analytic class
number formula for Artin L-functions. More precisely, one should be able to
obtain a formula for the leading coefficient of the Taylor expansion of Artin L-
functions around s = 0 in the form of an algebraic number times the determinant
of a square matrix of size the rank of the Artin L-function at s = 0. Having
computed this rank and defined an analogue of the regulator of a number field
called the Stark regulator, he verified his ideas in a large number of specific cases
which let him to conjecture in his series of papers [StI], [StII], [StIII] and [StIV]
what became known as Stark’s Conjecture. John Tate expanded the ideas of
Stark and gave the conjecture its modern formulation in his book [Ta1]. In
the rank one abelian case, Stark was led to further refine his conjecture. This
refined conjecture, known as the abelian Stark conjecture, relates the values of
the derivative of Artin L-function of 1-dimensional characters at s = 0 to the
logarithm of the absolute value of a special type of unit, known as a Stark unit.
Since by Artin Reciprocity these specific Artin L-functions are actually ray-
class character L-functions, this refined conjecture has a connection to Hilbert’s
Twelfth Problem. The conjecture has only been proved in the cases where
the class field theory of k is known and this might suggest that a solution to
Hilbert’s problem is needed in order to prove Stark’s conjecture. The original
Stark’s Conjecture is still largely unproven except for specific cases but there is
a large amount of computational evidence suggesting its truth. There is however
no clear strategy of proof today.

In the theory of arithmetic geometry, Louis Mordell proved in his 1922 paper
[Mor] what is known as Mordell’s Theorem. It says that the group of rational
points over Q of an elliptic curve E/Q is finitely generated. André Weil extended
this result to the case of an arbitrary number field k in [We2] and this is known
as the Mordell-Weil Theorem.

A rather naive idea was that one might expect a larger number of rational
points to yield a larger number of points on reductions modulo finite places. In
this case, if L(E/k, s) denotes the Hasse-Weil L-function of the elliptic curve
E/k and S is the set of infinite places and finite places of bad reduction, then
the partial product

LS(E/k, 1)” = ”
∏
v 6∈S

#Fv
#Ẽv(Fv)

would tend to be relatively small. Supported by numerical evidence assembled
by Peter Swinnerton-Dyer in the early 1960’s, Bryan Birch and Swinnerton-Dyer
formulated in their 1965 paper [BSD] what became known as the Birch and
Swinnerton-Dyer Conjecture. It says the following: if E/k is an elliptic curve
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defined over a number field and n denotes the rank of the Mordell-Weil group
E(k), then the Hasse-Weil L-function L(E/k, s) has a meromorphic continuation
to a neighborhood of the point s = 1 and

L(E/k, s) ∼ P (E/k)R(E/k)|X(k,E)|sn, as s→ 1

where P (E/k), R(E/k) and X(k,E) are respectively the global period, the
regulator and the Tate-Shafarevitch group of E/k. This formula is analogous to
Dirichlet’s class number formula for number fields and again relates important
arithmetic invariants of the elliptic curve to the special value of an L-function
of Artin type. Note that due to the Modularity Theorem, it is known that
L-functions of elliptic curves defined over Q admit an analytic continuation to
the whole complex plane and satisfy a functional equation centered at s = 1.

The conjecture of Birch and Swinnerton-Dyer is one of the Millenium Prize
Problems and is still largely unsolved. Using ideas analogous to the ones of
Stark, Benedict Gross was led in [Gr1] to propose a refinement of the conjec-
ture of Birch and Swinnerton Dyer using Heegner points on the modular curve
X0(N). Extending these methods together with Don Zagier, they proved in
1986 the Gross-Zagier Formula in [GZ] which implies that if a modular elliptic
curve defined over Q has a first order zero at s = 1, then it has a rational point
of infinite order. Note that the modularity assumption (necessary to assume at
the times) is needed in order to connect the worlds of Heegner points X0(N)
and the elliptic curve. Further progress has been made in the rank 0 and rank
1 case but virtually nothing is known about the higher rank cases.

In chapter 1 we prove Dirichlet’s analytic class number formula. It will
involve defining all the necessary ingredients in the formula and we will prove
the finiteness of the ideal class number as well as Dirichlet’s unit theorem. We
mostly follow the exposition of Pierre Samuel in [Sam]. For the proof of the
analytic class number formula we follow the book of Serge Lang [Lan].

The aim of the next three chapters is to go through the background needed
to define Artin L-functions. Chapter 2 is devoted to a rapid exposition of
the main results of global class field theory without the proofs. Our reference
here is the book of David Cox [Cox]. In chapter 3 we present the theory of
finite-dimensional complex representations of finite groups following the book
of Jean-Pierre Serre [Se1] on the subject. Chapter 4 is concerned with finite-
dimensional representations of finite groups over non-algebraically closed fields.
We also follow [Se1] and use the book of Joseph Rotman [Ro1] as a reference
for the theory of non-commutative algebra.

In chapter 5 we introduce L-functions and in particular Artin L-functions
and study the properties of these. We follow [Lan] for most of the proofs. We
also profited from [Cog].

In chapter 6 we introduce Stark’s Conjecture. After explaining the moti-
vation behind the conjecture and defining the necessary objects, we state the
main conjecture and show how it is independent of the various choices made
in the statement. We then analyze special cases of the conjecture. We prove
it in the case of rank 0 and analyze in depth the case of rank one. Here we
introduce Stark units and study the abelian rank one Stark conjecture. We end
this chapter with an example with cyclotomic units. Our main reference here
is the book of Tate [Ta1]. We have also profited from the expositions [Das] and
[Mos].
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In chapter 7 we state the Birch and Swinnerton-Dyer Conjecture. We give an
introduction to elliptic curves and sketch the proof of the Mordell-Weil Theorem,
defining the regulator of an elliptic curve as well as the Tate-Shafarevitch group
as we go along. We then introduce the L-function associated to an elliptic curve
and show how its construction relates to the one of Artin L-functions. Finally,
we define the global period of an elliptic curve and state the conjecture. We
follow the paper of Gross [Gr2] and supplement it with results concerning the
theory of elliptic curves using the book of Joseph Silverman [Sil].

We have attempted to keep this thesis as self-contained as possible. All
theorems that we do not prove are given clear references. The only needed
prerequisites for reading this paper is a course in basic algebraic number theory.
The bibliography lists all references cited in the text and also references that
the author has been reading throughout the course of the project.
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Basic Notations

Let k be a number field, that is, a finite extension of Q. We shall write dk for
the absolute discriminant of k. Let Ok be the ring of integers of k which is a
Dedekind domain. We will denote by Uk the multiplicative group of invertible
elements O∗k. Let Mk be the set of absolute values on k modulo equivalence.
Elements of Mk will be denoted by v and referred to as places of k.

Let M∞k denote the set of infinite places, that is, the places corresponding
to archimedean absolute values. Let r1 be the number of real infinite places
and let r2 be the number of pairs of conjugate complex infinite places. Then
|M∞k | = r1 + r2 and [k : Q] = r1 + 2r2. We define kR = Rr1 × Cr2 .

Let M0
k be the set of finite places, that is, the places corresponding to the

non-archimedean absolute values. This set is in bijection with the set of prime
ideals p of Ok. We will indifferently use the notation v or p to designate a finite
place of k. For a finite place v, let kv denote the completion of k with respect to
the metric defined by v. One can check that this is a topological field. Let Ov
be the closed unit ball {x ∈ k | v(x) ≥ 0} in kv with respect to this metric, also
called the ring of v-integers. This is a discrete valuation ring with maximal ideal
the open unit ball mv. We will use πv to denote a uniformizer for v. It is unique
up to multiplication by a unit of Ov. With this notation we have mv = πvOv.
We denote by Fv the residue field kv/mv = Ok/p which is a finite field of order
N(p) where N denotes the ideal norm of k. We will often write qv = |Fv|.

When referring to a place v of k, we are referring to an equivalence class of
absolute values. We will always have in mind a preferred absolute values and
we make the following normalization:

• If v is a real archimedean place, corresponding to an embedding σ : k ↪→ R,
then we set |x|v = |σ(x)| where the latter is the standard absolute value
on R.

• If v is a complex archimedean place, corresponding to an embedding σ :
k ↪→ C, then we set |x|v = σ(x)σ̄(x).

• If v is a finite place, then we set |πv|v = q−1
v .

With these normalizations, we have the product formula∏
v

|α|v = 1, for all α ∈ k∗. (0.0.0.1)

See ([Lil], App. C) for a proof of this result.

Let v be a finite place of k. Then kv is complete with finite residue field,
hence locally compact and the ring of v-integers Ov is compact. Moreover, kv

13
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is also Hausdorff and second countable. There exists therefore a unique (up to
normalization) Haar measure µv on k+

v . The measure µv is uniquely defined by
the condition µv(Ov) = 1. If x ∈ kv, then we denote by mx the multiplication-
by-x automorphism of kv. Then the pull-back m∗x(µv) = µv ◦ mx is again a
Haar measure on k+

v . It differs by uniqueness from µv by a constant and one
can show that with the above normalizations we have m∗x(µv)/µv = |x|v. It
follows that µv(mmv ) = µv(π

m
v Ov) = q−mv .

Let S be a finite subset of Mk containing M∞k . We let Ok,S denote the ring
of S-integers of k, that is,

Ok,S = {x ∈ k | v(x) ≥ 0, for all v 6∈ S} =
⋂
v 6∈S

Ov.

This is a Dedekind domain whose prime ideals are in bijection with the prime
ideals of Ok that do not belong to S. This type of ring generalizes the ring
of integers in the sense that Ok = Ok,M∞k . We shall use Uk,S to denote the
multiplicative group O∗k,S .

Let Ik,S denote the group of fractional ideals associated to Ok,S , that is, the
group of finitely generated sub-Ok,S-modules of k. It is isomorphic to the free
abelian group on the prime ideals of Ok,S . Let Pk,S denote the subgroup of
principal fractional ideals. The quotient group Cl(Ok,S) = Ik,S/Pk,S is called
the S-ideal class group of k. As we shall see, this groups is finite of cardinality
hk,S called the S-ideal class number.

Let M be a Z-module and let E be a field of characteristic zero. We shall
write EM for the tensor product E⊗ZM . If f : M −→ N is a homomorphism,
then we shall again denote by f the homomorphism of vector spaces 1 ⊗ f :
EM −→ EN . When tensoring over a ring R other than Z, we will indicate this
with the notation ⊗R.



Chapter 1

The Analytic Class Number
Formula

We present and prove three classical results of algebraic number theory, namely
the finiteness of the ideal class group, Dirichlet’s unit theorem and the analytic
class number formula. We will employ only elementary methods using euclidean
lattice theory. Our main references in this chapter are [Sam] and [Lan].

1.1 Euclidean Lattices

Let n ≥ 1 be an integer. We review some results concerning lattices in the
euclidean space Rn with the standard euclidean topology. A discrete subset X
of Rn is a subset for which the induced subset topology is the discrete topology.
That is, for every x ∈ X, there exists an open subset U of Rn such that X∩U =
{x}. Alternatively, one could define X to be discrete if and only if for any
compact subset K ⊂ Rn the intersection X ∩K is finite. In fact, if X is discrete
and K is compact, then X ∩ K is both discrete and compact. Consider the
open covering X ∩ K =

⋃
x∈X∩K{x}. By compactness it must have a finite

open subcover, whence X ∩K is finite. Conversely, suppose that X ∩K is finite
whenever K is compact. For every integer m ≥ 1, let Bm denote the closed ball
centered at 0 with radius m. We have X =

⋃
m≥1X ∩Bm and each X ∩Bm is

finite. Thus X is at most countable infinite and thus necessarily discrete.
The following result concerns discrete subgroups of Rn.

Proposition 1. If G is a discrete subgroup of Rn, then G is a free Z-module
generated by r ≤ n elements that are linearly independent over R.

Proof. Let e1, . . . , er be elements in G that are linearly independent over R
and suppose that r is maximal with this property. Evidently we have r ≤ n.
Consider now the compact subset of Rn defined by P = {

∑r
i=1 αiei |αi ∈ [0, 1]}.

Let x be an element of G. By maximality of r, there exist real constants λi
for i = 1, . . . , r such that x =

∑r
i=1 λiei. For every integer m ≥ 1, consider

xm = mx−
∑r
i=1[mλi]ei =

∑r
i=1{mλi}ei where the brackets denote the integer

part and the braces denote the fractional part. We have xm ∈ P ∩ G for all
m. Since x = x1 +

∑r
i=1[λi]ei and x is an arbitrary element of G, we see that

G is generated as a group by the intersection P ∩G. This intersection is finite

15
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by discreteness of G and compactness of P so we have shown that G is finitely
generated as a group.

On one hand the intersection P ∩G is finite and on the other hand we have
xm ∈ P ∩ G for all m ≥ 1. Therefore, there exist at least two integers j and
k such that xj = xk. This implies that

∑r
i=1({jλi} − {kλi})ei = 0 and by

linear independence of the ei we obtain {jλi} = {kλi} for all i. In other terms,
we have (j − k)λi = [jλi] − [kλi] and this proves that λi is rational for all i.
Consequently, every xm is a rational combination of the ei. We conclude that
G is generated by finitely many elements which are all rational combinations
of the ei. Let d be the product of all the denominators of the all the rational
coefficients of all the finitely many generators of G. Then dG is a sub-Z-module
of the free module

⊕r
i=1 Zei. It follows that dG is free of rank q ≤ r (see [Sam],

§ 1.5 Theorem 1). But dG is isomorphic as a group to G and the latter contains⊕r
i=1 Zei so that s = r. There exist non-zero integers ai such that the aiei form

a basis of dG (see [Sam], § 1.5 Theorem 1). Then aiei/d is a basis of G of size
r which is linearly independent over R by linear independence of the ei.

Definition 1. A euclidean lattice Λ is a discrete subgroup of Rn of rank n
which has a basis that is linearly independent over R. In other words, it is a
free Z-module such that Λ⊗Z R = Rn.

Alternatively, one could define a lattice Λ to be a subgroup which is both
discrete and cocompact, meaning that Rn/Λ is compact in the quotient topology.
In fact, suppose that Λ is a lattice and let e = (e1, . . . , en) be a basis of Rn such
that Λ =

⊕n
i=1 Zei. Define

Pe =

{
n∑
i=1

αiei | αi ∈ [0, 1[

}
.

This is called the fundamental domain of Λ with respect to the basis e. It
has the property that the quotient map Pe −→ Rn/Λ is surjective. Indeed,
if x ∈ Rn, then we may write x =

∑n
i=1 λiei uniquely with λi ∈ R. Let

λ =
∑n
i=1[λi]ei ∈ Λ. Then x− λ =

∑n
i=1{λi}ei ∈ Pe so that x and λ are equal

in the quotient Rn/Λ. In particular, if P̄e denotes the closure of Pe which is
compact, then Rn/Λ is the image of P̄e under a continuous map so that Rn/Λ
is also compact.

Conversely, suppose that Rn/Λ is compact. Since Λ is a discrete subgroup
of Rn, by Proposition 1 we know that Λ is a free Z module of rank r ≤ n and
that Λ ⊗Z R = Rr. The compactness of Rn/Λ implies that r = n so that Λ is
indeed a lattice.

We have seen that the map Pe −→ Rn/Λ is surjective. We now show that
it is also injective. Suppose that x, y ∈ Pe and that x − y ∈ Λ. We may write
x =

∑n
i=1 αiei and y =

∑n
i=1 βiei with αi, βi ∈ [0, 1[. There exist integers ni

such that x = y+
∑n
i=1 niei. By linear independence of the ei, this implies that

αi = βi + ni which is only possible if ni = 0 for all i. This proves injectivity.
We conclude that we have a homeomorphism Pe

∼−→ Rn/Λ.

Let µ denote the Lebesgue measure on Rn normalized so that the unit n-
cube spanned by the standard orthonormal basis of Rn for the euclidean inner
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product 〈·, ·〉 has measure (or volume) equal to 1. The fundamental domain Pe
is the unit n-cube spanned by the basis e and its volume is given by

µ(Pe) = |det(〈ei, ej〉)|1/2 = |detE|

where E is the base change matrix from e to the standard orthonormal basis.
Suppose that e′ is another basis of Λ and denote by E′ the base change

matrix from e′ to the standard orthonormal basis. The base-change matrix M
of Λ from e′ to e is given byM = E−1E′. It is an invertible matrix of size n with
coefficients in Z since both e and e′ are integral bases. Thus the determinant of
M is ±1. We have detE′ = detE detM so that µ(Pe) = µ(Pe′). This proves
that µ(Pe) is independent of the choice of basis. We may therefore make the
following definition:

Definition 2. Let Λ be a lattice in Rn. We define the covolume of Λ to be the
real number

v(Λ) = µ(Pe) = |det(〈ei, ej〉)|1/2

where e denotes any choice of basis of Λ that is also a basis for Rn.

The bijection Pe
∼−→ Rn/Λ tells us that Rn =

⋃
x∈Λ(x+Pe) where the union

is disjoint. The next result shows that Pe is the "largest" subset of Rn with this
property of mutual disjointness.

Proposition 2. Let Λ be a lattice in Rn and let M be a Lebesgue-measurable
subset of Rn with the property that the sets x + M are mutually disjoint as x
ranges over Λ. Then µ(M) ≤ v(Λ).

Proof. Let Pe be the fundamental domain associated to a basis e of Λ which is
also a basis for Rn. Since the sets x+ Pe with x ∈ Λ cover Rn, we have

µ(M) = µ

(⋃
x∈Λ

M ∩ (x+ Pe)

)
.

Since all these sets are mutually disjoint we obtain

µ(M) =
∑
x∈Λ

µ(M ∩ (x+ Pe)) =
∑
x∈Λ

µ((M − x) ∩ Pe) =
∑
x∈Λ

µ((M + x) ∩ Pe).

All these set are mutually disjoint by assumption so that the latter is equal to
µ(∪x∈Pe(M + x) ∩ Pe) which in turn is less than µ(Pe) = v(L).

The negation of this proposition will be useful to us and we therefore record
it as a corollary:

Corollary 1. Let Λ be a lattice in Rn and let M be a Lebesgue-measurable
subset of Rn such that µ(M) > v(Λ). Then there exist two distinct elements
x, y ∈ Λ such that (x + M) ∩ (y + M) 6= ∅. In particular, there exist distinct
elements m and m′ of M such that m−m′ ∈ Λ.

Proof. Since (x+M) ∩ (y +M) 6= ∅ there exist m,m′ ∈M such that x+m =
y +m′. This implies that m′ −m = x− y ∈ Λ \ {0}.

This allows us to prove the following:



18 CHAPTER 1. THE ANALYTIC CLASS NUMBER FORMULA

Proposition 3. Let Λ be a lattice in Rn and let M be a Lebesgue-measurable
subset of Rn. Suppose that M is convex and symmetric around the origin. If
one of the following conditions hold:

(i) µ(M) > 2nv(Λ)

(ii) µ(M) ≥ 2nv(Λ) and M is compact,

then M ∩ (Λ \ {0}) is non-empty.

Proof. Proof of (i): set M ′ = 1
2M . This is a Lebesgue-measurable set and

µ(M ′) = 2−nµ(M) > v(Λ) by assumption. By Corollary 1, there exist m,m′ ∈
M ′ distinct elements such that m −m′ ∈ Λ. We may write this difference as
m−m′ = ((2m)+(−2m′))/2. By symmetry ofM , −2m′ ∈M and by convexity
m−m′ ∈M . We conclude that m−m′ ∈M ∩ (Λ \ {0}).

Proof of (ii): let ε > 0 be an arbitrary real number and set Mε = (1 + ε)M .
This is a Lebesgue-measurable set. It is convex, symmetric around the origin
and even compact since this is true for M . Moreover, we have µ(Mε) = (1 +
ε)nµ(M) > µ(M) ≥ 2nv(Λ). By (i), we see that Mε ∩ (Λ \ {0}) is non-empty.
This holds true for all ε > 0. In particular, we have a nested sequence

(1 + 1)M ∩ Λ \ {0} ⊃
(

1 +
1

2

)
M ∩ Λ \ {0} . . . ⊃

(
1 +

1

m

)
M ∩ Λ \ {0} ⊃ . . .

of non-empty compact (actually finite since discrete and compact) sets. By
Cantor’s Intersection Theorem (cf. Theorem 1.1.1 below), we have⋂

m≥1

(
1 +

1

m

)
M ∩ Λ \ {0} 6= ∅.

Thus there exists x such that x ∈
(
1 + 1

m

)
M ∩ Λ \ {0} for all m ≥ 0. In

other words, for every m there exists xm ∈M such that x = (1 + 1/m)xm. By
compactness of M , the sequence xm admits a subsequence that converges to a
limit in M . Obviously, x is that limit so that x ∈ M . In conclusion, we have
x ∈M ∩ Λ \ {0}.

Remark 1. We now give a proof of the result on nested sets referred to earlier.

Theorem 1.1.1 (Cantor’s Intersection Theorem). Let X be a compact subset
of Rn and let (Cm)∞m=1 be a nested sequence

C1 ⊃ C2 ⊃ . . . ⊃ Cm ⊃ . . .

of non-empty compact subsets of X. Then the intersection
⋂
m≥1 Cm is non-

empty.

Proof. Suppose that
⋂
m≥1 Cm = ∅ by contradiction. Let Um = X \ Cm for

every m. The Um are open subsets of X and we have⋃
m≥1

Um = X \
⋂
m≥1

Cm = X.

By compactness of X we can extract a finite subcover (Um)km=1. Since the
sequence Cm is nested we have Um ⊂ Um+1 for all m. Thus X = Uk and
Ck = ∅ which is a contradiction.
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1.2 Application to Number Fields
Having introduced euclidean lattices and studied some of their basic properties,
we now turn to their application to algebraic number theory. Let thus k be
a number field of degree n. Consider the tensor product R ⊗Q k. This is an
R-algebra of dimension n and we have a natural embedding k ↪→ R⊗Q k.

Let M be a free sub-Z-module of k. A basis of M is also a Q-basis of k
and therefore M naturally sits as a lattice in R ⊗Q k. In particular, the ring
of integers Ok is a free Z-module of rank n (cf. [Sam] § 2.7, Theorem 1) and
therefore Ok is a lattice in R⊗Q k.

Moreover, let a be a non-zero ideal of Ok. In other words, a is a sub-Z-
module of the free Z-module Ok. It is therefore free of rank q ≤ n (cf. [Sam]
§ 1.5, Theorem 1 (a)). Let x ∈ a be a non-zero element. Then a contains the
ideal xOk which is isomorphic as a Z-module to Ok. This implies that the rank
of a is greater or equal to n. We conclude that a is free of rank n and therefore
is a lattice in R⊗Q k.

Finally, let a be a non-zero fractional ideal of k. By definition, there exists
an element α ∈ Ok such that αa is an ideal of Ok. By the above, αa is a free
Z-module of rank n. Since a and αa are isomorphic as Z-modules this implies
that a is a free Z-module of rank n and in particular it is a lattice in R⊗Q k.

We have just seen that all non-zero fractional ideals of k are lattices in
R⊗Q k, meaning that they are free of rank n as Z-modules and contain a basis
of R⊗Q k. We are interested in computing the covolumes of these lattices and
in order to do so we need some euclidean structure on R⊗Q k. We choose real
and complex embeddings of k to make an isomorphism of R⊗Q k with products
of R and C. More precisely, let σ1, . . . , σr1 be the real embeddings k ↪→ R
corresponding to the real archimedean places of k and fix a choice of complex
embedding σr1+1, . . . , σr1+r2 of k corresponding to the complex archimedean
places of k. We have n = r1 + 2r2 and |M∞k | = r1 + r2. Additionally, if τ
denotes complex conjugation then we set τ ◦ σr1+i = σr1+r2+i for i = 1, . . . r2.
Then σ1, . . . , σn are all the distinct Q-homomorphisms of k into an algebraically
closed field containing k. Consider the R-algebra kR := Rr1×Cr2 of dimension n.
This is sometimes referred to as the Minkowski space of k. Define the diagonal
embedding

σ : k −→ kR, x 7−→ (σ1(x), . . . , σr1+r2(x)).

We extend σ to R⊗Q k by tensoring and denote the resulting map by σ again.
This gives an injective homomorphism of R-algebras from R⊗Q k to kR. Since
these algebras have the same dimension over R, this map must be an isomor-
phism. Explicitly, if x1, . . . , xn is a basis of k over Q then 1⊗ x1, . . . , 1⊗ xn is
a basis for R⊗Q k over R and for λi ∈ R we have

σ

(
n∑
i=1

λi(1⊗ xi)

)
=

n∑
i=1

λiσ(xi) =

(
n∑
i=1

λiσ1(xi), . . . ,

n∑
i=1

λiσr1+r2(xi)

)
∈ kR.

In kR we have a euclidean structure given by an inner product and an orthonor-
mal basis for this structure is given by choosing as basis for C over R the basis
{(1, 0), (0, i)}. We sum this up in the following diagram:

k ↪→ R⊗Q k
σ∼= kR ∼= Rr1 × (R⊕ iR)r2 (1.2.0.1)
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where all isomorphisms are ones of R-algebras. Thus σ provides a basis for
R ⊗Q k and an inner product with respect to which this basis is orthonormal.
The lattice computations in R⊗Q k will be performed in this basis.

A typical element of kR will be denoted x = (x1, . . . , xr1 ;xr1+1, . . . , xr1+r2)
where xj for j = 1, . . . , r1 is real and xj for j = r1 + 1, . . . , r1 + r2 is complex.
In the latter case we write xj = yj + izj . When writing an element in the above
orthonormal basis we shall use vector notation so that

x = (x1, . . . , xr1 ; yr1+1, zr1+1, . . . , yr1+r2 , zr1+r2).

An element x of k is expressed in the orthonormal basis for R⊗Q k as follows:

x = (σ1(x), . . . , σr1(x);<σr1+1(x),=σr1+1(x), . . . ,<σr1+r2(x),=σr1+r2(x)).

Remark 2. The map σ is not conceptually important. It is merely there to
allow for a nice choice of basis for R⊗Q k. We equip R⊗Q k with this basis and
make no further reference to kR or σ. When we write

x = (x1, . . . , xr1 ;xr1+1, . . . , xr1+r2) ∈ R⊗Q k

this is simply the expression of x in kR via σ. We identify R⊗Q k with kR and
we identify k with its image in R⊗Q k which is now also σ(k) in kR.

We extend the map Nk/Q : k −→ Q to a map N : R⊗Q k −→ R by defining
N(x) = detmx where mx : R⊗Q k −→ R⊗Q k is multiplication by the element
x. In the orthonormal basis mx is given in matrix form by

x1

. . .
xr1

yr1+1 −zr1+1

zr1+1 yr1+1

. . .
yr1+r2 −zr1+r2

zr1+r2 yr1+r2


so that

N(x) = x1 . . . xr1(y2
r1+1 + z2

r1+1) . . . (y2
r1+r2 + z2

r1+r2)

= x1 . . . xr1 |xr1+1|2 . . . |xr1+r2 |2.

Remark that if x ∈ k, then N(x) = Nk/Q(x) and therefore N does extend Nk/Q
as claimed.

Proposition 4. Let M be a free sub-Z-module of k of rank n and let x1, . . . , xn
be a basis of M . The covolume of M as a lattice in R⊗Q k is given by

v(M) = 2−r2
∣∣∣∣ det
1≤i,j≤n

(σi(xj))

∣∣∣∣ .
Proof. The covolume of M in R ⊗Q k is the absolute value of the determinant
of the matrix, say D, whose columns are given by the vectors

(σ1(xi), . . . , σr1(xi);<σr1+1(xi),=σr1+1(xi), . . . ,<σr1+r2(xi),=σr1+r2(xi)).
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Using the formulas

<σr1+j(xi) =
1

2
(σr1+j(xi) + σr1+r2+j(xi))

=σr1+j(xi) =
1

2i
(σr1+j(xi)− σr1+r2+j(xi)),

we see that the determinant of D equals (2i)−r2 det(D′) where D′ is the same
matrix as D but every r1 + 2jth line, for j = 1, . . . , r2, multiplied by 2i. By
adding every r1 + 2jth line to the r1 + 2j − 1th line and then subtracting the
r1 + 2j − 1th line from the r1 + 2jth line we get |det(D′)| = |det(σi(xj))|. We
have thus found that |det(D)| = 2−r2 |det(σi(xj))|.

Corollary 2. Let a be a non-zero ideal of Ok. Then the covolumes of Ok and
a in R⊗Q k are given by

v(Ok) = 2−r2 |dk|
1
2 , v(a) = 2−r2 |dk|

1
2N(a).

Proof. Let x1, . . . , xn be a basis of Ok. Applying Proposition 4 with M = Ok
and using the fact that dk = det(σi(xj))

2 (cf. [Sam] § 2.7, Proposition 3) we
obtain the first assertion.

For the second assertion, use the fact that there exists a basis x1, . . . , xn of
Ok and non-zero integers c1, . . . , cn such that c1x1, . . . , cnxn is a basis of a (cf.
[Sam] § 1.5, Theorem 1 (b)). Applying Proposition 4 to a we see that

v(a) = 2−r2 |det(cjσi(xj))| = 2−r2 |det(Diag(c1, . . . , cn) · (σi(xj)))|.

But the determinant of Diag(c1, . . . , cn) is c1 . . . cn. On the other hand, the
quotient Ok/a is isomorphic as a Z-module to

⊕n
i=1 Z/ciZ. Thus the product

of the ci is |Ok/a| which by definition is N(a). Hence v(a) = 2−r2 |dk|
1
2N(a) as

desired.

1.3 Finiteness of the Ideal Class Group
If k is a number field, we denote by Ik its group of fractional ideals and Pk the
subgroup of principal fractional ideals. The quotient group Cl(Ok) := Ik/Pk
is called the ideal class group of k. In this section we prove that this quotient
group is finite. Its cardinality, denoted by hk, is called the ideal class number,
hence the name of this section. This finiteness of the ideal class number is due
to Dirichlet. We will end this section by showing a similar finiteness result in
the case of the ring of S-integers. Everything relies on the following bound due
to Minkowski.

Proposition 5. Let a be a non-zero ideal of Ok. Then a contains a non-zero
element x for which

|Nk/Q(x)| ≤
(

4

π

)r2 n!

nn
|dk|

1
2N(a).

Proof. For any element x of k we have

|Nk/Q(x)| =
∏

v∈M∞k

|x|v =

r1∏
i=1

|σi(x)|
r2∏

j=r1+1

|σj(x)|2.
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Using the geometrical-arithmetic inequality (apply Jensen’s inequality to the
convex function − log) yields the inequality

|Nk/Q(x)| ≤ 1

nn

 r1∑
i=1

|σi(x)|+ 2

r2∑
j=r1+1

|σj(x)|

n

. (1.3.0.1)

In order to bound |Nk/Q(x)|, it is natural to look to bound the quantity

r1∑
i=1

|σi(x)|+ 2

r2∑
j=r1+1

|σj(x)|.

Define

Bt =

(x1, . . . , xr1 ;xr1+1, . . . , xr1+r2) ∈ R⊗Q k :

r1∑
i=1

|xi|+ 2

r2∑
j=r1+1

|xj | ≤ t


where t is a positive real number. Proving the proposition amounts to proving
that the intersection Bt ∩ (a \ {0}) is non-empty for a suitable t.

From the definition of Bt, it is obvious that it is measurable, convex, sym-
metric around the origin in R⊗Q k and compact. Its volume is given by

µ(Bt) = 2r1
(π

2

)r2 tn
n!

(cf. [Sam], Chapter IV, Appendix).
Choose t0 such that µ(Bt0) = 2nv(a), that is, take t0 so that

tn0 = 2r2
(

2

π

)r2
n!|dk|

1
2N(a).

We apply Proposition 3, which says that Bt0 ∩ (a \ {0}) is non-empty. Let x be
an point in this intersection. By (1.3.0.2), we get that

|Nk/Q(x)| ≤ tn0
nn

=

(
4

π

)r2 n!

nn
|dk|

1
2N(a).

Corollary 3. Every ideal class of k contains an integral ideal b such that

N(b) ≤
(

4

π

)r2 n!

nn
|dk|

1
2 .

Proof. Let C ∈ Cl(Ok) and let a be a non-zero fractional ideal in C. Let a′

be the inverse of a. Without loss of generality, we may suppose that a′ is an
integral ideal. It is of course non-zero. By Proposition 5 there exists a non-zero
element x of a′ such that |Nk/Q(x)| ≤

(
4
π

)r2 n!
nn |dk|

1
2N(a′). Define b′ = xa. This

is an integral ideal of k since a′a = Ok and thus xa ⊂ Ok. Moreover b belongs
to C and by multiplicativity of the norm, we get

N(b)N(a′) = N(ba′) = N(xOk) = |Nk/Q(x)| ≤
(

4

π

)r2 n!

nn
|dk|

1
2N(a′).

Dividing on both sides by N(a′), which is non-zero, we obtain the desired result.
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Corollary 4 (Dirichlet). Let k be a number field. Then the ideal class number
hk is finite.

Proof. We prove that there are only finitely many ideals ofOk with a given norm.
Let a be an ideal with norm equal to the natural number m. By definition, this
means that the quotient Ok/a is of order m. The order of an element of a group
divides the order of the group. Thus, if x is an element of Ok then mx must
belong to a. In particular, if we take x to be 1 we get that m belongs to a. Thus
a contains the idealmOk or in other words a dividesmOk which has only finitely
many divisors. There are therefore only finitely many possibilities for a. As a
consequence, Ok contains only finitely many ideals whose norm is bounded. In
particular, there are only finitely many ideals that satisfy the bound in Corollary
3 and therefore there can only be finitely many ideal classes.

As announced in the introduction of this section we will now generalize this
result. More precisely, let S be a finite subset of Mk containing M∞k , let Ik,S
denote the group of fractional ideals associated to Ok,S and let Pk,S denote the
subgroup of principal fractional ideals. We will prove that the S-ideal class group
Cl(Ok,S) = Ik,S/Pk,S is finite. This will be an easy consequence of Corollary 4
once we have the following:

Lemma 1. Let S be a finite subset of Mk containing M∞k . Let p be a prime
ideal of Ok that does not belong to S and define S′ = S ∪{p}. If [p] denotes the
class of p in Cl(Ok,S), then we have a short exact sequence of groups

1 −→ 〈[p]〉 −→ Cl(Ok,S) −→ Cl(Ok,S′) −→ 1.

Proof. We have a homomorphism from Ik,S to Ik,S′ given by a 7→ aOk,S′ .
We claim that this is a surjective homomorphism. Indeed, if a′ ∈ Ik,S′ then
it decomposes uniquely as a′ =

∏
q6∈S′ q

vq(a′)Ok,S′ where vq(a′) is an inte-
ger since Ok,S′ is a Dedekind domain and its primes ideals are exactly the
ones of Ok that do not belong to S′. Then for any non-negative integer e,
ae := peOk,S

∏
q6∈S′ q

vq(a′)Ok,S is an element of Ik,S whose image is a′. This
proves our claim.

Notice that Pk,S ⊂ ker(Ik,S � Ik,S′ � Cl(Ok,S′)) and thus from the uni-
versal property of the quotient we get a surjective homomorphism of groups
φ : Cl(Ok,S) −→ Cl(Ok,S′).

It is clear that 〈[p]〉 is contained in the kernel of φ. Conversely, let [a] be an
element of ker(φ). Then aOk,S′ belongs to Pk,S′ . As a consequence, there exists
an element β ∈ k∗ such that aOk,S′ = βOk,S′ . It follows that for all q 6∈ S′,
we have vq(a) = vq(βOk,S′) = vq(βOk,S). Let e = vp(a) − vp(βOk,S). Then
a = peβOk,S and [a] = [p]e. This proves that ker(φ) = 〈[p]〉.

Corollary 5. Let S be a finite subset of Mk containing M∞k . Then hk,S :=
|Cl(Ok,S)| is finite.

Proof. We prove this by induction on n = |S\M∞k |. The case n = 0 is Corollary
4. Suppose the result true for all sets S′ with |S′ \M∞K | = n − 1. Let p be
a finite place in S and define S′ = S \ {p}. Then hk,S′ is finite by induction
hypothesis and by Lemma 1, if m denotes the order of [p] in Cl(Ok,S′), then
hk,S = hk,S′/m and is therefore finite.



24 CHAPTER 1. THE ANALYTIC CLASS NUMBER FORMULA

1.4 The Unit Theorem
We give a full proof of Dirichlet’s famous unit theorem originally proved in 1846
as well as a proof of its generalization due to Chevalley and Hasse in 1940 and
1980 respectively, namely the S-unit theorem. We end this section by defining
the S-regulator of a number field. We begin with some notations.

Let S be a finite subset of Mk containing M∞k . Let Yk,S be the free abelian
group on S, that is, Yk,S =

⊕
v∈S Zv. Consider the surjective homomorphism

of group
aug : Yk,S −→ Z,

∑
v∈S

nvv 7−→
∑
v∈S

nv

called the augmentation map. Define the subgroup

Xk,S =

{∑
v∈S

nvv ∈ Yk,S |
∑
v∈S

nv = 0

}

so that we have an exact sequence

0 −→ Xk,S −→ Yk,S
aug−→ Z −→ 0.

It is not difficult to verify that for any choice of v0 ∈ S, we have

Xk,S =
⊕
v 6=v0

Z(v − v0)

and thus Xk,S is a free abelian group of rank |S| − 1. Denote by RYk,S and
RXk,S the respective tensor products R ⊗Z Yk,S and R ⊗Z Xk,S . We consider
the map

λk,S : k∗ −→ RYk,S , x 7−→
∑
v∈S

log |x|vv.

This is a homomorphism of groups. We will be interested in the restriction of
this map to the multiplicative group of S-units O∗k,S that we shall denote by
Uk,S . We claim that the image λk,S(Uk,S) lies in RXk,S . Indeed, if u ∈ Uk,S
then |u|v = 1 for all v 6∈ S and by the product formula (0.0.0.1) we have

1 =
∏
v∈Mk

|u|v =
∏
v∈S
|u|v.

Taking the logarithm, we get
∑
v∈S log |u|v = 0 which proves that λk,S(Uk,S) ⊂

RXk,S . LetGk,S denote the kernel of this map so that we have an exact sequence

1 −→ Gk,S −→ Uk,S −→ λk,S(Uk,S) −→ 0.

The S-unit theorem consists of proving on one hand that Gk,S = µk, that is, the
finite cyclic subgroup of Uk,S consisting of the roots of unity contained in k and
on the other hand that λk,S(Uk,S) sits as a lattice in the (|S| − 1)-dimensional
real vector space RXk,S . In particular, λk,S(Uk,S) is a free group and the above
sequence splits and we obtain:

Theorem 1.4.1 (S-unit theorem). Let k be a number field and let S be a finite
subset of Mk containing M∞k . Then Uk,S ∼= µk × Z|S|−1.
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As with the proof of the finiteness of the S-ideal class group (Corollary 5),
we will start by treating the simplest case S = M∞k and then we generalize the
result using a suitable lemma.

Set S = M∞k . In this case, we drop the subscript S in all of the above
defined notations and we have the exact sequence

1 −→ Gk −→ Uk −→ λk(Uk) −→ 0.

Let r1 and r2 be the usual numbers attached to k and order the elements of
M∞k so that the r1 first ones correspond to the real places and the r2 remaining
ones correspond to the complex places. This case of the unit theorem is due to
Dirichlet:

Theorem 1.4.2 (Dirichlet). Let k be a number field and let r = r1 + r2 − 1.
Then Uk ∼= µk × Zr.

Proof. Identify RXk with Rr by choosing a basis and give it the standard eu-
clidean topology. Let B be a compact subset of RXk and consider the set
λ−1
k (B) ⊂ Uk. Let u ∈ λ−1

k (B). Since B is bounded in Rr, we see that
log |σi(u)| is bounded for all i = 1, . . . , r1 + r2 and thus |σi(u)| is bounded
from above and below. In particular, all elementary symmetric functions in
the σi(u) are bounded in absolute values. In particular, the coefficients of the
minimal polynomial of u over Q are bounded. But u is an algebraic integer, so
these coefficients lie in Z. Consequently, there are only finitely many possibili-
ties for the minimal polynomial of u over Q and thus finitely many possibilities
for the value of u. This proves that λ−1

k (B) is finite. There are two important
consequences to this:

• The group Gk = λ−1
k ({0}) is finite. It is therefore a product of finite cyclic

groups Cd1
×. . .×Cdm and we may suppose that di|di+1 for i = 1, . . . ,m−1.

As a consequence, we have ydm = 1 for all y ∈ Gk. But there are at most
dm elements in k satisfying this equation. Thus dm ≥ |Gk| = d1 . . . dm.
This implies that m = 1 and thus Gk is cyclic comprised of roots of unity.
If ζ denotes a root of unity in k, then |σi(ζ)| = 1 for all i = 1, . . . , r1 + r2

and therefore ζ ∈ Gk. We have therefore proved that Gk = µk as desired.

• The image λk(Uk) is a discrete subgroup of RXk,S . In fact, if B ⊂ RXk

is compact, then λk(Uk) ∩ B = λk(λ−1
k (B)) is finite. By Proposition 1,

λk(Uk) is a free Z-module of rank s ≤ r.

It remains to be proved that λk(Uk) contains r linearly independent vectors
over R. We will prove that for any non-zero linear form f : RXk −→ R we
have f(λk(Uk)) 6= 0. We claim that this will end the proof. Indeed, pick f1 to
be a non-zero linear form on RXk. Choose u1 ∈ Uk such that f1(λk(u1)) 6= 0.
Rescaling f1 if necessary, we may suppose that f1(λk(u1)) = 1. Let f2 be a non-
zero linear form such that f2(λk(u1)) = 0. This is obviously possible. Choose
u2 ∈ Uk such that f2(λk(u2)) 6= 0 and rescale f2 so that f2(λk(u2)) = 1. At the
m-th stage, for 1 ≤ m ≤ r− 1, we have linear forms fi and elements ui ∈ Uk for
every i ≤ m such that fi(λk(ui)) = 1 and fi(λk(uj)) = 0 for all j < i. We pick
a non-zero linear form fm+1 such that fm+1(λk(ui)) = 0 for all i ≤ m. This is
possible since we impose m ≤ r conditions on r variables. Choose um+1 ∈ Uk
such that fm+1(λk(um+1)) 6= 0 and rescale so that fm+1(λk(um+1)) = 1. At
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the r-th stage of this procedure, we have produces linear forms fi and elements
ui ∈ Uk for i = 1, . . . , r such that

fi(λk(ui)) = 1 fi(λk(uj)) = 0 for j<i .

Let αi be real numbers for i = 1, . . . , r and suppose that
∑r
i=1 αiλk(ui) = 0.

Applying fr to this relation, we obtain αr = 0 and the remaining equation is∑r−1
i=1 αiλk(ui) = 0. Applying fr−1 to this equation yields αr−1 = 0. Proceeding

like this r times gives αi = 0 for all i. This proves that λk(u1), . . . , λk(ur) are
linearly independent over R.

It thus remains to prove our claim. Let f : RXk −→ R be a non-zero linear
form. Let v0 be a complex archimedean place of k. Then a basis for RXk as a
real vector space is given by (v − v0) for v ∈ S \ {v0}. We order this basis by
letting the r1 first elements correspond to the real places of k and the remaining
r2 − 1 elements correspond to the complex places except v0. We shall write
(x1, . . . , xr) for the element

∑
v 6=v0

xv(v − v0) and we thus explicitly identify
RXk with Rr. We may write f in the form

f(x1, . . . , xr) = c1x1 + . . .+ crxr, with ci ∈ R.

Let γ = (γ1, . . . , γr) be an element of Rr>0 and choose γr+1 ∈ R>0 such that

r1∏
i=1

γi

r1+r2∏
j=r1+1

γ2
j =

(
2

π

)r2
|dk|

1
2 := C.

Consider the subset of R⊗Q k defined by

Bγ = {(x1, . . . , xr1 ;xr1+1, . . . , xr1+r2) ∈ R⊗Q k : |xi| ≤ γi, |xj | ≤ γr1+j}.

This is a Lebesgue-measurable compact subset which is convex and symmetric
around the origin of R⊗Q k. Moreover, we have

µ(Bγ) =

r1∏
i=1

2γi

r1+r2∏
j=r1+1

πγ2
j = 2r1πr2

(
2

π

)r2
|dk|

1
2 = 2nv(Ok)

where in the last equality we made use of Corollary 2. By Proposition 3 the
intersection Bγ ∩ (Ok \ {0}) is non-empty. Let aγ be an element in this inter-
section. Since aγ is a non-zero algebraic integer, its norm is a non-zero integer.
Consequently, we have

1 ≤ |Nk/Q(aγ)| =
∏

v∈M∞k

|aγ |v ≤
r1∏
i=1

γi

r1+r2∏
j=r1+1

γ2
j = C. (1.4.2.1)

For i = 1, . . . , r1 + r2 if we let vi denote the corresponding place of k we have

γεii ≥ |aγ |vi = |Nk/Q(aγ)|

∏
v 6=vi

|aγ |v

−1

≥ γεii C
−1,

where εi is 1 if vi is real and 2 if vi is complex. This implies that

0 ≤ log γεii − log |aγ |vi ≤ logC.
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It follows that ∣∣∣∣∣
r∑
i=1

ci log |aγ |vi −
r∑
i=1

ci log γεii

∣∣∣∣∣ ≤ logC
∑
i=1

|ci|.

Let β > 0 be a constant that is larger than the right hand side. For everym ≥ 1,
choose an r-tuple γ(m) = (γ1(m), . . . , γr(m)) of positive real numbers such that∑r
i=1 ci log γi(m)εi = 2βm. Let aγ(m) be a non-zero element of Bγ(m) ∩ Ok.

Then for all m ≥ 1 we have∣∣∣∣∣
r∑
i=1

ci log |aγ(m)|vi − 2βm

∣∣∣∣∣ < β.

As a consequence, we have

(2k − 1)β <

∣∣∣∣∣
r∑
i=1

ci log |aγ(m)|vi

∣∣∣∣∣ < (2k + 1)β.

We conclude that all the real numbers
∑r
i=1 ci log |aγ(m)|vi are distinct. By

(1.4.2.1), we see that N(aγ(m)Ok) = |Nk/Q(aγ(m))| is bounded. In the course of
proving Corollary 1.4.2, we showed that the number of ideals of Ok with norm
bounded by a given constant is finite. We conclude that there exist at least two
distinct integers l and j such that aγ(l)Ok = aγ(j)Ok. Hence, there exists a unit
u ∈ Uk such that aγ(l) = uaγ(j). But then we have

f(λk(u)) =

r∑
i=1

ci log |aγ(l)|vi −
r∑
i=1

ci log |aγ(j)|vi 6= 0.

This completes the proof by our above discussion.

Our goal is now to prove Theorem 1.4.1. This is an easy consequence of
Theorem 1.4.2 once we have the following:

Lemma 2. Let S be finite subset of Mk containing M∞K . Let p be a prime ideal
that does not belong to S. Define S′ = S ∪ {p}. Then Uk,S′ ∼= Uk,S × Z.

Proof. Let m be the order of [p] in Cl(Ok,S). By definition of m, the ideal
pmOk,S is a principal fractional ideal of the ring of S-integers so there exists an
element α of k∗ such that pmOk,S = αOk,S . We will show that α is a unit in
Ok,S′ and that it generates Uk,S′/Uk,S .

Let u be an S′-unit. We have vp(α) = m and therefore 0 ≤ vp(uαj) ≤ m− 1
for a suitable choice of an integer j. Since vq(uαj) = 0 for all q 6∈ S′, we have
uαjOk,S = pvp(uαj)Ok,S so that [p]vp(uαj) = [1] in Cl(Ok,S). This implies that
vp(uαj) is a multiple of m by definition of the order and consequently that
vp(uαk) = 0 so that uαj is an S-unit. Thus [u] = [α−j ] in Uk,S′/Uk,S and
the claim is proved. Since vp(αj) = jm for all integers j it is clear that αj is
an S-unit if and only if j = 0. Thus α has infinite order in Uk,S′/Uk,S and
Uk,S′/Uk,S ∼= Z. We have an exact sequence

1 −→ Uk,S −→ Uk,S′ −→ Z −→ 1.

It splits since Z is free, so that Uk,S′ ∼= Uk,S × Z.
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Proof of Theorem 1.4.1. We will perform a proof by induction on s = |S \M∞k |.
The case s = 0 is Theorem 1.4.2. Suppose the result true for sets S′ with
|S′ \M∞k | = s − 1. Let p be a finite place of S and define S′ = S \ {p}. By
induction hypothesis we know that Uk,S′ ∼= µk × Z|S|−2. By Lemma 2, we have

Uk,S ∼= Uk,S′ × Z ∼= µk × Z|S|−1.

We know now that λk,S(Uk,S) sits as a lattice in RXk,S
∼= R|S|−1. The

covolume of this lattice is an important invariant of the number field k. We
make the following definition:

Definition 3. Let k be a number field and let S be a finite subset of Mk

containing M∞k . We define the regulator of k associated to S to be

Rk,S = |S|− 1
2 v(λk,S(Uk,S)).

Up to a constant, the regulator is the volume of a fundamental domain for
the lattice λk,S(Uk,S) in the vector space RXk,S . One can give the following
more explicit and less geometric formula for the regulator:

Proposition 6. Let k be a number field and let S be finite subset of Mk con-
taining M∞k . Let u1, . . . , u|S|−1 be a system of fundamental units of Uk,S, that
is, a basis for the free Z-module Uk,S/µk. We have the formula

Rk,S =

∣∣∣∣∣∣ det
v∈S\{v0}
1≤i≤|S|−1

(log |ui|v)

∣∣∣∣∣∣
where v0 is any valuation in S.

Proof. The family λk,S(u1), . . . , λk,S(u|S|−1) is a basis for the lattice λk,S(Uk,S)
and we denote by P the fundamental domain associated to this basis. We know
that the volume is independent of the choice of basis. Define

u∗ = |S|− 1
2 (1, . . . , 1) = |S|− 1

2

∑
v∈S

v ∈ RYk,S .

This vector is orthogonal to RXk,S
∼= R|S|−1 and has length equal to 1. Thus

u∗, λk,S(u1), . . . , λk,S(u|S|−1) forms a basis of RYk,S ∼= R|S| and the (|S| − 1)-
dimensional volume of P equals the |S|-dimensional volume of the fundamental
paralleliped in R|S| constructed on this basis. This volume is equal to the
absolute value of the determinant of the |S| × |S| matrix whose columns consist
of the basis vectors. This is equal to |S|− 1

2 times the absolute value of the
determinant of the same matrix but where we have multiplied the first column
by |S| 12 . Now we add all the rows to the row corresponding to some v0 ∈ S
which becomes

(|S|, aug(λk,S(u1)), . . . , aug(λk,S(u|S|−1)) = (|S|, 0, . . . , 0)

by definition of Xk,S . Expanding the determinant with respect to this row we
obtain

Rk,S =

∣∣∣∣∣∣ det
v∈S\{v0}
1≤i≤|S|−1

(log |ui|v)

∣∣∣∣∣∣ .
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Remark 3. We have the following exact sequence

1 −→ µk −→ Uk,S −→ λk,S(Uk,S) −→ 0.

Tensoring with C over Z we get an isomorphism of C-vector spaces

λk,S : CUk,S
∼−→ CXk,S

since µk is finite. Actually, this map is 1⊗ λk,S but we shall keep the notation
λk,S . Let u1, . . . , u|S|−1 be a choice of basis for CUk,S . For a choice v0 ∈ S,
(v − v0)v∈S is a basis for CXk,S . By Proposition 6, the regulator Rk,S is the
absolute value of the determinant of the map λk,S corresponding to these choices
of bases. Moreover, this determinant is independent of the choice of v0.

The following result relates the regulator Rk,S with Rk,S′ for sets S and S′
that differ only by one element. It will prove to be useful later on.

Proposition 7. Let k be a number field and let S be a finite subset of Mk

containing M∞k . Let p be a prime ideal that does not belong to S and define
S′ = S ∪ {p} and let m be the order of [p] in Cl(Ok,S). Then

Rk,S′ = m logN(p)Rk,S .

Proof. By definition of m, the ideal pmOk,S is a principal fractional ideal of
the ring of S-integers so there exists an element α of k∗ such that pmOk,S =
αOk,S . Let u1, . . . , u|S|−1 be a system of fundamental units of Uk,S . In the
course of proving Lemma 2, we saw that u1, . . . , u|S|−1, u|S| := α is a system of
fundamental units of Ok,S′ . Let v0 ∈ S ∩ S′ and define

MS = (log |ui|v)v∈S\{v0}
1≤i≤|S|−1

, MS′ = (log |ui|v)v∈S′\{v0}
1≤i≤|S|

.

Then by Proposition 6 we have Rk,S = |detMS | and Rk,S′ = |detMS′ |. Since
vq(u|S|) = 0 for all q in S we see that

M(S′) =

(
MS 0
∗ log |u|S||p

)
so taking the absolute value of the determinant yields the desired result since
|u|S||p = N(p)−m.

1.5 The Analytic Class Number Formula
The analytic class number formula is an important formula in the theory of
basic algebraic number theory: it constitutes a bridge between the arithmetic
of a number field and the analytic theory of a number field. All arithmetic
invariants associated to a number field that we have defined so far such as the
class number, the regulator and the discriminant are related in this formula to
the leading coefficient of the Taylor series at s = 1 of a function of one complex
variable attached to k called the Dedekind zeta-function of k. This formula
means that one can compute for example the class number of k by using the
other arithmetic invariants of k and by knowing the zeta-function of k. One can
understand the arithmetic of a number field via analytic methods and vice-versa.
Our main reference for this section is [BS], Chapter 5, § 1.
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1.5.1 Statement of the Theorem

We define the Dedekind zeta-function of k and state the class number formula.
We then present the main tool in the proof of the formula. We believe that this
motivates the study of the fundamental domain in the next section and clarifies
the strategy of the proof.

Definition 4. Let k be a number field. The associated Dedekind zeta-function
is the function of one complex variable s which is defined for <s > 1 by the
Dirichlet series

ζk(s) =
∑
a

N(a)−s

where the sum runs over all non-zero ideals of Ok. If S is a finite subset of
Mk containing M∞k , then we define the S-modified Dedekind zeta-function for
<s > 1 by the formula

ζk,S(s) =
∑

(a,S)=1

N(a)−s

where the sum runs over all non-zero ideals of Ok that are coprime to S.

Remark 4. The infinite sum above is to be understood as follows:∑
a

:= lim
m→∞

∑
a:N(a)≤m

where for all m ≥ 1 the sum on the right hand is finite (cf. proof of Corollary
4). Let Nm := |{a : N(a) = m}|. Then for <s > 1 we have

ζk(s) = lim
m→∞

∑
a:N(a)≤m

N(a)−s =

∞∑
i=1

Ni
is
.

Remark 5. Once we prove that ζk(s) converges absolutely for <s > 1, it will
follow that it has an Euler product expression in this region given by

ζk(s) =
∏
p

(1−N(p)−s)−1

where the product runs over all prime ideals of Ok. This is a consequence of
the fact that the norm function is completely multiplicative and follows from
general theory of Dirichlet series.

We can now formulate the analytic class number formula:

Theorem 1.5.1 (Analytic class number formula). Let k be a number field of
degree n. Denote by ωk the order of the finite group µk. The Dedekind zeta-
function ζk(s) converges in the region <s > 1 and has a simple pole at s = 1
with residue given by the formula

Ress=1(ζk(s)) =
2r1(2π)r2Rk

ωk|dk|
1
2

hk.

The proof of this theorem relies on the next result. By a cone in Rn we refer
to a subset X ⊂ Rn with the property that if x ∈ X then ξx ∈ X for all ξ > 0.
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Theorem 1.5.2. Let X be a cone in Rn and let F : X −→ R>0 be a function
subject to the conditions:

(i) F (ξx) = ξnF (x) for all x ∈ X and all ξ > 0.

(ii) The set T = {x ∈ X : F (x) ≤ 1} is bounded and Lebesgue-measurable
with non-zero measure.

Let Λ be a euclidean lattice in Rn and consider the function

ζ̄(s) =
∑

x∈Λ∩X
F (x)−s

in the complex variable s. The function ζ̄(s) converges for <s > 1 and has a
simple pole at s = 1 with residue given by

Ress=1(ζ̄(s)) =
µ(T )

v(Λ)
.

Remark 6. The sum above is to be understood as the limit∑
x∈Λ∩X

F (x)−s = lim
i→∞

∑
x∈Λ∩X
F (x)≤i

F (x)−s.

The set {x ∈ Λ ∩ X | F (x) ≤ i} is bounded by (ii) and discrete so it is finite
and therefore the sums in the limit are finite.

Proof. For any positive real number r we define Λr = r−1Λ. We have v(Λr) =
r−nv(Λ). Since T is bounded by (ii) and Λ is discrete, the intersection T ∩ Λr
is finite for all r > 0. We define n(r) := |T ∩ Λr|. By (ii), T is Lebesgue-
measurable and by definition of the Lebesgue measure its volume is given by
the limit

µ(T ) = lim
r→∞

n(r)v(Λr) = v(Λ) lim
r→∞

n(r)

rn
.

Meanwhile, we also have n(r) = |rT ∩L|. We have y ∈ rT ∩Λ if and only if
y = rx ∈ Λ for some x in T . By (i), we then have F (y) = F (rx) = rnF (x) ≤ rn.
We conclude that

rT ∩ Λ = {y ∈ Λ ∩X | F (y) ≤ rn}.

Since a euclidean lattice is countably infinite, we have in particular that L∩X is
countable. We choose a ordering L∩X = {x1, x2, . . .} such that F (xi) ≤ F (xj)
whenever i ≤ j. For every integer i ≥ 1 we set ri to be the real positive number
ri = n

√
F (xi). If i ≤ j, then F (xi) = rni ≤ F (xj) = rnj . Thus for all i, the set

riT ∩ L contains the points x1, . . . , xi and thus n(ri) ≥ i. On the other hand,
for any ε > 0, xi does not belong to (ri − ε)T . As a consequence, n(ri − ε) < i.
Thus

n(ri − ε)
rni

=
n(ri − ε)
(ri − ε)n

(
ri − ε
ri

)n
≤ i

rni
≤ n(ri)

rni
.

We conclude that limi→∞ n(ri)/r
n
i = limi→∞ i/rni and therefore

µ(T ) = v(Λ) lim
i→∞

i

rni
= v(Λ) lim

i→∞

i

F (xi)
.
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We have
ζ̄(s) =

∑
i≥1

1

F (xi)s
=
∑
i≥1

(i/F (xi)
s)

is
.

Since limi→∞(i/F (xi)) = µ(T )/v(Λ), the sequence (i/F (xi)) is bounded and by
comparing ζ̄ with the Riemann zeta-function ζ we see that ζ̄(s) converges for
R(s) > 1. Also from the existence of this limit, for all ε > 0 there exists a rank
i0 such that

(µ(T )/v(Λ))s − ε < (i/F (xi))
s < (µ(T )/v(Λ))s + ε

for all i ≥ i0. Thus, for R(s) > 1, we have

((v(T )/∆)s − ε)
∑
i≥i0

1

is
<
∑
i≥i0

1

F (xi)s
< ((v(T )/∆)s + ε)

∑
i≥i0

1

is
.

Multiplying by (s − 1), taking the limit as s → 1+ and using the fact that the
Riemann zeta-function has a simple pole at s = 1 with residue equal to 1, we
see that

lim
s→1+

(s− 1)ζ̄(s) =
µ(T )

v(Λ)

which is non-zero by (ii) and the proof is complete.

1.5.2 Fundamental Domain of a Number Field

Henceforth, our goal is to apply Theorem 1.5.2 to the Dedekind zeta-function
ζk. It is not obvious how this can be done and first we need to write ζk in the
appropriate form. This implies finding a suitable cone and a suitable lattice.
This section is concerned with the cone.

By Corollary 1.4.2 there exists a system of fundamental units u1, . . . , ur of k,
that is, a basis for Uk/µk. Then λk(u1), . . . , λk(ur) are linearly independent over
R and form a basis for the lattice λk(Uk) in RXk. Let u∗ = (1, . . . , 1, 2, . . . , 2) =∑
v∈M∞k

εvv ∈ RYk ∼= Rr+1 where ev = 1 if v is real and ev = 2 if v is complex.
The family (u∗, λk(u1), . . . , λk(ur)) forms a basis of RYk.

We extend the map λk : k∗ −→ RYk a map on (R ⊗Q k)∗ by defining the
map λ : (R ⊗Q k)∗ −→ RYk by letting x = (x1, . . . , xr1 ;xr1+1, . . . , xr1+r2) map
to

(log |x1|, . . . , log |xr1 |, log |xr1+1|2, . . . , log |xr1+r2 |2).

It is an extension since if x ∈ k, then λ(x) = λk(x).
For any x ∈ R⊗Q k, there exist unique real coefficients ξ, ξ1, . . . , ξr such that

λ(x) = ξu∗ +

r∑
i=1

ξiλk(ui). (1.5.2.1)

Definition 5. With the notations above, we define the fundamental domain of
k with respect to the given system of fundamental units to be the subset X of
R⊗Q k consisting of elements x = (x1, . . . , xr1 ;xr1+1, . . . , xr1+r2) such that

• N(x) 6= 0;
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• The coefficients in (1.5.2.1) satisfy 0 ≤ ξi < 1;

• If r1 ≥ 1, then x1 > 0 and if r1 = 0, then 0 ≤ arg x1 < 2π/ωk.

We first claim that X is a cone in R ⊗Q k. Indeed, let α be a positive real
number and let x ∈ X. We have

N(αx) = αx1 . . . αxr1 |αxr1+1|2 . . . |αxr1+r2 |2 = αnN(x) 6= 0.

Moreover, we have

λ(αx) = logαu∗ + λ(x) = (logα+ ξ)u∗ +

r∑
i=1

ξiλk(ui).

Finally if r1 ≥ 1, then αx1 > 0 and if r1 = 0, then arg(αx1) = arg x1. This
proves that αx ∈ X and thus that X is a cone as claimed.

Proposition 8. Every class of the quotient group (R ⊗Q k)∗/Uk has a unique
representative that lies in X.

Proof. Let y ∈ (R⊗Q k)∗ and write

λ(y) = γu∗ +

r∑
i=1

γiλk(ui), γ, γi ∈ R.

Let η = u
[γ1]
1 . . . u

[γr]
r ∈ Uk and set z = yη−1. Then

λ(z) = λ(y)− λk(η) = γu∗ +

r∑
i=1

{γi}λk(ui)

where the brackets as usual denote the fractional part. If r1 ≥ 1, then z or −z
belongs to X and we have y = zη and we have proved existence. If r1 = 0,
then let m be the integer in {0, . . . , ωk − 1} such that 2πm/ωk ≤ arg z1 <
2π(m+ 1)/ωk. Pick t ∈ µk ∩R⊗Q k with t1 = e2πm/ωk and set x = zt−1. Then
0 ≤ arg x1 < 2π/ωk and

λ(x) = λ(z)− λk(t) = λ(z)

since µk = kerλk. It follows that x ∈ X and y = x(tη) and we have proved
existence in the case r1 = 0.

We now prove uniqueness. Suppose that y = xε = x′ε′ with x, x′ ∈ X and
ε, ε′ ∈ Uk. Write ε = tun1

1 . . . unrr and ε′ = t′u
n′1
1 . . . u

n′r
r with t, t′ ∈ µk and

ni, n
′
i ∈ Z. We have λ(x)− λ(x′) = λk(ε′)− λk(ε) so that

(ξ − ξ′)u∗ +

r∑
i=1

(ξi − ξ′i)λk(ui) =

r∑
i=1

(n′i − ni)λk(ui).

By linear independence we obtain ξ = ξ′ and ξi−ξ′i = n′i−ni for all i = 1, . . . , r.
But ξi − ξ′ ∈] − 1, 1[ so that ni = n′i and therefore ξi = ξ′i. We have ε′ = ζ0ε
for some ζ0 ∈ µk so that x = x′ζ0. If r1 ≥ 1 we must have ζ0 = ±1 but the
condition x1, x

′
1 > 0 forces ζ0 = 1. If r1 = 0, then arg x1 = arg x′1 + arg ζ0 and

the condition on arg x1 and arg x′1 imply that arg ζ0 = 0 so that ζ0 = 1.
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Corollary 6. Let α ∈ k∗. Then there is a unique β ∈ k ∩X such that αOk =
βOk.

Proof. We have α ∈ (R ⊗Q k)∗ so by Proposition 8 there exist a unique β
in X and a unique ε ∈ Uk such that α = βε. We have β = αε−1 ∈ k and
αOk = βOk.

Theorem 1.5.3. With notations as above, the set T = {x ∈ X : |N(x)| ≤ 1}
is bounded, Lebesgue-measurable and its volume is given by

µ(T ) =
2r1πr2Rk

ωk

In particular this volume is non-zero and independent of the choice of funda-
mental units.

Proof. We start by proving that T is bounded. Let S = {x ∈ X : |N(x)| = 1}.
Since |N(αx)| = αn|N(x)| for all α > 0, it is easy to see that

T = {αx : x ∈ S, α ∈]0, 1]}.

Therefore, if S is bounded then T too is bounded.
In order to ease the notation we define ei = 1 for i = 1, . . . , r1 and ej = 2

for j = r1 + 1, . . . , r + 1. For x ∈ R⊗Q k we have the expression

λ(x) = ξu∗ +

r∑
i=1

ξiλk(ui).

We sum the r + 1 coefficients of the left hand side vector and obtain

r1∑
i=1

log |xi|+
r2∑
j=1

log |xj |2 = log |N(x)|.

We do the same on the right hand side and obtain

ξn+

r∑
l=1

ξiaug(λk(ui)) = ξn.

We conclude that ξ = log |N(x)|/n. In particular, if x belongs to S then ξ = 0.
In this case, for all 1 ≤ j ≤ r + 1, we get

λ(x)j =

r∑
i=1

ξiλk(ui)j <

r∑
i=1

λk(ui)j := C.

Consequently, we have the inclusion S ⊂ {x ∈ R ⊗Q k : |xi| ≤ eC , |xj |2 ≤ eC}
which proves that S is bounded.

We now turn to the computation of the volume of T . It will become clear that
T is measurable during the process. Let ζ ∈ µk∩R⊗Qk such that ζ1 = e

2πi
ωk . Note

that if r1 ≥ 1 we have ωk = 2 and ζ = −1. Consider for k = 0, 1, . . . , ωK −1 the
multiplication-by-ζk map on R⊗Qk which we denote by Lk. The determinant of
this map is Nk/Q(ζ) = ±1 so that these transformations are volume preserving.
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Define VT =
⋃ωk−1
i=0 Li(T ). This is the subset of R⊗Qk consisting of elements

x such that 0 < |N(x)| ≤ 1 and λ(x) = ξu∗ +
∑r
i=1 ξiλk(ui) with 0 ≤ ξi < 1.

We have eliminated the original constraint on the first coordinate x1. Since
the above transformations are volume-preserving, we have µ(T ) = µ(VT )/ωk.
Consider the subset

V ′T = {x ∈ VT | xi > 0, 1 ≤ i ≤ r1} .

Let ∆ be the set of elements of R⊗Q k with first r1 coordinates equal to ±1 and
the last r2 equal to 1. This is a set of cardinality 2r1 . For any δ ∈ ∆, denote
by Lδ the multiplication-by-δ map which is volume preserving. We have the
equality of sets VT =

⋃
δ V
′
T so that

µ(T ) =
2r1µ(V ′T )

ωk
.

So it remain to prove that µ(V ′T ) = πr2Rk. We recall that V ′T consists of
elements x that satisfy:

• 0 < |N(x)| ≤ 1;

• For all j, λ(x)j =
ej
n log |N(x)|+

∑r
i=1 ξiλk(ui)j with 0 ≤ ξi < 1;

• x1, . . . , xr1 > 0.

We transit to polar coordinates by setting

xi = ρi, i = 1, . . . , r1

zj = ρr1+je
iθj , j = 1, . . . , r2.

The Jacobian of this change of variables is equal to ρr1+1 . . . ρr1+r2 and the new
variables are subject the following conditions:

• ρ1, . . . , ρr1+r2 > 0,
∏r1+r2
j=1 ρ

ej
j ≤ 1

• log ρ
ej
j =

ej
n log

∏r1+r2
j=1 ρ

ej
j +

∑r
i=1 ξiλk(ui)j with 0 ≤ ξi < 1.

We perform a new change of variable (ρ1, ρ2, . . . , ρr1+r2) ↔ (ξ, ξ1, . . . , ξr)
given by

ρj = ξ
1
n

r∏
i=1

e
ξi
ej
lj(εi)

.

Note that ξ =
∏r1+r2
j=1 ρ

ej
j . The set V ′T becomes the set of elements x with

xi = ξ
1
n

∏r
l=1 e

ξlλk(ul)i , i = 1, . . . , r1

xj = ξ
1
n eiθ1

∏r
l=1 e

ξl
2 λk(ul)j , j = r1 + 1, . . . , r1 + r2

subject to the conditions 0 < ξ ≤ 1 and 0 ≤ ξi < 1 for i = 1, . . . , r. There are
no conditions on the θj ’s. The Jacobian |J | of this change of variables is given
by ∣∣∣∣∣∣∣

ρ1

nξ ρ1l1(ε1) . . . ρ1l1(εr)
...

...
...

ρr1+r2

nξ

ρr1+r2

2 lr1+r2(ε1) . . .
ρr1+r2

2 lr1+r2(εr)

∣∣∣∣∣∣∣ .
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This determinant is in turn equal to

ρ1 . . . ρr1+r2

nξ2r2

∣∣∣∣∣∣∣
e1 l1(ε1) . . . l1(εr)
...

...
...

er1+r2 lr1+r2(ε1) . . . lr1+r2(εr)

∣∣∣∣∣∣∣ .
Summing all the rows with the first row we obtain the same matrix but with
first row given by (n, 0, . . . , 0) and expanding the determinant with respect to
this row yields

|J | = ρ1 . . . ρr1+r2Rk
ξ2r2

.

We may now compute the volume of V ′T :

µ(V ′T ) =

∫
V ′T

dx1 . . . dxr1dz1 . . . dzr2

=

∫
V ′T

ρr1+1 . . . ρr1+r2dρ1 . . . dρr1+r2dθ1 . . . dθr2

=

∫ 2π

0

. . .

∫ 2π

0

∫ 1

0

. . .

∫ 1

0

∏r1+r2
j=1 ρ

ej
j Rk

ξ2r2
dθ1 . . . dθr2dξdξ1 . . . dξr

= πr2Rk,

since ξ =
∏r1+r2
j=1 ρ

ej
j .

1.5.3 Proof of the Class Number Formula
Proof of Theorem 1.5.1. Let s > 1 be real. Since all terms in the Dirichlet
series defining the Dedekind zeta function are positive, we rearrange the terms
as follows:

ζk(s) =
∑

C∈Cl(Ok)

ζk,C(s), ζk,C(s) =
∑
a∈C

N(a)−s.

Fix an ideal class C ∈ Cl(Ok) and an integral ideal b in C−1. If a is an
integral ideal in C, then ab = αOk for some α ∈ Ok. This gives a bijective
correspondence between integral ideals a in C and associate elements α in Ok
such that b divides αOk. Two elements α and β in Ok are said to be associate
if they determine the same principal ideal or equivalently if they differ by an
element of Uk. Using the multiplicativity of the norm, we may rewrite ζk,C as
follows:

ζk,C(s) = N(b)s
∑

αOk:α∈b

|Nk/Q(α)|−s.

By Corollary 6, if α ∈ Ok then there is a unique x ∈ k ∩ X and a unique
ε ∈ Uk such that α = xε. If α belongs to b, then so does x. Moreover,
Nk/Q(α) = Nk/Q(x) = N(x). Therefore there is a bijection between ideals αOk
with α ∈ b and elements of the intersection b ∩X. We may then write

ζk,C(s) = N(b)s
∑

x∈b∩X

|N(x)|−s.

By Theorem 1.5.3, the set T = {x ∈ X : |N(x)| ≤ 1} is bounded and Lebesgue-
measurable with non-zero measure. We apply Theorem 1.5.2 with the cone
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X, the lattice b and the function |N(·)| in order to conclude that the function
ζk,C(s) converges absolutely in the region <s > 1 and has a simple pole at s = 1
with residue given by

Ress=1(ζk,C(s)) = N(b)µ(T )/v(b) =
2r1πr2Rk

ωk2−r2 |dk|
1
2

where in the last equality we made use of Corollary 2 and Theorem 1.5.3. We
finally get that ζk(s) converges absolutely for <s > 1 and has a simple pole at
s = 1 with residue given by the formula

Ress=1(ζk(s)) =
2r1(2π)r2Rk

ωk|dk|
1
2

hk.
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Chapter 2

Global Class Field Theory

We give a brief introduction to global class field theory, going through the
main theorems but without proofs. The central objects of study in class field
theory are finite abelian extensions of number fields and the theory establishes a
correspondence between such extension and certain subgroups called generalized
ideal class groups. Our main reference here is Chapter 8 of [Cox]. A presentation
of this theory with ideles can be found in [CF].

2.1 Generalized Ideal Class Groups
Let k be a number field. Denote respectively by Ik and Pk the group of fractional
ideals of k and its subgroup of principal fractional ideals. As we have seen (cf.
Corollary 4), the ideal class group Cl(Ok) = Ik/Pk is finite. Moreover, we have
the following exact sequence

1 −→ Uk −→ k∗ −→ Pk −→ Ik −→ Cl(Ok) −→ 1.

In what follows we will refer to elements of Mk as primes of k whether they are
finite or infinite. The reason for this is that infinite places behave much like
primes.

Definition 6. A formal product of primes of k

m =
∏

v∈MK

vm(v)

is called a modulus of k if the following conditions are satisfied:

• All m(v) are non-negative integers and m(v) = 0 for all but finitely many
primes.

• If v is a complex archimedean prime, then m(v) = 0.

• If v is a real archimedean prime, then m(v) ≤ 1.

We write m = m0m∞ in order to distinguish the finite and infinite parts of
the modulus. Note that if k is totally imaginary, then a modulus of k is simply
an integral ideal of k. We write v|m if m(v) > 0 and we say that v divides the
modulus.

39
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If m is a modulus of k, we denote by Ik(m) the subgroup of Ik that consists
of fractional ideals of k coprime to m (meaning coprime to m0), that is, the
free abelian group generated by primes ideals of Ok that do not divide the
modulus m. Similarly, we define Pk(m) to be the subgroup of Ik(m) consisting
of principal fractional ideals prime to m. We define Pk,1(m) to be the subgroup
of Ik generated by principal fractional ideals αOK where

• α ∈
⋂

p|m0
Op,

• α ≡ 1 mod m0,

• σv(α) > 0 for all v|m∞, where σv denotes the embedding k ↪→ R corre-
sponding to the real archimedean place v.

We summarize these conditions by writing simply α ≡∗ 1 mod m.

Proposition 9. Let m be a modulus of k. The group Pk,1(m) is a finite index
subgroup of Ik(m). The finite quotient group Clk(m) := Ik(m)/Pk,1(m) is called
the m-ray class group of k.

Proof. From the definition it is obvious that Pk,1(m) is a subgroup of Ik(m).
For the finite index assertion, we follow [Lan] p. 124-126.

We start by claiming that the map Ik(m) ↪→ Ik � Cl(Ok) is surjective.
Indeed, let a be an element of Ik. Without loss of generality we may assume
that a is an integral ideal. We have a decomposition a =

∏
p p

vp(a) where the
vp(a) are non-negative integers and all but finitely many are zero. For every
p that divides a, we denote by πp a uniformizer for p. By the Approximation
Theorem (cf. [CF] Chapter II § 15), there exists a solution to the system

x ≡ πvp(a)
p mod π

vp(a)+1
p , p|m.

But then ax−1Ok belongs to Ik(m) and is a representative of the same class as
a in Cl(Ok). The kernel of the above map is Pk ∩ Ik(m) = Pk(m) and from the
inclusion Pk,1(m) ⊂ Pk(m) we get the exact sequence

1 −→ Pk(m)/Pk,1(m) −→ Clk(m) −→ Cl(Ok) −→ 1.

In order to prove the finiteness of Clk(m) it thus suffices to prove the finiteness
of Pk(m)/Pk,1(m).

We denote by k∗m,1 the subgroup of k∗ consisting of elements α in k∗ such
that αOK ∈ Pk,1(m) and we define Um,1 = Uk∩k∗m,1. If k∗m denotes the elements
α of k∗ for which the fractional ideal αOk is coprime to m, then we have an
obvious surjective homomorphism of groups k∗m � Pk(m) � Pk(m)/Pk,1(m)
whose kernel is Uk.k∗m,1 so that we obtain an isomorphism

k∗m/Uk.k
∗
m,1
∼= Pk(m)/Pk,1(m).

Consider the following map:

ψ : k∗m −→
∏
p|m0

(
Op/(π

m(p)
p )

)∗
×
∏
v|m∞

R∗/R>0

defined for each component by ψ(α)p = α mod π
m(p)
p and ψ(α)v = σv(α)

mod R>0. Note that R∗/R>0
∼= {±1} and each Op/(π

m(p)
p ) is finite.
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The map ψ is well-defined homomorphism: if α belongs to k∗m, then vp(α) = 0

for all p|m0 so that the class [α]p of α in the quotient groupOp/m
m(p)
p is relatively

prime to πm(p)
p which implies that it is invertible in this quotient by Bézout’s

identity (the local ring Op is a principal ideal domain and therefore has a well-
defined notion of divisibility and gcd).

We claim that ψ is also surjective. Let ([αv]v)v|m be an element of the above
product. Given any ε > 0, by the Approximation Theorem (cf. [CF] Chapter II
§ 15), we may find α ∈ k such that

|α− αv|v ≤ ε, for all v|m.

Taking ε ≤ minp|m0
{N(p)−m(p)}, we see that

vp(α− αp) ≥ m(p), for all p|m0

which implies that α− αp ∈ (π
m(p)
p ). Moreover, for p|m0, we have

vp(α) = vp(α− αp + αp) = vp(αv) = 0

so that α ∈ k∗m. Taking ε even smaller if necessary, we see that for v real, σv(α)
and σv(αv) have the same sign which implies equality in the quotient R∗/R>0.
Thus ψ(α) = ([αv]v)v|m and we have proved surjectivity.

The kernel of ψ is exactly k∗m,1 and we therefore have an isomorphism

k∗m/k
∗
m,1
∼=
∏
p|m0

(
Op/(πm(p)

p )
)∗
×
∏
v|m∞

R∗/R>0.

This proves that k∗m/k∗m,1 is a finite group. By the universal property of the
quotient we have a surjective homomorphism

k∗m/k
∗
m,1 −→ k∗m/Uk.k

∗
m,1

and therefore the latter is finite.

Definition 7. Let m be a modulus of k. A subgroup H of Ik(m) is called a
congruence subgroup for m is it satisfies the inclusions

Pk,1(m) ⊂ H ⊂ Ik(m).

In this case, the quotient group Ik(m)/H is called a generalized ideal class group
for m.

Example 1. Consider the case k = Q. This example will help better under-
stand what the ray class groups are and why we choose to include infinite primes
in the definition of a modulus. In the present case, Ok = Z which is a principal
ideal domain. Consequently, the ideal class group is trivial and every fractional
ideal of Q is of the form a

bZ with gcd(a, b) = 1. There are only two possible
sorts of moduli in this case.

(1) Consider a modulus of the form m = mZ where m is an integer. In this
case m = m0. Write m = pm1

1 . . . pmrr . Then

IQ(m) = {a
b
Z : pi - a, pi - b, gcd(a, b) = 1}.
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The condition a
b ≡
∗ 1 mod m translates as a ≡ b mod m, that is, ab−1 ≡

1 mod m. This last notation makes sense since b is prime to m and
thus invertible in Z/mZ. Thus PQ,1(m) consists of principal fractional
ideals which can be expressed as (a/b) with ab−1 ≡ 1 mod m. We say
"expressed" since there is no unique way to write a principal ideal: the
other generator of this ideal is −a/b. Thus PQ,1(m) actually consists of the
principal fractional ideals (a/b) such that ab−1 ≡ ±1 mod m. Consider
the following map

IQ(m) −→ (Z/mZ)∗/{±1}, a

b
Z 7−→ [ab−1].

This is well-defined since [ab−1] = [−ab−1] in the target and both a and
b are invertible in Z/mZ. It is clearly a homomorphism and it is sur-
jective since for any n coprime to m, the ideal nZ belongs to IQ(m) and
maps to [n]. Finally, the kernel is exactly PQ,1(m). We therefore have an
isomorphism

ClQ(mZ) ∼= (Z/mZ)∗/{±1}.

(2) Let v∞ denote the unique archimedean place of Q. This is simply the
standard absolute value. Consider now the modulus of the form m =
mZv∞. The group IQ(m) remains the same as IQ(mZ). The condition
a
b ≡
∗ 1 mod m translates as ab−1 ≡ 1 mod m and a

b > 0. Thus PQ,1(m)
consists of principal fractional ideals which can be expressed as a/bZ with
ab−1 ≡ 1 mod m and a

b > 0. Denote by (a/b)+ the positive generator of
the ideal a/bZ. Consider the following map

IQ(m) −→ (Z/mZ)∗,
(a
b

)
+
7−→ [ab−1].

This is a well-defined surjective homomorphism of groups with kernel equal
to PQ,1(m). We therefore have an isomorphism of groups

ClQ(mZv∞) ∼= (Z/mZ)∗.

2.2 Finite Galois Extensions of Number Fields

We quickly review the main results concerning finite Galois extensions of number
fields and define the Frobenius element associated to a prime ideal. More details
are available in [Sam], VI or [Lil] Appendix B.3.

2.2.1 Decomposition and Inertia Groups

Let K/k be a finite Galois extension of number fields of degree n and let G =
Gal(K/k). Let p is a prime ideal in Ok. The Galois group G act transitively on
the prime ideals P of OK that lie above p. If P divides p and σ ∈ G, then we
have the relation

|x|σ(P) = |σ−1(x)|P, for x ∈ K.

We define the decomposition group DP/p associated to P to be the subgroup
of G given by

DP/p := {σ ∈ G | σ(P) = P}.
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It is the stabilizer of P. One has a surjective homomorphism of groups

DP/p −→ Gal(FP/Fp)

where FP and Fp respectively denote the residue field of K at P and k at p. The
map is given by sending σ to the automorphism of FP which sends x mod P
to σ(x) mod P for x ∈ OK . We define the inertia group IP/p of P to be the
kernel of this map so that we have the exact sequence

1 −→ IP/p −→ DP/p −→ Gal(FP/Fp) −→ 1.

Remark 7. When the context is clear and there is no possible risk of confusion
we shall use the notation DP and IP instead of the more tedious DP/p and
IP/p.

Because G acts transitively on the prime ideals above p, these all have the
same ramification and residual degrees that we therefore simply denote by ep
and fp respectively. We thus have the following decomposition

pOK =
∏

σ∈G/DP

σ(P)ep

and we have the degree formula n = epfp|G/DP| so that |DP| = epfp. But
DP/IP is isomorphic to Gal(FP/Fp) which has order fp by definition of the
residual degree. Therefore |IP| = ep. It follows that P is unramified in K/k if
and only if the inertia group IP is trivial.

The next lemma shows that the decomposition and inertia groups of two
primes lying above the same prime in Ok are conjugates:

Proposition 10. With the above notations, we have Dσ(P) = σDPσ
−1 and

Iσ(P) = σIPσ
−1 for all σ ∈ G and all prime ideals P of OK .

Proof. Fix σ ∈ G and a prime P ⊂ OK . Let τ be an element of the decompo-
sition group DP. Then

στσ−1(σ(P)) = σ(τ(P)) = σ(P)

so that στσ−1 belong to Dσ(P). This proves that σGPσ
−1 ⊂ Gσ(P). This holds

for all σ. Applying this with the inverse σ−1 to σ(P), we see that σ−1Gσ(P)σ ⊂
GP which implies that Gσ(P) ⊂ σGPσ

−1 and we therefore obtain equality.
Let τ be an element of the inertia group IP. Then for all x ∈ OK ,

στσ−1(x)− x = σ(τ(σ−1(x))− σ−1(x)) ∈ σ(P).

This proves that στσ−1 belongs to Iσ(P) and thus σIPσ−1 ⊂ Iσ(P). By the
same argument as before we obtain equality.

We will now study the relation between different inertia and decomposition
groups in finite Galois towers of number fields. Let L/K/k be such a tower. Let
p be a prime ideal in k, let P be one of K that lies above p and let ℘ denote a
prime ideal of L that lies above P. We have the tower of prime ideals ℘|P|p.
It is not difficult to see that both the ramification and residual degrees behave
multiplicatively, that is,

e(℘/p) = e(℘/P)e(P/p) and f(℘/p) = f(℘/P)f(P/p).
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Proposition 11. With the above notation, the restriction map from Gal(L/k)
to Gal(K/k) induces isomorphisms

D℘/p/D℘/P
∼= DP/p and I℘/p/I℘/P ∼= IP/p.

Proof. The restriction map Res : Gal(L/k) −→ Gal(K/k) is a surjective group
homomorphism with kernel Gal(L/K).

Consider the restriction of the above map to the decomposition group D℘/p.
We claim that the image of this map lies in DP/p. In fact, let σ ∈ D℘/p. We
must prove that Res(σ)(P) = P. We have σ(℘) = ℘ and

Res(σ)(P) = σ(P ∩ OK) ⊂ ℘ ∩ OK = P

because K is a normal extension of k and σ is a k-homomorphism so that
σ(OK) = OK . Applying this with the inverse of sigma we obtain Res(σ)−1(P) ⊂
P so that P ⊂ Res(σ)(P). This prove that Res(σ) ∈ DP/p whenever σ ∈ D℘/p.
Consequently, we have a homomorphism Res : D℘/p −→ DP/p with kernel equal
to D℘/p ∩ Gal(L/K) = D℘/P. Therefore we have an injective homomorphism
of groups

D℘/p/D℘/P −→ DP/p.

Using the fact that the ramification and residual degrees behave mutiplicatively
we see that the cardinalities of the two groups are equal and therefore the above
map is an isomorphism.

We further restrict the map Res to the inertia group I℘/p. We claim that
the image of this map lies in IP/p. In fact, let σ ∈ I℘/p and let x ∈ OK . By
the above we know that Res(σ) ∈ DP/p. We have σ(x)− x ∈ ℘. We also have
σ(x) − x ∈ OK and therefore σ(x) − x ∈ P. This proves that Res(σ) ∈ IP/P.
We therefore have a homomorphism Res : I℘/p −→ IP/p. The kernel of this
homomorphism is I℘/p ∩ Gal(L/K) = I℘/P. We therefore have an injective
homomorphism of groups

I℘/p/I℘/P −→ IP/p.

Again by comparing cardinalities, this map must be an isomorphism.

2.2.2 The Frobenius Element

Let P be a prime ideal of OK above p. The extension FP/Fp is a finite extension
of finite fields of degree fp. The order of Fp is N(p). By general theory of finite
field extensions, the Galois group of this extension is generated by the N(p)-th
power Frobenius automorphism of FP which is defined by x 7−→ xN(p). Since
DP/IP is isomorphic to Gal(FP/Fp), this element corresponds to an element in
DP/IP which we call the Frobenius element ofK/k atP and which we denote by
(P,K/k). It generates the quotient group DP/IP. A representative of (P,K/k)
in DP will be denoted σP and is characterized by σP(x) ≡ xN(p) mod P for
all x ∈ OK . Note that if p is unramified, then (P,K/k) is an actual element of
G and we will interchangeably use the notations (P,K/k) and σP in this case.
The Frobenius element is then uniquely determined by the congruence condition
above and the fact that it belongs to DP. We have the following result:
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Proposition 12. Let p be a prime ideal of k and let P be a prime ideal of K
above p. Let σP denote a representative of (P,K/k) in DP. For all σ ∈ G, we
have σσPσ−1 is a representative of (σ(P),K/k) in Dσ(P).

Proof. First of all, by Proposition 10 we know that σσPσ−1 does indeed belong
to Dσ(P). Let x ∈ OK . We have σP(x) − x ∈ P. We have σ−1(x) ∈ OK and
thus σPσ−1(x)− σ−1(x) ∈ P. Consequently, we have

σσPσ
−1(x)− x = σ(σPσ

−1(x)− σ−1(x)) ∈ σ)(P).

By definition, this shows that σσPσ−1 is a representative of (σ(P),K/k) in
Dσ(P).

Remark 8. If K/k is an abelian extension, meaning that G is an abelian group,
then for any prime ideal p in Ok there is only one decomposition group and one
inertia group above p since by Proposition 10 these are all conjugates. We will
therefore simply write Dp and Ip in this case. Also, if p is unramified, then
there is also only one Frobenius element above p by Proposition 12 and we will
denote this element by (p,K/k) or σp.

We have the following result concerning the behavior of Frobenius elements
in towers:

Proposition 13. Let L/K/k be a tower of finite Galois extensions of number
fields. Let ℘|P|p be a corresponding tower of prime ideals. Denote by Res
the restriction map Gal(L/k) −→ Gal(K/k). If σ℘ denotes a representative of
(℘,L/k) in D℘/p, then Res(σ℘) is a representative of (P,K/k) in DP/p.

Proof. By Proposition 11, we have Res(D℘/p) = DP/p. Let x ∈ OL. Then
σ℘(x) − xN(p) ∈ ℘. If x ∈ OK then σ℘(x) ∈ OK because K/k is normal.
Thus σ℘(x) − x ∈ OK ∩ ℘ = P. Thus Res(σ℘) is indeed a representative of
(P,K/k).

Let K/k be a finite Galois extension of number fields. Let G = Gal(K/k)
and let H be a subgroup of G. We set F = KH . Note that F/k is Galois if
and only if H is a normal subgroup of G. We fix a prime p in k. In F we have
the following decomposition pOF = qe11 . . . qerr . For each i, we let fi denote the
residual degree of qi over p. For each qi we let Pi denote a prime of K that lies
above qi and we denote by e′i and f ′i the associated ramification and residual
degrees of Pi over qi. We let e and f be the ramification and residual degrees
of Pi over p. We have the following formulas:

r∑
i=1

eifi = [F : k] e = eie
′
i f = fif

′
i .

The prime ideal Pi all lie above p and G acts transitively on the prime ideals
of OK that lie above p. We let ηi ∈ G be such that ηi(P1) = Pi. Let Di

and Ii be respectively the decomposition and inertia groups of Pi over p. Then
by Proposition 10 we have Di = ηiD1η

−1
i and Ii = ηiI1η

−1
i . Let σ1 ∈ D1 be

an element such that (P1,K/k) = σ1I1 and choose σi ∈ Di such that σi =
ηiσ1η

−1
i by Proposition 12. Note that Di ∩H and Ii ∩H are respectively the

decomposition and inertia groups of Pi over qi. The order of the group Di is
ef and the order of Di ∩H is e′if ′i and thus the index of Di ∩H in Di is eifi.
Let {γi,ν} for ν = 1, . . . , eifi be a system of right coset representatives of the
quotient Di/(Di ∩H).
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Lemma 3. With the above notations, the family {γi,νηi} for i = 1, . . . , r and
ν = 1, . . . , eifi is a system of distinct right coset representatives of the quotient
H \G.

Proof. We first prove that they each represent a distinct coset. Suppose that
Hγi,νηi = Hγj,µηj . Then γi,νηiη−1

j γ−1
j,µ ∈ H. Since γj,µ belongs to Dj we have

γ−1
j,µ(Pj) = Pj and thus η−1

j γ−1
j,µ(Pj) = P1. Since ηi(P1) = Pi and γi,µ belongs

to Di, we see that γi,νηiη−1
j γ−1

j,µ(Pj) = Pi. But elements of H permute divisors
of prime ideals in OF and therefore we must have that Pi divides qj which
implies that i = j. But then γi,νγ

−1
i,µ ∈ H so that γi,ν and γi,µ represent the

same element in the quotient (Di ∩H) \Di and this implies ν = µ. This proves
that each element of our system represents distinct cosets. Since our system
is comprised of

∑
i=1 eifi = [F : k] = [G : H] elements we have proved our

claim.

Lemma 4. With the above notations, for each i we let φi be an element of the
decomposition group Di ∩ H of Pi over qi such that (Pi,K/F ) = φi(Ii ∩ H).
For any integer j, the intersection σji Ii∩H is non-empty if and only if fi divides
j. Moreover, if this is the case, then

σji Ii ∩H = φ
j/fi
i (Ii ∩H).

Proof. Suppose that σji τ belongs to H for some τ in Ii. Then by definition of
the inertia group, for all x ∈ OK , we have σji τ(x) ≡ σji (x) mod Pi. The residue
field OK/Pi is an extension of OF /qi of degree f ′i and since σji τ belongs to H,
σji τ(x) = x for all x in OF . By definition of the Frobenius element, σi(x) ≡
xN(p) mod Pi for all x in OK . By composition, σji (x) ≡ xN(p)j mod Pi. But
we just saw that σji τ corresponds to an element of the Galois group of the
extension (OK/Pi)/(OF /qi) which is a cyclic group generated by the Frobenius
automorphism φi : x 7→ xN(p)fi . Thus σji τ is some power of φi. This implies
that fi divides j.

Suppose that this is the case. The element φi is characterized by the fact
that φi(x) ≡ xN(p)fi mod Pi for x in OK . Thus σji τ and φj/fi have the exact
same effect on OK/Pi and they both belong to Di ∩H. They therefore share
the same coset of Ii ∩H. This implies that

σji Ii ∩H ⊂ φ
j/fi
i (Ii ∩H).

If τ belongs to Ii ∩ H then for all x ∈ OK , φk/fii τ(x) ≡ φ
k/fi
i (x) mod Pi ≡

xN(p)j mod Pi and therefore φj/fii τ has the same effect as σji . Both belong to
Di and thus share the same coset of Ii. Since φ

j/fi
i τ also belongs to H, we get

φ
j/fi
i (Ii ∩H) ⊂ σji Ii ∩H and this finishes the proof.

2.3 The Artin Map

Let K/k be a finite abelian extension of number fields with Galois group G.
Let p be an unramified prime ideal of k. By Proposition 10 and Proposition 12,
the decomposition group DP, the inertia group IP and the Frobenius element
(P,K/k) do not depend on the prime P dividing p since we are in the case
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where G is an abelian group. We will therefore use the notation Dp, Ip and
(p,K/k).

Letm be a modulus ofK that is divisible by all prime ideals ofOk that ramify
in k. Let p be a prime ideal that does not divide m. Since it is unramified in K,
the inertia group Ip is trivial and the Frobenius element (p, L/K) is an element
of the decomposition group Dp. In this case, (p,K/k) is also called the Artin
symbol of p. We extend the notion of Artin symbol to Ik(m) multiplicatively.
Explicitly, if a =

∏
p p

vp(a) is a fractional ideal in Ik(m), then all the primes in
its decomposition are unramified and we may define its Artin symbol by

(a,K/k) =
∏
p

(p,K/k)vp(a) ∈ G.

Definition 8. With the above notations, the group homomorphism

ΦK/k,m : Ik(m) −→ Gal(K/k), a 7−→ (a,K/k)

is called the reciprocity law map or the Artin map ofK/k relative to the modulus
m.

Notice that if p is unramified in K/k, then (p,K/k) is trivial if and only
if Gal(FP/Fp) is trivial, that is, if and only if fp = 1. So p has trivial Artin
symbol if and only if p splits completely in K/k.

2.4 Main Results

Before stating the theorems, we make the following definition:

Definition 9. Let K/k be a finite extension of number fields. If v is an infinite
real prime of k, then we say that v is unramified or that it splits in K/k if for
every extension τ of σv to K we have τ(K) ⊂ R. A complex infinite prime of k
is always said to be unramified or split.

The first theorem of class field theory is due to Artin and says that the Galois
group of any finite abelian extension of number fields is a generalized ideal class
group for some modulus of k. The precise statement is as follows:

Theorem 2.4.1 (Artin Reciprocity). Let K/k be a finite abelian extension of
number fields and let m be a modulus of k containing all primes, finite or infinite,
that ramify in K. The following statements concerning the Artin map are true:

(i) The map ΦK/k,m is surjective.

(ii) If the exponents m(v) of the modulus m are sufficiently large, then the
kernel of ΦK/k,m is a congruence subgroup for m, that is,

Pk,1(m) ⊂ ker(ΦK/k,m) ⊂ Ik(m).

The isomorphism

Ik(m)/ker(ΦK/k,m)
∼−→ Gal(K/k)

shows that Gal(K/k) is a generalized ideal class group for m.
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Suppose that K/k is a finite abelian extension and that Gal(K/k) is a gen-
eralized ideal class group for a modulus m. Let n be a modulus of k that is
divisible by m. It is clear that Pk,1(n) ⊂ Pk,1(m) and Ik(n) ⊂ Ik(m). The
map ΦK/k,n is the restriction of the map ΦK/k,m to Ik(n) so that ker(ΦK/k,n) =
ker(ΦK/k,m)∩Ik(n) contains Pk,1(m)∩Ik(n) which contains Pk,1(n). Therefore,
we have

Pk,1(n) ⊂ ker(ΦK/k,n) ⊂ Ik(n).

This proves that Gal(K/k) is a generalized ideal class group for infinitely many
moduli. But as the following theorem shows, there is a preferred modulus.

Theorem 2.4.2 (Conductor Theorem). Let K/k be a finite abelian extension
of number fields. There exists a modulus f = f(K/k), called the conductor of
K/k, such that:

(i) A prime of k, finite or infinite, ramifies in K if and only if it divides f.

(ii) Let m be a modulus of k divisible by all primes, finite or infinite, that
ramify in K. Then ker(ΦK/k,m) is a congruence subgroup for m if and
only if f divides m.

To the Galois group of any finite abelian extension of number fields, one
can associate a congruence subgroup given a suitable choice of modulus. The
following theorem gives a converse result:

Theorem 2.4.3 (Existence Theorem). Let k be a number field, m a modulus of
k and H a congruence subgroup for m. There exists a unique abelian extension
K/k all of whose primes that ramify divide m and such that H = ker(ΦK/k,m).

Given the above results of class field theory we deduce the following.

Corollary 7. Let K/k and L/k be two finite abelian extension of the number
field k. Then K ⊂ L if and only if there exists a modulus m of k divisible by all
primes in k that ramify in either K or L such that

Pk,1(m) ⊂ ker(ΦL/k,m) ⊂ ker(ΦK/k,m).

Proof. Suppose that K ⊂ L and consider the restriction map

rK : Gal(L/k) −→ Gal(K/k)

that has kernel equal to Gal(L/K). By Theorem 2.4.1, there exists a modulus
m of k divisible by all primes that ramify in L and such that

Pk,1(m) ⊂ ker(ΦL/k,m).

If a prime of k ramifies in K, then it also ramifies in L. Thus m contains all
primes that ramify in K. Let p be a prime ideal in Ok that is unramified in L.
Then it is also unramified in K and by Proposition 13 we have rK((p, L/k)) =
(p,K/k). This implies that rK ◦ΦL/k,m = ΦK/k,m and therefore ker(ΦK/k,m) =

Φ−1
L/k,m(Gal(L/K)). The latter implies in particular that ker(ΦK/k,m) contains

ker(ΦL/k,m). This proves that

Pk,1(m) ⊂ ker(ΦL/k,m) ⊂ ker(ΦK/k,m)

as desired.
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Conversely, suppose that the above inclusions hold for a certain modulus
m. This implies that ker(ΦK/k,m) is a congruence subgroup for the modulus
m. Define H = ΦL/k,m(ker(ΦK/k,m)). This is a normal subgroup of the group
Gal(L/k) since the latter is abelian. Hence the fixed field LH ⊂ L is an abelian
extension of k. By the reasoning of the first part,

ker(ΦLH/k,m) = Φ−1
L/k,m(H) = ker(ΦL/k,m).ker(ΦK/k,m) = ker(ΦK/k,m),

where in the last equality we used the inclusion ker(ΦL/k,m) ⊂ ker(ΦK/k,m). By
the uniqueness part of Theorem 2.4.3, we must have K = LH and in particular
K ⊂ L.

2.5 Ray Class Fields
Let k be a number field and let m be a modulus of k. Then Pk,1(m) is a
particularly simple example of a congruence subgroup for m. Theorem 2.4.3
ensures that there exists a unique abelian extension of k, say k(m), that has the
following properties:

• All primes of k that ramify in k(m) divide m.

• The kernel of the Artin map Φk(m)/k,m is Pk,1(m).

The second property and Theorem 2.4.1 ensure that we have the exact sequence

1 −→ Pk,1(m) −→ Ik(m) −→ Gal(k(m)/k) −→ 1.

In particular, the m-ray class group Clk(m) is isomorphic via the Artin map to
Gal(K(m)/K). As a consequence, the field k(m) is referred to as the m-ray class
field of k.

Proposition 14. Let K/k be a finite abelian extension of number fields. There
exists a modulus m of k such that K ⊂ k(m). In particular, K is a subfield of
k(n) for any modulus n divisible by m. Moreover, the conductor of K/k is the
smallest modulus for which K is a subfield of the corresponding ray class field.

Proof. By Theorem 2.4.1, there exists a modulus m such that

Pk,1(m) = ker(Φk(m)/k,m) ⊂ ker(ΦK/k,m)

and then by Corollary 7 K is a subfield of k(m). This proves that if Gal(K/k)
is a congruence subgroup for some modulus, then K is a subfield of the cor-
responding ray class field. Since Gal(K/k) is a congruence subgroup for any
modulus n divisible by m the result follows. The final statement is clear from
Theorem 2.4.2.

A consequence of Proposition 14 is that the description of the ray class fields
of a given number field provide a good description of the finite abelian extensions
of this field. In the next example, we shall give the ray class fields in the simplest
case k = Q.

Example 2. Let m be an integer larger or equal to 3 that is either odd or
divisible by 4 so that φ(m) is even. Here, φ denotes the Euler totient function.
Let ζ be a primitive m-th root of unity and consider the cyclotomic extension
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Q(ζ)/Q. It is well known that this extension is abelian of degree φ(m) with
Galois group isomorphic to (Z/mZ)∗. Also, it is known that OQ(ζ) = Z[ζ] and
the absolute discriminant is

dQ(ζ) =
(−1)φ(m)/2mφ(m)∏
p|m p

φ(m)/(p−1)
. (2.5.0.1)

The latter implies that the primes p that ramify in Q(ζ) all divide m. Moreover,
since m is greater than 3, the infinite place v∞ of Q ramifies in Q(ζ). Therefore,
the modulus m = mZv∞ contains all ramified primes of Q in Q(ζ). Consider
the composition map

IQ(m) −→ (Z/mZ)∗ −→ Gal(Q(ζ)/Q)(
a
b

)
+
Z 7−→ ab−1 mod m

a mod m 7−→ (σa : ζ 7→ ζa).

This is the Artin map ΦQ(ζ)/Q,m. By Example 1, its kernel is PQ,1(m). Thus
Q(ζ) is the (mZv∞)-ray class field of Q.

Let K = Q(ζ)+ be the maximal real subfield of Q(ζ). Every field homo-
morphism of K into K̄ is obtained by restricting σa : ζ 7→ ζa to K for some
a ∈ (Z/mZ)∗. A basis of Q(ζ) as a Q-vector space is given by 1, ζ, . . . , ζφ(m)−1.
If x ∈ K, then there exist rational numbers λl such that x =

∑
l λlζ

l. If τ
denotes complex conjugation, then

τ(σa(x)) = τ

(∑
l

λlζ
la

)
=
∑
l

λlτ(ζ)la = σa(τ(x)). (2.5.0.2)

Since x is real we have τ(x) = x and therefore τ(σa(x)) = σa(x) so that σa(x) is
also real. Thus σa(K) is a real subfield of Q(ζ) and must therefore by definition
of K be contained in K. This proves that K/Q is a normal extension and thus
abelian. Moreover, since ζ is a root of unity its absolute value is 1 and its inverse
is τ(ζ). By (2.5.0.2) it follows that σa(x) = σ−a(x) so that σa|K = σ−a|K . As a
consequence, the Galois group G of K/Q is isomorphic to (Z/mZ)∗/{±1} and
the degree of the extension is φ(m)/2. Let p be a prime number. If p does not
divide m, then p is unramified in Q(ζ) and therefore also unramified in K. Thus
a prime that ramifies in K must divide m. Moreover, since K is totally real the
infinite prime v∞ is unramified in K. Thus, all primes that ramify in K divide
m. Finally, the composition map

IQ(mZ) −→ (Z/mZ)∗/{±1} −→ Gal(K/Q)
a
bZ 7−→ [ab−1 mod m]

[a mod m] 7−→ (σa|K : ζ 7→ ζa).

is the Artin map ΦK/Q,mZ and by Example 1 its kernel is PQ,1(mZ). We conclude
that K is the mZ-ray class field of Q.

We now show how class field theory can be used to prove the famous:

Theorem 2.5.1 (Kronecker-Weber). Any finite abelian extension of Q is a
subfield of some cyclotomic field Q(ζ).

Proof. Let K/Q be a finite abelian extension. By Proposition 14 there exists a
modulus m of Q such that K is a subfield of Q(m) and this is true for all moduli
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divisible by m. In particular, it is true for some modulus of the form (mZv∞).
By Example 2, Q(mZv∞) = Q(ζm) where ζm is a primitive m-th root of unity
and the proof is complete.

We remark that the Kronecker-Weber Theorem was proved long before the
development of the theory of class fields. The result was stated by Kronecker
in 1853 and proved by Weber in 1886. It can be viewed as the starting point of
what is today known as class field theory.

If k is a number field, a particularly interesting ray class field is the one
corresponding to the empty modulus 1 of k. This field is called the Hilbert
class field of k and is often denoted by Hk or simply H when there is no risk of
confusion.

Proposition 15. Let k be a number field. The Hilbert class field Hk has the
following properties:

(i) It is the maximal everywhere unramified abelian extension of k.

(ii) Its Galois group Gal(Hk/k) is isomorphic to the ideal class group Cl(Ok)
of k via the Artin map.

(iii) A prime ideal splits completely in Hk/k if and only if it is a principal ideal
of Ok.

Proof. By definition of the ray class field, every prime that ramifies in Hk must
divide the modulus 1. Thus, no prime of k is ramified in Hk. In other words, Hk

is totally unramified. If K is any finite abelian extension of k that is unramified
everywhere, then by Theorem 2.4.2 (i), the conductor of K/k must be 1. By
Proposition 14, K is a subfield of Hk. Therefore, HK is indeed the maximal
totally unramified abelian extension of K.

The second claim follows from the fact that Ik(1) = Ik and Pk,1(1) = Pk so
that Clk(1) = Cl(Ok).

A prime splits completely if and only if its Artin symbol (p, Hk/k) is trivial
which is true if and only if p belongs to the kernel of the Artin map ΦHk/k,1.
But this kernel is Pk hence the result.
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Chapter 3

Linear Representations of
Finite Groups

We give an introduction to the theory of finite-dimensional complex linear rep-
resentations of finite groups. We closely follow the exposition in [Se1]. In this
section, by representation or linear representation we mean finite-dimensional
complex linear representation.

3.1 Definition and First Properties

Let G be a finite group. A linear representation of G is a finite-dimensional com-
plex vector space V together with a homomorphism of groups ρ : G −→ GL(V ).
A representation of G will most often simply be referred to by V , keeping the
homomorphism ρ implicit. When in need of specifying the homomorphism we
will talk about the representation (ρ, V ).

The homomorphism ρ gives a left action of G on V defined by

G× V −→ V, (σ, v) 7−→ ρ(σ)(v).

We will often denote the action of σ on v simply by σv. Consequently V has the
structure of a finite-dimensional complex vector space and a left G-module and
these two actions commute: V is a finite-dimensional left C[G]-module where
C[G] denotes the group ring of G over C. This is a free C-vector space whose
basis is one-to-one with G. It is a ring with multiplication extending linearly
the one of G. As a C-algebra it is isomorphic to

⊕
σ∈G Cσ.

Conversely, a finite-dimensional C[G]-module is a linear representation of G.
Both points of view will turn out to have their advantages. The words C[G]-
module and representation will be used interchangeably and both will implicitly
contain "finite-dimensional".

Remark 9. Let V be a C[G]-module. An element α of C[G] can be viewed a
C-linear map α : V −→ V . In order for this map to be a C[G]-homomorphism,
it is necessary and sufficient that α be central in C[G], that is, for all β ∈ C[G],
we have αβ = βα. It even suffices to check this only in the case β ∈ G since C
is commutative.
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Let G be a group. Two representations V1 and V2 of G are said to be
isomorphic if they are isomorphic as C[G]-modules. In other words, there exists
an isomorphism f : V1 −→ V2 of C-vector spaces such that for all σ ∈ G and all
x ∈ V1, we have σf(x) = f(σx).

Another remark concerning the definition of a linear representation is that
upon choosing a basis for the n-dimensional complex vector space V , we can
identify GL(V ) with GLn(C), the set of all n× n invertible matrices with coef-
ficients in C.

Let V1 and V2 be two representations of G and let f : V1 −→ V2 be an
isomorphism. Choose bases for V1 and V2 and let R1(σ) and R2(σ) denote
the respective matrices in GL(V1) and in GL(V2) of σ ∈ G. Let A denote the
matrix of f with respect to these bases. Then the fact that f is an isomorphism
of representations tells us that R1(σ) = A−1R2(σ)A for all σ ∈ G.

Let G be a finite group and let V be a representation. A subrepresentation
W of V is a sub-C[G]-module of V . In other words, W is a sub-vector space of
V that is stable under the action of G.

Proposition 16. Let G be a finite group. Then C[G] is a semisimple ring.

Proof. It is enough to prove that any left C[G]-module is semisimple (cf. [Ro2],
Chapter 4, Proposition 4.5). So let V be a left C[G]-module. Showing that V
is semisimple is equivalent to proving that every sub-module of V is a direct
summand (cf. [Ro2], Chapter 4, Proposition 4.1). Let therefore W be a sub-
C[G]-module of V . In particular, W is a sub-vector space of V so there is a
projection map p : V −→ W , that is, a C-linear map such that p(x) = x for all
x ∈W and p(V ) = W . Let g denote the order of G and define

p0 =
1

g

∑
σ∈G

σpσ−1 : V −→ V.

We claim that p0(V ) = W . In fact, let v ∈ V . Then p(σ−1v) ∈ W since p is
a projection and σ(p(σ−1v)) ∈ W since W is stable under the action of σ. Let
w ∈ W . Since W is stable under the action of σ−1, we have σ−1w ∈ W . Since
p is a projection onto W we have p(σ−1w) = σ−1w so that p0(w) = w. This
proves that p0 is a projection onto W .

We now prove that p0 is a C[G]-module homomorphism. The actions of C
and of G on V commute and p is C-linear. We conclude that p0 is also C-linear.
Let τ ∈ G. Then for all v ∈ V we have

τp0(v) =
1

g

∑
σ∈G

τσp(σ−1v) =
1

g

∑
η∈G

ηpη−1τv = p0(τv)

where we performed the change of variables η = τσ. We conclude that p0 is a
C[G]-module homomorphism. If W 0 = ker(p0), then we have an exact sequence
of C[G]-modules

0 −→W 0 −→ V
p0

−→W −→ 0.

Let i : W ↪→ V be the inclusion. Then p0 ◦ i = id|W so i is a section and the
sequence splits and V = W ⊕W 0. We conclude that W is a direct summand of
V .
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Remark 10. Semisimple rings R are specially nice to work with since every
short exact sequence of left (or right) R-modules splits and every left (or right)
R-module is semisimple and projective (cf. [Ro2], Chapter 4, Proposition 4.5).
In particular, every left (or right) R-module is flat.

Definition 10. Let G be a finite group. A representation V of G is said to be
irreducible if it is simple as a C[G]-module.

Corollary 8. Every representation V of G can be written as a finite direct sum
of irreducible representations.

Proof. In fact, C[G] is a semisimple ring so the C[G]-module V is semisimple
as a module. By definition of semisimplicity, it can be written as a direct
sum of simple sub-modules (or irreducible representations). Since V is finite
dimensional over C, the representation V can be written as a finite sum.

Remark 11. One can ask if the decomposition of a representation V into a
direct sum of irreducible representations is unique. We quickly realize that
this is not the case: suppose that the action of G on V is trivial. Then each
irreducible component of V is a one-dimensional complex vector space and there
are many ways to decompose a vector space into a direct sum of lines.

3.2 Character of a Representation
Let G be a finite group. Let (ρ, V ) be a representation of G of dimension n. If
we choose a basis of V over C, then ρ(σ) becomes an n × n invertible matrix
with coefficients in C and we can define the trace and the determinant of ρ(σ)
as a matrix. These quantities associated to σ are independent of the choice of
basis since changing basis leads to a matrix that is conjugated with respect to
the previous one. We can therefore speak of the trace and the determinant of
ρ(σ) without ambiguity.

With this in mind, we define the character associated to the representation
(ρ, V ) to be the complex valued function

χ : G −→ C, σ 7−→ tr(ρ(σ)).

If the dimension of V is n, then χ is a said to be of dimension n and if V is
irreducible as a representation, then χ is said to be an irreducible character.

Note that if (ρ1, V1) and (ρ2, V2) are two isomorphic representations of G
with respective characters χ1 and χ2, then χ1 = χ2. In fact, we noted in
the previous section that in the given case, the matrices ρ1(σ) and ρ2(σ) are
conjugates and therefore their traces coincide. Later we will see the converse:
if two representations of G have the same character, then they are isomorphic
as representations. Thus the study of representations reduces to the study of
characters of G.

We remark that a representation V of dimension 1 coincides with its char-
acter χ. In this case, χ : G −→ C∗ is a homomorphism of groups which takes
values on the unit circle S1 since G is finite.

In what follows we use the notation z̄ to mean the complex conjugate of the
element z.

Proposition 17. Let G be a finite group and let (ρ, V ) be a representation with
character χ. We have the following properties:
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(i) χ(1) = dimC V .

(ii) χ(σ−1) = χ̄(σ) for all σ ∈ G.

(iii) χ(τστ−1) = χ(σ) for all σ, τ ∈ G.

Proof. By definition we have χ(1) = tr(ρ(1)) = tr(id) = dimC V . For the
second assertion, let λi(σ) denote the eigenvalues of ρ(σ) for σ ∈ G. Since ρ
is a homomorphism and G is finite, the matrix ρ(σ) is of finite order and it
follows that the same is true for the eigenvalues. In particular, |λi(σ)| = 1 so
that λi(σ)−1 = λi(σ). Thus,

χ(σ−1) = tr(ρ(σ)−1) =
∑
i

λi(σ)−1 =
∑
i

λi(σ) = χ̄(σ).

The last assertion follows directly from the fact that the trace operator com-
mutes pairs of elements.

Let χ be a character of G and denote by Q(χ) the finite field extension of Q
obtained by adjoining to Q all the values χ(σ) for σ ∈ G.

Proposition 18. Let χ be a character of a representation (ρ, V ) of G. Then
Q(χ) is an abelian extension of Q.

Proof. Denote by λi(σ) the eigenvalues of ρ(σ). Let g denote the order of G.
Then λi(σ) is a g-th root of unity for all i and all σ. Let ζ denote a primitive
g-th root of unity. Then Q(χ) is contained in the cyclotomic field Q(ζ) and
every embedding of Q(χ) into C is the restriction to Q(χ) of σa : ζ 7−→ ζa for
some a ∈ (Z/gZ)∗. We have

σa(χ(σ)) =
∑
i

σa(λi(σ)) =
∑
i

λi(σ)a = χ(σa) ∈ Q(χ)

so that Q(χ)/Q is a normal extension and thus Galois. It is a subextension of
the abelian extension Q(ζ)/Q and is therefore itself abelian.

3.3 Representations of Quotient Groups

Let G be a finite group and let H be a normal subgroup of G. Let V be a
representation of the group G/H. This is a finite-dimensional C[G/H]-module.
The natural quotient map G −→ G/H endows G/H with the structure of a
G-module. This G-module structure on G/H gives a G-module structure on V ,
making it into a representation of G. Denote this new representation by InflGHV
or simply InflV and call it the inflation of V . Note that

Infl : C[G/H]Mod −→ C[G]Mod

is an exact functor from the category of left C[G/H]-modules to the category
of left C[G]-modules.

We denote by Inflχ the character of InflV which is given by the diagram

Inflχ : G −→ G/H
χ−→ C.
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Conversely, starting with a representation V of G we would like to define a
representation of G/H. Consider the subspace V H of H-invariants. Explicitly,
we have

V H = {v ∈ V : σx = x for all σ ∈ H}.

This is a sub-C[G]-module of V . In fact, let σ ∈ H and τ ∈ G. SinceH is normal
in G, there exists σ′ ∈ H such that στ = τσ′. Hence, if v ∈ V H then σ(τv) =
τ(σ′v) = τv and τv ∈ V H . So we have a homomorphism G −→ GL(V H).
The kernel of this map contains H so this map factors through H and gives a
homomorphism G/H −→ GL(V H). In other words, V H is a representation of
G/H. If χ is the character of V , then we denote by χH the character of V H . If
σ ∈ G, then we shall use the notation [σ] to denote the image of σ in G/H.

Consider Z as an H-module, the action of H being trivial. Let HomH(Z, V )
denote the set of H-module homomorphisms f : Z −→ V . This a group under
addition and inherits the structure of a C[G]-module from V . Explicitly, the ac-
tion of an element x ∈ C[G] is defined by (xf)(n) = xf(n) where the right hand
side makes use of the action of C[G] on V . The action of H on HomH(Z, V ) is
trivial since for σ ∈ H we have (σf)(n) = f(σn) = f(n). Therefore HomH(Z, V )
has the structure of a G/H-module. Note that an element f ∈ HomH(Z, V ) is
uniquely determined by the image f(1) in V . Moreover, as an element of V ,
f(1) is fixed by H. We therefore have a bijection of sets between HomH(Z, V )
and V H which is a C[G/H]-module isomorphism.

Note that

(−)H = HomH(Z,−) : C[G]Mod −→ C[G/H]Mod

is a covariant left-exact functor from the category of left C[G]-modules to the
category of left C[G/H]-modules.

Proposition 19. Let G be a finite group and H a normal subgroup of G. Define

NH =
1

|H|
∑
τ∈H

τ ∈ C[H].

This is a central element of C[G]. Moreover, if V is a representation of G, then
NH acts on V as the projection onto V H .

Proof. We check that this is a central element of C[G]. In fact, if σ ∈ G then
we have

σNH =
1

|H|
∑
τ∈H

στ =
1

|H|
∑
τ ′∈G

τ ′σ = NHσ

where we performed the change of variables τ ′ = στσ−1 and used the fact that
the subgroup H is normal to deduce that τ ′ ∈ H. Note that if σ ∈ H, then
σNH = NHσ = NH . Moreover, if v ∈ V H then NHv = v. Thus the action of
NH on V is the projection onto V H .

Corollary 9. Let G be a finite group and H a normal subgroup of G. Let V be
a representation of G with character χ. For σ ∈ G we have

χH([σ]) =
1

|H|
∑
τ∈H

χ(τσ) =
1

|H|
∑
τ∈H

χ(στ).
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Proof. We compute that

χH([σ]) = tr([σ]NH) = tr(NHσ) =
1

|H|
∑
τ∈H

tr(τσ) =
1

|H|
∑
τ∈H

χ(τσ).

The last equality is obtained by change of variables and by using the fact that
H is a normal subgroup.

Corollary 10. Let G be a finite group and H a normal subgroup of G. Let V
be a representation of G with character χ. We have

dimC V
H =

1

|H|
∑
h∈H

χ(h).

Proof. By Corollary 9 we have χH([σ]) = 1
|H|
∑
τ∈H χ(στ) and by Proposition

17 (i) we have

dimC V
H = χH([1]) =

1

|H|
∑
τ∈H

χ(τ).

3.4 Representations of Subgroups
Let G be a finite group and let H be a subgroup of G. Let V be a representation
of G. This is a C[G]-module. The natural inclusion H ↪→ G endows G with
an H-module structure. Consequently, this inclusion gives V the structure of a
C[H]-module. In other words, V is a representation of H. This representation
will be denoted ResV or ResGHV . Note that

Res : C[G]Mod −→ C[H]Mod

is an exact functor from the category of left C[G]-modules to the category of left
C[H]-modules. If χ is the character of V , then we denote by Resχ the character
of ResV given by the diagram

Resχ : H ↪→ G
χ−→ C.

Conversely, given a representation V of H we would like to define a repre-
sentation of G. In other words, given a C[H]-module V , we would like to give it
a C[G]-module structure. The answer to this problem is provided by the tensor
product of modules and we define the induced representation IndV or IndGHV
to be

IndV := C[G]⊗C[H] V.

By properties of the tensor product, IndV is uniquely defined up to isomorphism.
Note that

Ind = C[G]⊗C[H] − : C[H]Mod −→ C[G]Mod

is an exact functor from the category of left C[H]-modules to the category of
left C[G]-modules by Remark 10.

If χ is the character of V then we denote by Indχ the character of IndV .
In order to give an expression for Indχ(σ) with σ ∈ G and actually be able to
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do computations, we need a more explicit description of IndV . We have the
following decomposition of C[G] as a complex vector space:

C[G] ∼=
⊕
σ∈G

Cσ ∼=
⊕

r∈H\G

⊕
σ∈Hr

Cσ ∼=
⊕

r∈H\G

⊕
τ∈H

Cτr ∼=
⊕

r∈H\G

C[H]r.

Denote by ψ : C[G] −→
⊕

r∈H\GC[H]r this isomorphism. Define a G-action
on
⊕

r∈H\GC[H]r as follows: if σ ∈ G and v ∈
⊕

r∈H\GC[H]r, then we define

σ(v) = ψ(σ(ψ−1(v))).

Then the map ψ becomes an isomorphism of C[G]-modules.
One can explicitly write down this action: let σ ∈ G and let r ∈ H \ G.

Then σr ∈ Hr′ for some r′ ∈ H \G and therefore there exists τ ∈ H such that
σr = τr′. The action of σ on C[H]r is given by σ(αr) = τ(α)r′ for α ∈ C[H].
Extend this linearly to

⊕
r∈H\GC[H]r.

By general properties of the tensor product, we see that

IndV ∼=
⊕

r∈H\G

V r (3.4.0.1)

as C[G]-modules. In particular, dimC IndV = |H \G|dimC V .

Theorem 3.4.1. Let G be a finite group and H a subgroup of G. Let V be a
representation of H with character χ. Let R be a full set of representatives of
the right cosets of H \G. Then for σ ∈ G we have the formula

Indχ(σ) =
∑
r∈R

r−1σr∈H

χ(r−1σr) =
1

|H|
∑
τ∈G

τ−1στ∈H

χ(τ−1στ).

Proof. Let R = {r1, . . . , rk}. Take as basis for IndV the one of
⊕k

i=1 V ri. Then
if σ ∈ G we have

σ

(
k∑
i=1

viri

)
=

k∑
i=1

τi(vi)rs(i)

where σri = τirs(i) with τi ∈ H and s an element of the permutation group
Sn of nelements. Express σ in matrix form in this basis. If rs(i) 6= ri, then we
get only zeroes on the diagonal in the part of the matrix where we plug in the
image of the basis vectors of V ri. So the trace only takes into account the i’s
for which rs(i) = ri. This happens exactly whenever r−1

i σri = τi ∈ H and the
sum of the diagonal terms in this part of the matrix is χ(τi). Taking the trace
of the whole matrix we get

Indχ(σ) =

k∑
i=1

r
−1
i

σri∈H

χ(τi) =

k∑
i=1

r
−1
i

σri∈H

χ(r−1
i σri).

To prove the second formula, note that if τ is in the coset defined by ri, then τ =
rih for some h ∈ H and by Proposition 17 (iii), χ(τ−1στ) = χ(h−1r−1

1 σr1h) =
χ(r−1

i σri). Since there are |H| elements in each coset, we see that∑
τ∈Hri
τ−1στ∈H

χ(τ−1στ) = |H|χ(r−1
i σri)

and the second formula follows.
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3.5 The Dual Representation

Let G be a finite group and let V be a representation of G. Denote by V ∨ the
dual vector space HomC(V,C) of V .

Proposition 20. Let G be a finite group and let V be a representation of G
with character χ. The dual V ∨ has the structure of a left C[G]-module and is
therefore a representation of G. Moreover, its dimension is the one of V and
its character is χ̄. Finally, V is irreducible if and only if V ∨ is irreducible.

Proof. Let σ ∈ G. Then we define a left action on V ∨ by setting (σ.f)(v) =
f(σ−1v) for f ∈ V ∨ and v ∈ V . One easily checks that this is indeed an action.
Let x1, . . . , xn be a basis for V as a C-vector space and denote by x1, . . . , xn the
corresponding dual basis. Explicitly, we have

xj(

n∑
i=1

λixi) = λj .

LetM(σ) be the matrix expression of σ in the basis x1, . . . , xn. Then the matrix
expression of σ in the dual basis is the transposed matrix M(σ−1)t. It follows
that the character of V ∨ is given by σ 7−→ χ(σ−1). By Proposition 17 (ii), this
is χ̄.

Finally, suppose that V ∨ is reducible. Then its character can be written as
a sum of character θ1 + θ2. Since its character is χ̄, we obtain χ = θ̄1 + θ̄2 which
is a contradiction. The converse is similar.

Proposition 21. Let G be a finite group and let V andW be two representations
of G. Then we have an isomorphism of C[G]-modules

V ∨ ⊗C W
∼−→ HomC(V,W ).

Proof. Define

F : V ∨ ×W −→ HomC(V,W ), (f, w) 7−→ (v 7−→ f(v)w).

We check that this map is biadditive. If f1, f2 ∈ V ∨, then

F ((f1 + f2, w))(v) = (f1 + f2)(v)w = F ((f1, w))(v) + F ((f2, w))(v)

so F is linear in the first variable. If w1 ∈ w2, then

F ((f, w1 + w2))(v) = f(v)(w1 + w2) = F ((f, w1))(v) + F ((f, w2))(v)

so F is linear in the second variable.
Moreover, if λ ∈ C, then

F ((f.λ, w))(v) = (f.λ)(v)w = f(λv)w = f(v)(λw) = F ((f, λw))(v).

By the universal property of the tensor product, there is a unique C-linear map

F̃ : V ∨ ⊗C W −→ HomC(V,W )

such that F̃ (f ⊗ w) = F ((f, w)).
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We check that F̃ is injective. In fact, suppose that F̃ (f ⊗ w) = 0 for all f
and w. Then f(v)w = 0 for all v ∈ V . If w 6= 0, then f(v) = 0 so that f = 0.
in either case, f ⊗ w = 0. Finally, since

dimC V
∨ ⊗C W = dimC HomC(V,W ) = dimC V dimCW

we must have that F̃ is an isomorphism of C-vector spaces.
Note that V ∨ ⊗C W ∈ C[G]Mod where the action is given for σ ∈ G by

σ.(f ⊗ w) = (f.σ−1)⊗ (σw).

Also, HomC(V,W ) ∈ C[G]Mod where the action is given for σ ∈ G by

(σ.φ)(v) = σφ(σ−1v).

Let σ ∈ G. Then

F̃ (σ.(f ⊗ w)) = F ((f.σ−1)⊗ (σw)) = f(σ−1v)(σw) = (σ.F̃ (f ⊗ w))(v)

so that F̃ is a C[G]-isomorphism.

Corollary 11. Let G be a finite group. Let V andW be two representations of G
with respective characters χV and χW . Then the character of the representation
HomC(V,W ) is χ̄V χW .

Proof. By Proposition 20, the character of the dual representation V ∨ is χ̄V .
One checks easily that the character of the tensor product of two representations
is the product of their characters. Therefore the character of the representation
V ∨ ⊗C W is χ̄V χW . By Proposition 21, the representations V ∨ ⊗C W and
HomC(V,W ) are isomorphic and thus share the same character.

Corollary 12. Let G be a finite group and let V and W be two representations
of G. Then we have an isomorphism of complex vector spaces

V ∨ ⊗C[G] W
∼−→ HomC[G](V,W ).

Proof. We have

HomC[G](V,W ) = HomC(V,W )G and V ∨ ⊗C[G] W = (V ∨ ⊗C W )G.

Since (−)G is a functor we get the desired result by using Proposition 21.

.

3.6 Orthogonality Relations for Characters
In order to talk about orthogonality we must first define a scalar product on
characters. LetG be a finite group and define F(G,C) to be the space of complex
valued function φ : G −→ C. This is a complex vector space of dimension |G|.
Definition 11. Let G be a finite group of order g. We define the bilinear
symmetric operator

〈·, ·〉G : F(G,C)×F(G,C) −→ C, 〈φ, ψ〉G =
1

g

∑
σ∈G

φ(σ)ψ(σ−1)

and the inner product

(·|·)G : F(G,C)×F(G,C) −→ C, (φ|ψ)G =
1

g

∑
σ∈G

φ(σ)ψ̄(σ).
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Remark 12. Let φ, ψ ∈ F(G,C). If we define ψ̌ : G −→ C by σ 7→ ψ̄(σ−1),
then (φ|ψ)G =

〈
φ, ψ̌

〉
G
. In particular, if χ is a character of G, then χ̌ = χ by

Proposition 17 (ii) and thus (φ|χ)G = 〈φ, χ〉G.

Lemma 5. Let G be a finite group. Let V and W be two representations of G
with respective character χV and χW . Then we have

dimC HomC[G](V,W ) = (χV |χW )G .

Proof. We have HomC[G](V,W ) = HomC(V,W )G and by Corollary 11 the char-
acter of the representation HomC(V,W ) is χ̄V χW . By Corollary 10, we have

dimC HomC(V,W )G =
1

|G|
∑
σ∈G

χ̄V (σ)χW (σ) = (χW |χV )G = (χV |χW )G.

Since dimC HomC(V,W )G is an integer, complex conjugation has no effect here
and we obtain the desired result.

Lemma 6 (Schur). Let G be a finite group and let V1 and V2 be two irreducible
representations of G. Let f : V1 −→ V2 be a C[G]-module homomorphism. Then

(i) If the two representations are not isomorphic, then f = 0.

(ii) If V1 = V2, then f is a homotethy.

Proof. For the first assertion, we will show that if f is not zero, then it is
necessarily an isomorphism. Suppose therefore that f is non-zero. Consider the
sub-C[G]-module kerf of V1. By simplicity of V1 we have either ker f = 0 or
ker f = V1. The latter is not possible since f is not the zero map and therefore f
is injective. Similarly, imf is a sub-C[G]-module of V2 and by simplicity we have
either imf = V2 or imf = 0. Again the latter is not possible and we conclude
that f is an isomorphism of C[G]-modules.

For the second assertion, suppose that f is not the zero map and let λ be
a non-zero eigenvalue of f . Define f̃ := f − λid. For all σ ∈ G and v ∈ V , we
have

f̃(σv) = f(σv)− λσv = σ(f(v))− σ(λv) = σ(f̃(v)).

In other words, f̃ is a C[G]-endomorphism of V . In particular, ker f̃ is a non-
zero sub-C[G]-module of V and by simplicity we have ker f̃ = V . This proves
that f(v) = λv for all v ∈ V .

Corollary 13. Let G be a finite group and let Ĝ denote the set of irreducible
characters of G. Then Ĝ forms an orthonormal system with respect to the inner
product (·|·)G.

Proof. Let χ and θ be irreducible characters of G. Let V and W be irreducible
representations of G with respective characters χ and θ. By Lemma 5, we have

(χ|θ)G = dimC HomC[G](V,W ).

By Lemma 6, if V and W are non-isomorphic then dimC HomC[G](V,W ) = 0
and dimC HomC[G](V, V ) = 1. We conclude that

(θ|χ)G =

{
0 if χ 6= θ

1 if χ = θ.
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Corollary 14. Let V and W be two irreducible representations of G with re-
spective characters χ and θ. Then V and W are isomorphic if and only if
(χ|θ)G = 1.

Proof. If V ∼= W then χ = θ and by Corollary 13 we have (χ|θ)G = 1. If V and
W are not isomorphic, then by Corollary 13 we have (χ|θ)G = 0.

Proposition 22. Let V be a representation of G with character φ and let

V = W1 ⊕ . . .⊕Wk

be a decomposition of V into irreducible representations. Let χi be the character
of Wi for each i. Let W be an irreducible representation of G with character χ.
Then the number of Wi that are isomorphic to W is equal to (φ|χ)G.

Proof. We have φ = χ1 + . . .+ χk and therefore

(φ|χ)G =

k∑
i=1

(χi|χ)G

and by Corollary 13 this is equal to the number of i’s such that (χi|χ)G = 1
which is the number of Wi isomorphic to W by Corollary 14.

Corollary 15. Two representations of a finite group are isomorphic if and only
if they have the same character.

Proof. We already know that if two representations are isomorphic, then they
have the same character. The converse follows Proposition 22.

The following is a useful criterion to determine whether or not a representa-
tion is irreducible.

Proposition 23. Let V be a representation of G with character φ. Then V
is irreducible if and only if (φ|φ)G = 1. Moreover, (φ|φ)G is always a positive
integer.

Proof. Let χ1, . . . , χh denote the distinct irreducible characters of G with cor-
responding representations W1, . . . ,Wh. Then the representation V has a de-
composition

V = W⊕m1
1 ⊕ . . .⊕W⊕mhh

where the mi are natural numbers. Thus φ = m1χ1 + . . . + mhχh and by
Corollary 13 we have mi = (φ|χi)G for all i so that φ =

∑h
i=1 (φ|χi)G χi.

We see that (φ|φ)G =
∑
i,jmimj (χi|χj)G =

∑
im

2
i and this is a positive

integer. If φ is irreducible, then we already saw that (φ|φ)G = 1. On the
other hand, if (φ|φ)G = 1 then

∑
im

2
i = 1 and therefore there exists j such

that mj = 1 and mi = 0 for i 6= j and this implies that φ = χj which is
irreducible.
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3.7 The Canonical Decomposition

Let G be a finite group of order g. Let Ĝ denote the set of distinct irreducible
characters of G and for each χ ∈ Ĝ let nχ be the dimension of χ.

If V is a representation of G with character θ, then by Corollary 8 we may
decompose V into a finite direct sum of irreducible representations, say V =⊕m

i=1 Ui. Define Vχ to be the direct sum of those Ui whose character is χ. By
Proposition 22, each Vχ is a direct sum of (χ|θ)G irreducible representations.
We now have a decomposition

V =
⊕
χ∈Ĝ

Vχ.

This is called the canonical decomposition of V . It is canonical because as we
will see in the next result the components Vχ do not depend on the choice of
the Ui.

Proposition 24. With the above notations, for each χ ∈ Ĝ we define

pχ =
nχ
g

∑
σ∈G

χ̄(σ)σ ∈ C[G].

The action of pχ on V is the projection of V onto Vχ. Since pχ does not depend
on the original decomposition of V and pχ determines Vχ completely, this shows
that Vχ is independent of the original decomposition.

Proof. We start by checking that pχ lies in the center of C[G]. In fact, if τ ∈ G
then

pχτ =
nχ
g

∑
σ∈G

χ̄(σ)στ =
nχ
g

∑
σ∈G

χ̄(τ−1στ) =
nχ
g

∑
η∈G

χ̄(η)τη = τpχ

where in the second equality we used Proposition 17 (iii).
LetW be an irreducible representation of dimension n with character ξ. The

action of pχ on W is a C[G]-endomorphism of W . By Lemma 6 (ii), pχ acts on
W by multiplication by, say λ. Taking traces on both sides we obtain

nχ (ξ|χ)G = nλ =⇒ λ =
nχ
n
〈ξ, χ〉G =

{
1 if ξ = χ

0 otherwise

by Corollary 13.
Thus pχ acts as the identity on representations with character equal to χ

and as the zero map otherwise. Thus pχ acts as the identity on Vχ and as the
zero map on Vχ′ for χ′ 6= χ. In other words, pχ acts as the projection of V onto
Vχ.

Let χ ∈ Ĝ. Then the χ-component Vχ of V is the eigenspace

Vχ = {v ∈ V : pχv = v} .

Suppose now that χ has dimension 1 so that χ is a homomorphism. Let v ∈ Vχ
and σ ∈ G. Then we have

σv = σpχv =
1

g

∑
τ∈G

χ̄(τ)στv =
1

g

∑
τ∈G

χ̄(σ−1τ)τ(v) = χ(σ)v.
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Conversely, if v ∈ V and σv = χ(σ)v for all σ ∈ G, then

pχv =
1

g

∑
τ∈G

χ̄(τ)χ(τ)v = 〈χ, χ〉 v = v

so that v ∈ Vχ. We have proved the following:

Proposition 25. With the above notations, if χ ∈ Ĝ has dimension 1 then we
have

Vχ = {v ∈ V : σv = χ(σ)v, ∀σ ∈ G}.

In other words, the χ-component of V consists of simultaneous eigenvectors
for the action of σ ∈ G with eigenvalues χ(σ).

3.8 The Regular Representation
Let G be a finite group. The (left) regular representation of G is the group ring
C[G] seen as a left module over itself. This is a C-vector space of dimension |G|
whose basis can be identified with G. Explicitly, the left action of G on C[G] is
the one of left multiplication of G on itself extended C-linearly. We denote this
action by RG : G −→ GL(C[G]).

Proposition 26. Let G be a finite group and let rG be the character of the
representation C[G]. Then rG(1) = |G| and rG(σ) = 0 for σ 6= 1.

Proof. From Proposition 17 (i) we know that rG(1) = dimC C[G] which is equal
to |G|. Let σ 6= 1 be an element of G. If we write RG(σ) in matrix form with
respect to the basis (σ)τ , then the diagonal of this matrix is zero and thus its
trace is zero. Therefore we have rG(σ) = 0.

Corollary 16. Let G be a finite group. Let Ĝ denote set of distinct irreducible
characters of G and for each χ ∈ Ĝ we let nχ denote the dimension of χ. The
regular character decomposes as follows:

rG =
∑
χ∈Ĝ

nχχ.

As a consequence, we have
∑
χ∈Ĝ n

2
χ = |G| and

∑
χ∈Ĝ nχχ(σ) = 0 for all σ 6= 1.

Proof. We have rG =
∑
χ∈Ĝ (rG|χ)G χ. For each χ ∈ Ĝ we have

(rG|χ)G = 〈rG, χ〉G =
1

g

∑
σ∈G

rG(σ)χ(σ−1) =
1

g
rG(1)χ(1) = χ(1) = nχ,

by Proposition 26. This proves the first formula. We obtain the second and
third formula by evaluating the first at 1 and then at σ 6= 1 respectively.

3.9 The Space of Class Functions
Let G be a finite group. We say that a function f ∈ F(G,C) is a class function
of G if is has the property that f(τστ−1) = f(σ) for all σ, τ ∈ G. We denote
by C(G,C) the space of all class functions of G. It is a complex subvector
space of F(G,C) of dimension the number of conjugacy classes of G, say h. By
Proposition 17 (iii), all characters of G are class functions of G.
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Proposition 27. Let f ∈ C(G,C) and define ρf =
∑
σ∈G f(σ)σ ∈ C[G]. Let

V be an irreducible representation of G of dimension n with character χ. Then
ρf acts on V as multiplication by |G|n (f |χ̄)G.

Proof. We check that ρf is central in C[G]. In fact, if τ ∈ G then we have

ρfτ =
∑
σ∈G

f(σ)στ =
∑
σ∈G

f(τ−1στ)στ =
∑
η∈G

f(η)τη = τρf .

It follows that the action of ρf on V is a C[G]-endomorphism of V . By Lemma
6 (ii) ρf therefore acts on V as multiplication by, say λ. Taking traces, we see
that

nλ =
∑
σ∈G

f(σ)χ(σ) = |G| (f |χ̄)G .

Theorem 3.9.1. The set of irreducible characters Ĝ of G forms an orthonormal
basis of C(G,C) with respect to the scalar product (·|·)G.

Proof. By Corollary 13 we already know that Ĝ is an orthonormal system in
C(G,C) with respect to the above scalar product. In order to show that this
system spans C(G,C), it suffices to prove that the orthogonal complement of
Span(χ̄ | χ ∈ Ĝ) is trivial. So let f ∈ C(G,C) such that (f |χ̄)G = 0 for all
χ ∈ Ĝ and consider ρf =

∑
σ∈G f(σ)σ ∈ C[G]. By Proposition 27, if W is an

irreducible representation of G of dimension n and character χ, then ρf acts
on W by multiplication by |G|n (f |χ̄)G = 0. Let V be any representation of G.
It decomposes into irreducible components and the action of ρf being the zero
map on each component, we must have that ρf : V −→ V is the zero map. In
particular, take V to be the regular representation and let (eσ)σ∈G be a basis
of V . Then

ρf (e1) =
∑
σ∈G

f(σ)eσ = 0.

Since the eσ are linearly independent over C this implies that f(σ) = 0 for all
σ so that f = 0. The proof is complete.

Corollary 17. The number of irreducible representations of G (up to isomor-
phism) is equal to the number of conjugacy classes of G.

Proof. The number of irreducible representations of G up to isomorphism is
equal to the number of irreducible characters. By Theorem 3.9.1, these form a
basis of the vector space C(G,C) which has dimension the number of conjugacy
classes of G.

Proposition 28. For σ ∈ G we let c(σ) denote the order of the conjugacy class
of σ in G. Then we have the following:

1

|G|
∑
χ∈Ĝ

χ̄(σ)χ(τ) =

{
1

c(σ) if σ and τ are conjugates
0 otherwise.

Proof. Fix σ ∈ G and consider the class function fσ : G −→ C defined by

fσ(τ) =

{
1 if σ and τ are conjugates
0 otherwise.
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By Theorem 3.9.1, we can write fσ(τ) =
∑
χ∈Ĝ (f |χ)G χ. We compute that

(f |χ)G = c(σ)
|G| χ̄(σ). It follows that

fσ(τ) =
c(σ)

|G|
∑
χ∈Ĝ

χ̄(σ)χ(τ)

and the result follows from the definition of fσ.

Proposition 29. A finite group G is abelian if and only if all irreducible rep-
resentations of G have degree 1.

Proof. Let g be the order of G and let h = |Ĝ|. Denote by nχ the dimension
of χ ∈ Ĝ. The group G is abelian if and only if G has g distinct conjugacy
classes. By Corollary 17 the number of distinct conjugacy classes is h. Thus G
is abelian if and only if g = h. By Corollary 16 we have

∑
χ∈Ĝ n

2
χ = g. Thus G

is abelian if and only if nχ = 1 for all χ ∈ Ĝ.

Combining this with Proposition 25 we get:

Corollary 18. Let G be an abelian group and V a representation of G. The
canonical decomposition of V is the following eigen-decomposition of V :

V =
⊕
χ∈Ĝ

Vχ, Vχ = {v ∈ V : σv = χ(σ)v, ∀σ ∈ G}.

3.10 Frobenius Reciprocity
The close relation between the Hom functor and the tensor functor is illustrated
in the following theorem, known as the Adjoint Isomorphism Theorem:

Theorem 3.10.1. Let R and S be rings. Let A ∈ RMod, B ∈ SModR and
C ∈ SMod. There is a natural isomorphism

τA,B,C = τ : HomS(B ⊗R A,C) −→ HomR(A,HomS(B,C))

defined as follows: consider f : B ⊗R A −→ C and define the map

τ(f) : A −→ HomS(B,C), τ(f)(a)(b) = f(b⊗ a).

Proof. Let us check that the above map is well-defined. If s ∈ S, then

τ(f)(a)(sb) = f((sb)⊗ a) = f(s(b⊗ a)) = sf(b⊗ a) = sτ(f)(a)(b)

since f is an S-map. So τ(f)(a) ∈ HomS(B,C). Let r ∈ R. Then

τ(f)(ra)(b) = f(b⊗ (ra)) = f((br)⊗ a) = τ(f)(a)(br) = (r.τ(f)(a))(b)

so that τ(f)(a) ∈ HomR(A,HomS(B,C)).
Let us check that τ is a homomorphism of groups. Let f, g ∈ HomS(B ⊗R

A,C). Then

τ(f + g)(a)(b) = (f + g)(b⊗ a) = f(b⊗ a) + g(b⊗ a) = τ(f)(a)(b) + τ(g)(a)(b).

This shows that τ(f + g) = τ(f) + τ(g).
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Let us check that τ is injective. Suppose that τ(f) = 0. Then for all a ∈ A
and all b ∈ B we have f(b ⊗ a) = 0 and thus f = 0 since it is zero on all
generators of B ⊗R A.

Let check that τ is surjective. Let F : A −→ HomS(B,C) be an R-map.
Define φ : B × A −→ C by φ((b, a)) = F (a)(b). Obviously ψ is biadditive.
Also, if r ∈ R, then ψ((br, a)) = F (a)(br) = F (ra)(b) = ψ((b, ra)) since F is an
R-map. By the universal property of the tensor product, there exists a unique
S-map ψ̃ : B ⊗R A −→ C such that ψ̃(b⊗ a) = ψ((b, a)). Then τ(ψ̃) = F .

To check the naturality of the map, we fix for example B and C and show
that

τ : HomS(B ⊗R −, C) −→ HomR(−,HomS(B,C))

is a natural isomorphism of functors. Let A,A′ ∈ RMod and f ∈ HomR(A,A′).
The only thing we need to check is that the following diagram commutes:

HomS(B ⊗R A,C) HomR(A,HomS(B,C))

HomS(B ⊗R A′, C) HomR(A′,HomS(B,C)).

τA

τA′

(1B⊗f)∗ f∗

Let F : B ⊗R A′ −→ C be an S-map. Then taking the right-up path we arrive
at the R-map τA′(F ) ◦ f : A −→ HomS(B,C) given by

τA′(F )(f(a))(b) = F (b⊗ f(a)).

Taking the up F ◦ (1 ⊗ f) : B ⊗R A −→ C which maps b ⊗ a to F (b ⊗ f(a)).
Taking now the right path, we arrive at τA(F ◦ (1 ⊗ f)) : A −→ HomS(B,C)
given by

τA(F ◦ (1⊗ f))(a)(b) = F ◦ (1⊗ f)(b⊗ a) = F (b⊗ f(a)).

We have proved that the diagram commutes.
One can similarly check the naturality of the map in the other variables.

Corollary 19. Let G be a finite group and let H be a subgroup of G. Let V be
a representation of H and let W be a representation of G. We have a natural
isomorphism

τ : HomC[G](IndV,W ) −→ HomC[H](V,ResW ).

Proof. We have C[G] ∈ C[G]ModC[H], V ∈ C[H]Mod and W ∈ C[G]Mod.
Applying Theorem 3.10.1, we have a natural C-linear isomorphism

HomC[G](C[G]⊗C[H] V,W ) −→ HomC[H](V,HomC[G](C[G],W )).

Note that HomC[G](C[G],W ) ∈ C[H]Mod, the action being given by

(λ.f)(x) = f(xλ)

for f : C[G] −→W , x ∈ C[G] and λ ∈ C[H]. Consider the group isomorphism

HomC[G](C[G],W ) −→ ResW, f 7−→ f(1).



3.11. A THEOREM OF BRAUER 69

If λ ∈ C[H], then we have

λ.f 7→ (λ.f)(1) = f(1.λ) = f(λ.1) = λf(1)

since f is a C[G]-map. Therefore, the above map is a C[H]-module isomorphism
and we have a natural isomorphism of groups

τ : HomC[G](IndV,W ) −→ HomC[H](V,ResW ).

Theorem 3.10.2 (Frobenius Reciprocity). Let G be a finite group and let H be
a subgroup of G. Let V be a representation of H and let W be a representation
of G with respective characters χ and θ. Then we have

〈Indχ, θ〉G = 〈χ,Resθ〉H .

Proof. By Corollary 19, we have

dimC HomC[G](IndV,W )) = dimC[H](V,ResW ).

By Proposition 5 and Remark 12, this is the desired formula.

3.11 A Theorem of Brauer
We will prove a refinement of a theorem of Brauer assuming the proof of Brauer’s
original theorem given below. Let G be a finite group. A character χ of G is
said to be monomial if χ = Indθ for some 1-dimensional character of a subgroup
of G.

Theorem 3.11.1. Every character of a finite group can be written as a Z-linear
combination of monomial characters.

Proof. See Chapter 10 of [Se1].

Explicitly the theorem says the following: if χ is a character of G, then there
exist integers ni, subgroups Hi and 1-dimensional characters θi of Hi such that

χ =
∑
i

niIndGHiθi.

Let G be a finite group. Denote by [G : G] the commutator subgroup of
G and let G1 = HomZ(G,C∗) be the multiplicative group of 1-dimensional
characters of G. We claim that

Infl = InflG[G:G] : (G/[G : G])1 −→ G1

is an isomorphism of groups.
This map is obviously well-defined homomorphism of groups. Let χ ∈ G1.

Then χ : G −→ C∗ is a homomorphism of groups and therefore its kernel
contains the commutator subgroup. By the universal property of the quotient,
there is a unique homomorphism χ̃ : G/[G : G] −→ C∗ such that χ(σ) = χ̃([σ]).
In other words, there is a unique χ̃ ∈ (G/[G : G])1 such that Inflχ̃ = χ. This
proves that the map Infl is a bijection.
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In particular, we have |G1| = |(G/[G : G])1|. But G/[G : G] is an abelian
group and by Proposition 29, we have (G/[G : G])1 = ̂G/[G : G], that is, the
group of irreducible characters of G/[G : G]. In particular, we have |(G/[G :
G])1| = |G/[G : G]|. We conclude that

|G1| = |G/[G : G]|. (3.11.1.1)

Let Z = Z(G) denote the center of G and let H be a subgroup of G. Then
[ZH : ZH] = [H : H] and therefore by (3.11.1.1) we have

|(ZH)1| = |ZH/[ZH : ZH]| = |ZH/[H : H]| = [ZH : H]|H1|.

Consider the homomorphism

Res : (ZH)1 −→ H1, χ 7−→ χ|H .

This map is surjective: for if χ ∈ H1, then we define χ̃ ∈ (ZH)1 by setting
χ̃(zh) = χ(h) for z ∈ Z and h ∈ H. This does indeed define a homomorphism
since for z1, z2 ∈ Z and h1, h2 ∈ H we have

χ̃((z1h1)(z2h2)) = χ̃((z1z2)(h1h2)) = χ(h1h2) = χ(h1)χ(h2) = χ̃(z1h1)χ̃(z2h2).

Finally we have Resχ̃ = χ and this proves that Res is surjective. By comparing
cardinalities, we see that the kernel of this map must be of order [ZH : H]. We
conclude that the map Res is a [ZH : H]-to-1 homomorphism.

Theorem 3.11.2. Let G be a finite group with center Z = Z(G) and let χ
be an irreducible character of G. The restriction of χ to Z is a multiple of a
1-dimensional character ψ of Z and we may write

χ =
∑
i

niIndGHiθi

where, for every i, Hi is a subgroup of G containing Z, θi is a 1-dimensional
character of Hi whose restriction to Z is ψ and the ni are integers.

Proof. Let H be a subgroup of G. By the above discussion, the map

Res : (ZH)1 −→ H1

is a [ZH : H]-to-1 homomorphism of groups. In other words, there are exactly
[ZH : H] ways to extend an element of H1 to (ZH)1.

Let θ be in H1 and let θi with i = 1, . . . , [CH : H] be the distinct extensions
of θ to ZH. By Theorem 3.10.2 we have〈

IndZHH θ, θi

〉
ZH

= 〈θ,Resθi〉H = 〈θ, θ〉H = 1

by Corollary 13. By Proposition 22 this means that every character θi appears
in the decomposition of the character IndCHH θ with multiplicity 1. Since IndCHH θ
is of dimension [ZH : H] we must therefore have the decomposition

IndZHH θ =

[ZH:H]∑
i=1

θi.
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For any left C[H]-module M , we have

C[G]⊗C[CH] (C[CH]⊗C[H] M) = C[G]⊗C[H] M

by associativity of the tensor product. In other words, we have

IndGHM = IndGCHIndCHH M.

Since tensoring is an additive functor, this implies that

IndGHθ =

[ZH:H]∑
i=1

IndGZHθi.

Combined with Theorem 3.11.1, this shows that we can choose the subgroups
Hi in the statement of the present theorem to contain the center Z.

Let V be a representation of G with character χ. Then ResV = ResGZV
is a representation of the center Z. Let W be a simple sub-C[Z]-module of
ResV with character ψ. Since Z is an abelian group, by Proposition 29, we
have dimCW = 1. Denote by (ResV )ψ the ψ component in the canonical
decomposition of ResV . By Proposition 24, the element

pψ =
1

|Z|
∑
z∈Z

ψ̄(z)z ∈ C[Z] ⊂ C[G]

acts on ResV as the projection onto (ResV )ψ. Let σ ∈ G. Using the definition
of the center Z, we see that

pψσ =
1

|Z|
∑
z∈Z

ψ̄(z)zσ =
1

|Z|
∑
z∈Z

ψ̄(z)σz = σpψ.

Thus, if v ∈ (ResV )ψ, we have pψ(σv) = σv. In other words, σv belongs
to (ResV )ψ. This proves that (ResV )ψ is a sub-C[G]-module of V . But V
is irreducible so that ResV = (ResV )ψ and Resχ = χ(1)ψ. This proves the
assertion that the restriction of χ to Z is a multiple of a 1-dimensional character
of Z.

We write χ =
∑
i niIndGHiθi where the Hi are subgroups containing Z and

the characters θi are 1-dimensional. Let θ be any irreducible character of G.
By the above discussion, there exists a 1-dimensional character ψθ of Z and a
positive integer mθ such that ResGZθ = mθψθ. By Theorem 3.10.2 we have〈

IndGHiθi, θ
〉
G

=
〈
θi,ResGHiθ

〉
Hi
.

If ResHiZ θi 6= ψθ, then θi cannot be a summand of ResGHiθ. In other words, we
have

〈
θi,ResGHiθ

〉
Hi

= 0 by Proposition 22. Consequently, we have

ResHiZ θi 6= ψθ =⇒
〈

IndGHiθi, θ
〉
G

= 0.

Perhaps more usefully, we have〈
IndGHiθi, θ

〉
G
> 0 =⇒ ResHiZ θi = ψθ. (3.11.2.1)
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We split the sum as follows:

χ =
∑

Res
Hi
Z θi=ψ

niIndGHiθi +
∑

Res
Hi
Z θi 6=ψ

niIndGHiθi.

By (3.11.2.1), every irreducible character of G that appears in the first sum
must be a multiple of ψ when restricted to Z and no irreducible character of
G appearing in the second sum can be a multiple of ψ when restricted to Z.
It follows that the sets of irreducible characters respectively appearing in the
first sum and in the second sum are distinct sets. Since the appearance of χ is
necessarily in the first sum, the second sum must be zero. This shows that

χ =
∑

Res
Hi
Z θi=ψ

niIndGHiθi

and finishes the proof.



Chapter 4

Rationality of Characters

Until now we have only considered linear representations over the field of com-
plex numbers C and their characters. But in fact all the results we have proved
hold for algebraically closed fields of characteristic zero. Let K be any field of
characteristic zero and let C be a fixed algebraic closure of K. As usual, G will
denote a finite group. A linear representation of G over K is a K[G]-module
V which is finite-dimensional as a K-vector space. A character of such a rep-
resentation of G is the trace map G −→ K associated to the action of G on
V .

Let V be a representation of G over K with character χ. Define VC to be the
extension of scalars C⊗KV . It is a C-vector space of dimension equal to dimK V .
Moreover, VC has the structure of a left G-module given by σ(c⊗ v) = c⊗ (σv).
Thus VC is a left C[G]-module which is finite-dimensional over C. In other
words, it is a representation of G over C. The action of G on VC can be
summarized by the diagram

G
σ−→ GLK(V )

1⊗σ−→ GLC(VC).

The character of VC is still χ : G −→ K. A representation of G over C is said
to be defined or rational over K if it is isomorphic to a representation VC as
constructed here for some representation V of G over K. This is equivalent to
saying that a representation V of G over C is rational over K if there exists a
basis of V in which the coefficients of the matrices of σ ∈ G lie in K.

Starting with a representation of G over K we can produce a representation
of G over C by extension of scalars. The question that we will answer in this
chapter is how to determine when a representation of G over C is rational over
some subfield K of C.

4.1 First Results

We start with some notations. We define R(G) = RC(G) to be the free abelian
group on the irreducible characters of G over C. Explicitly, if χ1, . . . , χh are the
irreducible characters of G over C, then

R(G) = Zχ1 ⊕ . . .⊕ Zχr.

73
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An element of R(G) is a character of G over C if and only if it is a Z-linear
combination of the χi with non-negative coefficients. A general element of R(G)
is called a virtual character of G over C. Since multiplying two characters results
in a new character (realized by tensoring the corresponding representations), we
see that R(G) has a multiplication and actually forms a ring. By Theorem 3.9.1,
the χi form an orthonormal basis of the C-vector space of class functions C(G,C)
with respect to the symmetric bilinear form 〈φ, ψ〉G = 1

|G|
∑
σ∈G φ(σ−1)ψ(σ).

Therefore we have C(G,C) ∼= C ⊗Z R(G) as C-vector spaces.
We let RK(G) denote the subring of R(G) generated by characters of rep-

resentations of G over K. We also let R(G,K) denote the subring of R(G)
consisting of those elements that take values in K. Of course we have the
inclusion RK(G) ⊂ R(G,K).

Proposition 30. Let Vi, i = 1, . . . , h, be the distinct (up to isomorphism)
irreducible representations of G over K with characters χi. Then the χi form
an orthogonal basis of RK(G) with respect to the bilinear form 〈·, ·〉G. Moreover,
we have 〈χi, χi〉G = dimK EndK[G](Vi).

Proof. From the definition of RK(G) it is clear that it is generated by the χi.
Let V and W be two representations of G over K with characters χV and χW .
Then by Lemma 5 we have

dimK HomK[G](V,W ) = dimC HomC[G](VC ,WC) = 〈χV , χW 〉G .

Applying Shur’s Lemma 6 (a), whose proof does not require K to be alge-
braically closed, we see that if i 6= j, then HomK[G](Vi, Vj) = 0. Combined with
the above equality this implies that 〈χi, χj〉G = 0 for i 6= j, proving orthogonal-
ity of the χi which in turn implies Z-linear independence of the χi. We conclude
that the χi form an orthogonal basis of RK(G).

Remark 13. Let V be an irreducible representation of G over K with character
χ. We have just proved that 〈χ, χ〉G = dimC EndC[G](VC) which is an integer
greater than or equal to 1. It is 1 if the representation VC is irreducible by
Corollary 13. But this is not always the case as illustrated in the next example.

Example 3. Let µ3 be the group of third roots of unity. If ζ = e2πi/3, then µ3 =
{1, ζ, ζ2}. This group acts on C by multiplication. By choosing {(1, 0), (0, i)}
as a basis of C as an R-vector space of dimension 2, we get a 2-dimensional real
representation of µ3 given by the homomorphism ρ : µ3 −→ GL2(R) defined by:

ρ(1) =

(
1 0
0 1

)
, ρ(ζ) =

(
− 1

2

√
3

2

−
√

3
2 − 1

2

)
, ρ(ζ2) =

(
− 1

2 −
√

3
2√

3
2 − 1

2

)
.

The character χ of this representation is given by

χ(1) = 2, χ(ζ) = −1, χ(ζ2) = −1.

The characteristic polynomial of ρ(ζ) and ρ(ζ2) is given by T 2+T+1 so that the
eigenvalues of these matrices are ζ and ζ2 which do not belong to R. Therefore
ρ(ζ) cannot be diagonalized over R and consequently the above representation
is irreducible over R. But even though it is irreducible, we have

〈χ, χ〉G =
1

3
(4 + 1 + 1) = 2.
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If we now tensor this representation over C, we get a 2-dimensional complex
representation of µ3. But µ3 is abelian so by Corollary 29, this representation
cannot be irreducible. For the sake of the example we here show how this
representation decomposes over C. By computation we find that the eigenspaces
of ρ(ζ) for the eigenvalues ζ and ζ2 are respectively given by

V1 = Span

{(
1
i

)}
⊂ C2 and V2 = Span

{(
1
−i

)}
⊂ C2.

Base changing {(1, 0), (0, 1)} to {(1, i), (1,−i)} we obtain an isomorphic repre-
sentation ρ : G −→ GL2(C) given by

ρ(1) =

(
1 0
0 1

)
, ρ(ζ) =

(
ζ 0
0 ζ2

)
, ρ(ζ2) =

(
ζ2 0
0 ζ

)
.

The element ζ acts on V1 by multiplication by ζ and on V2 by multiplication by
ζ2. Our original representation decomposes over C as V1 ⊕ V2.

Proposition 31. Let V be a representation of G over K with character φ and
let

V = W1 ⊕ . . .⊕Wk

be a decomposition of V into irreducible representations of G over K. Let χi
be the character of Wi for each i. Let W be an irreducible representation of G
over K with character χ. Then the number nW of Wi that are isomorphic to
W independent of the above decomposition. In particular, two representations
of G over K are isomorphic if and only if they share the same character.

Proof. We have φ =
∑k
i=1 χi. By Proposition 30 we have

〈φ, χ〉G =

k∑
i=1

〈χi, χ〉G .

This is equal to nW dimK EndK[G](W ) so that nw is independent of of the
decomposition.

Corollary 20. Any representation of G over K has a canonical representation
over K.

Proposition 32. A representation of G over C is defined over K if and only
if its character belongs to RK(G).

Proof. Let V be a representation of G over C with character χ. It is clear that
if this representation is rational over K, then χ belongs to RK(G). On the
other hand, suppose that χ belongs to RK(G). If χ1, . . . , χh are the irreducible
characters of G over K, then there exist integers ni such that χ =

∑h
i=1 niχi

and by Proposition 30 we have 〈χ, χi〉G = ni 〈χi, χi〉G. The bilinear form 〈·, ·〉G
is a scalar product on characters of G over C. Since χ and χi are both characters
of G over C, we must therefore have 〈χ, χi〉G ≥ 0 so that ni ≥ 0. If V1, . . . , Vh
are irreducible representation of G over K with characters χi, then the latter
implies that W =

⊕
V ⊕nii is a representation of G over K with character χ. In

particular, WC is isomorphic to V and therefore V is defined over K.
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Let V be a representation of G over C. We claim that V is always defined
over some finite extension L of K. In fact, let χ1, . . . , χh be the irreducible
characters of G over C and let (ρ1, V1), . . . , (ρh, Vh) be corresponding irreducible
representations of G over C. Choose bases for each Vi and write ρi(σ) in matrix
form with respect to the chosen basis for each σ ∈ G. Define L to be the
finite extension of K obtained by adjoining to K all matrix coefficients of the
ρi(σ). Then each Vi is defined over L. In other words, χi ∈ RL(G) for all
i = 1, . . . , h and consequently we have RL(G) = RC(G). By Proposition 32,
every representation of G over C is defined over L. Let d = [L : K].

Let V be a representation of G over L with character χ. Let VK denote
the restriction of scalars of V to K. As a set, VK is the same as V but where
we have forgotten the L-vector space structure on V . Since L is a K-vector
space of degree d, the restriction of scalars VK is a K-vector space of degree
ddegL V . In particular, it is a representation of G over K. Let χK denote the
character of VK . One checks that χK = trL/K ◦χ : G −→ K. We therefore have
trL/Kχ ∈ RK(G).

Now, if θ ∈ RC(G) = RL(G), then θ =
∑h
i niχi. By linearity of trL/K we

obtain

trL/Kθ =

h∑
i=1

nitrL/Kχi ∈ RK(G).

In particular, if θ ∈ R(G,K), then trL/Kθ = dθ ∈ RK(G). This proves that
dR(G,K) ⊂ RK(G). As already noted, we have the trivial inclusion RK(G) ⊂
R(G,K). We therefore have the inclusions

dR(G,K) ⊂ RK(G) ⊂ R(G,K).

This gives a surjective homomorphism of groups

R(G,K)/dR(G,K) −→ R(G,K)/RK(G).

Since the first quotient group is finite, we have proved the following:

Proposition 33. The group RK(G) has finite index in R(G,K).

Remark 14. Let V be a representation of G over C with character χ. In
general, in order for V to be defined over K, it is not enough for χ to belong to
R(G,K) as the following example shows.

Example 4. Consider the Hamilton quaternion algebra HK over a field K of
characteristic 0. This is a 4-dimensional K-vector space with basis {1, i, j, k}
with the following multiplication rules:

i2 = −1, j2 = −1, ij = k, ji = −k.

One defines a norm form N : HK −→ K by defining N(α) to be the determinant
of the multiplication-by-α map on HK . It is not difficult to check that

N(x+ yi+ zj + tk) = x2 + y2 + z2 + t2.

The algebra HK also comes equipped with an involution defined by

x+ yi+ zj + tk = x− yi− zj − tk.
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One now checks that N(α) = αᾱ. This norm form is multiplicative and it
becomes clear that α ∈ H∗K if and only if N(α) 6= 0. In particular, HQ and HR
are skew-fields, that is, non-commutative division rings.

If −1 is a sum of two squares in K, that is, if there exist α, β ∈ K such that
α2 +β2 = −1, then we have a K-algebra isomorphism φ : HK −→M2(K). This
can be described by

φ(1) =

(
1 0
0 1

)
, φ(i) =

(
α β
β −α

)
, φ(j) =

(
0 −1
1 0

)
, φ(k) =

(
β −α
−α −β

)
.

In the case K = C, one can for example take α = i and β = 0.
In particular, we get a homomorphism G −→ GL2(K) and we thus have a

2-dimensional representation of G over K. This representation is defined over
Q(α, β). Its character χ is given by

χ(±1) = ±2, χ(±i) = χ(±j) = χ(±k) = 0.

In particular, we see that χ ∈ R(G,Q). However, this representation is not
defined over Q since the sum of any two squares in Q is non-negative.

4.2 Non-Commutative Algebra
We prove the structure theorem of simple left Artinian rings due to Wedderburn.
A good reference for this section is [Ro1].

4.2.1 Semisimple Rings
Let R be a ring. It is not assumed to be commutative but we will assume that
R has a multiplicative unit 1. We have already encountered semisimple rings:
remember that the group ring C[G] is a semisimple ring for example. We start
by recalling the definition of semisimplicity.

A left R-module is said to be simple if it has no left sub-R-modules other
than (0) and itself. A left R-module M is said to be semisimple if it can be
written as a direct product of of simple left sub-R-modules. A ring R is said to
be left semisimple if it is semisimple when viewed as a left module over itself.
A simple left sub-R-module of R is a minimal left ideal, that is, a non-zero left
ideal of R that does not contain any left ideals other than (0) and itself. We
say that a ring R is simple if it has no two-sided ideals other than (0) and itself.
Note that a simple ring is not necessarily simple as a left module over itself.
An example is the matrix ring Mn(C) which has no proper two-sided ideals but
the set Col(j) of matrices with entries only in the j-th column is a non-zero
proper left ideal. Also, our definition of simple rings does not imply that they
are semisimple.

Lemma 7. If a ring R is a direct sum of left ideals, say R =
⊕

i∈I Li, then
only finitely many Li are non-zero. In particular, a left semisimple ring is a
finite direct sum of minimal left ideals.

Proof. Since every element of the direct sum has finite support by definition, we
may write 1 = e1 + . . .+ en uniquely where ei ∈ Li. Let a ∈ Lj for j 6= 1, . . . , n.
Then

a = a1 = ae1 + . . .+ aen ∈ Lj ∩ (L1 ⊕ . . .⊕ Ln) = {0}.
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This implies that Lj = {0} and R =
⊕n

i=1 Li.

If R is left semisimple, then R is semisimple as a left R-module. By definition
this means that R is a direct sum of simple submodules. Thus R is a direct sum
of minimal left ideals and by the above, this sum is finite.

Let R be a ring. A left R-module M is said to be Artinian if it has the
descending chain condition on left submodules. That is, any descending chain
of left sub-R-modules of M

M1 ⊃M2 ⊃M3 ⊃ . . .

stabilizes, meaning that there is a rank n such that Mm = Mn for all m ≥ n.
Artinian modules have the property that any submodule contains a minimal
submodule with respect to inclusion.

A ring R is said to be left Artinian if it is Artinian when viewed as a left
module over itself. A left Artinian ring has the property that every non-zero
left ideal of R contains a minimal left ideal.

Let R be a ring. We define the left Jacobson radical, J(R), of R to be the
intersection of all left maximal ideals of R. This is a left ideal of R.

Proposition 34. Let R be a ring. The following statements are equivalent for
x ∈ R:

(i) x ∈ J(R).

(ii) 1− z is left invertible for all z ∈ Rx.

(iii) xM = {0} for every simple left R-module M .

Proof. (i) implies (ii): Suppose that x ∈ J(R) and by contradiction that there
exists r ∈ R such that 1− rx is not left invertible. Then R(1− rx) is a proper
left ideal of R and is contained in some maximal ideal I. But rx ∈ J(R) since
J(R) is a left ideal and J(R) ⊂ I. Thus 1 = (1 − rx) + rx ∈ I so that I = R
and this is a contradiction.

(ii) implies (iii): Suppose that 1− z is left invertible for all z ∈ Rx and by
contradiction that there is a simple left R-moduleM such that xM 6= {0}. Then
there exists a non-zero m ∈ M such that xm 6= 0 and thus the left ideal Rxm
is non-zero. This is a non-zero submodule of M and by simplicity Rxm = M .
Therefore, there exists r ∈ R with rxm = m. In other words, (1 − rx)m = 0.
Let u ∈ R such that 1 = u(1 − rx). Then m = u(1 − rx)m = 0 which is a
contradiction.

(iii) implies (i): For every maximal left ideal I of R, R/I is a simple left
R-module. By assumption x(R/I) = {0} which implies that x ∈ I. Thus
x ∈ J(R).

An ideal I of R is said to be nilpotent if Im = {0} for some integer m.

Proposition 35. Let R be a ring. The left Jacobson radical J(R) contains all
nilpotent left ideals of R.
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Proof. In fact, let I be a nilpotent left ideal and let m be such that Im = {0}.
Let x ∈ I. For all r ∈ R we have rx ∈ I and therefore (rx)m = 0. In particular
1− (rx)m = 1 which can be written as

(1 + (rx) + (rx)2 + . . .+ (rx)m−1)(1− rx) = 1.

This proves that 1 − rx is left invertible and thus x ∈ J(R) by Proposition
34.

Lemma 8. A left semisimple ring R is left Artinian and J(R) = {0}.

Proof. A simple left submodule of R, that is, a minimal left ideal of R, is
certainly left Artinian. A finite direct sum of left Artinian modules is again left
Artinian. Therefore, by Lemma 7, a left semisimple ring is left Artinian.

By Lemma 7, we may write R =
⊕

i Li where the Li are minimal left
ideals and the sum is finite. Let Mj =

⊕
i6=j Li. Then R/Mj

∼= Lj which is
a simple left module. Thus Mj is a maximal left ideal of R. Finally, we have
J(R) ⊂

⋂
jMj = {0}.

Proposition 36. A left semisimple ring R is isomorphic as a ring to a direct
product of simple left Artinian rings which are two-sided ideals of R.

Proof. By Lemma 7, we may write R =
⊕

i Li where the Li are minimal left
ideals of R and the sum is finite. For each pair Li and Lj , LiLj is a also a left
ideal and it is contained in Lj since Lj is a left ideal. By minimality of Lj we
must have that LiLj is either {0} or Lj . Suppose that LiLj = Lj . Then there
exists x ∈ Lj such that Lix 6= {0}. Then mx : Li −→ Lj , y 7−→ yx is a non-zero
left R-module homomorphism. The kernel of this map is a left ideal and by
simplicity of Li it must be {0} so mx is injective. The image Lix is non-zero
and by simplicity of Lj we have Lix = Lj . In particular, mx is an isomorphism
of left R-modules.

We claim that LiLj 6= {0} is an equivalence relation on the set of ideals Li.
In fact, let us first prove that L2

i 6= {0}. Suppose that L2
i = {0} by contradiction.

Then Li is a nilpotent left ideal and is contained in J(R) by Proposition 35. By
Lemma 8 we have Li = {0} which is the desired contradiction. Suppose that
LiLj 6= {0}. Then LiLj = Lj and LjLiLj = LjLj 6= {0} so that LjLi 6= {0}.
Finally, if LiLj 6= {0} and LjLk 6= {0}, then LiLk = LiLjLk = LjLk 6= {0}.

Regroup the finite direct sum R =
⊕

i Li according to equivalence classes
and for each class form the direct sum of all Li in that class and call this Aj .
This gives a decomposition R = A1 ⊕ . . .⊕An for some n.

For each i, Ai is a direct sum of left ideals and is therefore itself a left ideal.
We claim that it is also a right ideal of R. To see this we need to prove that
AiR ⊂ Ai. Let L and L′ be two minimal left ideals such that L ∼ Li and
L′ ∼ Lj for some j 6= i. Then we have LL′ = {0}. Consequently, we see that
for j 6= i we have

AiAj =

(∑
L∼=Li

L

) ∑
L′∼=Lj

L′

 ⊂∑LL′ = {0}.

We therefore have

AiR = Ai(A1 ⊕ . . .⊕An) =⊂ AiA1 + . . .+AiAn = AiAi ⊂ Ai
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since Ai is a left ideal. This proves that Ai is a right ideal.

Since Ai is a left ideal we have AiAi ⊂ Ai which shows that Ai is closed
under multiplication. In order for Ai to be a ring we only need to show that it
has a unit element. Let 1 = e1 + . . . + en with ei ∈ Ai. Then for any ai ∈ Ai
we have

eiai = e1ai + . . .+ enai = 1ai = ai

since ejai = 0 for all j 6= i since AjAi = {0}. The same reasoning shows that
aiei = ai. This proves that Ai is a ring. Moreover, the fact that AjAi = {0}
for i 6= j shows that addition and multiplication in R is done componentwise.
Therefore, as rings we have an isomorphism

R ∼= A1 × . . .×An.

There is a surjective ring homomorphism R −→ Ai for each i. Thus any left
ideal of Ai is also a left R-module and therefore a left ideal of R. It follows that
each Ai is left Artinian since by Proposition 8 R is left Artinian. It remains to
prove that the Ai are simple rings.

By construction, we may write Ai =
⊕

j Lj where the Lj are minimal left
ideals of R such that LjLk = Lk. Let I be a two-sided ideal of Ai. Then
ILj is a left ideal contained in Lj . It is therefore either {0} or Lj . Suppose
that ILj = {0}. Then for every k we have ILk = ILjLk = {0}. In this case,
I = IAi =

∑
k ILk = {0}. Otherwise, ILj = Lj for all j. But I is a right ideal

so ILj ⊂ I. It follows that Lj ⊂ I and therefore Ai ⊂ I which implies I = Ai.
This proves that Ai has no two-sided ideals, that is, Ai is a simple ring.

4.2.2 Division Rings
By a division ring D, we mean a not necessarily commutative ring with the
property that every non-zero element ofD is multiplicatively invertible. In other
words, the set D \ {0} with the multiplication law forms a not necessarily com-
mutative group. A commutative division ring is a field and a non-commutative
division ring is also sometimes called a skew-field. In Example 4 we saw that
the Hamilton quaternion algebra over Q is an example of a non-commutative
division ring.

Non-commutative division rings D share many properties with fields and
many of the classical theorems of linear algebra do not make use of the commu-
tativity of multiplication in fields. For example D-modules, which we shall call
D-vector spaces, behave much like actual vector spaces. Note that because of
the non-commutativity one needs to specify whether it is a left or right module.
Any left (or right) D-vector space V has a basis and the number of elements in
a basis is independent of the choice of basis. We call this number the dimen-
sion of V over D and denote it by dimD V . Any linearly independent set of
elements in V can be completed to form a basis of V . If W is a sub-D-vector
space, then there exists a complementary module W ′ so that V = W ⊕W ′ and
dimD V = dimDW + dimDW

′. Finally, if f : V1 −→ V2 is a homomorphism
between finite-dimensional left D-vector spaces, then

dimD V1 = dimD ker f + dimD imf.

LetD be a division ring and let V be a leftD-vector space of finite dimension.
Let {x1, . . . , xn} be a basis of V . For any f ∈ HomD(V, V ) = EndD(V ) we may
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write

f(xj) =

n∑
i=1

aijxi

and associate the n × n matrix (aij)
t to f with coefficients in D. This gives a

map
EndD(V ) −→Mn(D), f 7−→ (aij)

t.

This is an isomorphism of groups, it maps idV to the identity matrix but it
reverses multiplication in Mn(D). We therefore have an isomorphism of rings

EndD(V ) ∼= Mn(D)op ∼= Mn(Dop). (4.2.0.1)

If V was a right D-vector space, we would write

f(xj) =

n∑
i=1

xiaij

and assign to f the matrix (aij). This gives a ring isomorphism EndD(V ) ∼=
Mn(D).

Proposition 37. Let D be a division ring. Then Mn(D) is both a left (and
right) semisimple ring and a simple left (and right) Artinian ring.

Proof. For each j = 1, . . . , n we denote by Col(j) the subspace of Mn(D) con-
sisting of matrices with entries only in the j-th column. This is left ideal of
Mn(D). If Eij denotes the matrix whose (i, j) entry is 1 and all other entries
are zero, then (Eij)

n
i=1 is a basis for Col(j) as a left D-vector space. Let I be a

non-zero left ideal of Mn(D) that is contained in Col(j). Let B be a non-zero
element in I. Then there exist elements di in D such that B =

∑n
i=1 diEij .

Since B is non-zero, there exists an index i0 such that di0 is non-zero and thus
invertible in D. Therefore we have

Ei0j = d−1
i0
Ei0i0B ∈ I

since I is a left ideal. But then Eij = Eii0Ei0j ∈ I since I is a left ideal and this
is true for all i = 1, . . . , n. Thus I contains the basis (Eij)i of Col(j) so that
I = Col(j). This proves that Col(j) is a minimal left ideal of Mn(D). Since
Mn(D) =

⊕n
j=1 Col(j) we have proved that Mn(D) is left semisimple. One can

similarly prove thatMn(D) is right semisimple by using rows instead of columns
in the above. By Lemma 8 Mn(D) is both left and right Artinian.

Let k 6= j and consider the map

Col(j) −→ Col(k),
∑
i

diEij 7−→
∑
i

diEik.

This is simply multiplication on the right by Ejk so that the left multiplication
is preserved by this map. Therefore it is a left Mn(D)-module homomorphism.
It is clearly an isomorphism.

Suppose that I is a non-zero two-sided ideal of Mn(D). Let A be a non-zero
matrix in I. Then it has a non-zero entry, say aij 6= 0. Since it is a two-sided
ideal, I contains the matrix EkiAEjl = aijEkl. Since D is a division ring, aij is
invertible and thus I contains Ekl for all k, l. But this is a basis for Mn(D) so
that I = Mn(D). This proves that Mn(D) is simple.
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4.2.3 Classification of Simple Artinian Rings
We have just seen that a matrix ring over a division ring is a simple Artinian
ring. We will now prove the converse: every simple Artinian ring is isomorphic
to a matrix ring over a division ring. We need some lemmas.

Lemma 9 (Schur). Let R be a ring and let M be a simple left R-module. Then
EndR(M) is a division ring.

Proof. Let f : M −→ M be a non-zero R-module homomorphism. Then ker f
is a left sub-R-module of M . By simplicity, it is either trivial or all of M . Since
f is not the zero map, the kernel must be trivial. This proves injectivity. The
image imf is also a left sub-R-module of M and must be either trivial or all
of M . Since f is not the zero map the latter must be true and this proves
surjectivity. As a consequence f is an isomorphism and therefore invertible in
EndR(M).

Let R be a ring and let M be a left R-module. Let D = EndR(M). Note
that M is a left D-module, the action being given by

D ×M −→M, (f,m) 7−→ f(m).

Define a map

λ : R −→ EndD(M), r 7−→ (λr : m 7→ rm).

This is well-defined. In fact, if f ∈ D, then

λr(f(m)) = rf(m) = f(rm) = f(λr(m))

since f is a left R-module homomorphism. Therefore λr ∈ EndD(M) for all
r ∈ R. Moreover, the map λ is a ring homomorphism. In fact, it is easily seen
to be a group homomorphism. Also, λ1(m) = 1.m = m for all m ∈ M so that
λ1 = idM . Finally, if r, r′ ∈ R then

λrr′(m) = (rr′)(m) = r(r′m) = λr ◦ λr′(m), for all m ∈M

so that λrr′ = λr ◦ λr′ .

Theorem 4.2.1 (Rieffel). Let R be a simple ring and let M be a non-zero left
ideal of R. Let D = EndR(M). Then the above defined map λ : R −→ EndD(M)
is a ring isomorphism.

Proof. Since λ is a ring homomorphism, the kernel of λ is a two-sided ideal of
R. Since λ1 = idM , λ is not the zero map and this kernel can not be all of
R. By simplicity of R we must have kerλ = {0}. Is remains to prove that λ is
surjective.

We claim that λ(M) is a left ideal in EndD(M). Let f ∈ EndD(M) and
x ∈M . For m ∈M we have f ◦ λ(x)(m) = f(xm). Consider

Lm : M −→M, u 7−→ um.

This is a left R-module homomorphism. Indeed, if r′ ∈ R then Lm(r′u) =
(r′u)m = r′(um) = r′Lm(u). This shows that Lm ∈ D. But f ∈ EndD(M) and
therefore we have

f ◦ λ(x)(m) = f(xm) = f(Lm(x)) = Lm(f(x)) = f(x)m = λf(x)(m).
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This proves that f ◦ λ(x) = λ ◦ f(x) ∈ λ(M) for all x ∈ M . This proves that
λ(M) is indeed a left ideal in EndD(M).

Consider MR. Since M is a left ideal, this is a two-sided ideal of R. It is
non-zero because M is non-zero and MR contains M . By simplicity of R we
must have MR = R. Then λ(R) = λ(MR) = λ(M)λ(R). This proves that
λ(R) is a left ideal of EndD(M) since λ(M) is a left ideal. Since 1 ∈ λ(R) we
obtain λ(R) = EndD(V ).

Lemma 10. Let D be a division ring and let M be a left D-module. Then
EndD(M) is left Artinian if and if dimDM <∞.

Proof. Suppose that dimDM = n. Then by (4.2.0.1) we have EndD(M) ∼=
Mn(Dop) as rings and by Proposition 37 Mn(Dop) is left Artinian.

Suppose that dimDM = ∞. Then we can create an ascending chain of
subspaces

M1 (M2 (M3 ( . . .

where Mi has dimension i over D. Define Li = {f ∈ EndD(M) : f(Mi) = 0}.
This is a left ideal of EndD(M). Moreover, we have Li ) Li+1 since it is always
possible to construct a linear form that vanishes on i basis elements but not on
the other ones. We have therefore constructed an infinite descending chain of
left ideals

L1 ) L2 ) L3 ) . . .

and therefore M is not left Artinian.

Theorem 4.2.2. Let R be a simple left Artinian ring, let M be a minimal left
ideal of R, let D = EndR(M) and n = dimDM . Then

R ∼= EndD(M) ∼= Mn(Dop).

Proof. By Lemma 9 D is a division ring. By Theorem 4.2.1, R is isomorphic
to EndD(M) as a ring. Since R is left Artinian, the same is true for EndD(M).
By Lemma 10 M is of finite dimension over D, say n. By (4.2.0.1), we have
EndD(M) ∼= Mn(Dop) as rings.

Corollary 21. A ring is simple and left Artinian if and only if it is isomorphic
to a matrix ring over a division ring.

Corollary 22. The center of an Artinian simple ring R is a field.

Proof. By Theorem 4.2.2 R is of the form Mn(D) where D is a division ring.
The center Z(D) of D is clearly a field and the center of Mn(D) consists of
scalar matrices with coefficients in Z(D), that is, matrices of the form xIn with
x ∈ Z(D) and where In denotes the size n identity matrix. Thus the center of
R is isomorphic to Z(D) which is a field.

Corollary 23. A ring is left semisimple if and only if it is isomorphic to a
direct product of matrix rings over division ring.

Proof. Let R be a left semisimple ring. By Proposition 36 R is isomorphic to
a direct product of simple left Artinian rings, say R ∼= A1 × . . . × Am. By
Theorem 4.2.2, each Ai is isomorphic to a matrix ring over a division ring, say
Ai ∼= Mni(∆i). Thus

R ∼= Mn1(∆1)× . . .×Mnm(∆m).
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Conversely, let D be a division ring. By Proposition 37 Mn(D) is left
semisimple. A direct product of left semisimple rings is again left semisim-
ple.

Corollary 24. A ring is left semisimple if and only if it is right semisimple.

Proof. Follows from Proposition 37 which says that Mn(D) is both left and
right semisimple for a division ring D.

4.2.4 Uniqueness of Decompositions

We have seen that simple Artinian rings are isomorphic to matrix rings over
division rings. We now examine the uniqueness of the size of the matrix ring
and the division ring.

Proposition 38. Let R be a simple left Artinian ring. All non-zero simple left
R-modules are isomorphic. In particular, if R ∼= Mn(D) ∼= Mn′(D

′) where D
and D′ are division rings, then n = n′ and D ∼= D′.

Proof. Let M be a non-zero simple left R-module and let L be any minimal
left ideal of R. Then LM is a left sub-R-module of M . By simplicity of M we
either have LM = {0} or LM = M . Suppose that the former is true. Then
L ⊂ AnnR(M). The annihilator of M is a two-sided ideal of R. By simplicity
of R it must be {0} and therefore L = {0} which is not possible. Therefore
we have LM = M . Let x ∈ M be an element such that Lx 6= {0}. Then the
multiplication-by-x map

L −→M, y 7→ yx

is a non-zero left R-module homomorphism. By simplicity of L and M it is an
isomorphism.

Let R = Mn(D) and R′ = Mn′(D
′) and let φ : R −→ R′ be an isomorphism

of rings. Let L = Col(1) in R and let L′ = Col(1) in R′. By Proposition 37, L
and L′ are minimal left ideals of R and R′ respectively. The preimage φ−1(L′)
is a minimal left ideal of R and by the first part, there exists an isomorphism
between L and φ−1(L′). We may view L′ as a left R-module via φ. We then
have an isomorphism f : L −→ L′ of left R-modules. Consider now the map

EndR(L) −→ EndR(L′), α −→ fαf−1.

This is well-defined homomorphism of groups in that fαf−1 does indeed belong
to EndR(L′) whenever α belongs to EndR(L). It is injective and surjective
because f is an isomorphism. Moreover, idL is mapped to idL′ and αα′ is
mapped to fαα′f−1 = fαf−1fα′f−1. We conclude that it is an isomorphism
of rings.

The ideal L is a left D-module of dimension n. Let ∆ = EndD(L). Then
∆ ∼= Mn(Dop) and End∆(L) ∼= EndMn(D)(L)op. By Theorem 4.2.1 we have D ∼=
EndMn(D)(L)op = EndR(L)op. Similarly, one shows that D′ ∼= EndR′(L

′)op =
EndR(L′)op. We conclude that D ∼= D′. Finally, the left R-module isomorphism
f : L −→ L′ is in particular a left D-module isomorphism. Therefore n =
dimD L = dimD L

′ = n′.
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Proposition 39. Let R = A1⊕ . . .⊕Am be a decomposition of a ring R where
each Ai is a minimal two-sided ideal of R. Any two such decomposition are the
same up to permutation.

Proof. Let I be a non-zero two-sided ideal of R. Then IAi ⊂ Ai is a two-
sided ideal. By minimality we either have IAi = {0} or IAi = Ai. Thus
IR =

∑m
i=1 IAi =

∑
Ai where the last sum is over those i for which IAi = Ai.

Thus any two-sided ideal is a sum of the Ai and therefore the minimal two-sided
ideals of R are exactly the Ai.

From Proposition 36 the minimal two-sided ideals Ai are simple rings and
we have a ring isomorphism

R ∼= A1 × . . .×Am.

Moreover, we have AiAj = {0} whenever i 6= j.

Corollary 25. The decomposition of a semisimple ring into a direct product of
simple rings is unique up to isomorphism.

Proof. Suppose that R = A1× . . .×Am. Then A′i = {0}× . . .×Ai× . . .×{0} is
a minimal two-sided ideal of R and R = A′1 ⊕ . . .⊕A′m and this decomposition
is unique up to order.

4.3 Semisimple Algebras
A ring is central over a field k if k is exactly its center. A k-algebra is a
ring with a copy of k in its center, making it into a k-vector space and a ring
simultaneously. A k-algebra homomorphism is a k-linear ring homomorphism.
By a finite-dimensional semisimple k-algebra, we mean a k-algebra which is of
finite dimension over k and semisimple as a ring.

If A is an algebra, then we give it the Lie bracket

[·, ·] : A×A −→ A, [a, b] = ab− ba.

It is bilinear, skew-symmetric and satisfies the Jacobi identity. Note that if I is
a two-sided ideal of A, then if a ∈ I and b ∈ B, then [a, b] ∈ I. The Lie bracket
is very useful in that the center of A is characterized as follows:

Z(A) = {a ∈ A : [a, b] = 0, for all b ∈ A}.

Theorem 4.3.1. Let A be a finite-dimensional semisimple k-algebra. Then A
is isomorphic as a k-algebra to a finite product of matrix rings Mni(∆i) over
division rings ∆i whose center is a finite field extension of k. The integers
ni and the division rings ∆i are unique up to k-algebra isomorphism and the
decomposition of A is unique up to permutation.

Proof. Since A is a semisimple ring, by Corollary 23 A is isomorphic as a ring
to a finite product of matrix rings over division rings, say

A ∼= A1 × . . .×Am ∼= Mn1
(∆1)× . . .×Mnm(∆m).

This decomposition is unique up to order and ring isomorphism. Here the Ai are
the minimal two-sided ideals of A. They are simple rings. Each Ai contains k in
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its center and therefore eachAi is a simple k-algebra and the above isomorphisms
are ones of k-algebras. For each i, the center of Mni(∆i) is the set of scalar
matrices with coefficients in Z(∆i) and it is therefore isomorphic to the center
Z(∆i). Since Mni(∆i) is a k-algebra, this implies that k is contained in Z(∆i).
By Theorem 4.2.2, ∆i

∼= EndAi(Li)
op where Li is a minimal left ideal of Ai.

Since Ai is finite-dimensional over k it is also true that ∆i is finite-dimensional
over k. It follows that Z(∆i) is a finite field extension of k.

Proposition 40. Let A be a central simple algebra over k and let B be a simple
k-algebra. Then A ⊗k B is a simple k-algebra. Moreover, Z(A ⊗k B) = Z(B),
that is, any element of the center of A⊗k B has the form 1⊗ b for some unique
b ∈ Z(B). In particular, if B is a central simple k-algebra, then so is A⊗k B.

Proof. The tensor product A ⊗k B is a k-vector space. It has a ring structure
given on basis elements by

(a⊗ b)(a′ ⊗ b′) = (aa′)⊗ (bb′)

and extended linearly to all elements.
We will now prove that it is simple. We assume here that the dimension of

B over k is finite for simplicity. The proof in the general case is similar to the
one we now produce.

Let b1, . . . , br be a basis of B over k. Any element x ∈ A ⊗k B can be
written as

∑r
i=1 ai ⊗ bi with ai ∈ A. Define the length of

∑r
i=1 ai ⊗ bi to be

|{i : ai 6= 0}|. Let I be a non-zero two-sided ideal of A⊗kB and choose x ∈ I a
non-zero element of minimal length. By reordering the bi, we may assume that

x = 1⊗ b1 +

r∑
i=2

ai ⊗ bi

with ai ∈ A. For all a ∈ A we compute that

[a⊗ 1, x] =

r∑
i=2

[a, ai]⊗ bi.

Since x ∈ I we have [a⊗ 1, x] ∈ I. Since the length of [a⊗ 1, x] is less than the
one of x, by minimality we must have [a⊗ 1, x] = 0 for all a ∈ A. This implies
that [a, ai] = 0. In other words, aai = aia for all a ∈ A so that ai ∈ Z(A) = k
for i = 2, . . . , r. But then

x = 1⊗ b1 +

r∑
i=2

1⊗ (aibi) = 1⊗ b

where b = b1 +
∑r
i=2 aibi ∈ B \ {0}. For any b1, b2 ∈ B we have

(1⊗ b1)x(1⊗ b2) = 1⊗ (b1bb2) ∈ I

since I is an ideal. Thus BbB ⊂ B is a non-zero two-sided ideal of B. By
simplicity BbB = B and thus 1⊗ B ⊂ I which implies that A⊗k B = I. This
proves that A⊗k B is simple.

Let x =
∑r
i=1 ai ⊗ bi be an element of Z(A ⊗k B). Then for all a ∈ A we

have

0 = [a⊗ 1, x] =

r∑
i=1

[a, ai]⊗ bi.
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This implies that [a, ai] = 0 for all a ∈ A so that ai ∈ Z(A) = k for i = 1, . . . , r.
We may then write

x = 1⊗

(
r∑
i=1

aibi

)
=: 1⊗ b.

For all x ∈ B we have 0 = [1⊗ y, x] = 1⊗ [y, b] so that b ∈ Z(B).

Corollary 26. Let A be a central simple k-algebra and let K be a field extension
of k. Then A⊗k K is a central simple K-algebra.

Lemma 11. There are no proper finite-dimensional division algebras over an
algebraically closed field.

Proof. Assume that k is algebraically closed and let D be a finite-dimensional
division k-algebra. Let x ∈ D \ k. Since D is finite-dimensional over k and k(x)
is contained in D, the extension k(x)/k must be finite and thus algebraic. Since
k is algebraically closed, this forces k(x) = k and thus x ∈ k. This proves that
D = k.

Definition 12. Let A be a central simple k-algebra. A field extension K of k
is called a splitting field for A if A⊗k K is isomorphic to a matrix ring over K.

Definition 13. Let A be a central simple k-algebra and let K be a splitting
field of k. Let φ : A⊗k K −→Mn(K) be a K-algebra isomorphism. Define the
reduced trace and the reduced norm on A to be the composite maps

trr : A
id⊗1−→ A⊗k K

φ−→Mn(K)
tr−→ K

and
Nr : A

id⊗1−→ A⊗k K
φ−→Mn(K)

det−→ K

Example 5. In Example 4, we saw that a splitting field of the 4-dimensional
central division Q-algebra HQ is K = Q(α, β) where α2 +β2 = −1. An element
of α = x+ yi+ zj + tk ∈ HK = HQ ⊗Q K is expressed in matrix form as(

x+ yα+ zβ yβ − z − tα
yβ + z − tα x− yα− tβ

)
.

Thus trr(α) = 2x and Nr(α) = x2 + y2 + z2 + t2.

Proposition 41. Let A be a finite-dimensional central algebra A over a field
k. Let k̄ denote a fixed algebraic closure of k. Then k̄ is a splitting field for A.
In particular, dimk A is a perfect square.

Proof. Denote by k̄ a fixed algebraic closure of k. By Corollary 26, A ⊗k k̄ is
a finite-dimensional simple central k̄-algebra. By Proposition 4.3.1, A ⊗k k̄ is
isomorphic as a k̄-algebra to a matrix algebra over a finite-dimensional division
k̄-algebra. By Lemma 11 there are no finite-dimensional division algebras over
k̄ other than k̄ itself. Thus A ⊗k k̄ is isomorphic to Mn(k̄) for some integer n.
In other words, k̄ is a splitting field for A. Consequently, we have

dimk A = dimk̄ A⊗k k̄ = dimk̄Mn(k̄) = n2.



88 CHAPTER 4. RATIONALITY OF CHARACTERS

4.4 Schur Indices

We now relate our discussion of semisimple algebras to the theory of representa-
tions and more precisely to the question of rationality of representations. Here,
K will denote a field of characteristic zero and C will denote a fixed algebraic
closure of K. Let G be a finite group. Then the group ring K[G] is a finite-
dimensional K-algebra. It is semisimple by Proposition 16 whose proof does
not require K to be algebraically closed. Therefore K[G] decomposes into a
direct sum of finite dimensional simple K-algebras by Proposition 4.3.1. Going
through the proof of Proposition 36, we see that this decomposition corresponds
to the canonical decomposition of K[G] as a representation. But K[G] is the
regular representation of G over K and by Corollary 16 this decomposition is
given by

K[G] ∼= A1 × . . .×Ah
where Ai is the simple component of K[G] corresponding the irreducible charac-
ter χi of G over K. Let Vi be a representation of G with character χi and denote
by ni its dimension over K. Then Ai is isomorphic as a left K[G]-module to
the direct sum of ni copies of Vi. The representation Vi is the minimal left ideal
of the simple ring Ai. We say the minimal left ideal because by Proposition
38 all minimal left ideals of Ai are isomorphic as left modules. By Proposition
4.3.1 and Proposition 38, each Ai is isomorphic as a K-algebra to a matrix ring
over a division ring, say Mli(∆i), where li = dim∆i Vi and ∆i

∼= (EndAi(Vi))
op.

Note that EndAi(Vi) = EndK[G](Vi) since the left action of K[G] on Vi is left
multiplication which is done componentwise with respect to the decomposition
K[G] into the direct product of the Ai. Summing this up, we have a K-algebra
isomorphism

K[G] ∼= Ml1(EndK[G](V1)op)× . . .×Mlh(EndK[G](Vh)op).

By Proposition 41, C is a splitting field of each Ai. It follows that we have an
isomorphism of C-algebras

C[G] ∼= Ml1(C)× . . .×Mlh(C).

Definition 14. With the above notations, denote by Z(∆i) the center of ∆i.
Since ∆i is of finite-dimension over K and Z(∆i) contains K as a subfield, ∆i is
of finite dimension over Z(∆i). Thus ∆i is a finite-dimensional central division
Z(∆i)-algebra. By Proposition 41, we have [∆i : Z(∆i)] := dimZ(∆i) ∆i = m2

i

for some integer mi. This integer mi is called the Schur index of the character
χi over K.

Proposition 42. Let G be a finite group. Let χ1, . . . , χh denote the irreducible
characters of G over K and let mi be their respective Schur indices. Then the
family of characters {χi/mi}hi=1 forms a Z-basis of R(G,K).

Proof. See § 12.2 Proposition 35 of [Se1].

Theorem 4.4.1. Let χ be an irreducible character of G over C. Then there
is an irreducible representation of G over K(χ) with character χ′ such that
χ′ = mχ, where m is the Schur index of χ′ over K(χ). Furthermore, the
character φ = trK(χ)/K ◦ χ′ is the character of an irreducible representation of
G over K.
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Proof. Let Vi be the distinct (up to isomorphism) irreducible representations of
G over K(χ) with characters χi. Let Di = EndK(χ)[G]Vi and denote by Ei the
center of Di so that the Schur index mi of χi over K(χ) satsifies m2

i = [Di : Ei].
Evidently χ takes values in K(χ) and thus χ ∈ R(G,K(χ)). By Proposition 42,
there exist integers di such that χ =

∑
i di

χi
mi

. By Proposition 30, we have

〈χi, χj〉G =

{
dimK(χ)Di if i = j

0 otherwise.

Since χ is assumed to be irreducible, we obtain

1 = 〈χ, χ〉G =
∑
i

d2
i

m2
i

〈χi, χi〉G =
∑
i

d2
i

m2
i

[Di : K(χ)]

=
∑
i

d2
i

m2
i

[Di : Ei][Ei : K(χ)] =
∑
i

d2
i [Ei : K(χ)].

This implies that all di are zero except for one, say di0 , and moreover, d2
i0

= 1
and Ei0 = K(χ). As a consequence, we have mi0χ = di0χi0 . Evaluating both
sides at 1 ∈ G, we see that di0 > 0 and this implies di0 = 1. This proves the
first part of the theorem.

We rename m = mi0 and χi0 = χ′ as in the statement of the theorem and
let (ρ, V ) be a representation of G over K(χ) with character χ′. We also write
D′ = Di0 and E′ = Ei0 = K(χ). Let Γ be the Galois group of K(χ)/K which
is a Galois extension by Proposition 18 (the same proof works with Q and C
replaced by K and C). Define φ = trK(χ)/K(χ′) and ψ = trK(χ)/K(χ). We have

mψ =
∑
α∈Γ

mχα =
∑
α∈Γ

(mχ)α = φ.

The representation V is a K(χ)[G]-module of finite dimension equal to, say n.
Since K(χ) is a |Γ|-dimensional vector space over K, we can view V as a K[G]-
module of dimension n|Γ| over K by restriction of scalars. The character of the
K[G]-module V obtained in this way is φ and therefore φ is realizable over K.

LetW be a realization of φ overK. We need to prove that the representation
W is irreducible. Let therefore W1 be a K[G]-submodule of W . By semisim-
plicity, there exists a K[G]-submodule W2 of W such that W = W1 ⊕W2. By
definition of realizability, the representation K(χ) ⊗K W is a realization of φ
over K(χ) and is therefore isomorphic as a K(χ)[G]-module to the representa-
tion

⊕
α∈Γ V

α. By distributivity of the tensor product with respect to direct
sums we have

(K(χ)⊗K W1)⊕ (K(χ)⊗K W2) ∼= K(χ)⊗K W ∼=
⊕
α∈Γ

V α.

It follows that one of the two left summands contains an isomorphic copy of V ,
say the first. Since K(χ)⊗KW1 is stable under the action of Γ, it must contain
at least one copy of each V α. Now, if α is not 1, then we cannot have (χ′)α = χ′

since otherwise α fixes K(χ′) which is equal to K(χ) which implies α = 1. Thus
α 6= β in Γ implies that (χ′)α 6= (χ′)β so that V α is not isomorphic to V β . Thus
K(χ) ⊗K W1 =

⊕
α∈Γ V

α and K(χ) ⊗K W2 = 0 which implies that W2 = 0.
This proves that W is indeed irreducible.
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Chapter 5

L-Functions

Before Artin introduced his L-functions in his 1923 paper [Ar1], people had
already studied other less general L-functions. The study of L-functions can
be traced back to Leonard Euler who introduced and studied what is today
known as the Riemann zeta-function. In particular, he proved that it admitted
an expression as an Euler product in the region <s > 1. He also gave a modern
proof of the infinity of the prime numbers. Bernard Riemann was the first to
view this function as a complex variable function. He showed that his zeta-
function admitted a functional equation and an analytic continuation to all of
C. He also discovered the deep link between the zeros of the Riemann zeta-
function and the prime numbers and proved the explicit Weil formula for his
function. In his study he was led to conjecture that the non-trivial zeros of the
Riemann zeta-function all lie on the line <s = 1/2. This is now known as the
Riemann Hypothesis.

Later, Dirichlet introduced what is known as Dirichlet L-functions by attach-
ing what is called a Dirichlet character to the Riemann zeta-function. These
L-function were also shown to possess a functional equation which gave them
analytic continuation to C. Finally, Dedekind introduced the Dedekind zeta-
function of a number field, generalizing the Riemann zeta-function to number
fields. It was Weber who generalized Dirichlet’s methods and attached ray-class
characters to the Dedekind zeta-function and created what is called Weber L-
functions. Hecke was the one that proved that these L-functions admitted a
functional equation and an analytic continuation. Later Hecke introduced his
Grossencharakter, now known as a Hecke character, and attached to them a
generalization of both Dirichlet and Weber L-functions in the form of a Dirich-
let series that has an Euler product. The L-functions introduced by Artin
generalize all of these previous L-functions.

5.1 L-Functions before Artin

We briefly introduce Dirichlet and Weber L-functions.

91
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5.1.1 Dirichlet L-functions

Let m ≥ 1 and let χ be 1-dimensional complex representation of the group
(Z/mZ)∗. We extend this to a function χ : Z −→ C by letting

χ(n) =

{
χ([n]) if (n,m) = 1

0 otherwise.

This is called a Dirichlet character of modulus m.

Suppose that m′|m. Then we have an inclusion mZ ⊂ m′Z and thus a
surjective homomorphism Z/mZ −→ Z/m′Z. Moreover, (a,m) = 1 implies that
(a,m′) = 1 so that we have a surjective homomorphism (Z/mZ)∗ −→ (Z/m′Z)∗.

The smallest m∗|m such that χ factors through (Z/m∗Z)∗ is called the con-
ductor of χ and is denoted m∗. The extended character χ∗ : (Z/m∗Z)∗ −→ C
is then called a primitive Dirichlet character.

One can check that if χ factors through (Z/m′Z)∗ and (Z/m′′Z)∗ where both
m′ andm′′ dividem, then χ factors through (Z/ gcd(m′,m′′)Z)∗. Existence and
uniqueness of the conductor m∗ is proved by simply taking m∗ to be the gcd of
all divisors of m that χ factors through.

Once we have the definition of Dirichlet characters we can form Dirichlet L-
functions. If χ is a Dirichlet character then we define this function, for <s > 1,
to be

L(s, χ) =
∑
n≥1

χ(n)

ns
=
∏
p

(
1− χ(p)

ps

)−1

.

These are generalizations of the Riemann zeta-function which is obtained by tak-
ing the trivial character of modulus 1. One can show that Dirichlet L-functions
admit a functional equation centered at s = 1/2 and extend analytically to
holomorphic functions if χ is not trivial. If χ is the trivial character then the
Dirichlet L-function is the Riemann zeta-function and has a simple pole at
s = 1 with residue 1. Moreover, one can prove that the L-function of a non-
trivial Dirichlet character has no zeros on the line R(s) = 1 and actually no
zeros in a region away from the line s = 1 except possibly one which is known
as Siegel’s exceptional zero. These functions are central when studying primes
in arithmetic progression and primes in general. One for example studies these
functions when proving the Maynard-Zhang Theorem on bounded gaps between
primes.

If χ is a Dirichlet character of modulus m and χ∗ is the corresponding
primitive character of modulus m∗, then we have

L(s, χ) =
∏
p-m

(
1− χ∗(p)

ps

)−1

=
∏
p|m

(
1− χ∗(p)

ps

)
L(s, χ∗).

Thus the L-function of χ only differs by finitely many factors from the L-function
of χ∗ and it therefore suffices to study only primitive Dirichlet L-functions.
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5.1.2 Weber L-functions
Let k be a number field and m a modulus of k. Let χ be a 1-dimensional complex
representation of the m-ray class group Clk(m) of k. Extend this to a function
χ : IK −→ C by letting

χ(a) =

{
χ([a]) if a ∈ Ik(m)

0 otherwise.

This is called a ray-class character of modulus m.

Suppose that m′|m and let α ≡ 1 mod ∗m. Then we have α ≡ 1 mod ∗m′.
As a consequence, we have the inclusion Pm ⊂ Pm′ and we have a homomorphism
of groups Clk(m) −→ Clk(m′).

Definition 15. Let χ be a ray-class character of modulus m. The conductor
f(χ) of χ is the smallest modulusm′ of k with the property that there exists a ray-
class character χ′ of modulus m′|m such that the following diagram commutes:

Clk(m) C∗

Clk(m′).

χ

χ′

The corresponding Hecke character χ∗ : Clk(f(χ)) −→ C∗ is said to be primitive.

The existence and uniqueness of the conductor of a ray-class character comes
from constructing it again as the gcd of all moduli that divide m and have the
above property.

Definition 16. Let χ be a ray-class character over k of modulus m. The Weber
L-function associated to χ is defined, for <s > 1, to be

L(s, χ) =
∑
a

χ(a)

N(a)s
=
∏
p

(
1− χ(p)

N(p)s

)−1

where the sum is over all non-zero integral ideals of k and the product is over
all non-zero prime ideals of k.

Remark 15. By Example 1 a Dirichlet character of modulus m is a ray-class
character for Q of modulus mZv∞ and their L-functions coincide.

Proposition 43. Let χ be a ray-class character for k of modulus m. The
Weber L-function L(s, χ) converges absolutely for <s > 1 and therefore defines
a holomorphic function in this region which has no zeros.

Proof. Since χ : Cl(m) −→ C∗ is a homomorphism of groups, χ takes values on
the unit circle. We therefore have, for <s > 1,

|L(s, χ)| =

∣∣∣∣∣∣
∑

(a,m)=1

χ(a)

N(a)s

∣∣∣∣∣∣ ≤
∑
a

1

N(a)<s
= ζk(<s)

and we already know that the Dedekind zeta function converges absolutely for
<s > 1.
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In view of Remark 15, these Weber L-functions are generalizations of Dirich-
let L-functions. As in the previous section, if χ is a ray-class character and χ∗
denotes the corresponding primitive character, then

L(s, χ) =
∏
p|m

(
1− χ∗(p)

N(p)s

)
L(s, χ∗).

Thus the Weber L-function of χ only differs by finitely many factors from the
one of χ∗. It follows that in order to understand Weber L-functions it suffices
to consider the case of primitive characters. Note that the Weber L-function as-
sociated to the primitive trivial character is exactly the Dedekind zeta-function
ζk. Hecke proved that these L-functions can be analytically continued to the
whole complex plane via a functional equation. In order to state this theorem
we first need to complete L(s, χ) with local factors corresponding to the infinite
places of K.

Definition 17. Let χ be a ray-class character of k with conductor f. If v denotes
an infinite place of K, then we define the local factor at v as follows:

Lv(s, χ) =


ΓR(s) = π−

s
2 Γ
(
s
2

)
if v - f and is real

ΓR(s+ 1) = π−
s+1

2 Γ
(
s+1

2

)
if v|f and is real

ΓC(s) = ΓR(s)ΓR(s+ 1) = 2(2π)−sΓ(s) if v is complex.

We also define L∞(s, χ) =
∏
v∈M∞K

Lv(s, χ).

Theorem 5.1.1. Let χ be a primitive ray-class character of k of conductor
f(χ). The completed Weber L-function

Λ(s, χ) = (|dk|N(f(χ)0))
s
2L∞(s, χ)L(s, χ)

extends holomorphically to C (unless χ is trivial in which case it has simple
poles at s = 0, 1) and has a functional equation

Λ(s, χ) = ε(χ)Λ(1− s, χ̄)

where |ε(χ)| = 1.

Proof. The proof, which is due to Hecke, is inspired by the proof of the functional
equation for Dirichlet L-functions but uses more general and complicated Hecke
Θ-functions. See Chapter XIII, § 3 of [Lan].

Corollary 27. The Weber L-function of a non-trivial ray-class character is
holomorphic on C.

Proof. Let χ be a non-trivial ray-class character of modulus m and let χ∗ be
the corresponding primitive character. As already noted, we have

L(s, χ) =
∏
p|m

(
1− χ∗(p)

N(p)s

)
L(s, χ∗)

and as a consequence holomorphicity of L(s, χ) only depends on holomorphicity
of L(s, χ∗) since the finite product is holomorphic.
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We may therefore suppose that χ is a primitive non-trivial Weber character
with conductor f(χ). By the functional equation we have

L(s, χ) = ε(χ)
Λ(1− s, χ̄)

(|dk|N(f(χ)0))
s
2L∞(s, χ)

.

Looking at the definition of the Γ-factors in Definition 17 and using the fact
that Γ has a simple poles at s = −n for non-negative integers n and no zeros it
becomes clear that L(s, χ) is holomorphic on C.

Corollary 28. Let k be a number field. The completed Dedekind zeta-function

Λk(s) = |dk|
s
2 ΓR(s)r1ΓC(s)r2ζk(s).

extends meromorphically to C with two simple poles at s = 0, 1 with polar part
given by

2r1hkRk
ωk

(
1

s− 1
− 1

s

)
and satisfies the functional equation Λk(s) = Λk(1− s).

Proof. This is a consequence of our observation that ζk(s) is the Weber L-
function for the trivial primitive ray-class character. Therefore N(f(χ)0) = 1
and L∞ = ΓR(s)r1ΓC(s)r2 . The polar part result is a consequence of Theorem
1.5.1.

5.2 Artin L-functions
Weber L-functions were a great tool in proving global class field theory. But we
only have a class field theory for abelian extensions of number fields. Meanwhile,
Weber L-functions are functions associated to characters of abelian groups.
Artin was interested in L-functions more general than the ones of Weber and
Hecke that may be associated with not necessarily abelian Galois extensions
of number fields. He introduced his L-functions in his 1923 paper [Ar1] and
completed his work on them in his 1930 and 1931 papers [Ar2] and [Ar3].

5.2.1 Definition
Let K/k be a finite Galois extension of number fields and let G = Gal(K/k).
Let v = p be a finite place of Mk. Pick a prime ideal P of OK that divides p
and let eP and fP be the ramification and residual degrees of P over p. Denote
by (P,K/k) the Frobenius element of P. This is an element of the quotient
group DP/IP.

Let (ρ, V ) be a finite-dimensional complex representation of G and consider
the representation (ρP, V

IP) of the quotient group DP/IP. For any s ∈ C with
<s > 1, consider the element 1−ρP((P,K/k))N(p)−s of EndC(V IP). Since the
order of ρP((P,K/k)) is f = fP, the above element has an inverse given by

(1−N(p)−sf )−1

f−1∑
j=1

ρP((P,K/k))jN(p)−sj .

In particular, 1−ρP((P,K/k))N(p)−s belongs to GL(V IP) and its determinant
is non-zero.
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Definition 18. Let K/k be a finite Galois extension of number fields and let
G = Gal(K/k). Let (ρ, V ) be a finite-dimensional complex representation of G.
The Artin L-function of V is defined, for s ∈ C with <s > 1, by the product

L(s, V,K/k) =
∏

p∈M0
k

det(1− ρP((P,K/k))N(p)−s | V IP)−1

where P denotes any prime ideal of K that divides p.

Remark 16. We claim that this definition does not depend on the choice of
the prime P|p. For, any other prime that divides p is of the form σ(P) for
some element σ of G. Let σP denote a representative of (P,K/k) in DP. By
Proposition 12, σσPσ−1 is a representative of σ(P,K/k) in Dσ(P). Then by
definition of the quotient representation we have

ρσ(P)((σ(P),K/k)) = ρ(σσPσ
−1) = ρ(σ)ρP((P,K/k))ρ(σ)−1.

It follows that

1− ρσ(P)((σ(P),K/k))N(p)−s = ρ(σ)(1− ρP((P,K/k))N(p)−s)ρ(σ)−1.

As a consequence, we have

det(1− ρσ(P)((σ(P),K/k))N(p)−s) = det(1− ρP((P,K/k))N(p)−s).

Remark 17. Let (ρ′, V ′) be an isomorphic representation. Then there exists an
isomorphism of complex vector spaces f : V −→ V ′ such that f ◦ρ(σ) = ρ′(σ)◦f
for all σ ∈ G. It follows that ρ(σ) = f−1 ◦ ρ′(σ) ◦ f and det(1 − ρ(σ)) =
det(1− ρ′(σ)). We conclude that

L(s, V,K/k) = L(s, V ′,K/k).

Thus, the Artin L-function is actually defined for isomorphism classes of repre-
sentation. This last observation hints toward the fact that we should be able to
get an expression of the L-function that only depends on the character of the
representation.

Remark 18. When the context is clear and no confusion is possible, we shall
write L(s, V ) instead of L(s, V,K/k) for the Artin L-function of V .

Proposition 44. Let K/k be a finite Galois extension of number fields and
let G = Gal(K/k). Let (ρ, V ) be a representation of G over C. The Artin
L-function L(s, V ) converges absolutely in the region <s > 1.

Proof. For each prime p of k and any choice of a prime P in K that divides p,
we denote by dim(P) the degree of the representation V IP . Also, we denote
by λPi the eigenvalues of the matrix ρP((P,K/k)) for i = 1, . . . ,dim(P). For
the following computation we drop the V IP in the determinant notation. With
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these notations, we have

|L(s, V )| =
∏
p

|det(1− ρP((P,K/k))N(p)−s)|−1

=
∏
p

dim(P)∏
i=1

|1− λPi N(p)−s|−1

≤
∏
p

dim(P)∏
i=1

(1− |λPi |N(p)−<s)−1

=
∏
p

dim(P)∏
i=1

(1−N(p)−<s)−1

≤
∏
p

(1−N(p)−<s)dimC V

= ζk(<s)dimC V ,

where ζk denotes the Dedekind zeta-function of k. Note that we made use of
the fact that the absolute value of the eigenvalues of ρP((P,K/k)) is 1. This
is due to the fact that ρP is a homomorphism of groups and therefore of finite
order since DP/IP is finite. Since ζk converges for <s > 1 we get the desired
result.

Proposition 45. Let K/k be a finite Galois extension of number fields and let
G = Gal(K/k). Let (ρ, V ) be a representation of G over C with character χ.
For P|p we denote by χP the character of the representation V IP . Then, for
<s > 1, we have

logL(s, V ) =
∑
p

∞∑
j=1

χP((P,K/k)j)

jN(p)js

where σP denotes any representative of the Frobenius element (P, L/K) in DP.

Proof. We use the same notations as in the previous proof. Taking the logarithm
of the L-function, we obtain

logL(s, V ) =
∑
p

− log det(1− (P, L/K)N(p)−s))

=
∑
p

− log

dimP∏
i=1

(1− λPi N(p)−s) =
∑
p

dimP∑
i=1

− log(1− λPi N(p)−s).

Using the Taylor expansion of − log(1− x), we see that

logL(s, V ) =
∑
p

dimP∑
i=1

∞∑
k=1

(λPi )j

jN(p)js
=
∑
p

∞∑
j=1

∑dimP
i=1 (λPi )j

jN(p)js
.

But the (λPi )j are the eigenvalues of the jth power of ρP((P, L/K)) and thus
their sum is χP((P, L/K)j) and this concludes the proof of the first equality.
The second equality is a direct consequence of Proposition 9.
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Remark 19. Proposition 45 shows that the Artin L-function of a Galois repre-
sentation only depends on the character of this representation. We will therefore
speak about the Artin L-function of a character and we will interchangeably use
the notations L(s, V ) and L(s, χ).

By Proposition 9 we have

logL(s, χ) =
∑
p

∞∑
j=1

1
eP

∑
τ∈IP χ(σjPτ)

jN(p)js
.

We use this expression to extend the definition of Artin L-functions to class
functions of G.

Definition 19. Let K/k be a finite Galois extension of number fields and let
G = Gal(K/)k. For any class function φ ∈ R(G,C), we define the Artin L-
function of φ for <s > 1 to be

logL(s, φ) =
∑
p

∞∑
j=1

1
eP

∑
τ∈IP φ(σjPτ)

jN(p)js

where σP denotes any coset representative of the Frobenius automorphism
(P,K/k) in DP.

5.2.2 First Properties
We study the behavior of Artin L-functions with respect to the operations of
addition, induction and inflation on representations and their characters.

Proposition 46. Let K/k be a finite Galois extension of number fields and let
G = Gal(K/k). Let 1G denote the trivial character of G. Then, for <s > 1, we
have

L(s, 1G) = ζk(s).

Proof. By Proposition 45 we have

logL(s, 1G) =
∑
p

∞∑
j=1

1

jN(p)js
.

Using the Taylor series of log(1− x) we get

logL(s, 1G) =
∑
p

− log(1−N(p)−s) = log
∏
p

(1−N(p)−s)−1 = log ζk(s).

Proposition 47 (Additivity). Let K/k be a finite Galois extension of number
fields and let G = Gal(K/k). Let χ1 and χ2 be two characters of G. Then, for
<s > 1,

L(s, χ1 + χ2) = L(s, χ1)L(s, χ2).

Proof. By Proposition 45 and using absolute convergence of the Artin L-function
in the region <s > 1 we see that

logL(s, χ1 + χ2) = logL(s, χ1) + logL(s, χ2).
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Proposition 48 (Inflation). Let K/k be a finite Galois extension of number
fields and let G = Gal(K/k). Let H be a normal subgroup of G and let χ be a
character of the quotient group G/H. Then, for <s > 1, we have

L(s, InflGHχ,K/k) = L(s, χ,KH/k).

Proof. Let K ′ = KH and let Γ = Gal(K ′/k). By Proposition 11, the restriction
map Res : G −→ Γ induces and isomorphism IP/(IP ∩H) ∼= IP′ .

If σP′ and σP denote representatives of the respective Frobenius elements,
then for any positive integer j we have

1

eP′

∑
τ ′∈IP′

χ(σjP′τ
′) =

1

eP′ |IP ∩H|
∑
τ∈IP

χ(σjP′Res(τ)).

Note that |IP ∩ H| = eP/eP′ . By Proposition 13, we may suppose that
Res(σP) = σP′ . Thus

1

eP′

∑
τ ′∈I′P

χ(σjP′τ
′) =

1

eP

∑
τ∈IP

χ(Res(σjPτ)) =
1

eP

∑
τ∈IP

InflGHχ(σjPτ).

By Proposition 45, we obtain equality between the L-functions.

Proposition 49 (Induction). Let K/k be a finite Galois extension of number
fields and let G = Gal(K/k). Let H be a subgroup of G and let χ be a character
of H. Then, for <s > 1, we have

L(s, IndGHχ,K/k) = L(s, χ,K/KH).

Proof. By Proposition 45 it suffices to prove the following: for all p prime in k
with P a prime in K that divides p we have

∑
j≥1

IndGHχβ((P,K/k)j)

jN(p)js
=
∑
q|p

∑
n≥1

χ℘((℘,K/KH)n)

nN(q)ns

where the right-hand side sum is over prime ideals q of KH that divide p and ℘
is any prime ideal of K that divides q.

We set F = KH . We fix a prime p in k. In F , we have a decomposition of p,
say pOF = qe11 . . . qerr . For each i, we let fi denote the residual degree of qi over
p. For each qi we let Pi denote a prime of K that lies above qi and we denote
by e′i and f ′i the associated ramification and residual degrees of Pi over qi. We
let e and f be the ramification and residual degrees of Pi over p. The prime
ideal Pi all lie above p and G acts transitively on the prime ideals of OK that lie
above p. We let ηi ∈ G be such that ηi(P1) = Pi. Let Di and Ii be respectively
the decomposition and inertia groups of Pi over p. Then by Proposition 10 we
have Di = ηiD1η

−1
i and Ii = ηiI1η

−1
i . Let σ1 ∈ D1 be an element such that

(P1,K/k) = σ1I1 and choose σi ∈ Di such that σi = ηiσ1η
−1
i by Proposition

12. Note that Di ∩H and Ii ∩H are respectively the decomposition and inertia
groups of Pi over qi. The order of the group Di is ef and the order of Di∩H is
e′if
′
i and thus the index of Di ∩H in Di is eifi. Let {γi,ν} for ν = 1, . . . , eifi be

a system of right coset representatives of the quotient Di/(Di ∩H). By Lemma
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3, the family {γi,νηi} for i = 1, . . . , r and ν = 1, . . . , eifi is a system of distinct
right coset representatives of the quotient H \G.

Using Theorem 3.4.1, we see that if τ is an element of G, we have

IndGHχ(τ) =

r∑
i=1

′
eifi∑
ν=1

′
χ(γi,νηiτη

−1
i γ−1

i,ν )

where the symbol ′ in the sums means that the sums are over all i and ν such
that γi,νηiτη−1

i γ−1
i,ν belongs to H. It follows from Proposition 9 that

IndGHχP((P,K/k)j) = IndGHχP1
(σj1I1) =

1

e

∑
τ∈I1

IndGHχ(σj1τ)

=
1

e

∑
τ∈I1

r∑
i=1

′
eifi∑
ν=1

′
χ(γi,νηiσ

j
1τη
−1
i γ−1

i,ν )

=
1

e

∑
τ∈I1

r∑
i=1

′
eifi∑
ν=1

′
χ(γi,νηiσ

j
1η
−1
i ηiτη

−1
i γ−1

i,ν )

=
1

e

r∑
i=1

′
eifi∑
ν=1

′ ∑
τi∈Ii

χ(γi,νσ
j
i τiγ

−1
i,ν ).

Since Ii is a normal subgroup of Gi and Gi/Ii is abelian, conjugation of σji Ii by
elements of Gi does not affect σ

j
i Ii. It follows that

IndGHχP((P,K/k)j) =

r∑
i=1

′ eifi
e

∑
τ∈Ii

χ(σji τ)

where the sum is over the i’s and the τ for which σji τ belongs to H. By Lemma
4, the intersection σji Ii ∩H is non-empty if and only if fi divides j. Moreover,
if φi is a representative of (Pi,K/F ) in the decomposition group Di ∩H of Pi

over qi, then if fi divides j we have

σji Ii ∩H = φ
j/fi
i (Ii ∩H).

It follows that

IndGHχP((P,K/k)j) =

r∑
i=1

eifi
e

∑
τ∈Ii
σ
j
i
τ∈H

χ(σji τ)

=

r∑
i=1

eifi
e

∑
τ∈Ii∩H

χ(φ
j/fi
i τ)

=

r∑
i=1

e′ieifi
e

χPi((Pi,K/F )j/fi)

since e′i = |Ii ∩H|. Since e = eie
′
i, we get

IndGHχP((P,K/k)j) =

r∑
i=1

fiχPi((Pi,K/F )j/fi).
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We can now compute∑
j≥1

IndGHχβ((P,K/k)j)

jN(p)js
=

r∑
i=1

∑
j:fi|j

fi
χPi((Pi,K/F )j/fi)

jN(p)js

=

r∑
i=1

∑
n≥1

fi
χPi((Pi,K/F )n)

nfiN(p)nfis

=

r∑
i=1

∑
n≥1

χPi((Pi,K/F )n)

nN(q)ns

as promised.

Proposition 50. Let K/k be a finite Galois extension of number fields and let
G = Gal(K/k). Let Ĝ denote the set of irreducible characters of G over C. For
<s > 1, we have the formula

ζK(s) =
∏
χ∈Ĝ

L(s, χ)χ(1).

In particular, if 1G denotes the trivial character of G, then we have the formula

ζK(s)

ζk(s)
=
∏
χ 6=1G

L(s, χ)χ(1).

Proof. Consider the trivial subgroup {1} of G. It has only one irreducible
character, namely the trivial character 1{1}. By Theorem 3.4.1, the induced
character on G is given by

IndG{1}1{1}(σ) =
∑
τ∈G

τ−1στ=1

1 =

{
|G| if σ = 1

0 otherwise.

By Proposition 26, this is equal to the regular character rG of G. By Corollary
16 we have rG =

∑
χ∈Ĝ χ(1)χ. By Proposition 47 applied repeatedly we have,

for <s > 1, the formula

L(s, rG) =
∏
χ∈Ĝ

L(s, χ)χ(1).

By Proposition 49 and Proposition 46, we have

L(s, IndG{1}1{1},K/k) = L(s, 1{1},K/K) = ζK(s).

We thus obtain
ζK(s) =

∏
χ∈Ĝ

L(s, χ)χ(1)

which proves the first formula. By Proposition 46, we have L(s, 1G, L/K) =
ζk(s) so that

ζK(s) = ζk(s)
∏
χ6=1G

L(s, χ)χ(1).

By Remark 5 the function ζk(s) can be expressed as an Euler product for <s > 1
and therefore has no zeros in this region of the complex plane. We can therefore
divide the previous expression by ζk(s) on both sides to obtain the desired
formula.
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5.3 Artin L-Functions of 1-dimensional Charac-
ters

Let K/k be a finite Galois extension of number fields with Galois group G.
Let χ be a 1-dimensional character of G. Then χ factors through it kernel.
Explicitly, there exists a homomorphism χ′ : G/ kerχ −→ C∗ such that the
following diagram

G C∗

G/ kerχ

χ

χ′

commutes. In other words, we have χ = InflGkerχχ
′. Since kerχ is a normal

subgroup of G, the extension Kkerχ/k is a Galois extension. Moreover, it is
abelian. The latter is because the kernel of χ contains the commutator [G : G],
whence Kker(χ) is a subfield of K [G:G]. Since Kker(χ) is Galois over k, its Galois
group is a quotient of the abelian group G/[G : G] and is therefore abelian. By
Proposition 48, we have

L(s, χ,K/k) = L(s, χ′,Kkerχ/k).

Thus the L-function of a 1-dimensional character is the L-function of a 1-
dimensional injective character of an abelian extension of k.

Assume now that K/k is an abelian extension with Galois group G. Let χ
be a 1-dimensional injective character of G. The conductor f = f(K/k) of K/k
is the smallest modulus of k for which K is a subfield of the corresponding ray
class field by Proposition 14. Let Res denote the restriction map

Gal(k(f)/k) −→ G.

It induces an isomorphism of groups

Gal(k(f)/k)/Gal(k(f)/K) −→ G.

Define the character

χf := Infl
Gal(k(f)/k)
Gal(k(f)/K)(χ ◦ Res) : Gal(k(f)/k) −→ C∗.

Composing with the Artin map we get a character χ′f = χf ◦ Φk(f)/k,f of Clk(f).
We extend χ′f to a ray-class character χ′f : Ik −→ C of modulus f by setting

χ′f(a) =

{
χ′f([a]) if a ∈ Ik(f)

0 otherwise.

We consider the Weber L-function associated to this ray-class character

LW (s, χ′f) =
∏
p-f

(
1− χ′f(p)N(p)−s

)−1
.

We have
L(s, χ,K/k) =

∏
p

(1− χp((p,K/k))N(p)−s | V Ip)−1.



5.4. FUNCTIONAL EQUATION OF ARTIN L-FUNCTIONS 103

We have V Ip 6= {0} if and only if χ(Ip) = 1. By injectivity of χ this implies
that Ip is trivial which is equivalent to p being unramified. By Theorem 2.4.2,
p is ramified if and only if p divides f. We conclude that

L(s, χ,K/k) =
∏
p-f

(1− χ(σp)N(p)−s)−1.

If p is unramified, then

χ′f(p) = χp((p, k(f)/k)) = χ(Res((p, k(f/k)))) = χ(σp)

where we used Proposition 13 in the last equality. We conclude that

L(s, χ,K/k)) = LW (s, χ′f). (5.3.0.1)

To recapitulate, using class field theory and the properties of Artin L-
functions we have shown that the Artin L-function of a 1-dimensional character
of a finite Galois extension is equal to a Weber L-function. By Theorem 5.1.1 all
Weber L-functions admit a functional equation centered at 1

2 . By Corollary 27,
these L-functions are holomorphic on C if the ray-class character is not trivial
and meromorphic with a pole at s = 1 if the character is trivial. In conclusion,
we have proved the following:

Theorem 5.3.1. The Artin L-function of a 1-dimensional characters of finite
Galois extensions admits a meromorphic continuation to C and a functional
equation centered at s = 1

2 .

Theorem 5.3.2. Let χ be a 1-dimensional non-trivial character of a finite
Galois extension K/k with Galois group G. Then L(s, χ,K/k) is non-zero at
s = 1.

Proof. We have just proved that L(s, χ,K/k) is actually the Artin L-function
of a 1-dimensional character of an abelian extension. It thus suffices to prove
the result in the special case where K/k is abelian. Every irreducible character
of K/k is then 1-dimensional and by Proposition 50 we have the formula

ζK(s)

ζk(s)
=

∏
χ′ 6=1G

L(s, χ′,K/k)

where the product runs over all irreducible characters of K/k that are not the
trivial character 1G. By our above discussion, each L(s, χ′,K/k) is a Weber
L-function and extends holomorphically to C by Theorem 5.1.1. On the other
hand, by Theorem 1.5.1, both ζK and ζk have a simple pole at s = 1 and thus the
quotient ζK(s)

ζk(s) has neither zero nor pole at s = 1. Since all L(s, χ′,K/k) on the
right hand side are holomorphic, if one factor has a zero at s = 1 then it cannot
be balanced out by the other factors and the right hand side would have a zero
of order at least 1 at s = 1 which is a contradiction. Thus L(1, χ′,K/k) 6= 0
and in particular this proves that L(1, χ,K/k) 6= 0 as desired.

5.4 Functional Equation of Artin L-Functions
Let K/k be a finite Galois extension of number fields with Galois group G and
let χ be a character of G. By Brauer’s Theorem 3.11.1, there exist subgroups
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Hi with one-dimensional characters θi and integers ni such that

χ =
∑
i

niIndGHiθi.

By Proposition 47 and Proposition 49 we have the equality

L(s, χ,K/k) =
∏
i

L(s, θi,K/K
Hi)ni .

By Theorem 5.3.1, each L(s, θi,K/K
Hi) satisfies a functional equation centered

at 1
2 . Therefore the same is true for L(s, χ,K/k) and therefore Artin L-functions

extend to meromorphic functions on C via a functional equation centered at
s = 1

2 . Since the functional equations of Artin L-functions of 1-dimensional
characters relate the completed L-function of the character with the one of the
conjugate character and the conjugate of a Z-linear combination of characters is
the same Z-linear combination of the conjugates of the characters, the functional
equation of a general Artin L-function will also relate the completed L-function
of χ with the one of χ̄. But how do we get an explicit well-defined completed
Artin L-function? One way to obtain this completed L-function would be to
write the Artin L-function as a Z-linear combination of monomial characters
using Brauer’s Theorem 3.11.1 and then defining the completed Artin L-function
as the product of the completed L-functions of the monomial characters. But the
expression obtained via Brauer’s Theorem 3.11.1 is not unique and one cannot
a priori guarantee that the completed Artin L-function obtained in this way is
consistent with the different expressions. Moreover, the completed L-function
would have to satisfy properties consistent with the addition, induction and
inflation properties of Artin L-functions. Having made this observation we will
not dwell on this problem any further but simply give the completed Artin
L-function and state the functional equation.

In order to accomplish this, we need some notation and the definition of the
Artin conductor. Let K/k be a Galois extension of number fields with Galois
group G. Let V be a finite-dimensional complex linear representation of G with
character χ. Having fixed the field extension K/k, we will simply write L(s, χ)
for the Artin L-function of χ.

We start by adding in Gamma factors corresponding to the infinite places
of k. The Galois group G acts on infinite places w of K in the following way:

|x|σ(w) = |σ−1(x)|w.

Suppose that w lies above the infinite place v of k. Since σ fixes k, the infinite
place σ(w) also lies above v. It is not difficult to see that G acts transitively on
the places above v.

Let v be an infinite place of k and let w be a place in K that lies above v.
Define the decomposition group of w over v to be

Dw = Dw/v = {σ ∈ G : σ(w) = w}.

If w is a complex place and v a real place, then Dw is of order 2 and contains
the identity and complex conjugation. Otherwise, Dw is the trivial group.

If Dw is non-trivial, then let χ+ and χ− respectively be the trivial and the
non-trivial irreducible character of Dw. Since Dw is abelian, both characters
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have dimension 1. Decomposing χ into irreducible characters of Dw yields

ResGGwχ = n+(w)χ+ + n−(w)χ−.

We have n+(w) =
〈
ResGGw , χ+

〉
Gw

= dimC V
Dw . Evaluating the above equation

at the identity yields dimC V = n+(w) + n−(w) by Proposition 17 (i) so that
n−(w) = codimCV

Dw . The particular choice of a place w above v does not affect
the above decomposition since the decomposition groups of two places above v
are conjugate (same proof as Proposition 10). We therefore write n+(v) and
n−(v). We define 

Lv(s, χ+) = ΓC(s) if v is complex
Lv(s, χ+) = ΓR(s) if v is real
Lv(s, χ−) = ΓR(s+ 1) if v is real.

We define the local factor at v by

Lv(s, χ) = Lv(s, χ+)n+(v)Lv(s, χ−)n−(v).

For the definition of ΓR and ΓC see Definition 17.
We also define

a1(χ) =
∑
v real

n+(v) and a2(χ) =
∑
v real

n−(v).

It follows that

n = [k : Q] =
1

χ(1)
(a1(χ) + a2(χ) + 2r2χ(1)). (5.4.0.1)

Explicitly, we then have

∏
v|∞

Lv(s, χ) = 2r2χ(1)(1−s)π−
a2(χ)

2 −nχ(1) s2 Γ(s)r2χ(1)Γ
(s

2

)a1(χ)

Γ

(
s+ 1

2

)a2(χ)

.

Our next task is to define the exponential factor of the completed L-function.
Let p be a finite place of k and let P be a place above p. For all i ≥ 0 we define
the ith ramification group Gi to be the subgroup of DP consisting of elements
that act trivially on OK/Pi+1. Explicitly, we have

Gi = {σ ∈ DP : vP(σ(x)− x) ≥ i+ 1 for all x ∈ OK}.

This gives a filtration
IP = G0 . G1 . G2 . . . .

with Gi = {1} for i large enough. If gi denotes the order of Gi then we define

f(χ, p) =

∞∑
i=0

gi
g0

codimCV
Gi .

This definition does not depend on the choice of P. In fact, if P′ is another place
above p then P′ = σ(P) for some σ ∈ G and if G′i denotes the ith ramification
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group of P′, then G′i = σGiσ
−1. In fact, if τ is an element of Gi, then for

x ∈ OK , we have

στσ−1(x)− x = σ(τ(σ−1(x))− σ−1(x)) ∈ σ(Pi+1) = P′
i+1

.

This proves that G′i ⊇ σGiσ
−1. Applying this inclusion with σ−1 gives the

desired equality.
Furthermore, if p is unramified, then f(χ, p) = 0 and one can prove that

f(χ, p) is an integer for any p.

Definition 20. The Artin conductor of χ is the ideal of Ok defined by

f(χ) =
∏
p

pf(χ,p).

Definition 21. The completed Artin L-function of χ is defined, for <s > 1, by

Λ(s, χ) = (|dk|χ(1)N(f(χ)))
s
2

∏
v|∞

Lv(s, χ)L(s, χ).

Theorem 5.4.1. The completed Artin L-function of χ admits a meromorphic
continuation to the whole complex plane and satisfies the functional equation

Λ(1− s, χ) = W (χ)Λ(s, χ̄)

where |W (χ)| = 1.

Remark 20. We have seen that Artin L-functions satisfy additivity, inflation
and induction properties in the region <s > 1. One can check that these prop-
erties extend to all of C.

Artin did not prove Theorem 5.4.1. He proved Artin Reciprocity which
is Theorem 2.4.1 and Theorem 2.4.2 and hereby completed global class field
theory. This enabled him to prove the relation between Artin L-functions of 1-
dimensional characters and Weber L-series which was established in the previous
section. He also proved the following:

Theorem 5.4.2 (Artin). Any character of a finite group can be expressed as a
Q-linear combination of monomial characters.

This enabled him to decompose his Artin L-functions into the product of
rational powers of Artin L-functions of 1-dimensional characters which he knew
by Hecke’s work could be extended meromorphically to C via a functional equa-
tion centered at s = 1

2 . However, since the powers were rational, he could not
conclude that his Artin L-functions could be extended meromorphically to C.
Suspecting however that this was true, he conjectured the following:

Conjecture 1 (Artin). Any character of a finite group can be expressed as a
Z-linear combination of monomial characters.

This became known as Brauer’s Theorem in 1946 when Brauer confirmed
Artin’s intuition. As we discussed in the beginning of this section, this result
ensured that Artin L-functions admit a meromorphic continuation to C. But
Artin went even furtherand conjectured the following:
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Conjecture 2 (Artin). Every Artin L-function, except those associated to triv-
ial characters, can be extended to a holomorphic function on C.

This result is commonly referred to as "Artin’s Conjecture". It is known to
hold, as we have already seen, in the case of one-dimensional characters. But
for higher dimensional characters this is still an open problem and an active
area of research today. Progress has been made in the 2-dimensional case by
considering L-functions attached to certain modular forms of weight 2.
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Chapter 6

Stark’s Conjectures

The Stark Conjecture was introduced by Stark in the 1970’s in his series of
papers [StI], [StII], [StIII] and [StIV] and was later expanded by Tate in his
book [Ta1]. It gives conjectural information concerning the leading term of the
Taylor expansion of Artin L-function around s = 0 and generalizes the analytic
class number formula of the Dedekind zeta-function. In the abelian rank 1 case
Stark gave a more refined version of his conjecture. That is why this section is
called Stark’s conjectures in plural. We shall follow the exposition in [Ta1].

6.1 Preliminaries
The idea here is to present the motivation behind Stark’s conjecture as well as
defining the ingredients needed to state the conjecture.

6.1.1 The Class Number Formula at s = 0

Let k be a number field. In chapter 1 we proved Theorem 1.5.1, known as the
class number formula, which states that the Dedekind zeta-function has a simple
pole at s = 1 with residue given by

Ress=1(ζk(s)) =
2r1(2π)r2Rk

ωk|dk|
1
2

hk.

By Corollary 28, the completed zeta-function Λk(s) extends to all of C with
simple poles at s = 0 and s = 1 and satisfies a functional equation Λk(s) =
Λk(1 − s). We will use this to translate the above formula into information
about ζk at s = 0.

Proposition 51. The Dedekind zeta-function ζk(s) admits a meromorphic con-
tinuation to C with a simple pole at s = 1 with residue given by the class number
formula. The Taylor expansion of ζk(s) at s = 0 is

ζk(s) = −hk
ωk
Rks

r1+r2−1 +O(sr1+r2).

Proof. Using Theorem 28, we see that

ζk(s) = |dk|
1
2−sπ(s−1/2)n2(2s−1)r2

(
Γ
(

1−s
2

)
Γ
(
s
2

) )r1 (Γ (1− s)
Γ (s)

)r2
ζk(1− s).

109
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Since Γk(s) has a simple pole at s = 0 we see that ζk(s) is indeed holomorphic
at s = 0 and the order of annulation of ζk(s) at s = 0 is r1 +r2−1. We compute
that lims→0

ζk(s)
sr1+r2−1 is equal to

|dk|
1
2π−

n
2 2−r1−r2Γ

(
1

2

)r1
Γ(1)r2 lim

s→0

(s
2

Γ
(s

2

))−r1
(sΓ(s))−r2 lim

s′→1
−(s′−1)ζk(s′).

Using the fact that Γ(s) has a simple pole at s = 0 with residue 1, that the
value of Γ(s) at s = 1/2 is π−1/2 and the class number formula 1.5.1, we see
that

lim
s→0

ζk(s)

sr1+r2−1
= −hk

ωk
Rk.

Remark 21. This result is truly remarkable. First of all, the leading coefficient
of the Taylor series of ζk(s) around s = 0 is given by a global invariant of the
field k, namely its regulator, times a rational number. Secondly, the order of
annulation of ζk(s) at s = 0 is the rank of the unit group Uk by Theorem 1.4.2.

Definition 22. Let S be a finite subset of Mk containing M∞k . We define the
S-modified Dedekind zeta-function, for <s > 1, by the Euler product

ζk,S(s) =
∏
p6∈S

(1−N(p)−s)−1 = ζk(s)
∏

p∈S\M∞k

(1−N(p)−s).

Using the functional equation of ζk(s) we see that ζk,S(s) also admits a
meromorphic continuation to the whole of the complex plane.

Proposition 52. Let S be a finite subset of Mk containing M∞k . Let p 6∈ S
and define S′ = S ∪ {p}. Then, as s→ 0, we have

ζK,S′(s) ∼ logN(p)sζK,S(s)

meaning that the ratio tends to 1 as s→ 0.

Proof. We have ζk,S′(s) = (1−N(p)−s)ζk,S(s). Thus

lim
s→0

ζk,S′(s)

logN(p)sζk,S(s)
= lim
s→0

1−N(p)−s

s logN(p)
= lim
s→0

1

1 + s logN(p)
= 1

where we used the rule of l’Hospital in the second equality.

Corollary 29. Let S be a finite subset of Mk containing M∞k . The Taylor
expansion of ζk,S(s) at s = 0 is

ζk,S(s) = −hk,S
ωk

Rk,Ss
|S|−1 +O(s|S|).

Proof. We prove this by induction on n = |S \M∞K |. The case n = 0 is Propo-
sition 51. Suppose the result true for n− 1. Let p be a prime in S and consider
S′ = S \ {p}. By induction hypothesis, we have

lim
s→0

ζk,S′(s)

s|S|−2
= −hk,S

′

ωk
Rk,S′ .



6.1. PRELIMINARIES 111

If m denotes the order of [p] in Cl(Ok,S′), then by Lemma 1 we have hk,S′ =
mhk,S and by Proposition 7 we have Rk,S = m logN(p)Rk,S′ . Thus

lim
s→0

ζk,S′(s)

s|S|−2
= − hk,S

logN(p)ωk
Rk,S .

Finally, by Proposition 52, we have

lim
s→0

ζk,S(s)

s|S|−1
= logN(p) lim

s→0

ζk,S′(s)

s|S|−2
= −hk,S

ωk
Rk,S

and the proof is complete.

Remark 22. We see that the leading term of the Taylor expansion of ζk,S(s)
around s = 0 is the product of a rational number with the S-regulator of k. The
latter is the determinant of a (|S| − 1)-dimensional matrix with coefficient that
are logarithmic. The order of ζk,S(s) at s = 0 is the rank of the S-unit group
Uk,S by Theorem 1.4.1.

6.1.2 The Order of Artin L-Functions at s = 0

Let K/k be a finite Galois extension of number fields with Galois group G. Let
(ρ, V ) be a complex representation of G with character χ. Let S be a finite
subset of Mk that contains M∞k .

Definition 23. With the above notations, we define the S-modified Artin L-
function of χ, for <s > 1, by

LS(s, χ,K/k) =
∏
p6∈S

(det(1− ρP((P,K/k))N(p)−s)|V IP))−1.

This function admits a meromorphic continuation to the whole complex
plane by Theorem 5.4.1. We write its Taylor expansion around s = 0 as follows:

LS(s, χ,K/k) = cS(χ,K/k)rS(χ,K/k) +O(srS(χ,K/k)+1).

Having fixed the extension K/k we will write LS(s, χ) instead of LS(s, χ,K/k)
in the rest of this section. Similarly, we write cS(χ) and rS(χ). In this section
we shall compute rS(χ). First, we fix some notations.

Let SK be the finite subset of MK consisting of the places that lie above the
ones in S. Recall from Section 1.4 that YK,SK denotes the free abelian group
on the set SK and XK,SK fits in the exact sequence of groups

0 −→ XK,SK −→ YK,SK
aug−→ Z −→ 0.

The Galois group G acts on the left on the set of valuations SK and for any
v ∈ S, G acts transitively on the places w ∈ SK that lie above v. By giving Z
the trivial G-action, the groups YK,S and XK,S naturally come with a left action
of G. Thus both YK,S and XK,S have the structure of a left Z[G]-module. It is
an easy exercise to check that the above exact sequence of groups is an exact
sequence in the category of left Z[G]-modules.

By tensoring with C over Z we get an exact sequence in the category of left
C[G] modules

0 −→ CXK,SK −→ CYK,SK
aug−→ C −→ 0.
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By Proposition 16, C[G] is a semisimple ring, and by Remark 10 the above exact
sequence splits. Consequently, as left C[G]-modules, we have

CYK,SK ∼= CXK,SK ⊕ C. (6.1.0.1)

As a consequence, if χYK,SK and χXK,SK denote respectively the characters of
the representations CYK,SK and CXK,SK , then we have

χYK,SK = χXK,SK + 1G.

By distributivity of the tensor product with respect to direct sums, we have the
following isomorphisms of left C[G]-modules:

CYK,SK ∼=
⊕
w∈SK

Cw ∼=
⊕
v∈S

⊕
w|v

Cw.

If v ∈ S, then G acts transitively on the set {w ∈ SK : w|v}. Pick one w ∈ SK
that lies above v. Then, as left C[G]-modules, we have⊕

w|v

Cw ∼=
⊕

[σ]∈G/Dw

Cσ(w) ∼= IndGDwC

where we used (3.4.0.1) for the last isomorphism. We have proved the following:

Proposition 53. With the above notations, we have

χYK,SK = χXK,SK + 1G =
∑
v∈S

IndGDw1Dw .

In particular, χYK,SK and χXK,SK belong to R(G,Q).

Proposition 54. Let K/k be a finite Galois extension of number fields with
Galois group G. Let V be a complex representation of G with character χ. With
the above notations, we have

rS(χ) =
∑
v∈S

dimC V
Dw − dimC V

G

=
〈
χ, χXK,SK

〉
G

= dimC HomC[G](V
∨,CXK,SK )

where w is any place of SK that lies above v.

Proof. The choice of w ∈ SK does not matter. In fact, let w′ be another place
above v. Then there exists σ ∈ G such that w′ = σ(w). By Proposition 10
we have Dσ(w) = σDwσ

−1 and thus V Dσ(w) = σ(V Dw). As a consequence,
dimC V

Dσ(w) = dimC V
Dw .

We now turn to the proof of the proposition. For simplicity in this proof we
drop the subscripts K and SK in our notations. Thus XK,SK becomes X and
χXK,SK becomes χX .

By Proposition 20 the character of V ∨ is χ̄. By Lemma 5 we have

dimC HomC[G](V
∨,CX) = 〈χ̄, χX〉G .
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But 〈χ̄, χX〉G = 〈χ, χ̄X〉G and by Proposition 53 we have χX ∈ R(G,Q) so that
χ̄X = χX . We conclude that

dimC HomC[G](V
∨,CX) = 〈χ, χX〉G .

By Proposition 53, we have

χX =
∑
v∈S

IndGDw1Dw − 1G.

Using Theorem 3.10.2 we have

〈χ, χX〉G =
∑
v∈S

〈
χ, IndGDw1Dw

〉
G
−〈χ, 1G〉G =

∑
v∈S

〈
ResGGwχ, 1Dw

〉
Dw
−〈χ, 1G〉G .

By Lemma 5 we obtain

〈χ, χX〉G =
∑
v∈S

dimC V
Dw − dimC V

G.

It remains to prove equality between rS(χ) and any of the three quantities.
By Theorem 3.11.1, there exist subgroupsHi of G with 1-dimensional characters
θi and integers ni for i = 1, . . . ,m such that

χ =

m∑
i=1

niIndGHiθi.

By Proposition 47 and Proposition 49, we have

LS(s, χ) =

m∏
i=1

LS(s, IndGHiθi)
ni =

m∏
i=1

LS(s, θi)
ni .

If rS(θi) denotes the order of LS(s, θi) at s = 0, then we have

rS(χ) =
m∑
i=1

nirS(θi).

On the other hand, by linearity of the scalar product and by Theorem 3.10.2,
we have

〈χ, χX〉G =

m∑
i=1

ni

〈
IndGHiθi, χX

〉
G

=

m∑
i=1

ni
〈
θi,ResGHiχX

〉
Hi
.

It thus suffices to prove that rS(θi) =
〈
θi,ResGHiχX

〉
Hi

for each i in order to
conclude the proof.

We have reduced the proof to the case where χ is a 1-dimensional character
of G. We will prove that rS(χ) = 〈χ, χX〉G. We distinguish two cases:

• χ = 1G: By Proposition 46 we have LS(s, χ) = ζK,S(s) and by Corol-
lary 29 we have rS(1G) = |S| − 1. Moreover, we have V G = V so that
dimC V

G = dimC V = 1. If v ∈ S and w ∈ SK lies above v, then

dimC V
Dw =

〈
ResGDwχ, 1Dw

〉
Dw

= 〈1Gw , 1Gw〉Gw = 1.

We conclude that
∑
v∈S dimC V

Dw − dimC V
G = |S| − 1 = rS(χ).
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• χ 6= 1G: We have dimC V
G = 〈χ, 1G〉G = 0 by orthogonality. By Theorem

5.3.2, L(s, χ) neither has a pole nor a zero at s = 1. By Theorem 5.4.1,
the completed Artin L-function Λ(s, χ) is equal to

W (χ)(|dk|χ(1)N(f(χ)))
s
2

∏
v|∞

Lv(1− s, χ̄).L(1− s, χ̄).

By equating the orders at s = 0, we obtain

−r2 − a1(χ) + r(χ) = 0

where r(χ) denotes the order of L(s, χ) at s = 0. This implies, by (5.4.0.1),
that

r(χ) = r2 + a1(χ) = n− a2(χ)− r2 = r1 + r2 − a2(χ).

But r1+r2 = |M∞k | and since dimC V = 1 this is equal to
∑
v∈M∞k

dimC V .
It follows that

r(χ) =
∑

v∈M∞k

(dimC V − codimCV
Dw) =

∑
v∈M∞k

dimC V
Dw

which is the desired formula in the case S = M∞k .

We have

LS(s, χ) = L(s, χ)
∏

p∈S\M∞k

det(1− χP((P,K/k))N(p)−s)|V IP).

But V IP is either V or 0 since V is of dimension 1 and we have V IP = V
exactly when χ(IP) = 1. Since V is of dimension 1, the character χ is a
homomorphism from G to C∗. Thus, if σP is a representative of (P,K/k)
in DP, then by Proposition 9 we have

χP((P,K/k)) =
1

ep

∑
τ∈IP

χ(σPτ) = χ(σP)
〈

ResGIPχ, 1IP

〉
IP
.

Hence if χ(IP) = 1, then χP((P,K/k)) = χ(σP). As a consequence, we
have

LS(s, χ) = L(s, χ)
∏

p∈S\M∞k
χ(IP)=1

(
1− χ(σP)

N(p)s

)
.

So we collect a zero at s = 0 in the product exactly when χ(σP) = 1. But
since χ(IP) = 1 and [σP] generates DP/IP we get χ(DP) = 1. Thus

rS(χ) = r(χ) + |{p ∈ S \M∞k : χ(DP) = 1}|

=
∑

v∈M∞k

dimC V
Dw +

∑
p∈S\M∞k

〈
ResGGP

χ, 1DP

〉
Dw

=
∑

v∈M∞k

dimC V
Dw +

∑
p∈S\M∞k

dimC V
DP

=
∑
v∈S

dimC V
Dw .
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In the course of the proof we proved the following result which we record as
a corollary for future use:

Corollary 30. Let K/k be a finite Galois extension of number fields with Galois
group G. If χ is a 1-dimensional character of G, then

rS(χ) =

{
|S| − 1 if χ = 1G

|{v ∈ S : χ(Dw) = 1}| otherwise.

6.1.3 Partial Zeta-Functions
Let K/k be a finite abelian extension of number fields with Galois group G.

Definition 24. Let S be a finite subset of Mk containing M∞k and containing
all finite ramified places of k. Let s denote the product of all finite places in S.
This is an ideal of Ok. Let σ ∈ G and define, for <s > 1, the function

ζS(s, σ) =
∑

(a,s)=1
ΦK/k,s(a)=σ

N(a)−s,

where the sum is over all integral ideals of k coprime to s whose Artin symbol
is σ.

Remark 23. By comparing with the Dedekind zeta function ζk one sees imme-
diately that the above sum is absolutely convergent for <s > 1. Moreover, one
can show that these functions admit a meromorphic continuation to the whole
complex plane and satisfy a functional equation. These extended functions are
known as partial zeta functions of K/k relative to σ.

Proposition 55. Let K/k be a finite abelian extension with Galois group G.
Let S be a finite subset of Mk containing M∞k as well as all finite places that
ramify in K/k. The functions ζS(s, ·) : G −→ C and LS(s, ·) : Ĝ −→ C are
Fourier and inverse Fourier transforms of one-another for the group Ĝ. That
is,

ζS(s, σ) =
1

|G|
∑
χ∈Ĝ

χ̄(σ)LS(s, χ,K/k), LS(s, χ,K/k) =
∑
σ∈G

χ(σ)ζS(s, σ).

Proof. Let s be a modulus of k with factors all finite places in S and all real
places of S and such that the conductor f of K/k divides s. By Theorem 2.4.2,
K is a subfield of the ray class field k(s). Denote by Res the restriction map
Gal(k(s)/k) −→ G. It induces an isomorphism of groups

Gal(k(s)/K)/Gal(k(s)/K) −→ G.

Let χ ∈ Ĝ. By Corollary 29, χ is a 1-dimensional character of G. We define

χs := Infl
Gal(k(s)/k)
Gal(k(s)/K)(χ ◦ Res) : Gal(k(s)/k) −→ C∗

and χ′s = χs ◦ Φk(s)/k,f. The latter is a character of Clk(s). We claim that

LS(s, χ,K/k) = LW (s, χ′s). (6.1.0.2)
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In fact, let p 6∈ S. Then p is unramified and its Frobenius element σp belongs
to G. Since we are in the abelian case, the Frobenius element is independent of
the choice of a prime P over p. On one hand we have

LS(s, χ,K/k) =
∏
p6∈S

(1− χ(σp)N(p)−s)−1.

On the other hand we have

LW (s, χ′s) =
∏
p6∈S

(1− χ′s(p)N(p)−s)−1.

But if p 6∈ S, then by Proposition 13 we have

χ′s(p) = χs((p, k(s)/k)) = χ(Res((p, k(s)/k))) = χ((p,K/k)) = χ(σp).

This proves (6.1.0.2).
If p 6∈ S, then by Proposition 13 we have

Res((p, k(s)/k)) = (p,K/k).

It follows that for any a coprime to s we have

Res((a, k(s)/k)) = (a,K/k).

Let σ ∈ G and suppose that (a,K/k) = σ. Then we have

χ(σ) = χ((a,K/k)) = χ((Res((a, k(f)/k)))) = χs((a, k(s)/k)) = χ′s(a).

We now compute that∑
σ∈G

χ(σ)ζS(s, σ) =
∑
σ∈G

∑
(a,s)=1

(a,K/k)=σ

χ′s(a)

N(a)s
=

∑
(a,s)=1

χ′s(a)

N(a)s
= LW (s, χ′s).

By (6.1.0.2) the proof of the second formula is complete.

Using this formula and Proposition 28, we also have

1

|G|
∑
χ∈Ĝ

χ̄(σ)LS(s, χ,K/k) =
1

|G|
∑
χ∈Ĝ

χ̄(σ)
∑
τ∈G

χ(τ)ζS(s, τ)

=
∑
τ∈G

ζS(s, τ)

 1

|G|
∑
χ∈Ĝ

χ̄(σ)χ(τ)


= ζS(s, σ).

The following theorem is due to Siegel. We do not prove it in this paper.

Theorem 6.1.1 (Siegel). Let K/k be a finite abelian extension of number fields
with Galois group G. Let S be a finite subset of Mk containing M∞k as well as
all finite places that ramify in K/k. For any σ ∈ G, we have

ζS(0, σ) ∈ Q.

Proof. See p. 101-102 of [Sie].
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6.2 The Stark Regulator

6.2.1 Motivation and Definition

Let K/k be a finite Galois extension of number fields with Galois group G. Let
S be a finite subset of Mk containing M∞k and let SK denote the finite subset
of MK consisting of those places that divide the ones in S. Corollary 29 says
that, as s→ 0, we have

ζK,SK (s) ∼ −hK,SK
ωK

RK,SKs
|SK |−1.

This is the analytic class number formula. By Remark 3, the SK-regulator is
the absolute value of the determinant of the map

λK,SK : CUK,SK −→ CXK,SK , u −→
∑
w∈SK

log |u|ww

with respect to a basis {u1, . . . , u|SK |−1} of UK,SK and a basis {w−w0}w∈SK\{w0}
for some w0 ∈ SK .

By Proposition 50, we have

ζK,SK (s) =
∏
χ∈Ĝ

LS(s, χ,K/k)χ(1).

Since ζK,SK has the analytic class number formula, it occurred to Stark in view
of this decomposition that it might be possible to break this formula up into
pieces. Hence, the Artin L-function of an irreducible character χ should have an
analogue of the class number formula corresponding to a piece of the formula for
the zeta-function. Moreover, the class number formula that we know for ζK,SK
should be the result of a piecing together of the formulas for Artin L-functions.

Finally, if θ is any character of G, then by the canonical decomposition, it
may be written uniquely as

θ =
∑
χ∈Ĝ

mχχ

where the mχ are non-negative integers. By Proposition 47, we obtain

L(s, θ) =
∏
χ∈Ĝ

L(s, χ)mχ .

If the Artin L-functions of irreducible characters had an analogue of the class
number formula, by piecing these together one should be able to deduce such a
formula for the Artin L-function of θ.

The class number formula of ζK,SK relates the leading coefficient of its Taylor
expansion around s = 0 to the product of a rational number with the determi-
nant of a matrix of size the rank of ζK,SK at s = 0. Stark was lead to conjecture
that the leading coefficient of the Artin L-function of a character θ of G should
be the product of some algebraic number with the determinant of a matrix of
size the rank of L(s, θ) at s = 0. By Proposition 54, this rank is equal to
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rS(θ) = dimC Hom(V ∨,CXK,SK ). In this section, we present the type of regu-
lator introduced by Stark to play the role of the determinant of the matrix of
size rS(θ), which is accordingly called the Stark regulator.

We consider the group homomorphism

λK,SK : UK,SK −→ RXK,SK , u 7−→
∑
w∈SK

log |u|ww.

The kernel of this map is µK and the image sits as a lattice in RXK,SK (cf. §
1.4).

The group G acts on the left on UK,SK and XK,SK . By letting G act trivially
on R, the real vector space RXK,SK acquires the structure of a left G-module.
We claim that λK,SK is a homomorphism of left G-modules. In fact, if σ ∈ G
and u ∈ UK,SK , then

σ(λK,SK (u)) =
∑
w∈SK

log |u|wσ(w) =
∑
w∈SK

log |u|σ−1(w)w

=
∑
w∈SK

log |σ(u)|ww = λ(σ(u)).

We therefore have a short exact sequence of left Z[G]-modules

1 −→ µK −→ UK,SK −→ λK,SK (UK,SK ) −→ 1.

Tensoring with C over Z, we get an exact sequence of left C[G]-modules

1 −→ CµK −→ CUK,SK −→ CλK,SK (UK,SK ) −→ 1.

Since µK is finite, we have CµK = {1}. Since λK,S(UK,S) is a lattice in RXK,SK

we have RλK,S(UK,S) = RXK,SK . We conclude that we have an isomorphism
of left C[G]-modules

λK,SK : CUK,SK −→ CXK,SK .

As a consequence, the character of the representation CUK,SK of G is χXK,SK .
By Proposition 53 we know that

χXK,SK =
∑
v∈S

IndGDw1Dw − 1G ∈ R(G,Q).

Notice that 1Dw ∈ RQ(Dw) and 1G ∈ RQ(G). Moreover the Q-representation
Q[G] ⊗Q[Dw] Q of G has character IndGDw1Dw . As a consequence, IndGDw1Dw ∈
RQ(G) and we conclude that χXK,SK ∈ RQ(G). By Proposition 32, the repre-
sentations CUK,SK and CXK,SK are defined over Q.

The rational representations QUK,SK and QXK,SK share the same character
χXK,SK and therefore they must be isomorphic as left Q[G]-modules. But there
is no canonical way to define an isomorphism. Let

f : QXK,SK −→ QUK,SK

be such an isomorphism. By tensoring get an isomorphism of left C[G]-modules

f : CXK,SK −→ CUK,SK
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which is defined over Q. By composition we get a left C[G]-module isomorphism

λK,SK ◦ f : CXK,SK −→ CXK,SK

Let V be a complex representation of G with character χ. By applying the
functor HomC[G](V

∨,−), we get a C-linear isomorphism

(λK,SK ◦ f)V : HomC[G](V
∨,CXK,SK ) −→ HomC[G](V

∨,CXK,SK )
φ 7−→ λK,SK ◦ f ◦ φ.

Definition 25. With the above notations, we define the Stark regulator of χ
relative to f by

RS(χ, f,K/k) = det((λK,SK ◦ f)V ).

Remark 24. The definition of the Stark regulator does not depend on the
choice of the realization V of χ. In fact, suppose that W is another realization
of G. Then there exists an isomorphism ψ : V −→ W of left C[G]-modules
which induces an isomorphism of left C[G]-modules ψ∗ : W∨ −→ V ∨ defined by
g 7→ g◦ψ. By naturality of the Hom functor, we have the following commutative
diagram:

HomC[G](V
∨,CXK,SK ) HomC[G](V

∨,CXK,SK )

HomC[G](W
∨,CXK,SK ) HomC[G](W

∨,CXK,SK ).

(λK,SK ◦f)V

HomC[G](ψ
∗,CXK,SK ) HomC[G](ψ

∗,CXK,SK )

(λK,S◦f)W

In fact, if φ ∈ HomC[G](V
∨,CXK,S)), then both paths map φ to λK,SK ◦f◦φ◦ψ∗.

This implies that

(λK,SK ◦f)V = HomC[G](ψ
∗,CXK,SK ))−1◦(λK,SK ◦f)W ◦HomC[G](ψ

∗,CXK,SK )

and the determinants are equal.

Proposition 56. Let V be a representation of G with character χ. With the
above notations, we have

RS(χ, f,K/k) = det(1V ⊗ (λK,S ◦ f)|(V ⊗C CXK,S)G).

Proof. By Corollary 12, there is an isomorphism of C-vector spaces

HomC[G](V
∨,CXK,SK ) ∼= (V ⊗C CXK,SK )G.

We claim that the diagram

HomC[G](V
∨,CXK,SK ) HomC[G](V

∨,CXK,SK )

(V ⊗C CXK,SK )G (V ⊗C CXK,SK )G

(λK,SK ◦f)V

1V⊗(λK,SK ◦f)

∼= ∼=

commutes.
In fact, let v ∈ V and x ∈ CXK,SK . Taking the up-right path we arrive at

λK,SK ◦ f ◦ Fv⊗x : g 7→ λK,SK ◦ f(g(v)x) = g(v)λK,SK ◦ f(x)
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and taking the right-up path we arrive at

Fv⊗(λK,SK ◦f(x)) : g 7→ g(v)λK,SK ◦ f(x).

Thus RS(χ, f,K/k) = det(1V ⊗ (λK,S ◦ f)).

Remark 25. Recall that we have an isomorphism of left C[G]-modules

λK,SK : CUK,SK −→ CXK,SK .

An idea would have been to apply the functor HomC[G](V
∨,−) and get a C-

linear isomorphism

HomC[G](V
∨, λK,SK ) : HomC[G](V

∨,CUK,SK ) −→ HomC[G](V
∨,CXK,SK ).

Then one would take the determinant of this isomorphism. But this determinant
depends on the choices of bases that we make. This makes this definition very
difficult to manipulate. Choosing a non-canonical left C[G]-isomorphism f :
CXK,SK −→ CUK,SK defined over Q enables us to define without ambiguity
the determinant of (λK,SK ◦ f)V since this is now an C-linear automorphism of
a vector space. Basically, choosing f amounts to making a choice of basis but
this description due to Tate is much easier to use.

6.2.2 Compatibility of the Map λ in Towers
Let K/K ′/k be a tower of finite Galois extensions of number fields. Let G =
Gal(K/k) and let H = Gal(K/K ′) so that Gal(K ′/k) ∼= G/H. Let S be a finite
subset ofMk containingM∞k . Let SK and SK′ be respectively the finite subsets
of MK and MK′ consisting of those places that lie above the ones in S.

For simplicity in this section, we remove the indices K,SK and K ′, SK′

and simply write λ = λK,SK , U = UK,SK , X = XK,SK and similarly λ′ =
λK′,SK′ , U

′ = UK′,SK′ , X
′ = XK′,SK′ .

Let p be a finite place in S. Let P′ be a place of SK′ above p and let P be a
place of SK aboveP′. Denote byKP,K

′
P′ and kp the respective completions and

let [P : P′] denote the degree of the extension KP/K
′
P′ . Let (eP, fP), (eP′ , fP′)

and (e′P, f
′
P) be respectively the ramification index and residual degree of P/p,

P′/p and P/P′. By multiplicativity we have eP = e′PeP′ and fP = f ′PfP′ . We
also have [P : P′] = e′Pf

′
P. It follows that∑

P|P′
[P : P′] = [K : K ′]. (6.2.0.1)

Lemma 12. With the previous notations, the restriction of | · |P to K ′ is equal
to | · |[P:P′]

P′ .

Proof. For any x ∈ K ′, we have

|x|P = N(P)−vP(x) = N(P)−e
′
PvP′ (x)

= N(p)−fPe
′
PvP′ (x) = N(P′)

−
fPe
′
P

f
P′

vP′ (x)

= N(P′)−f
′
Pe
′
PvP′ (x) = |x|[P:P′]

P′ .
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Remark 26. A similar result is true for archimedean places. Suppose that
v ∈ M∞k and w,w′ are places above v such that w|w′. Denote by Kw and
K ′w′ the completions and by [w : w′] the degree of Kw/K

′
w′ . This is equal to

either 1 or 2. It is immediately verified that if x ∈ K ′, then similarly we have
|x|w = |x|[w:w′]

w′ .
Moreover, since K/K ′ is Galois, we have [w1 : w′] = [w2 : w′] for all places

w1 and w2 that lies above w′ and we have the formula∑
w|w′

[w : w′] = [K : K ′]. (6.2.0.2)

Proposition 57. Let E be a field of characteristic zero. With the above nota-
tions, there exists a left E[G/H]-module isomorphism

j = jK/K′,S : EX ′ −→ (EX)H .

Proof. Consider the map

j : X ′ −→ X, w′ 7−→
∑
w|w′

[w : w′]w.

This is well-defined. In fact, if
∑
w′∈SK′

nw′w
′ ∈ X ′ then by definition we have∑

w′∈SK′
nw′ = 0. We have

j

 ∑
w′∈SK′

nw′w
′

 =
∑

w′∈SK′

∑
w|w′

[w : w′]nw′w.

By (6.2.0.1) and (6.2.0.2) we have∑
w′∈SK′

∑
w|w′

[w : w′]nw′ = [K : K ′]
∑

w′∈SK′

nw′ = 0

which proves that j
(∑

w′∈SK′
nw′w

′
)
∈ X.

It is easily seen that the map j is an injective homomorphism of groups.
Note that if w′ ∈ SK′ and w0 is some place in SK that lies above w′, then we
have

j(w′) =
∑

[h]∈H/Dw0/w
′

[h(w0) : w′]h(w0)

since H acts transitively on the places that lie above w′. The order of the
decomposition group Dw0/w′ is [w0 : w′] and for all places w|w′ we have [w :
w′] = [w0 : w′] since K/K ′ is Galois. Hence, we have

j(w′) = |Dw0
|

∑
[h]∈H/Dw0

h(w0) =
∑
h∈H

h(w0).

It follows that j(X ′) = NHX where NH =
∑
h∈H h ∈ Z[G]. We have shown

that we have an isomorphism of groups

j : X ′ −→ NHX.
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We claim that NHX is a subgroup of XH of finite index. It is easily seen
that it is indeed a subgroup. Let α =

∑
w∈SK nww be an element of XH . Then

for all h ∈ H, we must have

α = h(α) =
∑
w∈SK

nwh(w) =
∑
w∈SK

nh−1(w)w.

By comparing the coefficients, we see that α belongs to XH if and only if
nw = nh(w) for all h ∈ H. In other words, all w that lie over the same w′ in SK′
must share the same coefficient nw which consequently only depends on w′. We
may therefore write nw′ = nw for all w|w′. It follows that α can be written as

α =
∑

w′∈SK′

nw′
∑
w|w′

w =
∑

w′∈SK′

nw′
∑

[h]∈H/Gw0

h(w0)

for some choice of valuation w0 that lies above w′. But we have∑
[h]∈H/Gw0

h(w0) =
1

[w0 : w′]

∑
h∈H

h(w0).

Thus α belongs to NHX if and only if [w0 : w′] divides nw′ for each w′ in which
case we have

α = NH

(∑
w′

nw′

[w0 : w′]
w0

)
.

We conclude that

NHX = {
∑
w∈SK

nww ∈ XH : [w : w|K′ ]|nw,∀w ∈ SK}.

We consider the map

φ : XH −→ ×
w′∈SK′

Z/[w0 : w′]Z,
∑
w

nww 7−→ (nw0
mod [w0 : w′])w′∈SK′

where w0 denotes an arbitrary place of SK that lies above w′. This map is
well-defined by our characterization of XH . Moreover, φ is clearly a surjective
homomorphism of groups and its kernel is exactly NHX by our characterization
of NHX. We conclude that we have an isomorphism of groups

XH/NHX −→ ×
w′∈SK′

Z/[w0 : w′]Z.

In particular, NHX has finite index in XH .

Let E be a field of characteristic zero. Tensoring with E over Z we get an
exact sequence of E-vector spaces

0 −→ E(NHX) −→ EXH −→ E(XH/NHX) −→ 0.

Since XH/NHX is finite we have E(XH/NHX) = 0 and therefore we have an
isomorphism of E-vector spaces

E(NHX) −→ EXH
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induced by the inclusion map. Since X ′ is isomorphic to NHX via j we get an
isomorphism of E-vector spaces

j : EX ′ −→ EXH .

It remains only to check that this is also a homomorphism of left G/H-modules:
if [σ] ∈ G/H,w′ ∈ SK′ and w0 is a place in SK that lies above w′, then we have

j([σ](w′)) =
∑
h∈H

h(σ(w0)) =
∑
h∈H

σ(h(w0)) = [σ](j(w′))

by normality of H. We conclude that the map j is a left E[G/H]-module
isomorphism.

Remark 27. By tensoring with R over Z we get an injective homomorphism
of R-vector spaces jK/K′,S : RXK′,SK′ −→ RXK,SK which is a left R[G/H]-
isomorphism on its image RXH

K,SK
. We claim that the following diagram com-

mutes:

UK,SK RXK,SK

U ′K′,SK′ RXK′,SK′ .

λK,SK

λK′,S
K′

jK/K′,S

Let u′ ∈ UK′,SK′ . Then, by Lemma 12, we have

jK/K′,S(λK′,SK′ (u
′)) = jK/K′,S

 ∑
w′∈SK′

log |u′|w′w′


=
∑

w′∈SK′

log |u′|w′
∑
w|w′

[w : w′]w

=
∑

w′∈SK′

∑
w|w′

log |u′|[w:w′]
w′ w

=
∑

w′∈SK′

∑
w|w′

log |u′|ww

=
∑
w∈SK

log |u′|w.w

= λK,SK (u′).

It follows by tensoring that the diagram

CUK,SK CXK,SK

CUK′,SK′ CXK′,SK′

∼=

λK,SK

∼=
λK′,S

K′

jK/K′,S

is also commutative.
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6.2.3 Properties of the Stark Regulator
Let K/k be a finite Galois extension of number fields with Galois group G. Let
S be a finite subset of Mk containing M∞k and let SK be the finite subset of
MK consisting of the places that lies above the ones in S.

Definition 26. Let V be a complex representation of G with character χ.
For any left C[G]-endomorphism θ of CXK,S we denote by θV the C-linear
endomorphism HomC[G](V

∨, θ) of HomC[G](V
∨,CXK,SK ) and we define

δS(χ, θ,K/k) = det(θV )

which is independent of the realization V of χ by naturality of the Hom functor.

Remark 28. With the notations of the previous section, we have

RS(χ, f,K/k) = δS(χ, λK,S ◦ f,K/k).

Proposition 58. The function δS satisfies the following properties:

(i) If χ and χ′ are two characters of G then we have

δS(χ+ χ′, θ,K/k) = δS(χ, θ,K/k)δS(χ′, θ,K/k).

(ii) If H is a subgroup of G with character χ then we have

δS(IndGHχ, θ,K/k) = δSKH (χ, θ,K/KH).

(iii) Let K/K ′/k is a tower of finite Galois extensions of number fields. Let
G = Gal(K/k), H = Gal(K/K ′) and let χ be a character of G/H. Then
we have

δS(InflGHχ, θ,K/k) = δS(χ, θ′,K ′/k)

where θ′ = j−1
K/K′,S ◦ θ|CXHK,SK ◦ jK/K′,S.

(iv) If θ and θ′ are two left C[G]-endomorphisms of CXK,SK , then

δS(χ, θ ◦ θ′,K/k) = δS(χ, θ,K/k)δS(χ, θ′,K/k).

Proof. Proof of (i): Let V and V ′ be representations ofG with respective charac-
ters χ and χ′. Then V ⊕V ′ is a representation of G with character χ+χ′ and we
have an isomorphism of C-vector spaces between HomC[G]((V ⊕ V ′)∨,CXK,SK )
and

HomC[G](V
∨,CXK,SK )⊕HomC[G]((V

′)∨,CXK,SK )

so that det(θV⊕V ′) = det(θV ⊕ θV ′) and the result follows.

Proof of (ii): Let W be a representation of H with character χ. We have

(IndGHW )∨ = HomC(C[G]⊗C[H] W,C).

By Theorem 3.10.1, Proposition 21 and Corollary 12 we have left C[G]-module
isomorphisms

(IndGHW )∨ ∼= HomC[H](W,C[G]∨) ∼= W∨ ⊗C[H] C[G]∨.
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By Proposition 21, the character of C[G]∨ is r̄G where rG denotes the regular
character of G. By Corollary 16 this character takes values in Q so that r̄G = rG
and therefore, as left C[G]-modules, we have C[G] ∼= C[G]∨. Finally we have an
isomorphism of left C[G]-modules

(IndGHW )∨ ∼= C[G]∨ ⊗C[H] W
∨ ∼= C[G]⊗C[H] W

∨ = IndGH(W∨).

By Proposition 19 we have a natural isomorphism of C-vector spaces

HomC[G]((IndGHW )∨,CXK,SK ) ∼= HomC[H](W
∨,CXK,SK ).

By naturality we get the desired result.

Proof of (iii): Let V be a representation of G/H with character χ and let
M be a representation of G with character φ. We claim that there is a natural
isomorphism of C-vector spaces

HomC[G](InflGH(V ∨),M) ∼= HomC[G/H](V
∨,MH).

Let NH = 1
|H|
∑
h∈H h ∈ C[H]. By proposition 19 NH belongs to the center of

C[G] and acts on M as the projection onto MH . Moreover, NH commutes with
the action of G/H on MH . Thus we obtain a well-defined homomorphism of
C-vector spaces

(NH)V : HomC[G](InflGH(V ∨),M) −→ HomC[G/H](V
∨,MH)

defined by f 7−→ NH ◦ f . This map is easily seen to be surjective. By Corollary
11 and Proposition 21 we have

dimC HomC[G](InflGH(V ∨),M) =
〈

InflGH χ̄, φ
〉
G

and
dimC HomC[G/H](V

∨,MH) =
〈
χ̄, φH

〉
G/H

.

Denoting by [g] the class of an element g in G/H, we compute that〈
InflGH χ̄, φ

〉
G

=
1

|G|
∑
g∈G

InflGH χ̄(g)φ̄(g) =
1

|G||H|
∑
g∈G

∑
h∈H

InflGH χ̄(gh)φ̄(g)

=
1

|G||H|
∑
g∈G

∑
h∈H

InflGH χ̄(g)φ̄(gh) =
1

|G|
∑
g∈G

χ̄([g])φ̄H([g])

=
|H|
|G|

∑
σ∈G/H

χ̄(σ)φ̄H(σ) =
〈
χ, φH

〉
G/H

.

Thus the dimensions are equal and (NH)V is an isomorphism of C-vector spaces.
We now prove naturality. Let f : M −→ N be a left C[G]-module homo-

morphism. We claim that the following diagram

HomC[G](InflGH(V ∨),M) HomC[G/H](V
∨,MH)

HomC[G](InflGH(V ∨), N) HomC[G/H](V
∨, NH)

(NH)V

HomC[G](InflGH(V ∨),f) HomC[G/H](V
∨,f |MH )

(NH)V
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commutes. In fact, let ω ∈ HomC[G](InflGH(V ∨),M). Both paths send ω to the
map V ∨ −→ NH given by

g 7→ 1

|H|
∑
h∈H

h · (f ◦ ω(g)).

Applying this to the present situation we have a natural isomorphism of
C-vector spaces

HomC[G](InflGH(V ∨),CXK,SK ) ∼= HomC[G/H](V
∨,CXH

K,SK ).

The naturality property applied with M = N = CXK,S and f = θ implies
that δS(InflGHχ, θ,K/k) = det((θ|CXHK,SK )V ). Meanwhile, by definition of θ′, the
following diagram commutes:

HomC[G/H](V
∨,CXK′,SK′ ) HomC[G/H](V

∨,CXK′,SK′ )

HomC[G/H](V
∨,CXH

K,SK
) HomC[G/H](V

∨,CXH
K,SK

).

θ′V

(θ|CXH
K,SK

)V

HomC[G/H](V
∨,j−1

K/K′,S) ∼= ∼= HomC[G/H](V
∨,j−1

K/K′,S)

Hence det((θ|CXHK,S )V ) = δS(χ, θ′,K ′/k) and we conclude that

δS(InflGHχ, θ,K/k) = δS(χ, θ′,K ′/k).

Proof of (iv): By functoriality, (θ ◦θ′)V = θV ◦θ′V and the result follows.

Let α ∈ Aut(C). Then α must fix Q and we see that Aut(C) = AutQ(C).
Note that C can be viewed as a C-vector space with scalar multiplication via
α. We specify this by using the notation Cα. If W is any finite-dimensional
complex vector space, we denote by Wα the tensor product Cα⊗CW . In other
words, Wα is a C-vector space with the same elements as W but where scalar
multiplication goes through α. If θ is an endomorphism of W , then we denote
by θα the endomorphism 1⊗α θ of Wα.

Proposition 59. Let V be a representation of G with character χ. If α ∈
Aut(C), then V α is a representation of G with character χα = α ◦ χ.
Proof. In fact, let v1, . . . , vn be a basis of V as a C-vector space. Let ρ be the
homomorphism G −→ GL(V ) associated to the representation V and denote by
(aij(σ)) the matrix of ρ(σ) with respect to this basis for σ ∈ G. By definition,
we have

ρ(σ)(

n∑
i=1

λivi) =
∑
i,j

aij(σ)λjvi.

A basis of V α is given by 1⊗v1, . . . , 1⊗vn and we denote by (a′ij(s)) the matrix
of the automorphism ρ(σ)α of V α corresponding to this basis. We have

n∑
j=1

a′ji(σ)(1⊗ vj) = ρ(σ)α(1⊗ vi) = 1⊗ ρ(σ)(vi) = 1⊗

 n∑
j=1

aji(σ)vj


=

n∑
j=1

(α(aji(σ)))⊗ vj =

n∑
j=1

α(aji(σ))(1⊗ vj).



6.2. THE STARK REGULATOR 127

Thus a′ij(σ) = α ◦ aij(σ) for all σ ∈ G and all i, j. In particular, the character
of V α is α ◦ χ and we have det(ρ(σ)α) = α(det(ρ(σ))).

Proposition 60. Let α ∈ Aut(C) and let V be a representation of G with
character χ. We have

δS(χ, θ,K/k)α = δS(χα, θα,K/k).

Proof. By Proposition 59, the representation V α has character χα. We have
the identification

HomC[G]((V
α)∨, (CXK,SK )α) = HomC[G](V

∨,CXK,SK )α.

Therefore (θα)V α = 1 ⊗α θV . Taking determinants we get det((θα)V α) =
det(θV )α as desired.

Corollary 31. The Stark regulator satisfies the following properties:

(i) RS(χ+ χ′, f,K/k) = RS(χ, f,K/k)RS(χ′, f,K/k).

(ii) RS(IndGHχ, f,K/k) = RSKH (χ, f,K/KH).

(iii) Let H be a normal subgroup of G and write K ′ = KH . Let χ be a character
of G/H. Let f ′ be a left Q[G/H]-isomorphism QXK′,SK′ −→ QUK′,SK′
and suppose that there exists a Q[G]-isomorphism

f : QXK,SK −→ QUK,SK

making the following diagram commute:

QXK,SK QUK,SK

QXK′,SK′ QUK′,SK′

f

f ′

jK/K′,S

Then RS(InflGHχ, f,K/k) = RS(χ, f ′,K ′/k).

Proof. Properties (i) and (ii) are direct consequences of Proposition 58 and
Remark 28. We now prove the third property. By tensoring and using the
commutative diagram in the end of the previous section we get a commutative
diagram:

CXK,SK CUK,SK CXK,SK

CXK′,SK′ CUK′,SK′ CXK′,SK′

f

∼=

λK,SK
∼=

∼=
f ′

jK/K′,S

∼=
λK′,S

K′

jK/K′,S

which by restriction gives a commutative diagram

CXH
K,SK

CXH
K,SK

CXK′,SK′ CXK′,SK′

λK,SK ◦f
∼=

∼=
λK′,S

K′
◦f ′

jK/K′,S ∼= ∼= jK/K′,S
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so that
λK′,SK′ ◦ f

′ = j−1
K/K′,S ◦ (λK,SK ◦ f)|CXHK,S ◦ jK/K′,S

and by Proposition 58 (iii) and Remark 28 we obtain the desired result.

Remark 29. Given a left Q[G/H]-isomorphism f ′ : QXK′,SK′ −→ QUK′,SK′
we can always find a left Q[G]-isomorphism f : QXK,SK −→ QUK,SK making
the diagram in Proposition 31 (iii) commute. In fact, by semisimplicity of Q[G]
(cf. Proposition 16), there exists a left Q[G]-submodule M of QXK,SK such
that

QXK,SK = QXH
K,SK ⊕M ∼= QXK′,SK′ ⊕M

as Q[G]-modules. Also by semisimplicity, there exists a left Q[G]-submodule
N of QUK,SK such that QUK,SK = QUK′,SK′ ⊕ N . Necessarily M and N are
isomorphic as left Q[G]-modules. Choose a Q[G]-isomorphism h : M −→ N and
take f to be (f ′ ◦ j−1

K/K′,S)⊕ h.

6.3 The Main Conjecture

6.3.1 Statement
We give the statement of Stark’s main conjecture as formulated by Tate in [Ta1].
Let K/k be a finite Galois extension of number fields with Galois group G. Let
S be a finite subset of Mk containing M∞k . Let SK be the finite subset of MK

consisting of the places that lie above the ones in S. Let

f : CXK,SK −→ CUK,SK

be a left C[G]-module isomorphism that is defined over Q. Let χ be a character
of G and denote by cS(χ,K/k) the leading coefficient of the Taylor expansion
of the Artin L-function L(s, χ,K/k) around s = 0. We define

AS(χ, f,K/k) =
RS(χ, f,K/k)

cS(χ,K/k)
∈ C.

Conjecture 3 (Stark). With the above notations, for all α ∈ Aut(C), we have

AS(χ, f,K/k)α = AS(χα, f,K/k).

Remark 30. By Proposition 18, Q(χ) is a finite abelian extension of Q. Let
α ∈ AutQ(χ)(C). Then χα = χ and therefore Conjecture 3 implies that

AS(χ, f,K/k)α = AS(χ, f,K/k).

This implies that AS(χ, f,K/k) ∈ Q(χ). Also, every α ∈ Gal(Q(χ)/Q) is the
restriction of some element of Aut(C) so that AS(χ, f,K/k)α = AS(χα, f,K/k).

Conversely, if AS(χ, f,K/k) ∈ Q(χ) and AS(χ, f,K/k)α = AS(χα, f,K/k)
for all α ∈ Gal(Q(χ)/Q), then Conjecture 3 holds true.

From this remark it follows that Conjecture 3 is equivalent to the following:

Conjecture 4. With the above notations, we have{
AS(χ, f,K/k) ∈ Q(χ),

AS(χ, f,K/k)α = AS(χα, f,K/k), for all α ∈ Gal(Q(χ)/Q).
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Remark 31. Conjecture 4 says that the leading coefficient of the Taylor ex-
pansion of L(s, χ,K/k) is equal to AS(χ, f,K/k)−1RS(χ, f,K/k) which is the
product of am algebraic number with the determinant of a matrix of size the
order of L(s, χ,K/k) at s = 0. In this sense, the conjecture generalizes the class
number formula at s = 0.

6.3.2 Independence of the Choice of f
Another equivalent statement of Conjecture 3 was formulated by Deligne. In-
stead of requiring f to be defined overQ, we consider any field E of characteristic
zero which can be embedded in C. Let V be a representation of G over E with
character χ. Let f : EXK,SK −→ EUK,SK be a left E[G]-module homomor-
phism. Any embedding α : E ↪→ C fixes Q and gives C the structure of a vector
space over E. We use the notation Cα to denote C with its structure of E-vector
space coming from α. Note that for any Z-module A, we have

Cα ⊗E EA = Cα ⊗E (E ⊗Z A) ∼= CA.

Consider the complex character χα and its complex realization V α := Cα⊗E V .
To the character χα corresponds the Artin L-function LS(s, χα,K/k). Define
fα to be the left C[G]-module homomorphism

1⊗α f : Cα ⊗E EXK,SK −→ Cα ⊗E EUK,SK .

Explicitly we have

fα(s⊗ (e⊗ x)) = s⊗ f(e⊗ x) = s⊗ ef(1⊗ x) = sα(e)⊗ f(1⊗ x).

Composing with λK,SK gives a left C[G]-homomorphism

λK,SK ◦ fα : CXK,SK −→ CXK,SK

which induces a C-endomorphism (λK,S ◦ fα)V α of HomC[G]((V
α)∨,CXK,SK ).

Define
RS(χα, fα,K/k) = det((λK,S ◦ fα)V α).

Conjecture 5 (Deligne). With the above notations, there exists an element
AS(χ, f,K/k) ∈ E such that for all α : E ↪→ C we have

RS(χα, fα,K/k) = A(χ, f,K/k)αcS(χα,K/k).

Proposition 61. Conjecture 5 implies Conjecture 3.

Proof. Consider the case where E = C and take fQ : QXK,SK −→ QUK,SK to
be a left Q[G]-isomorphism. Tensor it to get a left C[G]-module isomorphism
f : CXK,SK −→ CUK,SK . Let α be any C-automorphism. Now,

fα = 1⊗α f = 1⊗α (1⊗Q fQ) = 1⊗Q,α|Q fQ.

But the restriction of α to Q is the identity so the latter is simply f . Thus
fα = f and the statement of Conjecture 5 in this case is exactly the statement
of Conjecture 3.

Remark 32. In the course of the proof we showed that if f : CXK,S −→ CUK,S
is defined over Q, then fα = f for all α ∈ Aut(C).
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Proposition 62. Let E = C and suppose that Conjecture 5 is true for one par-
ticular left C[G]-isomorphism f0 : CXK,SK −→ CUK,SK . Then it is true for all
left C[G]-homomorphisms f : CXK,SK −→ CUK,SK . In particular, Conjecture
3 implies Conjecture 5 in the case E = C.

Proof. There exists AS(χ, f0,K/k) in C such that for all α ∈ Aut(C) we have
RS(χα, fα0 ,K/k) = AS(χ, f0,K/k)αcS(χα,K/k). Let f : CXK,SK −→ CUK,SK
be a left C[G]-module homomorphism and define

AS(χ, f,K/k) := AS(χ, f0,K/k)δS(χ, θ,K/k) ∈ C

where θ = f−1
0 ◦ f . By Proposition 58 (iv) and Proposition 60 we have

AS(χ, f,K/k)α = AS(χ, f0,K/k)αδS(χ, θ,K/k)α

=
RS(χα, fα0 ,K/k)

cS(χα,K/k)
δS(χα, θα,K/k)

=
δS(χα, λK,SK ◦ fα0 ),K/k

cS(χα,K/k)
δS(χα, (f−1

0 ◦ f)α,K/k)

=
δS(χα, λK,SK ◦ fα,K/k)

cS(χα,K/k)

=
RS(χα, fα,K/k)

cS(χα,K/k)
.

Thus Conjecture 5 is true for f .
Suppose that Conjecture 3 is true for some left C[G]-isomorphism

g : CXK,SK −→ CUK,SK

defined over Q. Since it is defined over Q, by Remark 32, gα = g for all
α ∈ Aut(C) and therefore Conjecture 5 is true for g and therefore in general in
the case E = C.

Corollary 32. Conjecture 3 is equivalent to Conjecture 5 with E = C.

Corollary 33. The truth of Conjecture 3 is independent of the choice of the
left C[G]-module isomorphism f : CXK,SK −→ CUK,SK defined over Q.

Remark 33. It is true that Conjecture 3 is equivalent to Conjecture 5 for any
E. We refer the reader to Chapter I, § 6 of [Ta1] for the proof of this.

6.3.3 Independence of the Choice of S

Having proved that the truth of Stark’s conjecture does not depend on the choice
of a left C[G]-module isomorphism f : CXK,SK −→ CUK,SK defined over Q, we
now prove that it neither depends on the choice of the set S. First we give some
properties of AS(χ, f,K/k).

Proposition 63. The following properties are true:

(i) If χ and χ′ are two characters of G then we have

AS(χ+ χ′, f,K/k) = AS(χ, f,K/k)AS(χ′, f,K/k).
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(ii) If H is a subgroup of G with character χ then we have

AS(IndGHχ, f,K/k) = ASKH (χ, f,K/KH).

(iii) Let H be a normal subgroup of G and write K ′ = KH . Let χ be a character
of G/H. Let f ′ be a left Q[G/H]-isomorphism QXK′,SK′ −→ QUK′,SK′
and by Remark 29 let f : QXK,SK −→ QUK,SK be a left Q[G]-isomorphism
making the following diagram commute:

QXK,SK QUK,SK

QXK′,SK′ QUK′,SK′ .

f

f ′

jK/K′,S

Then we have AS(InflGHχ, f,K/k) = AS(χ, f ′,K ′/k).

Proof. By Proposition 47 we have

LS(s, χ+ χ′,K/k) = LS(s, χ,K/k)LS(s, χ′,K/k)

so that cS(χ+ χ′,K/k) = cS(χ,K/k)cS(χ′,K/k) and the first property follows
from Corollary 31 (i).

By Proposition 49 we have LS(s, IndGHχK/k) = LSKH (s, χ,K/KH) so that
cS(IndGHχ,K/k) = cS(χ,K/KH) and the second property therefore follows from
Corollary 31 (ii).

By Proposition 48 we have LS(s, InflGHχ,K/k) = LS(s, χ,K ′/k) so that
cS(InflGHχ,K/k) = cS(χ,K ′/k) and the third property therefore follows from
Corollary 31 (iii).

Proposition 64. As a consequence we have:

(i) If Conjecture 3 holds for all finite Galois extensions K/Q, then it holds in
general.

(ii) If Conjecture 3 holds for all 1-dimensional characters of all finite Galois
extensions K/k, then it holds in general.

Proof. Let K/k be a finite Galois extension of number fields with Galois group
G and denote by KGal the normal closure of K over Q. Let χ be a character
of G. We have an isomorphism of groups G ∼= Gal(KGal/k)/Gal(KGal/K) and
therefore by Proposition 63 (iii) and (ii) we have

AS(χ, f,K/k) = AS(Infl
Gal(KGal/k)

Gal(KGal/K)
χ, f ′,KGal/k)

= AS|Q(Ind
Gal(KGal/Q)

Gal(KGal/k)
Infl

Gal(KGal/k)

Gal(KGal/K)
χ, f ′,KGal/Q)

for a suitable f ′. This proves (i).

By Theorem 3.11.1 there exist integers ni and subgroups Hi with characters
θi of dimension 1 such that

χ =
∑
i

niIndGHiθi.
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By Proposition 63 we have

AS(χ, f,K/k) =
∏
i

AS(IndGHiθi, f,K/k)ni =
∏
i

AS
KHi

(θi, f,K/K
Hi)ni .

Since (IndGHiθi)
α = IndGHiθ

α
i for all α ∈ Aut(C) the result follows.

Proposition 65. Conjecture 3 is independent of the choice of the set S.

Proof. Let K/k be a finite Galois extension of number fields with Galois group
G and let S be a finite set of places of k containing M∞k . Let p be a prime ideal
of Ok that is not contained in S and define S′ = S ∪ {p}. Let χ be a character
of G and let V be a representation of G with character χ. By Proposition 64,
we may suppose that χ is a 1-dimensional character. Since χ is 1-dimensional
and therefore a homomorphism of groups, χ factors through its kernel. That is,
there exists by universal property of the quotient, a unique homomorphism of
groups χ′ : G/kerχ −→ C∗ such that the diagram

G C∗

G/ker(χ)

χ

q
∃!χ′

commutes. In other words, χ = InflGker(χ)χ
′ and by Proposition 63 (iii) we can

work with the character χ′ instead of χ. We will therefore assume that χ is an
injective 1-dimensional character.

For simplicity we shall drop the indices K and S in our usual notations and
use ′ to denote objects defined for S′. For example, we shall write c′(χ) instead
of cS′(χ,K/k) and U ′ instead of UK,S′K .

Let f : QX −→ QU be a left Q[G]-isomorphism. By semisimplicity of Q[G]
we may view QX and QU as direct summands of QX ′ and QU ′ and extend f
to a left Q[G]-isomorphism f ′ : QX ′ −→ QU ′. We define the quantity

Θ(χ) =
A(χ, f)

A′(χ, f ′)
.

It suffices to prove that Θ(χ)α = Θ(χα) for all α ∈ Aut(C). In fact, if this is
true, then

A(χ, f)α

A′(χ, f ′)α
=

A(χα, f)

A′(χα, f ′)

so that Conjecture 3 is true for S if and only if it is true for S′.

Let P be a prime ideal of OK that lies above p. We consider two cases:

• χ(DP) 6= 1: In this case, by Corollary 30, we have r′(χ) = r(χ). By
Proposition 54 this implies that HomC[G](V

∨,CX ′) and HomC[G](V
∨,CX)

have the same dimension as complex vector spaces. But since CX is a
C[G]-submodule of CX ′ we have an injective C-linear map

HomC[G](V
∨,CX) −→ HomC[G](V

∨,CX ′)

which must in turn be an isomorphism of vector spaces. We have the
following commutative diagram:
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CX ′ CU ′ CX ′

CX CU CX.

f ′ λ′

f λ

In fact, the left square commutes by choice of f ′ and for the right square,
if u ∈ U then

λ′(u) =
∑
w∈S′K

log |u|ww = λ(u) +
∑
w|p

log |u|ww = λ(u)

since |u|w = 1 for all w 6∈ SK . This induces a commutative diagram

HomC[G](V
∨,CX ′) HomC[G](V

∨,CX ′)

HomC[G](V
∨,CX) HomC[G](V

∨,CX).

(λ′◦f ′)V

(λ◦f)V

∼= ∼=

so that R(χ, f) = R′(χ, f ′).

Moreover, if χ(IP) is non-trivial, then LS′(s, χ) = LS(s, χ) and thus
c′(χ) = c(χ), whence Θ(χ) = 1. If α ∈ Aut(C), then the character χα is
also 1-dimensional with χα(GP) and χα(IP) non-trivial since α is injective.
The same argument shows that Θ(χα) = 1 so that Θ(χ)α = 1 = Θ(χα).

On the other hand, if χ(IP) is trivial, then by injectivity of χ we see that
IP is trivial so that P is unramified over p. In this case we have

LS′(s, χ) = (1− χ(σP)N(p)−s)LS(s, χ)

where σP denotes the Frobenius element of P which lies in DP. Notice
that χ(σP) 6= 1 since otherwise we would have χ(DP) = 1 because the
Frobenius element generates the decomposition group in the unramified
case. Thus c′(χ) = (1−χ(σP))c(χ) and as a result Θ(χ) = (1−χ(σP))−1.
Again, the character χα has the same properties, that is, χα(IP) is trivial,
so that the exact same argument shows that Θ(χα) = (1 − χα(σP))−1

which is equal to Θ(χ)α.

• χ(DP) = 1: By injectivity of χ this implies that DP is trivial. By Propo-
sition 54 we then have

r′(χ) = r(χ) + dimC V
DP = r(χ) + 1.

Moreover, p splits completely in K/k meaning that each P dividing p is
unramified and has residual degree equal to 1. We have

LS′(s, χ) = (1−N(p)−s)LS(s, χ)

and

c′(χ) = lim
s→0

s−(r(χ)+1)LS′(s, χ) = lim
s→0

1−N(p)−s

s
c(χ) = logN(p)c(χ)

by the rule of l’Hospital.
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Suppose that P is of order m in Cl(OK,SK ) and let π be a generator of the
principal ideal PmOK,SK . Then σ(P)mOK,SK is generated by σ(π). Since
p splits, S′K contains |G| more elements than SK , namely the conjugates
of P and by Lemma 2 we know that the family (σ(π))σ∈G generates U ′/U
as a free Z-module so that

U ′ ∼= U ⊕
⊕
σ∈G

Zσ(π) ∼= U ⊕ Z[G]π

as Z[G]-modules. Tensoring withQ we get the followingQ[G]-isomorphism

QU ′ ∼= QU ⊕Q[G]π.

On the other hand, let w0 denote any place in SK , let

NG =
1

|G|
∑
σ∈G

σ ∈ Q[G]

and define x = (P−NG(w0)) ∈ X ′.
Note that if τ ∈ G, then τ(x) = (τ(P) − NG(w0)) since NG is invariant
under left multiplication by G. We now verify that Q[G]x is a Q[G]-
submodule of QX ′. First of all we have the inclusion Q[G]x ⊂ QX ′. In
fact, if α = (

∑
τ∈G λττ)x is an element of Q[G] we see that

α =
∑
τ∈G

λτ (τ(P)−NGw0).

Summing the coefficients we get∑
τ∈G

λτ −
1

|G|
∑
τ,σ∈G

λτ = 0

and this proves that α ∈ QX ′. We notice also that if η ∈ G then

η(α) =

(∑
τ∈G

λτη−1τ

)
x ∈ Q[G]x

so that Q[G] is stable under the action of G. We have proved that Q[G]x
is a sub-Q[G]-module of QX ′.
But QX is also a Q[G]-submodule of QX ′ and clearly QX ∩Q[G]x = {0}.
Moreover, since p is split, we have

dimQ QX ′ = |S′K | − 1 = (|SK | − 1) + |G| = dimQ QX + dimQ Q[G]x.

We conclude that QX ′ = QX ⊕Q[G]x.

By tensoring with C we get isomorphism of left C[G]-modules:{
CU ′ ∼= CU ⊕ C[G]π

CX ′ ∼= CX ⊕ C[G]x.

Let ω : Q[G]x −→ Q[G]π be the left Q[G]-module isomorphism that sends
x to π. By Corollary 33, we may and will assume that f ′ = f ⊕ ω. We
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choose bases for QX and QU as Q-vector spaces and complete them with
{σ(x)}σ∈G and {σ(π)}σ∈G (where G has been given an ordering which is
respected between these two bases) in order to form bases for QX ′ and
QU ′ with respect to their respective decomposition. These also serve as
bases for the complex vector spaces obtained by tensoring with C. Let
M(f), M(f ′), M(λ) and M(λ′) denote the matrices of f, f ′, λ, λ′ with
respect to these bases. Then by the choice of our bases and by choice of
f ′, we claim that

M(f ′) =

(
M(f) 0

0 I|G|

)
and M(λ′) =

(
M(λ) ∗

0 log |π|PI|G|

)
.

The expression for M(f ′) is clear. The first |SK | − 1 columns of M(λ′)
come from the fact that λ′ and λ commute with the inclusions (see diagram
earlier in this proof). The last |G| columns of M(λ′) come from the
computation:

λ′(σ(π)) =
∑
w∈S′K

log |σ(π)|ww

=
∑
w∈SK

log |σ(π)|ww +
∑
τ∈G

log |σ(π)|τ(P)τ(P)

= λ(σ(π)) +
∑
τ∈G

log |σ(π)|τ(P)τ(x) +
∑
τ∈G

log |σ(π)|τ(P)NG(w0)

≡
∑
τ∈G

log |σ(π)|τ(P)τ(x) mod CX

≡ log |σ(π)|σ(P)σ(x) mod CX
≡ log |π|Pσ(x) mod CX

where in the second last equality we use the fact that |σ(π)|τ(P) = 1 for
all τ 6= σ by definition of π and the last equality is the definition of the
valuation σ(P).

As a consequence we have

M(λ′ ◦ f ′) =

(
M(λ ◦ f) ∗

0 log |π|PI|G|

)
.

With the above decomposition we have isomorphisms of C-vector spaces

HomC[G](V
∨,CX ′) ∼= HomC[G](V

∨,CX)⊕HomC[G](V
∨,C[G]x).

Moreover, C[G]x is isomorphic as a left C[G]-module to C[G]. If rG denotes
the regular character of G, then by Lemma 5 we have

dimC HomC[G](V
∨,C[G]x) = 〈χ̄, rG〉G = 〈rG, χ〉G = dimC V

∨ = 1.

Choose a basis of HomC[G](V
∨,CX) as a vector space over C and com-

plete it with a non-zero element of HomC[G](V
∨,C[G]x) to form a basis of

HomC[G](V
∨,CX ′). With this choice of basis for HomC[G](V

∨,CX ′) we
get

M((λ′ ◦ f ′)V ) =

(
M((λ ◦ f)V ) ∗

0 log |π|P

)
.
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We deduce that R′(χ, f ′) = log |π|PR(χ, f).

We conclude that

Θ(χ) =
logN(p)

log |π|P
=

logN(p)

logN(P)−m
= − 1

m

since p is split and thus N(p) = N(P). Hence Θ(χ) is a rational number
that is independent of χ so the proof is complete.

6.4 Special Cases
We prove Conjecture 3 in the the case where the Artin L-function has rank zero
at s = 0. We then analyze the still unproven case of rank 1. In the abelian case,
we present a refinement of Conjecture 3 and introduce the notion of Stark unit.

6.4.1 The Trivial Case
We prove that Stark’s Conjecture 3 is true for the trivial character. Let K/k be
a finite Galois extension of number fields with Galois group G. By Proposition
65 we may without loss of generality take S = M∞k . We shall write XK for
XK,M∞K

and UK for UK,M∞K . We accordingly adjust other notations involving
subscripts.

Let f be a left Q[G]-module isomorphism QXK −→ QUK . We have 1G =
InflG{1}1{1}. Thus, by Proposition 63, we have

A(f, 1G,K/k) = A(f ′, 1{1}, k/k)

where f ′ : QXk −→ QUk is a left Q[G]-module isomorphism such that f extends
f ′. We may therefore suppose that K = k.

Consider the isomorphism λk : CUk −→ CXk of left C[G]-modules. Let
u1, . . . , ur be a system of fundamental units of Uk. Let v0 be an archimedean
place of k and choose as basis for CXk the family {v − v0 : v ∈ M∞k \ {v0}}.
By Remark 3, the regulator of k is the absolute value of the determinant of
λk with respect to these bases. We conclude that with choice of bases we have
det(λk ◦ f) = ±Rk det f . Since

HomC(C∨,CXk) ∼= C⊗C CXk
∼= CXk

we see that R(1{1}, k/k) = det(λk ◦ f).
Meanwhile, L(s, 1{1}, k/k) = ζk(s) by Proposition 46 and by Proposition 51

we have
c(1{1}, k/k) = −hkRk

ωk
.

It follows that
A(f, 1{1}, k/k) = ±ωk det f

hk
.

This is a rational number since f is defined over Q. Therefore Conjecture 3 is
true for the trivial character.
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6.4.2 The Rank 0 Case
We show how this case reduces to a result of Siegel on partial zeta-functions
(Theorem 6.1.1) by using a refined version of Brauer’s Theorem (Theorem
3.11.2).

With notations as in Conjecture 3, we assume in this section that

rS(χ,K/k) = 0.

By Proposition 54, we then have

HomC[G](V
∨,CXK,S) = 0

so that the Stark regulator equals 1 in this case for any choice of f . Also
by Proposition 54, we see that S ⊂ S′ implies that rS(χ) ≤ rS′(χ). So if
rS(χ,K/k) = 0, then rM∞k (χ,K/k) = 0. By Proposition 65 we may therefore
assume without loss of generality that S = M∞k . For simplicity we will write
L(s, χ) instead of LM∞k (s, χ,K/k) and r(χ) instead of rM∞k (χ,K/k). Since
r(χ) = 0, we know that L(0, χ) is non-zero. In our present case, Conjecture 3
can be restated as follows:

L(0, χ)α = L(0, χα), for all α ∈ Aut(C). (6.4.0.1)

We start by simplifying the situation. Let (ρ, V ) be a realization of χ.
Quotienting out by ker(ρ) we get an injective homomorphism of group

ρ′ : G/ker(ρ) −→ GL(V )

with character χ′ : G/ker(ρ) −→ C such that χ = InflGker(ρ)χ
′. By Proposition

48, we have L(s, χ,K/k) = L(s, χ′,Kker(ρ)/k). In particular r(χ′) = 0. Since
χα = InflGker(ρ)(χ

′)α, it suffices to prove (6.4.0.3) for χ′. So by replacing K

with Kker(ρ), we may assume that the representation is faithful, that is, ρ is an
injective homomorphism.

Suppose that χ = χ1 +χ2. By Proposition 47 we have r(χ) = r(χ1) + r(χ2)
so that r(χ1) = r(χ2) = 0. As a consequence, L(0, χi) 6= 0 and we have
L(0, χ) = L(0, χ1)L(0, χ2) and it suffices to check (6.4.0.3) for each χi. We may
therefore assume that χ is irreducible.

If χ is the trivial character on G, then we know from the previous section
that Conjecture 3 is true. We therefore assume that χ is non-trivial.

After simplifications, we are in the case where χ is the character of a non-
trivial irreducible and faithful representation (ρ, V ) of G. We have V G = 0 and
by Proposition 54 we have

r(χ) =
∑

v∈M∞k

dimC V
Dw = 0

so that V Dw = 0 for all w. This implies that Gw = {1, τw} for all w. Moreover,
by considerations discussed in Section 5.4, the fact that Dw is of order 2 implies
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that k is totally real and K is totally complex. Since τw is of order 2 and
V Dw = 0, τw must act on V as −idV . The faithfulness of ρ then implies that
τw = τ for all w. Thus K is an imaginary quadratic extension of K〈τ〉. As a
consequence, τ is complex conjugation and this implies that K〈τ〉 is totally real.

If σ is an element of G, then Dσ(w) = σDwσ
−1 and

στσ−1 = στwσ
−1 = τσ(w) = τ.

As a consequence, τ lies in the center Z(G) of G. By Theorem 3.11.2, there
exists a 1-dimensional character ψ : Z(G) −→ C∗ such that χ|Z(G) = χ(1)ψ and

χ =
∑
i

niIndGHiχi

where the χi are 1-dimensional characters of subgroups Hi that contain Z(G)
such that χi|Z(G) = ψ and ni ∈ Z.

For all i, we have

χi(τ) = ψ(τ) =
χ(τ)

χ(1)
= −1.

Let Vi be a representation ofHi over C with character χi. This is a 1-dimensional
complex vector-space. Since KHi is a subfield of K〈τ〉, it is totally real. Thus
the decomposition groups Dw of K/KHi are generated by τ which acts as −1
so that V Dwi = 0 for all w. By Proposition 54 this implies that r(χi) = 0. As a
consequence, L(0, χi,K/K

Hi) 6= 0 so that by Propositions 47 and 49, we have

L(0, χ) =
∏
i

L(0, χi,K/K
Hi)ni .

Since (IndGHχ)α = IndGHχ
α, it suffices to prove (6.4.0.3) for each χi.

We are reduced to proving (6.4.0.3) in the case where χ is 1-dimensional and
k is totally real. Using Proposition 48 we may replace K by Kker(χ) and assume
that χ is injective and that K/k is abelian. The latter is because the kernel
of χ contains the commutator subgroup [G : G], whence Kker(χ) is a subfield
of K [G:G]. Since Kker(χ) is Galois over k, its Galois group is a quotient of the
abelian group G/[G : G] and is therefore abelian.

We are finally in the following situation: K/k is a finite abelian extension of
number fields with Galois group G and χ is a 1-dimensional injective character
of G. Let f denote the conductor of K/k. Let S denote the finite subset of Mk

consisting ofM∞k and all finite prime divisors of p. By Theorem 2.4.2, the finite
places of S are exactly the ones that ramify in K/k. We have

L(s, χ) = LS(s, χ)
∏

ramified p

(1− χp((p,K/k))N(p)−s | V Ip)−1.

But V Ip 6= {0} if and only if χ(Ip) = 1. By injectivity of χ, this implies that
Ip is trivial which is to say that p is unramified in K/k. We conclude that
whenever p is ramified we have V Ip = {0}. As a consequence, we have

L(s, χ) = LS(s, χ).
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Let α ∈ Aut(C). By Proposition 28 we then have

L(s, χ) =
∑
σ∈G

χ(σ)ζS(s, σ) and L(s, χα) =
∑
σ∈G

χα(σ)ζS(s, σ).

Thus (6.4.0.3) reduces to proving that ζS(0, σ)α = ζS(0, σ) for all α ∈ Aut(C).
In other words, it reduces to proving that

ζS(0, σ) ∈ Q, for all σ ∈ G.

This is Theorem 6.1.1 and thus Conjecture 3 is true in this case.

6.4.3 The Rank 1 Case

With notations as in Conjecture 3, we assume in this section that

rS(χ,K/k) = 1.

The conjecture remains unproven in this case but we will define Stark units and
see how this leads to a refinement of the conjecture in the case where K/k is
abelian.

The Non-Abelian Stark Conjecture

Let K/k be a finite Galois extension of number fields with Galois group G. Let
S be a finite subset of Mk containing M∞k . Let SK denote the finite subset
of MK consisting of the places of K that lie above the ones in S. Let χ be a
character of G and suppose that the rank of the Artin L-function L(s, χ,K/k)
at s = 0 is 1, that is, rS(χ,K/k) = 1. Let V be a representation of G over C
with character χ. As usual, for simplicity we will drop the K/k in the notations.
We begin with some simplifications and some observations.

Suppose that we can decompose χ as χ = χ1 + χ2. By Proposition 47, we
see that rS(χ) = rS(χ1)+ rS(χ2). Then one of these terms is 1, say rS(χ1), and
the other one is 0. By Proposition 63 (i) we have

AS(χ, f) = AS(χ1, f)AS(χ2, f).

In order to prove Conjecture 3 it suffices therefore to prove it for χ1 and χ2.
By the previous section, Conjecture 3 is true for χ2. We therefore only need
to be concerned with χ1. We conclude that without loss of generality we may
suppose that χ is irreducible.

By Proposition 54 we have rS(χ) = 〈χ, χXK 〉G. By Proposition 53 we have
χXK ∈ R(G,Q). Consequently, for all α ∈ Aut(C) we have χαXK = χXK . It
follows that

rS(χα) = 〈χα, χXK 〉G = 〈χ, χXK 〉
α
G = rS(χ)α = 1.

Therefore we have cS(χα) = L′S(0, χα) which is non-zero for all α.

Let E = Q(χ). By Proposition 18 this is a finite abelian extension of Q.
We denote by Γ the Galois group of E/Q. By Theorem 4.4.1, there exists an
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irreducible representation V ′ of G over E with character χ′ such that χ′ = mχ,
where m is the Schur index of χ′ over E. We have

〈χ′, χXK 〉G = mrS(χ) = m > 0

so that V ′ appears as a subrepresentation of the representation EXK of G
over E. This implies that the left C[G]-module CV ′ := C ⊗E V ′ appears as a
subrepresentation of CXK . Since CV ′ has character χ′ = mχ, it is isomorphic
as a left C[G]-module to V ⊕m. As a consequence, the irreducible character χ
appears at least m times in the decomposition of χX . Explicitly, we have

m ≤ 〈χ, χXK 〉G = rS(χ) = 1.

This implies that m = 1. In other words, χ is realizable as an irreducible
character over E.

Define ψ = trE/Q ◦ χ. By Theorem 4.4.1, there exists an irreducible repre-
sentation W of G over Q with character ψ. We have

〈ψ, χXK 〉G =
∑
α∈Γ

r(χα) = |Γ| > 0

so that W appears as a subrepresentation of the representation QXK of G over
Q. This implies that the left C[G]-module CW := C⊗QW appears as a subrep-
resentation of the representation CXK . Since CW has character trE/Qχ, it is
isomorphic as a left C[G]-module to

⊕
α∈Γ V

α. Thus, all the irreducible char-
acter χα appear at least once in the decomposition of χXK . Moreover, these
are all distinct since χα = χβ implies that αβ−1 fixes E and is therefore the
identity. Since 〈χα, χXK 〉G = 1 they appear exactly once. We conclude that
there is a unique subrepresentation of G over Q of QXK that is isomorphic to
W . Denote this subrepresentation by XW . Similarly, since QXK and QUK
are (non-canonically) isomorphic as left Q[G]-modules, there is a unique sub-
representation of G over Q of QUK that is isomorphic to W . We denote this
subrepresentation by UW .

Consider the element

eχ =
χ(1)

|G|
∑
σ∈G

χ̄(σ)σ ∈ C[G].

By Proposition 24 it is a central element of C[G] which acts as the projection
on the χ-component of the canonical decomposition of any representation of G
over C. In particular, it is a central idempotent element of C[G].

Definition 27. If a is a non-zero element of E, we define

π(a, χ) =
∑
α∈Γ

aαL′S(0, χα)eχ̄α ∈ C[G].

Note that this element is central since this is the case of the projections eχ̄α so
that left multiplication by π(a, χ) is a C[G]-endomorphism of CXK .

Remark 34. Suppose that rS(χ) = 0. By Proposition 54 we have 〈χ, χXK 〉G =
0 and for all α ∈ Γ we have 〈χα, χXK 〉G = 0. Since χXK ∈ R(G,Q) we have

〈χ̄α, χXK 〉G = 〈χα, χXK 〉G = 0.
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As a consequence, the representation EXK contains no subrepresentation that
is isomorphic to (V ∨)α. It follows that π(a, χ)EXK = {0} which implies that
π(a, χ)QXK = {0}. Suppose that rS(χ) > 1, then rS(χα) > 1 and thus
L′S(0, χα) = 0 so that π(a, χ) = 0. Consequently, π(a, χ)QXK 6= {0} implies
that rS(χ) = 1.

Proposition 66 (Tate). Let χ be an irreducible character of G with rS(χ) = 1.
Let V be a representation of G with character χ. If a is a non-zero element of
E, then the following statements are equivalent:

(i) π(a, χ)QXK ∩ λK(QUK) 6= {0}

(ii) π(a, χ)QXK = λK(UW )

(iii) Conjecture 3 is true for χ.

Proof. We start by proving the equivalence between (i) and (ii). The represen-
tation QXK has a canonical representation over Q given by, say

QXK = XW ⊕
⊕
i

Wi.

None of the Wi contains a subrepresentation that is isomorphic to W over Q.
Tensoring with C over Q gives a finer decomposition

CXK = CXW ⊕
⊕
i

⊕
j

Wij .

Here, C ⊗Q Wi =
⊕

jWij is the canonical decomposition of C ⊗Q Wi over C.
Since ψ takes values in Q, we have ψ̄ = ψ which implies that ψ =

∑
α∈Γ χ̄

α. As
left C[G]-modules, we therefore have

CXW
∼=
⊕
α∈Γ

V α ∼=
⊕
α∈Γ

(V ∨)α.

We conclude that
CX ∼=

⊕
α∈Γ

(V ∨)α ⊕
⊕
i

⊕
j

Wij . (6.4.0.2)

We have 1 = rS(χσ) = 〈χσ, χXK 〉G for any σ ∈ Aut(C). In particular, we have
〈χ̄α, χXK 〉 = 1 for all α ∈ Γ. This implies that the representation CXK has a
unique subrepresentation that is isomorphic to (V ∨)α. Thus, none of the Wij

contain a subrepresentation isomorphic to (V ∨)α for any α. Therefore the Wij

are annihilated by π(a, χ). Consequently, we have

π(a, χ)QXK = π(a, χ)XW .

Recall that π(a, χ) is a central idempotent element of C[G] and therefore is a
left Q[G]-module endomorphism of XW . But XW is a simple left Q[G]-module
and by Lemma 6, the action of π(a, χ) on XW is either zero or an isomorphism.
Thus π(a, χ)XW is either 0 or a left Q[G]-module isomorphic to W .

Consider the left Q[G]-module isomorphism λ−1
K : RXK −→ QUK . For the

same reason, λ−1
K (π(a, χ)XW ) is either zero or a left Q[G]-submodule of QU

which is isomorphic to W and must therefore be equal to UW .
So if (i) holds, then λ−1

K (π(a, χ)XW ) is non-zero and thus equal to UW which
means that π(a, χ)XW = λK(UW ) which is the statement of (ii). On the other
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hand, if (i) does not hold, then it is clear that π(a, χ)XW = 0. We have proved
the equivalence between (i) and (ii).

Before proving the remaining equivalence, we make a few definitions. By left
semisimplicity of Q[G], there exist complementary left Q[G]-modules X ′ and U ′
such that QXK = XW ⊕ X ′ and QUK = UW ⊕ U ′. Since QXK

∼= QUK and
XW

∼= W ∼= UW as left Q[G]-modules, X ′ and U ′ must be isomorphic as left
Q[G]-modules. Let f ′ : X ′ −→ U ′ be such a left Q[G]-module isomorphism.

We have the C[G]-endomorphism π(a, χ) of CXW and

λK : CUW −→ CXW

is a left C[G]-isomorphism. We define a left C[G]-homomorphism f(a, χ) from
CXK to CUK as follows:

f(a, χ) =

{
λ−1
K ◦ π(a, χ) on CXW

1⊗ f ′ on CX ′.

By Proposition 54, we have rS(χα) = dimC HomC[G]((V
∨)α,CXK). Let

ϕ : (V ∨)α −→ CXK

be a non-zero left C[G]-homomorphism. Its image is a simple left C[G]-module
isomorphic to (V ∨)α by Lemma 6. By the decomposition (6.4.0.4), CX ′ contains
no subrepresentation that is isomorphic to (V ∨)α. Thus ϕ takes its values in
CXW . The C-vector space endomorphism of the space HomC[G]((V

∨)α,CXK)
that is induced by the left C[G]-endomorphism λK ◦ f(a, χ) of CXK maps ϕ to
λ ◦ f(a, χ) ◦ ϕ. Let x ∈ (V ∨)α. Since the image of ϕ is in CXW , by definition
of f(a, χ), we see that

λK ◦ f(a, χ) ◦ ϕ(x) = π(a, χ)(ϕ(x)).

Since ϕ is a left C[G]-module homomorphism and π(a, χ) is an element of C[G],
we obtain

λK ◦ f(a, χ) ◦ ϕ(x) = ϕ(π(a, χ)x) = ϕ(aαL′S(0, χα)x) = aαL′S(0, χα)ϕ(x)

by definition of π(a, χ). Thus λK ◦ f(a, χ) acts on HomC[G]((V
∨)α,CXK) as

π(a, χ) acts on (V ∨)α, that is, by left multiplication by aαL′S(0, χα). Since
HomC[G]((V

∨)α,CXK) is of dimension 1, we see that

δS(χα, λK ◦ f(a, χ)) = aαL′S(0, χα), for all α ∈ Γ. (6.4.0.3)

We now prove the remaining equivalence. Suppose that (ii) holds. Then
λ−1
K ◦ π(a, χ)(CXW ) = CUW so that f(a, χ) is a left C[G]-module isomorphism

from CXK to CUK . In this case we have

δS(χα, λ ◦ f(a, χ)) = RS(χα, f(a, χ))

and (6.4.0.5) translates as

AS(χα, f(a, χ)) =
RS(χ, f(a, χ))

L′S(0, χα)
= aα = AS(χ, f(a, χ))α, for all α ∈ Γ
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and AS(χ, f(a, χ)) = a ∈ Q(χ). Therefore Conjecture 4 is true for χ. Since
Conjecture 3 and Conjecture 4 are equivalent we have proved that (ii) implies
(iii).

Conversely, suppose that Conjecture 3 is true. By Corollary 32 this is equiv-
alent to Conjecture 5 being true in the case "E = C". Then

AS(χ, f(a, χ)) := δS(χ, f(a, χ))/L′S(0, χ)

satisfies the following: for all α, β ∈ Aut(C) we have

A(χα, f(a, χ)β) = A(χβ
−1α, f(a, χ))β = (aβ

−1α)β = aα = AS(χα, f(a, χ))

where we used (6.4.0.5) twice. As a consequence, (λK ◦ f(a, χ)β)V α and (λK ◦
f(a, χ))V α have the same determinant as endomorphisms of the 1-dimensional
space HomC[G]((V

∨)α,CXK). They must therefore be equal on CXW . Since
1 ⊗ f ′ is defined over Q we have (1 ⊗ f ′)β = 1 ⊗ f ′ by Remark 32. Therefore
f(a, χ) = f(a, χ)β on CXK . This is true for all β ∈ Aut(C) and therefore f(a, χ)
must be defined over Q. It therefore maps QXK to QUK and XW to UW . In
particular π(a, χ)QXK ⊂ λ(UW ). Moreover, π(a, χ)XW is non-zero since a and
L′S(0, χα) are non-zero. We must therefore have π(a, π)QXK = λ(UW ).

We now examine how Conjecture 3 implies the existence of certain special
units called Stark units. Let Ψ be a set of irreducible characters of G with the
following three properties:

• 1G 6∈ Ψ

• If χ ∈ Ψ, then χα ∈ Ψ for all α ∈ Aut(C)

• rS(χ) = 1 for all χ ∈ Ψ.

Let χ1, . . . , χs be elements of Ψ such that for all i, j and for all α ∈ Aut(C),
χi 6= χαj . Let (aχ)χ∈Ψ be a family of elements in Q(χ) with the property that
aχα = aαχ for all α ∈ Aut(C). Note that the restriction α|Q(χ) is an element of
Γχ := Gal(Q(χ)/Q) by Proposition 18. Consider the element

∑
χ∈Ψ

aχL
′
S(0, χ)eχ̄ =

s∑
i=1

∑
α∈Γχi

aχαi L
′
S(0, χαi )eχ̄αi =

s∑
i=1

π(aχi , χi) ∈ C[G].

Suppose that Conjecture 3 is true. By Proposition 66, it is equivalent to

π(aχi , χi)QXK = λK(UWi
), for all i = 1, . . . , s.

In particular, π(aχi , χi)XK ⊂ λK(QUK) and since λK(QUK) = QλK(UK) we
obtain ∑

χ∈Ψ

aχL
′
S(0, χ)eχ̄XK ⊂ QλK(UK). (6.4.0.4)

Remark 35. Note that this even holds if Ψ contains characters with rS(χ) 6= 1
since if rS(χ) > 1 then L′S(0, χ) = 0 and if rS(χ) = 0, then eχ̄QXK = 0 by
Remark 34.
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By Proposition 53 we have χXK = χYK − 1G. Thus for all non-trivial irre-
ducible character χ of G we have 〈χ, χXK 〉G = 〈χ, χYK 〉G and CXK and CYK
have the same χ-component and therefore the effect of the projection eχ is the
same on XK as on YK . In particular, since 1G 6∈ Ψ, this is true for all χ ∈ Ψ
and we can replace XK in (6.4.0.6) by YK to obtain∑

χ∈Ψ

aχL
′
S(0, χ)eχ̄YK ⊂ QλK(UK). (6.4.0.5)

An element of QλK(UK) is of the form
∑n
i
ai
bi
⊗ λK(εi) and since λK is a

homomorphism and the tensor product is over Z, this is equal to

n∑
i=1

1

bi

1⊗ λK

 n∏
j=1

ε
aj
j

 .

Therefore, any element of QλK(UK) is of the form

1

m
(1⊗ λK(ε)) =:

λK(ε)

m

for some ε ∈ UK and some integer m.

As a consequence of (6.4.0.7), given any place v ∈ S and any place w ∈ SK
lying above v, there exists an integer m and a unit ε of K such that

m
∑
χ∈Ψ

aχL
′
S(0, χ)eχ̄w = λK(ε). (6.4.0.6)

Remark 36. Note that this equation is note possible with only (6.4.0.6) since
w 6∈ XK . Hence the importance of excluding 1G form the set Ψ. Note also that
this exclusion is only necessary when rS(1G) = 1.

Definition 28. A unit ε that satisfies (6.4.0.8) for some w ∈ SK and some
integer m is called a Stark unit.

Remark 37. Once we fix the integer m, a Stark unit satisfying (6.4.0.8) is
uniquely determined up to a root of unity contained in K since the kernel of
λK is µK .

Proposition 67. Let v ∈ S and let w be a place of K that lies above v. If a
Stark unit exists for w, then there exists a Stark unit for w that belongs to KDw .

Proof. Note, by looking at the definition of eχ̄, that ε is supported only at places
in SK that divide v. Let σ be an element of the decomposition group Dw of w
over v. Since G acts transitively on the places above v, we have

λK(ε) =
∑

[τ ]∈G/Dw

log |ε|τ(w)τ(w)

=
∑

[τ ]∈G/Dw

log |εσ|στ(w)τ(w)

=
∑

[τ ]∈G/Dw

log |εσ|τ(w)τσ
−1(w)

=
∑

[τ ]∈G/Dw

log |εσ|τ(w)τ(w)

= λK(εσ).
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Since εσ = εσε−1ε, we must have that εσε−1 is a root of unity in K. Denote
this element by ζ(σ) ∈ µK . This defines a function ζ : Dw −→ µK . Note that
if σ, τ ∈ Dw, then we have

ζ(στ) = εστ ε−1 = στ(ε)ε−1 = σ(τ(ε)ε−1)σ(ε)ε−1 = ζ(τ)σζ(σ).

This proves that ζ is a crossed homomorphism and therefore defines a 1-cocycle
from Dw to µK . Denote by [ζ] the class of ζ in the first cohomology group
H1(Dw, µK). The class [ζ] is zero if and only if it is a 1-coboundary, that
is, if there exists ξ ∈ µK such that ζ(σ) = ξσξ−1. If this is the case, then
ξσξ−1 = εσε−1 which implies that εξ−1 = (εξ−1)σ for all σ ∈ Dw so that
εξ−1 ∈ KDw .

By general theory of group cohomology (cf. Chapter IV of [CF]), if H is a
normal subgroup of Dw, then the composition map

Hq
T (Dw, µK)

Res−→ Hq
T (H,µK)

Cor−→ Hq
T (Dw, µK)

is multiplication by [G : H]. Here, the subscript T denotes Tate cohomology
and q is any integer. In particular, if we apply this with the trivial subgroup
H = {1}, then the above map is multiplication by |G| and Hq

T (H,µK) = {0}.
Therefore Hq

T (Dw, µK) is annihilated by |G|. Taking q = 1, we get that
H1(Dw, µK) is annihilated by |G| since H1

T (Dw, µK) = H1(Dw, µK). Because
µK is finite, it is clear that H1(Dw, µK) is annihilated by ωK = |µK |. Thus
H1(Dw, µK) has exponent dividing n := gcd(|G|, ωK). Taking m to be nm in
(6.4.0.8), ε′ = εn satisfies the new equation and the associated 1-cocycle be-
comes ζn whose class in H1(Dw, µK) is zero. Thus, multiplying the Stark unit
ε′ by an appropriate element of µK , we may suppose that ε′ ∈ KDw .

Remark 38. By comparing coefficients in (6.4.0.8) and using the definition of
the projection eχ, we can rewrite this equation as

log |ε|σ(w) = log |εσ
−1

|w =
m

|G|
∑
χ∈Ψ

aχL
′
S(0, χ)χ(1)

∑
τ∈Dw

χ(στ), for all σ ∈ G.

and

|ε|w′ = 1, for all w′ - v

Conjecture 3 in the rank 1 case therefore implies that the values L′S(0, χ) for χ ∈
Ψ are related in a linear relationship with coefficients in Q(χ) to the logarithm
of the absolute value of a Stark unit that belongs to KDw .

Example 6. Suppose that Conjecture 3 is true in the rank 1 case. Suppose
that K/k is a finite abelian extension, that |S| ≥ 3 and that the place v of k
lying below w splits in K. The latter implies that the residual degree fw/v of w
is 1 and therefore Dw = {1}. Let Ĝ denote the irreducible characters of G over
C which are all of dimension 1 by Corollary 29. Then rS(1G) = |S| − 1 ≥ 2 so
that L′S(0, 1G) = 0. Therefore there is no need to exclude the trivial character
from Ψ by Remark 35. Taking Ψ to be Ĝ and aχ = 1 for all χ ∈ Ĝ, the equation
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of Remark 38 becomes

log |εσ
−1

|w =
m

|G|
∑
χ∈Ĝ

χ(σ)L′S(0, χ)
∑
τ∈Gw

χ(τ)

=
m

|G|
∑
χ∈Ĝ

χ(σ)L′S(0, χ)|Dw|χDw([1])

=
m

|G|
∑
χ∈Ĝ

χ(σ)L′S(0, χ).

If χ ∈ Ĝ, then we have

1

m

∑
σ∈G

χ(σ) log |εσ|w =
1

|G|
∑
σ∈G
χ′∈Ĝ

χ(σ)χ′(σ−1)L′S(0, χ′) =
∑
χ′∈Ĝ

L′S(0, χ′) 〈χ, χ′〉G .

We therefore obtain the formula

L′S(0, χ) =
1

m

∑
σ∈G

χ(σ) log |εσ|w. (6.4.0.7)

A Refined Conjecture in the Abelian Case

In the abelian case with some special conditions on S, we saw in Example 6
that Conjecture 3 implies the formula (6.4.0.9). Stark’s abelian conjecture is a
refinement of Conjecture 3 in the case of rank 1. It states that, under certain
conditions on the set of places S, equation (6.4.0.9) holds with m = −ωK and
K(ε1/ωK ) is an abelian extension of k. Before we can state this conjecture
precisely we first fix some notations.

Let K/k be a finite abelian extension of number fields with Galois group G.
Let Ĝ denote the group of irreducible characters of G over C. Note that these
are all of dimension 1 by Corollary 29. Let S be a finite set of places of k that
satisfies the following three conditions:

• S contains all archimedean places of k as well as all finite places of k that
ramify in K,

• S contains at least one place that splits completely in K,

• |S| ≥ 2.

As usual, we let SK denote the set of places of K lying above those in S.
Let v be a split prime in S and let w be any place in K above v. We define

U (v) =

{
{u ∈ UK,SK : |u|w′ = 1,∀w′ - v} if |S| ≥ 3

{u ∈ UK,SK : |u|σ(w′) = |u|w′ ,∀σ ∈ G} if S = {v, v′} and w′|v′.

Also, we define

UabK/k = {u ∈ UK,SK : K(u1/ωK )/k is abelian}.

The abelian rank one Stark conjecture, which we refer to as St(K/k, S, v),
can now be formulated:
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Conjecture 6 (St(K/k, S, v)). With notations as above, there exists a Stark
unit ε ∈ UabK/k ∩ U

(v) such that

log |εσ|w = −ωKζ ′S(0, σ), ∀σ ∈ G (6.4.0.8)

or, equivalently,

L′S(0, χ) = − 1

ωK

∑
σ∈G

χ(σ) log |εσ|w, ∀χ ∈ Ĝ. (6.4.0.9)

Remark 39. To see that the first statement implies the second, we use the first
formula of Proposition 55 to compute that for all χ ∈ Ĝ we have

L′S(0, χ) =
∑
σ∈G

χ(σ)ζ ′S(0, σ) = − 1

ωK

∑
σ∈G

χ(σ) log |εσ|w.

For the other implication, we use the second formula of Proposition 55 to com-
pute that for all σ ∈ G we have

ζ ′S(0, σ) =
1

|G|
∑
χ∈Ĝ

χ̄(σ)L′S(0, χ) = − 1

ωK

∑
τ∈G

log |ετ |w

 1

|G|
∑
χ∈Ĝ

χ̄(σ)χ(τ)

 .

By Proposition 28 the latter is equal to − log |εσ|w
ωK

.

Remark 40. We make several comments concerning St(K/k, S, v):

• St(K/k, S, v) is independent of the place w above v. Indeed, if w̃ is another
place above v, let τ ∈ G such that w̃ = τ(w). Then, if St(K/k, S, v) is
true for w, we have

L′S(0, χ) = − 1

ωK

∑
σ∈G

χ(σ) log |(ετ )σ|w̃

and K((ετ )1/ωK ) = K(ε1/ωK ). If |S| ≥ 3, then for all w′ - v, we have

|ετ |w′ = |ε|τ−1(w′) = 1

since τ−1(w′) - v and ε ∈ U (v). If S = {v, v′}, then for all σ ∈ G,
|ετ |σ(w′) = |ε|τ−1σ(w′) = |ε|w′ since ε ∈ U (v). Therefore ετ ∈ UabK/k ∩ U

(v).
We can thus take ετ to be the desired Stark unit for w′ and St(K/k, S, v)
is true for w′.

• The valuations of ε at places above v are given by (6.4.0.10) and the
valuations at places outside SK are all 1. If |S| ≥ 3, then ε is a v-unit so
that the valuation of ε at places not above v is 1. If S = {v, v′}, then by
the product formula and the fact that ε ∈ U (v), we have

|ε|[G:Dw′ ]
w′

∏
σ∈G/Dw

|ε|σ(w) = 1

so that the valuation of ε at places above v′ is known. In conclusion, all
valuations of ε are known and therefore St(K/k, S, v) specifies ε up to a
root of unity.
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Proposition 68. Suppose that S contains only one place v that splits com-
pletely in K. Suppose that there exists an injective irreducible character χ of G.
Suppose that there exists a Stark unit ε such that St(K/k, S, v) is true. Then
K = k(ε).

Proof. We clearly have k(ε) ⊂ K. We need to show that k(ε) is only fixed by
the identity in G. By Corollary 30, we have

rS(χ,K/k) = {v ∈ S | χ(Dw) = 1}.

But χ(Dw) = 1 implies by the injectivity of χ that Dw = {1}. In other words,
v splits completely in K. By assumption S only contains one place that splits
completely and therefore we have rS(χ) = 1 and L′S(0, χ) 6= 0. Let σ be a
generator of G. Let τ ∈ G such that ετ = ε. By (6.4.0.11) we have

L′S(0, χ) = − 1

ωK

∑
η∈G

χ(η) log |(ετ )η|w

= − 1

ωK

∑
η∈G

χ(η) log |εητ |w

= − 1

ωK

∑
η∈G

χ(ητ−1) log |εη|w

= χ(τ)−1L′S(0, χ).

Thus χ(τ) = 1 and by injectivity of χ we have τ = 1. As a consequence,
k(ε) = K.

Corollary 34. Suppose that k is real and that there exists an irreducible in-
jective character χ of G. Suppose that S contains only one place v that splits
completely in K and suppose that v is a real archimedean place. Suppose that
there exists a Stark unit ε such that St(K/k, S, v) is true. Then

K = k(exp(−2ζ ′S(0, 1))).

Proof. Let w be a place above v and fix an embedding k ⊂ K ⊂ Kw = R. We
may choose ε to be positive. By (6.4.0.10) we have

log ε = −2ζ ′S(0, 1).

By Proposition 68 we have K = k(ε) = k(exp(−2ζ ′S(0, 1))).

Remark 41. This corollary shows that in certain specific cases, Stark’s conjec-
ture enables one to construct an abelian extension of k by adjoining the value
at s = 0 of an analytic function. This gives reason to believe that Stark’s con-
jectures could provide an insight in Hilbert’s 12th problem which is concerned
with explicitly constructing a class field theory for number fields.

We will now prove that St(K/k, S, v) is actually independent of the choice
of a prime v that splits in K. In order to accomplish this, we will make use of
the following lemma which follows from class field theory.

Lemma 13. Suppose that K/k is a totally unramified finite abelian extension
and let S be a finite set of primes containing all infinite primes of K and such
that all elements of S split completely in K. Then [K : k] divides the ideal class
number hk,S.
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Proof. Let m be the modulus obtained by taking the product of all finite primes
in S. The primes of Ok,S are in bijection with the primes of Ok that do not
belong to S. The prime ideals of Ok that do not belong to S are exactly those
that do not divide m. Since Ok,S is a Dedekind domain, the group of fractional
ideals I(Ok,S) has unique factorization into prime components. We therefore
get an obvious group isomorphism Ik(m) ∼= IOk,S . The subgroup Pk,S of I(Ok,S)
consisting of the principal fractional ideals corresponds via this isomorphism to
a subgroup P ′(m) of Ik(m). This subgroup consists of elements of the form a.(x)
where (x) ∈ P (m) and a only has primes of S in its decomposition.

Clearly, we have the inclusion Pk,1(m) ⊂ P ′(m), that is, P ′(m) is a congru-
ence subgroup for m. By Theorem 2.4.3, there exists a unique abelian extension
HS of k such that P ′(m) = ker(ΦHS/k,m). Thus the Artin map induces an
isomorphism

ΦHS/k,m : Ik(m)/P ′(m)
∼−→ Gal(HS/k).

In particular, HS/k is an extension of degree hk,S . The proof has been reduced
to showing that K is a subfield of HS . By Corollary 7 this is equivalent to
proving that

Pk,1(m) ⊂ ker(ΦHS/k,m) ⊂ ker(ΦK/k,m). (6.4.0.10)

But K/k is totally unramified and therefore K/k has conductor the empty
modulus 1 and K is contained in the Hilbert class field Hk of k. By Corollary
7 the latter implies that

Pk = ker(ΦHk/k,1) ⊂ ker(ΦK/k,1). (6.4.0.11)

Moreover, ker(ΦK/k,m) = ker(ΦK/k,1)∩Ik(m). Since ker(ΦHS/k,m) is a subgroup
of Ik(m), in order to prove (6.4.0.12), it suffices to prove that

P ′(m) ⊂ ker(ΦK/k,1).

Let a.(x) be an element of P ′(m). By (6.4.0.13) we see that ΦK/k,1(xOk) = 1.
All primes that divide a belong to S and these primes split in K. Thus their
Artin symbol in K/k is trivial which implies by multiplicativity of the Artin
symbol that (a,K/k) is also trivial. We conclude that P ′(m) does indeed lie in
the kernel of ΦK/k,1.

Proposition 69. The conjecture St(K/k, S, v) is true if S contains at least two
places which split in K. In particular, St(K/k, S, v) is independent of v and we
shall in the future write St(K/k, S).

Proof. If v is a place that splits and w lies above v, then Dw = {1}. If |S| ≥ 3,
then rS(1G) = |S| − 1 ≥ 2 and by Corollary 30, rS(χ) ≥ 2 if χ is of dimension
1. Thus, rS(χ) ≥ 2 for all χ ∈ Ĝ which implies that L′S(0, χ) = 0. Therefore
St(K/k, S, v) is true for the Stark unit ε = 1.

Suppose now that S′ = {v, v′} where both v and v′ are split in K. In this
case, we have rS(1G) = 1 and rS(χ) = 2 for all non-trivial χ ∈ Ĝ. In particular,
L′S(0, χ) = 0 for non-trivial χ. Moreover, the rank of the S-unit group Uk,S of k
is 1 and we pick η to be a fundamental unit such that |η|v > 1. By Proposition
46, we have LS(s, 1G) = ζk,S , the Dedekind zeta function of k relative to S. By
the analytic class number formula at s = 0, Corollary 29, we have

L′S(0, 1G) = ζ ′k,S(0) = −hk,S log |η|v
ωk

.
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Since µk is a subgroup of µK , ωk divides ωK . Since S contains all primes that
ramify in K and no prime in S ramifies in K, we deduce that K/k is totally
unramified. We may therefore apply Lemma 13 which says that [K : k] divides
hk,S . Consequently

m =
ωKhk,S
ωk[K : k]

is a positive integer.
Now set ε = ηm ∈ Uk,S . For all σ ∈ G, εσ = ε so that |εσ|w′ = |ε|w′

and ε ∈ U (v). Also, ε1/ωK = (η1/ωk)hk,S/[K:k] so that K(ε1/ωK ) is a subfield
of K(η1/ωk). The latter is the compositum of the abelian extension K/k with
the abelian Kummer extension k(η1/ωk)/k so it is abelian over k. Thus ε ∈
UabK/k ∩ U

(v). It remain to check (6.4.0.11). We have

L′S(0, 1G) = −hk,S
ωk

log |η|v = − [K : k]

ωK
log |ε|v = − 1

ωK

∑
σ∈G

1G(σ) log |εσ|v.

For χ ∈ Ĝ non-trivial, we have

− 1

ωK

∑
σ∈G

χ(σ) log |εσ|w = − log |ε|v
ωK

∑
σ∈G

χ(σ) = − log |ε|v
ωK

|G| 〈χ, 1G〉G = 0

and L′S(0, χ) = 0.

From this result we get some easy corollaries.

Corollary 35. The conjecture St(k/k, S) is true.

Proof. All primes of k are split in k. Since |S| is required to have at least two
elements it contains at least two elements that split and the previous result
applies.

Corollary 36. The conjecture St(K/k, S) is true if k contains at least two
complex archimedean places.

Proposition 70. If S′ contains S, then St(K/k, S) implies St(K/k, S′).

Proof. First, if S satisfies the three conditions imposed in the beginning of this
section, then S′ clearly also satisfies them. If S = S′ there is nothing to prove.

Suppose that S′ = S ∪ {p}. Then p is necessarily a finite unramified prime
of k. Let v be an element of S that splits in K and suppose that there exists
a Stark unit ε ∈ UabK/k,S ∩ U

(v)
K,S that satisfies St(K/k, S). Let σp denote the

Frobenius element of any P above p. This element is independent of P since
we are in the abelian case. Define

ε′ =
ε

εσ
−1
p

.

Suppose that |S| ≥ 3. Then for any w′ - v we have |ε|w′ = |ε|σp(w′) since
σp(w′) - v and ε ∈ U (v). If S = {v, v′} and w′|v, then

|εσ
−1
p |σ(w′) = |ε|σpσ−1(w′) = |ε|w′

for all σ ∈ G since ε ∈ U (v). Thus |(ε′)σ|w′ = 1 and ε′ ∈ U (v). Since (ε′)1/ωK ∈
K(ε1/ωK ) we also have ε′ ∈ UabK,S′ .
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We have
LS′(s, χ) = (1− χ(σp)N(p)−s)LS(s, χ).

Since LS(0, χ) = 0, we obtain

L′S′(0, χ) = (1− χ(σp))L′S(0, χ).

Using (6.4.0.11), we compute that

L′S′(0, χ) = −1− χ(σp)

ωK

∑
σ∈G

χ(σ) log |εσ|w

= − 1

ωK

∑
σ∈G

χ(σ)(log |εσ|w − log |(εσ
−1
p )σ|w)

= − 1

ωK

∑
σ∈G

χ(σ) log |(ε′)σ|w.

Thus St(K/k, S′) is true.
The result for a general S′ trivially follows.

One can prove the following result which describes how St(K/k, S) behaves
with respect to intermediate extensions. We will not prove this here because it
requires developing more theory.

Proposition 71. If K/K ′/k is a tower of finite abelian extensions of number
fields, then St(K/k, S) implies St(K ′/k, S).

Proof. See [Ta1], § 3.5, p. 92.

An Example with Cyclotomic Units

The aim of this section is to present an example where the existence of Stark
units is known. We begin with a brief introduction to cyclotomic units.

Let m be a positive integer. We will be working with the cyclotomic field
K = Q(ζ) where ζ is a primitive m-th root of unity. We treat several cases.

• Suppose that m = p is a prime. Define

f(X) =
Xp − 1

X − 1
= Xp−1 + . . .+X + 1 ∈ Z[X].

This is the minimal polynomial of ζ. The roots of f are precisely the ζi
where gcd(i, p) = 1. Thus we can write

f(X) =
∏

(i,p)=1

(X − ζi). (6.4.0.12)

Consider the element π = 1 − ζ. If ω is any primitive p-th root of unity
and (i, n) = 1, then we have

1− ωi

1− ω
= ωi−1 + . . .+ ω + 1 ∈ OK = Z[ζ]. (6.4.0.13)
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In particular, 1−ζi
1−ζ ∈ OK . Let (j, p) = 1 such that ij ≡ 1 mod p. Then

ζij = ζ. Thus, by (6.4.0.15), we have

1− ζ
1− ζi

=
1− (ζi)j

1− ζi
∈ OK .

We conclude that 1−ζi
1−ζ is a unit in OK for all i such that (i, p) = 1. This

implies that for i and j prime to p, 1−ζi
1−ζj is a unit of OK . Let q be any

prime ideal in OK . Then

0 = vq

(
1− ζi

1− ζj

)
= vq(1− ζi)− vq(1− ζj).

We conclude that all the 1− ζi share the same valuation at all primes of
OK . By evaluating (6.4.0.14) at X = 1, we obtain p =

∏
(i,p)=1(1 − ζi)

and taking valuations we see that

vq(p) = (p− 1)vq(π).

If q - p, then vq(π) = 0. If q = p is a prime that divides p, then the left hand
side is the ramification index ep of p over p. But [K : Q] = p− 1 = rfpep
where fp is the residual degree of p over p and r is the number of primes
above p. Since vp(π) cannot be zero, we must have ep ≥ repfp which
implies r = f = 1 so that p is totally ramified in K. In conclusion, π is a
p-unit of K.

• Suppose that m = pr is a prime power. Consider the polynomial Xpr − 1
and let Y = Xpr−1

. Then

Xpr − 1 = Y p − 1 = (Y − 1)(Y p−1 + . . .+ Y + 1).

Define the polynomial

f(X) =
Xpr − 1

Xpr−1 − 1
= Y p−1 + . . .+ Y + 1 ∈ Z[X].

This is the minimal polynomial of ζ and therefore it factors as

f(X) =
∏

(i,pr)=1

(X − ζi). (6.4.0.14)

In the exact same way as before, one shows that 1−ζi
1−ζ is a unit in OK

and therefore all 1− ζi have the same valuations. Evaluating (6.4.0.16) at
X = 1 and taking valuations we obtain

vq(p) = φ(pr)vq(π).

Just as before, we conclude that p is totally ramified in K and that π is a
p-unit of K.

• Suppose that n is not a prime power. In this case we claim that

n−1∏
i=1

(1− ζi) = ±1
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which implies that all 1− ζi are units in OK .

Let Sd denote the set of all primitive d-th roots of unity and consider the
polynomials

fd(X) =
∏
ω∈Sd

(X − ω) ∈ Z[X].

Consider also the polynomial f(X) = Xn−1
X−1 which has roots all non-trivial

n-th roots of unity. These are exactly the elements of Sd for d|n and d > 1.
We therefore have the decomposition

f(X) =
∏
d|n
d>1

fd(X).

Evaluating at X = 1 gives n =
∏
d|n
d>1

fd(1). We just saw in the previous

case that fpr (1) = p for any prime p and any positive integer r. Let
n =

∏
p|n p

vp(n) be the prime factor decomposition of n. For each p, pr

with r = 1, . . . , vp(n) appears in the above product and contribute with a
factor p. Thus the prime power divisors of n suffice to yield n. In other
words, if d is a composite divisor of n, then fd(1) = ±1. In particular,
fn(1) = ±1 =

∏n−1
i=1 (1− ζi).

We are now ready to construct the example. Let m be an integer greater or
equal to 3 which is either odd or divisible by 4. In particular, φ(m) is even. Let
ζ be a primitive m-th root of unity. Let L = Q(ζ) and let K = Q(ζ)+ be the
maximal totally real subfield of K. Take S to be the union {v∞}∪{p|m}. Note
that v∞ splits in K, that |S| ≥ 2 and that all primes that ramify in K belong
to S by (2.5.0.1). Recall from Example 2 that K is the mZ-ray class field of Q
whereas L is the mZv∞-ray class field of Q.

Consider the automorphism σa of L which is the restriction to L of (ζ 7→ ζa).
Consider the partial zeta-function

ζS(s, σa) =
∑
n≥1

n≡±a(m)

|n|−s =
∑
n∈Z

n≡±a(m)

|n|−s.

Consider Q(ζ) as embedded in C by identifying ζ with e
2iπ
m and let

ε = (1− ζ)(1− ζ−1) = 2− cos(2π/m) ∈ OK .

If |S| ≥ 3, then m is not a prime power so by the above discussion, 1 − ζ and
1 − ζ−1 are both units of OL, whence ε is a unit of OK . Thus ε ∈ U (v∞). If
S = {v∞, p}, then m is a power of p and by the above discussion p is totally
ramified in K. Therefore ε is automatically in U (v∞). We have

εσa = (1− ζa)(1− ζ−a) = 2− 2 cos(2πa/m).

One can compute (cf. [StIV]) that the derivative of the partial zeta function
ζS(s, σa) at s = 0 is

ζ ′S(0, σa) = −1

2
log(2− 2 cos(2πa/m)) = −1

2
log εσa . (6.4.0.15)
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Since ωK = 2, this equation is exactly (6.4.0.10).

For any integer q, set ζq = e
2iπ
q and let Lq = Q(ζq). We have

ε = 2− ζm − ζ−1
m = −(ζ2m − ζ−1

2m)2 = [ζ4(ζ2m − ζ−1
2m)]2.

If m is odd, then 2m is composite and ζ2m − ζ−1
2m = ζ2m(1 − ζ−2

2m) is a unit
of OL2m

by our above discussion. In particular, it is a unit of OL4m
, as is ζ4.

Thus, in the case of an odd m, ε is the square of a unit of L4m. In particular,
K(
√
ε) ⊂ L4m and K(

√
ε) is therefore abelian over Q.

If m is even, then by assumption m is divisible by 4. If m is composite then
by the above reasoning, ε is the square of a unit in L2m. If m is a power of 2,
then ε is the square of an S-unit of L2m. Either way, K(

√
ε) is a subfield of L2m

and therefore abelian over Q.
We conclude that ε ∈ UabK and consequently that ε is a Stark unit for K so

that St(K/Q, S) is true.

Remark 42. This partially proves the abelian Stark conjecture in the case
k = Q. In general, when we explicitly know the class field theory of k, it is
possible to prove the conjecture. The class field theory is known in the case
k = Q and the case if k is quadratic imaginary. We have the following result
that we give without proof. A partial proof can be found in [Ta1], § 3.9, p. 95.

Theorem 6.4.1. The conjecture St(K/k, S) is true for k = Q or if k is
quadratic imaginary.



Chapter 7

The Birch and
Swinnerton-Dyer Conjecture

In the 1960’s, Peter Swinnerton-Dyer used the EDSAC computer at the Univer-
sity of Cambridge to calculate the number of points modulo p on elliptic curves
with known rank. From these numerical results he was led with Bryan Birch
to their famous conjecture which they proposed in [BSD]. It says that the rank
of the Hasse-Weil L-function of an elliptic curve at s = 0 is the rank of the
Mordell-Weil group of the curve. A refined version of the conjecture also gives a
formula for the leading term in the Taylor expansion of this L-function around
s = 1 in terms of arithmetic invariants of the elliptic curve. The aim of this
chapter is to state this refined version of the conjecture. We follow the paper of
Gross [Gr2] and supplement it with the book of Silverman [Sil].

7.1 The Riemann-Roch Theorem

By a curve defined over a field k we mean a projective variety defined over k
of dimension 1. Let C/k be a smooth curve. We will always assume that k is
perfect field. We fix an algebraic closure k̄ of k and let G denote the absolute
Galois group of k. We will call P a point of C and write P ∈ C if P ∈ C(k̄).
We review some notations.

Let Div(C) denote the divisor group of C. This is the free abelian group on
the points of C. We note by Div0(C) the subgroup of degree zero divisors. The
Galois group G acts on points of C by acting on their coordinates and therefore
naturally acts on Div(C). We let Divk(C) denote the subgroup of Div(C) fixed
by the action of G and we let Div0

k(C) denote the subgroup of Div0(C) fixed by
the action of G.

If f ∈ k̄(C), then we define divf =
∑
P∈C ordP (f)(P ). This is an element

of Div0(C) and divisors of the form divf are called principal divisors. Let P
denote the subgroup of principal divisors. We form the Picard group of C to be
Pic(C) = Div(C)/P . We define Pick(C) to be the subgroup of Pic(C) that is
fixed by G. We write D1 ∼ D2 and say that D1 and D2 are linearly equivalent
if D1 = D2 in Pic(C).

Let D =
∑
P∈C nP (P ) ∈ Div(C). We say that D is efficient and write

155
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D ≥ 0 if nP ≥ 0 for all P ∈ C. We then write D1 ≥ D2 if the divisor D1 −D2

is efficient. We define

L(D) = {f ∈ k̄(C)∗ : divf ≥ −D} ∪ {0}.

This is a finite-dimensional k̄-vector space (cf. [Sil], II.5.2) and we denote by
`(D) its dimension over k̄.

Let ΩC denote the space of differential forms on C. This is a k̄(C)-vector
space of dimension 1 (cf. [Sil], II.4.2). Let ω ∈ ΩC . Let P ∈ C and let tP denote
a uniformizer of k̄(C) at P . Then there exists a unique g ∈ k̄(C) such that
ω = gdtP . We denote this element by ω/dtP . One can check that ordP (ω/dtP )
does not depend on the choice of tP . We define ordP (ω) = ordP (ω/dtP ). and
associate to ω the divisor

divω =
∑
P∈E

ordP (ω)(P ).

The differential ω is said to be holomorphic if divω ≥ 0.
Let ω, ω′ be two non-zero differentials. Then there exists f ∈ k̄(C)∗ such

that ω′ = fω. We have divω′ = divf + divω so that divω′ = divω in Pic(C).
The canonical divisor class on C is the image of divω in Pic(C) for any non-zero
differential ω. Any representative of this class is called a canonical divisor on C
and is typically denoted by KC .

Suppose that f ∈ L(KC). Then divfω ≥ 0 so that fω is a holomorphic
differential. On the other hand, let ω′ be a holomorphic differential. Then
ω′ = fω for some f ∈ k̄(C) and f ∈ L(KC). This establishes an isomorphism
of k̄-vector spaces

L(KC) ∼= {ω ∈ ΩC : ω is holomorphic}.

Theorem 7.1.1 (Riemann-Roch). Let C/k be a smooth curve and let KC be a
canonical divisor on C. There exists a non-negative integer g, the genus of C,
such that for all D ∈ Div(C) we have

`(D)− `(KC −D) = degD − g + 1.

Proof. See [Sil], II.5.4.

Corollary 37. Let C/k be a smooth curve and let KC be a canonical divisor
on C. Then we have

(i) `(KC) = g.

(ii) degKC = 2g − 2.

(iii) If D ∈ Div(C) and degD > 2g − 2 then

`(D) = degD − g + 1.

Proof. By Theorem 7.1.1 we have

`(0)− `(KC) = deg 0− g + 1.

But L(0) consists of the functions f ∈ k̄(C) that have no poles. Since deg divf =
0, f has no zeros either so that f ∈ k̄. Thus `(0) = 1 and `(KC) = g.
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By Theorem 7.1.1 we have

`(KC)− `(0) = degKC − g + 1

so that degKC = 2g − 2.
If D ∈ Div(C) and degD > 2g − 2 then by Theorem 7.1.1 we have

`(D)− `(KC −D) = degD − g + 1.

By (ii) we have deg(KC −D) = 2g− 2− degD < 0. Let f ∈ L(KC −D). Then

0 = deg divf ≥ −deg(KC −D) > 0

so that f = 0 and `(KC −D) = 0.

Lemma 14. Let C/k be a non-singular curve of genus 1. If P,Q ∈ C, then
(P ) ∼ (Q) if and only if P = Q.

Proof. Suppose that there exists f ∈ k̄(C)∗ such that div(f) = (P )−(Q). Then
div(f) + (Q) = (P ) ≥ 0 so that f ∈ L((Q)). We have deg(Q) = 1 > 2g − 2 = 0
so that by Corollary 37 (iii) we have `((Q)) = 1. But L((Q)) already contains
the constant functions and therefore f ∈ k̄. In particular, div(f) = 0 and thus
P = Q.

7.2 Elliptic Curves
An elliptic curve E defined over k is a non-singular curve over k of genus 1
together with a k-rational point OE ∈ E(K).

A very interesting fact about elliptic curves is that one can define an opera-
tion on E, making it into an algebraic group defined over k.

7.2.1 The Algebraic Group Law
We show how one can transfer the group law on Pic0(E) to E(k̄).

Theorem 7.2.1. For any D ∈ Div0(E), there exists a unique point P ∈ E(k̄)
such that D ∼ (P )−(OE). This defines a map σ : Div0(E) −→ E(k̄) by sending
D to the corresponding point P . This map induces a bijection of sets

σ : Pic0(E)
∼−→ E(k̄).

For future reference, we denote the inverse of this map by κ.

Proof. Let D be a divisor of degree 0. Then D + (OE) is a divisor of degree 1
and by Corollary 37 (iii) we have `(D+(OE)) = 1. Let f be a non-zero element
of L(D+(OE)). Then f is a basis of L(D+(OE)) and div(f) ≥ −D−(OE). We
have deg(div(f)+D+(OE)) = 1 and all coefficients div(f)+D+(OE) are non-
negative. Therefore there must exist P ∈ E such that div(f)+D+(OE) = (P ).
In other words, D ∼ (P )−(OE). This proves the existence part. For uniqueness,
suppose that we also have D ∼ (P ′)− (OE). Then (P ′) ∼ (P ) and by Lemma
14 we get P = P ′.

The map σ is surjective. Indeed, if P ∈ E, then (P ) − (OE) is an element
of Div0(E) whose image by σ is P . Moreover, if D1, D2 ∈ Div0(E), then
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σ(D1) = σ(D2) if and only if D1 ∼ D2. In fact, let Pi = σ(Di) for i = 1, 2.
Then P1 = P2 implies that (P1) − (OE) = (P2) − (OE) from which it follows
that D1 ∼ D2. Conversely, D1 ∼ D2 implies that (P1) − (OE) ∼ (P2) − (OE)
which in turn implies (P1) ∼ (P2). By Lemma (14), P1 = P2 and the proof is
complete.

Definition 29. If P,Q ∈ E, then we define their sum to be

P +Q := σ(κ(P ) + κ(Q)) = σ([(P ) + (Q)− 2(OE)]).

With this law E(k̄) is a group with zero element OE and σ is an isomorphism
of abelian groups.

Remark 43. If τ ∈ G and D ∈ Div0(E) is such that D ∼ (P ) − (OE), then
Dτ ∼ (P τ )− (OE) so that σ([Dτ ]) = P τ = σ([D])τ . This shows that σ is a left
G-module isomorphism. The restriction of σ to Pic0

k(E) is an injective group
homomorphism. Moreover, if [D] ∈ Pic0

k(E) and D ∼ (P )−(OE), then Dτ ∼ D
and Dτ ∼ (P τ ) − (OE). By uniqueness, we obtain P = P τ . This proves that
P ∈ E(k) and the image of the restriction of σ lies in E(k). If P ∈ E(k), then
(P ) − (OE) certainly belongs to Div0

k(E) and its image under σ is P . This
proves surjectivity. Thus we get an isomorphism of abelian groups

σ : Pic0
k(E) −→ E(k).

In particular, E(k) is a subgroup of E(k̄) with the above defined group law.

Proposition 72. Let E/k be an elliptic curve. Then we have the following
exact sequence:

1 −→ k̄∗ −→ k̄(E)∗
div−→ Div0(E) −→ Pic0(E) −→ 0

Moreover, the sequence obtained by taking G-invariants

1 −→ k∗ −→ k(E)∗
div−→ Div0

k(E) −→ Pic0
k(E) −→ 0

remains exact.

Proof. Let f ∈ k̄(E)∗ and define a map f : E −→ P1 by P 7→ [f(P ), 1] is
f is regular at P and by P 7→ [1, 0] otherwise. This is a rational map and
since E and P1 are both smooth curves it is a morphism of curves (cf. [Sil],
II.2.1). If div(f) = 0 then f has no poles and therefore the above map cannot
be surjective. Consequently, it must be a constant map (cf. [Sil], II.2.3) so that
f ∈ k̄∗. This proves exactness at k̄(E)∗. Exactness elsewhere is clear.

For the second part, we start by proving exactness at k(E)∗. If P (E) =
div(k̄(E)∗) is the subgroup of Div0(E) of principal divisors, that is, the ker-
nel of Div0(E) −→ Pic0(E), then Pk(E) = P (E) ∩ Div0

k(E) is the kernel of
Div0

k(E) −→ Pic0
k(E). Proving exactness amounts to proving that Pk(E) =

div(k(E)∗). Note that we clearly have the inclusion div(k(E)∗) ⊂ Pk(E) since
div(f)τ = div(fτ ) = div(f) for any τ ∈ G and any f ∈ k(E)∗. Now, if
f ∈ Pk(E), then for any τ ∈ G, we have div(f)τ = div(fτ ) = div(f). Thus
div(fτ/f) = 0 and therefore these two functions differ by a constant cτ ∈ k̄∗.
This gives a function c : G −→ k̄∗. If ω ∈ G, then

fωτ = (fτ )ω = cωτ f
ω = cωτ cωf



7.2. ELLIPTIC CURVES 159

so that cωτ = cωτ cω. As a consequence, c is a crossed homomorphism and
determines an element of the first cohomology group H1(G, k̄∗). By Hilbert’s
Theorem 90, this cohomology group is trivial so c is a 1-coboundary, that is,
there exists x ∈ k̄∗ such that c = (τ 7→ xτ/x). Then (f/x)τ = f/x for all τ so
that f/x ∈ k(E)∗. Since div(f/x) = div(f), we see that div(f) ∈ div(k(E)∗).
This proves the inclusion Pk(E) ⊂ div(k(E)∗).

It is easily checked that the sequence

1 −→ k∗ −→ k(E)∗
div−→ Div0

k(E) −→ Pic0
k(E)

is exact.

It remains to show that Div0
k(E) −→ Pic0

k(E) is surjective. Let [D] be an
element of Pic0

k(E). By definition, for all τ ∈ G, we have [Dτ ] = [D] in Pic0
k(E).

In other words, Dτ ∼ D. Let P = σ([D]) ∈ E(k̄), that is, the unique point
such that D ∼ (P ) − (OE). It follows that Dτ ∼ (P τ ) − (OE). But Dτ ∼ D
implies that (P ) ∼ (P τ ) and by Lemma 14 we have P = P τ . This being true
for any τ , we have shown that P ∈ E(k). But then (P )− (OE) ∈ Div0

k(E) and
[D] = [(P )− (OE)]. This proves surjectivity.

7.2.2 The Geometric Group Law
Let E/k be an elliptic curve. Using the fact that the genus of E is 1 together
with Theorem 7.1.1, one can show (cf. [Sil], III.3.1) that E embeds as a non-
singular cubic curve in P2 given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with coefficients in k. The point OE is mapped to the unique intersection of the
Weierstrass curve with the line at infinity. This point has projective coordinates
[0, 1, 0].

The embedding E −→ P2 is given by a morphism Φ = [x, y, 1] where x, y ∈
k(E) are rational functions called Weierstrass coordinates for E. We have the
equality k̄(E) = k̄(x, y). The discriminant of the above Weierstrass equation
is a certain polynomial ∆ = ∆(a1, . . . , a6) in the coefficients of the equation.
Note that a Weierstrass equation defines a non-singular curve in P2 if and only
if ∆ 6= 0 (cf. [Sil] III.1.4 (a)). Conversely, every non-singular curve in P2 given
by a Weierstrass equation is an elliptic curve.

If K/k is any field extension then the chord and tangent process turns E(K)
into an abelian group with zero element OE . This geometric addition law is
determined by the following property:

P +Q+R = OE ⇐⇒ P,Q,R are colinear.

Note that it is not immediate that this actually defines a group law (associativity
is not immediate). However, as we will see, this turns out to be true. One can
derive addition and inverse formulas that turn out to be rational functions in
the coefficients ai of the Weierstrass equation. One can then show that both
addition and taking inverse are morphisms of projective varieties defined over k
(cf. [Sil], III.3.6).

Theorem 7.2.2. The geometric group law on E and the algebraic group law
on E coincide.
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Proof. Let P,Q ∈ E(k̄). In this proof we use the symbol ⊕ to denote the
geometric group law and the symbol + to denote the algebraic group law. We
want to prove that P ⊕Q = P +Q. This amounts to proving that

κ(P ⊕Q) = κ(P ) + κ(Q)

where addition in the right hand side is the one of Pic0(E). Let

f(X,Y, Z) = αX + βY + γZ = 0

be the equation of the line L in P2 going through P,Q and let R be the third
point of intersection with E. Let

f ′(X,Y, Z) = α′X + β′Y + γ′Z = 0

be the equation of the line L′ in P2 going through R and OE . By definition of
the geometric group law, the third point of intersection of L′ with E is P ⊕Q.
Counting intersection multiplicities, we see that

div(f/Z) = (P ) + (Q) + (R)− 3(OE)

div(f ′/Z) = (R) + (P ⊕Q)− 2(OE).

It follows that

div(f ′/f) = ((P ⊕Q)− (OE))− ((P ) + (Q)− 2(OE)) ∼ 0

and therefore κ(P ⊕Q) = κ(P ) + κ(Q).

Remark 44. From this theorem it follows that the geometric group law is a
group law and in particular we get associativity. On the other hand, it shows
that the algebraic group law we defined is a morphism of varieties defined over
k. From now on we will obviously not distinguish between the algebraic and
geometric group laws and both will simply be denoted by the symbol +.

7.2.3 Torsion on Elliptic Curves
Having defined the operation of addition on the points of E we naturally define
the multiplication-by-m map [m] on E for any integer m inductively: if m > 1,
then [m + 1](P ) = [m](P ) + P and if m < 0, then [m](P ) = [−m](−P ). Since
addition and taking inverse are morphisms, one verifies easily that [m] is a
morphism for all integer m. Since [m] obviously maps OE to itself, [m] is an
isogeny for all m.

If E1 and E2 are two elliptic curves, we denote by Hom(E1, E2) the additive
group of isogenies E1 −→ E2. If E1 = E2 we can also compose isogenies.
Thus if E is an elliptic curve, we let End(E) := Hom(E,E) be the ring of
isogenies E −→ E. This is called the endomorphism ring of E. If E1 and E2

are both defined over a field k, then we denote by Homk(E1, E2) and Endk(E)
respectively the group and ring of isogenies defined over k.

Since addition and taking inverse are both defined over k, we see that

[m] ∈ Endk(E)

for all m. There is more to be said about the multiplication-by-m isogeny:
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Proposition 73. Let E/k be an elliptic curve and assume that m is non-zero
in k, that is, m 6= 0 if char(k) = 0 and (m, p) = 1 if char(k) = p > 0. Then [m]
is a finite separable endomorphism of degree m2.

Proof. Let ω ∈ ΩE be an invariant differential of E. Then [0]∗ω = 0 and
[1]∗ω = ω since [1] is the identity map. If m is an integer, then we have

[m+ 1]∗ω = [m]∗ω + [1]∗ω = [m]∗ω + ω

(cf. [Sil], III.5.2). Now by ascending and descending induction, we get [m]∗ω =
mω for all m ∈ Z. In particular, since m is non-zero in k, [m]∗ω 6= 0. Therefore
we cannot have [m] = [0]. Thus [m] is non-constant, hence surjective. In other
words, [m] is a finite map. Moreover, [m]∗ω 6= 0 implies that [m] is separable
(cf. [Sil], II.4.2).

Denote by [̂m] the dual isogeny of [m]. By convention, [̂0] = [0] and since
deg([1]) = 1, we have [̂1] = [1]. We have

̂[m+ 1] = [̂m] + [̂1] = [̂m] + [1].

By ascending and descending induction, we obtain [̂m] = [m]. Let d = deg([m]).
Then

[d] = [deg([m])] = [̂m] ◦ [m] = [m2].

Thus [d −m2] = [0] is constant. This implies that d −m2 = 0 since otherwise
[d−m2] is a finite map.

Remark 45. It follows from this result that we have an injection of rings

Z ↪→ End(E).

This is usually an isomorphism, but if the endomorphism ring of E is bigger
than Z, then E is said to have complex multiplication.

Definition 30. For any integer m we define the m-torsion subgroup of E,
denoted by E[m], to be ker([m]). For any field extension K/k we denote by
E[m](K) the m-torsion points of E that are defined over K.

Remark 46. Since multiplication-by-m is an algebraic map, every m-torsion
point has coordinates that are algebraic over k. Therefore we have

E[m] = E[m](k̄).

We want to understand the structure of E[m]. In order to deal with the case
of positive characteristic, we introduce the Frobenius map on an elliptic curve.

Let k be a perfect field of characteristic p and let q = pr for some r ∈ N.
Let E/k be an elliptic curve given by the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We define a new curve E(q)/k by raising the coefficients of the Weierstrass
equation for E to the q-th power, that is,

E(q) : y2 + aq1xy + aq3y = x3 + aq2x
2 + aq4x+ aq6.

Writing out the discriminant ∆(E) of E and using the fact that the q-th power
map k −→ k is a homomorphism, we see that ∆(E(q)) = ∆(E)q. Since E is
non-singular, we find that E(q) is non-singular and therefore is an elliptic curve.
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Definition 31. The q-th power Frobenius map of E is the map

φq : E −→ E(q), (x, y) 7−→ (xq, yq)

and φq(OE) = OE(q) = OE .

This is a rational map and since both E and E(q) are non-singular, φ is a
morphism. The Frobenius morphism has the following properties:

Proposition 74. Let φq be the q-th power Frobenius map of E.

(i) φ∗q(k(E(q))) = k(E)q.

(ii) φq is purely inseparable.

(iii) deg(φq) = q.

Proof. See [Sil] II.2.11.

Remark 47. Suppose that k = Fq is a finite field with q elements. Denote by ψq
the q-th power map on Fq so that φq(x, y) = (ψq(x), ψq(y)). The restriction of
ψq to k is the identity so that E(q) = E. In particular, φq is an endomorphism of
E, called the Frobenius endomorphism. Note that E(Fq) consists of the points
of E(Fq) that are fixed by Gal(Fq/Fq). By definition, we have

Gal(Fq/Fq) = lim
←−

Gal(Fqn/Fq) = lim
←−
〈ψq|Fqn 〉.

It becomes clear that the points fixed by Gal(Fq/Fq) are exactly those fixed by
φq. Stated more precisely, we have

ker(1− φq) = E(Fq).

Proposition 75. Let E/Fq be an elliptic curve define over the finite field of
cardinality q. Let φ : E −→ E denote the q-th power Frobenius isogeny. Then
the map 1− φ is separable.

Proof. Let ω be an invariant differential on E. Then

(1− φ)∗ω = [1]∗ω − φ∗ω = ω

because by Proposition 74 (ii) the map φ is purely inseparable and this is true
if and only if φ∗ω = 0 (cf. [Sil], II.4.2). Therefore (1 − φ)∗ω 6= 0 and 1 − φ is
separable.

We are now almost ready to establish the structure of them-torsion subgroup
of E. All we need is the following easy lemma.

Lemma 15. Let A be an abelian group of order mr and suppose that for all d
that divides m, the order of the d-torsion subgroup A[d] is dr. Then we have an
isomorphism of groups

A ∼= (Z/mZ)r.

Proof. By the structure theorem for finite abelian groups, there exist positive
integers d1, . . . , dn such that A ∼= Cd1

× . . . × Cdn where Cd denotes the cyclic
group of order d. Moreover, we may suppose that d1|d2| . . . |dn. By comparing
orders, we see that mr = d1 . . . dn. Furthermore, since the order of A[m] is mr,
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we must have the equality A = A[m] and thus all elements of A are killed by
m. This implies that dn divides m.

We have A[d1] ∼= Cd1
× Cd2

× . . . × Cdn1
with n1 ≤ n chosen to be the

maximal index such that di divides d1 for all i ≤ n1. But we already have that
d1 divides di for all i so that d1 = di for all i ≤ n1. Comparing orders we see
that dr1 = d1 . . . dn1 = dn1

1 so that n1 = r. We conclude that A[d1] ∼= Crd1
.

Relabeling everything, we now have an isomorphism

A ∼= Crd1
× Cd2 × . . .× Cdn

with d1|d2| . . . |dn|m and d1 < d2. Proceeding as before we write

A[d2] ∼= Crd1
× Cd2

× . . .× Cdn2

where n2 ≤ n is maximal such that di divides d2 for all i ≤ n2. As before, this
implies that di = d2 for all i = 2, . . . , n2. Thus, we have A[d2] ∼= Crd1

× Cn2−1
d2

.
Comparing order, we get dr2 = dr1d

n2−1
2 . Since d1 < d2, this is a contradiction

unless n = 1. This implies that d1 = m and finally A ∼= Crm as desired.

Proposition 76. Let E/k be an elliptic curve and m ∈ Z a non-zero integer.
If m is non-zero in k, that is, m 6= 0 if char(k) = 0 and (m, p) = 1 if char(k) =
p > 0, then

E[m] ∼= Z/mZ× Z/mZ.

Moreover, if char(k) = p > 0, then one of the following is true:

(i) E[pe] = {OE} for all e = 1, 2, . . .

(ii) E[pe] = Z/peZ for all e = 1, 2, . . .

Proof. Suppose thatm is non-zero in k. We have | ker([m])| = degs([m]) (cf.[Sil],
III.4.10). By definition, we have ker([m]) = E[m] = E[m](k̄). By Proposition
73, we know that [m] has degreem2 and that [m] is separable so that degs([m]) =
deg([m]). We conclude that |E[m]| = m2. Note that for any d|m, d is also non-
zero in k and thus we also have |E[d]| = d2 and E[d] is a subgroup of E[m].
Applying Lemma 15 with A = E[m] and r = 2 yields the desired result.

Suppose that char(k) = p > 0 and let φ be the p-th power Frobenius mor-
phism. Then we have

|E[pe]| = degs([p
e]) = degs(φ̂ ◦ φ)e = degs(φ̂)e degs(φ)e

(cf.[Sil], III.4.10). By Proposition 74, φ is inseparable so that degs(φ) = 1. It
follows that

|E[pe]| = degs(φ̂)e.

We have deg(φ̂) = deg(φ) = p by Proposition 74 (iii). There are now two cases.
If φ̂ is inseparable, then degs(φ̂) = 1 so that E[pe] = {OE} for all e. Otherwise,
φ̂ is separable so that degs(φ̂) = deg(φ̂) = p and |E[pe]| = pe. By Lemma 15
applied with A = E[pe], m = pe and r = 1, we get E[pe] ∼= Z/peZ for all e.
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7.3 The Mordell-Weil Theorem
In this section we present and briefly sketch the proof of the Mordell-Weil The-
orem. We do not provide all details since this proof was the subject of the
previous paper [Lil] of the author. The statement of the theorem is the follow-
ing:

Theorem 7.3.1. Let k be a number field and let E/k be an elliptic curve. Then
E(k) is a finitely generated abelian group.

The proof relies on two fundamental results, one is the existence of the
Néron-Tate height on E/k and the other is known as the Weak Mordell-Weil
Theorem. The statements are as follows:

Theorem 7.3.2 (Height Theorem). Let E/k be an elliptic curve. There exists
an even function ĥ : E(k̄) −→ R, known as the Néron-Tate (or canonical)
height, that has the following properties:

(i) For all P,Q ∈ E(k̄), we have ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q).

(ii) For all P ∈ E(k̄) and for all m ∈ Z, ĥ([m]P ) = m2ĥ(P ).

(iii) For any P ∈ E(k̄), we have ĥ(P ) ≥ 0. Moreover, for any positive integer
M , the set {P ∈ E(k) : ĥ(P ) ≤M} is finite.

Theorem 7.3.3 (Weak Mordell-Weil Theorem). For any integer m ≥ 2, the
group E(k)/mE(k) is finite.

Together these two results give a proof of the Mordell-Weil Theorem.

Proof of Theorem 7.3.1. LetQ1, . . . , Qr be representatives of the quotient group
E(k)/mE(k) which is finite by Theorem 7.3.3. Let P be a point of E(k). Then
there exists P1 in E(k) and an index i1 between 1 and r such that P = mP1+Qi1 .
Similarly for P1, there exists P2 in E(k) and an index i2 between 1 and r such
that P1 = mP2 + Qi2 . Proceeding inductively, at the nth stage we obtain
a element Pn of E(k) and an index in between 1 and r such that Pn−1 =
mPn +Qin . We may then write P as a linear combination of the point Pn and
the representatives Q1, . . . , Qr. If we can bound ĥ(Pn) by a constant, taking n
large if necessary, we will be able to conclude that E(k) is finitely generated by
using property (iii) of Theorem 7.3.2. So our goal is to find a suitable bound.
We have

ĥ(Pn)
(ii)
= m−2ĥ([m]Pn) = m−2ĥ(Pn−1 −Qin)

(i)
= m−2(2ĥ(Pn−1) + 2ĥ(Qin)− ĥ(Pn−1 +Qin)).

Using the fact that ĥ takes non-negative values and setting M := 2 maxi ĥ(Qi),
we get

ĥ(Pn) ≤ m−2(2ĥ(Pn−1) +M).

Proceeding inductively, after n stages we obtain the bound

ĥ(Pn) ≤
(

2

m2

)n
ĥ(P ) +

M

m2

n−1∑
i=0

(
2

m2

)i
=

(
2

m2

)n
ĥ(P ) +M

1−
(

2
m2

)n
m2 − 2

.
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Using the fact that m ≥ 2, we get

ĥ(Pn) ≤
(

2

m2

)n
ĥ(P ) +

M

2

and we can pick n large enough so that
(

2
m2

)n
ĥ(P ) ≤ 1. For such n we have

ĥ(Pn) ≤ 1 +
M

2
.

Every point in E(k) is thus a linear combination of points in the set

{Q1, . . . , Qr} ∪ {P ∈ E(k) : ĥ(P ) ≤ 1 +M/2},

which is finite by property (iii) of Theorem 7.3.2. We conclude that E(k) is
finitely generated.

7.3.1 The Néron-Tate Height
We briefly outline the construction of the above mentioned height without
dwelling too much on the details of the proofs. Everything here is done in
Chapter VIII of [Sil] or in Chapter 1 of [Lil] by the author of the present paper.
We start by defining a height in projective space.

Definition 32. Let k be a number field and let P = [x0, . . . , xn] ∈ Pn(k). We
define the height of P with respect to k to be

Hk(P ) =
∏
v∈Mk

max
0≤i≤n

|xi|v.

This seemingly infinite product is actually finite. The definition is indepen-
dent of the choice of homogeneous coordinates by the product formula. Since
we can always choose projective coordinates with at least one coordinate equal
to 1, one easily sees that Hk(P ) ≥ 1. Finally, it is not difficult to see that if
K/k is a finite extension, then HK(P ) = Hk(P )[K:k]. Using this last fact, one
defines a height on projective space that is independent of the number field k.

Definition 33. Let P ∈ Pn(Q̄). We define the absolute height of P by choosing
a number field k such that P ∈ Pn(k) and setting

H(P ) = Hk(P )1/[k:Q].

For our purposes, it is more convenient to have a height that behaves addi-
tively, whence the following definition.

Definition 34. We define the logarithmic height to be the function h : Pn −→ R
defined by h(P ) = logH(P ).

The next task is to define heights on an elliptic curve E/k where k a number
field. If f ∈ k̄(E), then consider the map f : E −→ P1 defined by

f(P ) =

{
[f(P ), 1] if f is regular at P,
[1, 0] otherwise.

This is a rational map and since both E and P1 are smooth curves it is a
morphism of varieties.
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Definition 35. Let E/k be an elliptic curve over a number field and f ∈ k̄(E).
We define the height on E relative to f to be the function

hf : E(k̄) −→ R, hf (P ) = h(f(P )).

Proposition 77. Let E/k be an elliptic curve and let x, y be Weierstrass coor-
dinates for E which is given by the equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with ai ∈ k. A function f ∈ k̄(E) = k̄(x, y) is even if and only if f ∈ k̄(x).

Proof. If P ∈ E(k̄), then the inversion formula (cf. [Sil]) III.2.3 (a)) says that
−P is given in coordinates by (x(P ),−y(P )−a1x(P )−a3). In particular, x is an
even function so that every function in k̄(x) is even. Conversely, let f ∈ k̄(E).
Using the Weierstrass equation for E, one can write

f(x, y) = g(x) + h(x)y

for some g, h ∈ k̄(x). If furthermore f is even then we have

f(x, y) = f(x,−y − a1x− a3) =⇒ g(x) + h(x)y = g(x)− h(x)(y + a1x+ a3)

=⇒ (2y + a1x+ a3)h(x) = 0.

This implies that either h(x) is identically zero or 2y+a1x+a3 is identically zero.
The latter implies that 2 = a1 = a3 = 0 which implies ∆ = 0. This contradicts
the non-singularity of E so the only possibility is h(x) = 0. Consequently, we
have f(x, y) = g(x) ∈ k̄(x).

Lemma 16. Let f, g ∈ k(E) be even functions. Then

deg(g)hf = deg(f)hg +O(1).

Proof. Let x, y ∈ k(E) be Weierstrass coordinates for E. Since f is even, we
have f ∈ k̄(x) by Proposition 77. There exists therefore a rational function
r(X) ∈ k̄(X) such that f = r ◦ x. Since P1 is a smooth curve, r is a morphism
of curves. Using ([Lil], Proposition 3.10) and taking logarithms we obtain

hf = deg(r)hx +O(1).

We have deg(f) = deg(x) deg(r). We have x∗(k̄(X,Y )) = k̄(x) and [k̄(x, y) :
k̄(x)] = 2 by looking at the Weierstrass equation of E. Thus deg(x) = 2 so
that deg(f) = 2 deg(r). We find that 2hf = deg(f)hx + O(1). By the same
reasoning, we also have 2hg = deg(g)hx +O(1). Finally,

2 deg(g)hf − 2 deg(f)hg = deg(f) deg(g)hx − deg(f) deg(g)hx +O(1) = O(1)

so that deg(g)hf = deg(f)hg +O(1).

Theorem 7.3.4. Let E/k be an elliptic curve and let f ∈ k(E) be an even
function. For all P,Q ∈ E(k̄) we have

hf (P +Q) + hf (P −Q) = 2hf (P ) + 2hf (Q) +O(1).
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Proof. See Theorem 3.13 of [Lil] for the case f = x. For a general f , by Lemma
16 we have 2hf = deg(f)hx +O(1). Thus multiplying the desired relation for x
by deg(f)/2 gives the general result.

Corollary 38. Let E/k be an elliptic curve over a number field and f ∈ k(E)
an even function.

(i) For any point Q ∈ E(k̄) we have

hf (P +Q) ≤ 2hf (P ) +O(1)

for all P ∈ E(k̄), where the constant depends on E, f and Q.

(ii) Let m be any integer. Then for all P ∈ E(k̄) we have

hf ([m]P ) = m2hf (P ) +O(1)

where the constant depends on E, f and m.

(iii) For any integer M , the set {P ∈ E(k) : hf (P ) ≤M} is finite.

Proof. To prove (i), we use the fact that the height on E is always non-negative
and Theorem 7.3.4 in order to obtain

hf (P +Q) ≤ hf (P +Q) + hf (P −Q) = 2hf (P ) + 2hf (Q) +O(1).

Bringing 2hf (Q) into the big O yields the desired result.

To prove (ii), note that since f is supposed even we only need to prove this
for m non-negative. The cases m = 0 and m = 1 are trivial and involve no
constants. We proceed by induction. For m greater than 2, suppose that the
result is true for n less than m. Using Theorem 7.3.4 with P and [m− 1]P , we
get

hf ([m]P ) = hf ([m− 1]P + P )

= −hf ([m− 1]P − P ) + 2hf ([m− 1]P ) + 2hf (P ) +O(1)

= (−(m− 2)2 + 2(m− 1)2 + 2)hf (P ) +O(1)

= m2hf (P ) +O(1)

and this completes the proof of (ii).

By Proposition 3.12 of [Lil] we have that the set

{P ∈ E(k) : hx(P ) ≤M}

is finite for any M . By Lemma 16 there exists a constant C such that

|2hf − deg(f)hx| ≤ C.

Now, hf (P ) ≤M implies hx(P ) ≤ (C+2M)/ deg(f). We thus have an inclusion
of sets

{P ∈ E(k) : hf (P ) ≤M} ⊂ {P ∈ E(k) : hx(P ) ≤ (C + 2M)/deg(f)}

and the latter is finite.
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Theorem 7.3.5 (Tate). Let E/k be an elliptic curve, let f ∈ k(E) be a non-
constant even function and let P ∈ E(k̄). Then the limit

1

deg(f)
lim
N→∞

4−Nhf ([2N ]P )

exists and is independent of f .

Proof. By Corollary 38, there exists a constant C such that for all Q ∈ E(k̄),
we have

|hf ([2]Q)− 4hf (Q)| ≤ C.

Let N ≥M ≥ 0. Then we have

|4−Nhf ([2N ]P )− 4−Mhf ([2M ]P )| = |
N−1∑
n=M

4−n−1hf ([2n+1]P )− 4−nhf ([2n]P )|

≤
N−1∑
n=M

4−n−1|hf ([2]([2n]P ))− 4hf ([2n]P )|

≤ C
N−1∑
n=M

4−n−1.

We compute that

N−1∑
n=M

4−n−1 =

N∑
n=0

4−n −
M∑
n=0

4−n =
4

3
(1− 4−N−1 − (1− 4−M−1)) ≤ 4−M .

Therefore we have

|4−Nhf ([2N ]P )− 4−Mhf ([2M ]P )| ≤ C4−M . (7.3.5.1)

It follows that the sequence {4−Nhf ([2N ]P )}N is Cauchy and thus converges.
If g ∈ k(E) is another non-constant even function, then from Lemma 16 we

know that deg(f)hg = deg(g)hf +O(1). Whence

4−Nhf ([2N ]P )

deg(f)
− 4−Nhg([2

N ]P )

deg(g)
= O(4−N )

N→∞−→ 0.

Consequently, the limit does not depend on f .

Definition 36. Let E/k be an elliptic curve over a number field. The Néron-
Tate height on E is the function ĥ : E(k̄) −→ R defined by

ĥ(P ) =
1

deg(f)
lim
N→∞

4−Nhf ([2N ]P )

where f ∈ k(E) is any non-constant even function.

Proof of Theorem 7.3.2. Using Theorem 7.3.4, for any N we have

hf ([2N ](P +Q)) + hf ([2N ](P −Q)) = 2hf ([2N ]P ) + 2hf ([2N ]Q) +O(1).

Dividing by 4N deg(f) and taking limits as N →∞, we obtain (i).
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Using (i) with OE we obtain

ĥ(P ) + ĥ(−P ) = 2ĥ(OE) + 2ĥ(P ).

Since f(OE) = [1, 0] and H([1, 0]) = 1 we see that ĥ(OE) = 0 and thus ĥ(P ) =

ĥ(−P ). This proves that ĥ is an even function.
Using Corollary 38 (ii), we see that

hf ([m] ◦ [2N ]P ) = m2hf ([2N ]P ) +O(1).

Dividing by 4N deg(f) and taking limits as N →∞, we obtain (ii).
If P ∈ E(k) and ĥ(P ) ≤ M , then for N large enough we must have

hx([2N ]P ) ≤ 4NC. But only finitely many points satisfy this condition by
Corollary 38 (iii). This proves (iii).

We continue by proving some interesting facts concerning the canonical
height.

Proposition 78. Let f ∈ k(E) be an even function. Then

deg(f)ĥ = hf +O(1)

where O(1) depends on E and f .

Proof. By (7.3.5.1) there exists a constant C depending on f such that for
N ≥M ≥ 0 we have

|4−Nhf ([2N ]P )− 4−Mhf ([2M ]P )| ≤ C4−M .

In particular, taking M = 0 yields

|4−Nhf ([2N ]P )− hf (P )| ≤ C.

Taking the limit as N →∞ finally yields

|deg(f)ĥ(P )− hf (P )| ≤ C.

Definition 37. Let E/k be an elliptic curve. We define the canonical height
pairing on E to be the pairing

〈·, ·〉 : E(k̄)× E(k̄) −→ R

defined by 〈P,Q〉 = ĥ(P +Q)− P̂ − Q̂.

Proposition 79. The canonical height ĥ is a quadratic form on E, that is, it
is an even function and the canonical height pairing is biadditive. Moreover,
〈P, P 〉 ≥ 0 for all P ∈ E(k̄) and

〈P, P 〉 = 0 if and only if P is a torsion point.



170CHAPTER 7. THE BIRCH AND SWINNERTON-DYER CONJECTURE

Proof. Let P ∈ E(k̄). Using Theorem 7.3.2 (i) with OE yields ĥ(P ) = ĥ(−P )

which shows that ĥ is an even function. Therefore in order to prove biadditivity,
it suffices by symmetry to prove that

〈P +R,Q〉 = 〈P,Q〉+ 〈R,Q〉 .

Using 7.3.2 (i) multiple times, one easily proves this.
Using 7.3.2 (ii) we see that 〈P, P 〉 = 2ĥ(P ). Since hf ([2N ]P ) ≥ 0 for all N

and all P we see that also ĥ(P ) ≥ 0.
Suppose that P is a torsion point on E. Then [2N ]P takes on finitely many

values as N varies. As a consequence, we have

ĥ(P ) = lim
N→∞

4−Nhf ([2N ]P ) = 0.

Conversely, suppose that 〈P, P 〉 = 0, that is, ĥ(P ) = 0. Let K/k be a finite
extension such that P ∈ E(K). By Theorem 7.3.2 (ii) we then have

ĥ([m]P ) = m2ĥ(P ) = 0

for all m. By Proposition 78 there is a constant C such that for all m we have

hf ([m]P ) = |deg(f)ĥ([m]P )− hf ([m]P )| ≤ C.

Therefore we have an inclusion of sets

{[m]P : m ∈ N} ⊂ {Q ∈ E(K) : hf (Q) ≤ C}

and the latter is finite by Corollary 38 (iii). Therefore P must have finite
order.

Remark 48. As a consequence, ĥ is a positive definite quadratic form on
E(k)/Etors(K). An even more important consequence is that the existence
of the Néron-Tate height is enough to show that Etors(k) is a finite group.

We end our discussion of heights by showing that the canonical height is
unique.

Proposition 80. If ĥ′ : E(k̄) −→ R is a function for which there exists an even
function f ∈ k(E) and an integer m ≥ 2 such that

deg(f)ĥ′ = hf +O(1) and ĥ′ ◦ [m] = m2ĥ′,

then ĥ′ = ĥ.

Proof. Repeated applications of the second condition yields ĥ′ ◦ [mN ] = m2N ĥ′

for all N ∈ N. The first condition combined with Proposition 78 gives

ĥ′ − ĥ = O(1).

For any P ∈ E(k̄) we have

ĥ′(P ) = m−2N ĥ′([mN ]P ) = m−2N (ĥ[mN ]P +O(1)) = ĥ(P ) +O(m−2N ).

This holds for all N ∈ N and taking the limit as N → ∞ gives the desired
equality ĥ′(P ) = ĥ(P ).
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Remark 49. We point out that the Néron-Tate height pairing was discovered
independently by Tate and Néron. What we saw above was the formulation
due to Tate. However, this definition is very difficult to work with in practice.
Néron developed a theory of local height pairings. For each v ∈ Mk he defined
a pairing 〈·, ·〉v on certain divisors of E rational over kv and obtained the global
pairing by adding together the local pairings. The reader who is interested in
Néron’s local height theory is referred to the article of Gross [Gr3]. The reason
that we make this remark is that all computations that are done for the global
height pairing are in practice done for each local pairing.

7.3.2 The Weak Mordell-Weil Theorem

Let m ≥ 2 be an integer. Let k be a number field and let k̄ denote a fixed
algebraic closure. We will use the notation Hq(k,A) to mean Hq(Gal(k̄/k), A)
for any Gal(k̄/k)-module A.

We have the following short exact sequence of Gal(k̄/k)-modules:

0 −→ E[m] −→ E
[m]−→ E −→ 0.

When we write E or E[n] here we mean the points over k̄. Taking the long
exact sequence of cohomology we obtain an exact sequence

0 −→ E[m](k)→ E(k)
[m]−→ E(k)

δ−→ H1(k,E[m])

−→ H1(k,E)
[m]−→ H1(k,E) −→ . . . .

From this sequence we deduce the following short exact sequence

0 −→ E(k)/mE(k)
δ−→ H1(k,E[m]) −→ H1(k,E)[m] −→ 0.

Let v ∈ Mk and denote by kv the completion. Let k̄v denote a fixed algebraic
closure of kv. Fix an extension of v to k̄ which serves to fix an embedding
k̄ ↪→ k̄v. We have a restriction homomorphism

rv : Gal(k̄v/kv) −→ Gal(k̄/k).

Using the same argument as above, we also have an exact sequence

0 −→ E(kv)/mE(kv)
δ−→ H1(kv, E[m]) −→ H1(kv, E)[m] −→ 0.

When we write E of E[m] here we mean the points over k̄v. We get the following
commutative diagram with exact rows:

0 E(k)/mE(k) H1(k,E[m]) H1(k,E)[m] 0

0 E(kv)/mE(kv) H1(kv, E[m]) H1(kv, E)[m] 0.

δ

rv rv rv

δ
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Definition 38. We define the m-Selmer group of E/k to be

Selm(k,E) = ker

(
H1(k,E[m]) −→

∏
v∈Mk

H1(kv, E)

)

and the Tate-Shafarevitch group of E/k to be

X(k,E) = ker

(
H1(k,E) −→

∏
v∈Mk

H1(kv, E)

)
.

From the above diagram, one sees that the image of E(k)/mE(k) via the
connecting homomorphism δ lies in the m-Selmer group. Also, the image of the
m-Selmer group lies in the [m]-torsion subgroup of X(k,E). It is easy now to
check that the following sequence is exact:

0 −→ E(k)/mE(k)
δ−→ Selm(k,E) −→X(k,E)[m] −→ 0.

One can prove that the m-Selmer group is always finite. As a consequence,
E(k)/mE(k) and X(k,E)[m] are both finite. A full proof of Theorem 7.3.3 is
the subject of Chapter 4 of [Lil] and uses the classical results of algebraic number
theory, namely finiteness of the ideal class group and the S-unit theorem. It
is conjectured that the Tate-Shafarevitch group is finite and a formula for the
hypothetical order |X(k,E)| appears in the conjecture of Birch and Swinnerton-
Dyer.

7.3.3 The Regulator of an Elliptic Curve
Let E/k be an elliptic curve defined over the number field k. Let n be the
rank of the Mordell-Weil group E(k) so that E(k) ∼= Etors(k) × Zn. The free
abelian group E(k)/Etors(k) is a lattice in the real vector space E(k) ⊗Z R.
From Remark 48 the Néron-Tate height ĥ is a positive definite quadratic form
on E(k)/Etors(k). We want ĥ to extend to a positive definite quadratic form on
the vector space E(k)⊗Z R. For this, we need the following lemma:

Lemma 17. Let V be a real vector space of dimension n and let L ⊂ V be a
lattice. Let q : V −→ R be a quadratic form and suppose we have the following
properties:

(i) For all P ∈ L, we have q(P ) = 0 if and only if P = 0.

(ii) For every constant C, the set {P ∈ L : q(P ) ≤ C} is finite.

Then q is positive definite on V .

Proof. Corresponding to the Sylvester matrix decomposition, we may pick a
basis for V such that q has signature (s, t). In other words, for every x =
(x1, . . . , xn) ∈ V expressed in this basis, we have

q(x) =

s∑
i=1

x2
i −

t∑
i=s+1

x2
i .

Of course, s+ t ≤ n. We use this basis to identify V with Rn. Consider the set

B(ε, δ) =

{
x = (x1, . . . , xn) ∈ V :

s∑
i=1

x2
i ≤ ε and

t∑
i=s+1

x2
i ≤ δ

}
.
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This is a measurable convex subset of Rn which is symmetric around the origin.
Define λ = inf{q(P ) : P ∈ L,P 6= 0}. By (i) and (ii) we have λ > 0.

Suppose that q is not positive definite on V . Then s < n and t > 0. By
increasing δ, we can therefore increase the volume of B(λ/2, δ) in order to obtain
µ(B(λ/2, δ)) > 2nv(L). For such a choice of δ, by Proposition 3, there exists a
non-zero lattice point P in B(λ/2, δ). But

q(P ) =

s∑
i=1

x2
i −

t∑
i=s+1

x2
i ≤

λ

2

which contradicts the definition of λ. We conclude that q is indeed positive
definite on V .

Corollary 39. Let E/k be an elliptic curve. The Néron-Tate height ĥ on E
extends to a positive definite quadratic form on the finite-dimensional real vector
space E(k)⊗Z R.

Proof. We extend ĥ to E(k) ⊗Z R by ĥ(P ⊗ x) = x2ĥ(P ). By the Mordell-
Weil Theorem, E(k)/Etors(k) is a lattice in E(k) ⊗Z R. Condition (i) of the
previous lemma holds because of Proposition 79 and condition (ii) holds because
of Theorem 7.3.2 (iii).

Associated to E/k we have the following quantities: E(k) ⊗Z R a finite
dimensional real vector space, ĥ a positive definite quadratic form on E(k)⊗ZR
and a lattice E(k)/Etors(k). In such a situation, an important invariant is
the volume of the given lattice with respect to the quadratic form in question.
We have seen this situation arise already when defining quantities attached to
number fields. By Proposition 2 the discriminant dk is a scaling of the volume
of the lattice Ok in the finite-dimensional real vector space k⊗Q R with respect
to the inner product of kR. In defining the regulator of k, one considers the
lattice λ(Uk) in the finite-dimensional real vector space RXk with respect to
the euclidean inner product and take Rk to be a scaling of the volume of λ(Uk).
This leads to the following definition:

Definition 39. Let E/k be an elliptic curve. Let P1, . . . , Pn be a Z-basis of the
lattice E(k)/Etors(k). We define the regulator of E to be the positive quantity

R(E/k) = det(〈Pi, Pj〉)/|Etors(k)|2.

As when defining the regulator of k or the discriminant of k, this definition
does not depend on the choice of a basis.

Proposition 81. Let E/k be an elliptic curve. Let Q1, . . . , Qn be a basis of a
free subgroup A of E(k) with finite index I. Then we have

R(E/k) = det(〈Qi, Qj〉)/I2.

Proof. The subgroup A is free and thus contains no torsion. It is therefore a sub-
group of the free group E(k)/Etors(k). Therefore there exists a basis P1, . . . , Pn
of E(k)/Etors(k) and non-zero integers a1, . . . , an such that a1P1, . . . , anPn is
a basis of A (cf. [Sam], § 1.5, Theorem 1). It follows that the index of A in
E(k)/Etors(k) is given by a1 . . . an and I = a1 . . . an|Etors(k)|. Moreover, we
have

〈aiPi, ajPj〉 = aiaj 〈Pi, Pj〉 = Diag(a1, . . . , an) 〈Pi, Pj〉Diag(a1, . . . , an).
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As a consequence, we have

det(〈aiPi, ajPj〉) = I2 det(〈Pi, Pj〉)/|Etors(k)|2 = I2R(E/k).

Since det(〈Qi, Qj〉)/I2 is independent of the choice of basis we have proved the
desired formula.

Remark 50. In practice this formula is less rigid than the definition of the
regulator and therefore often easier to use for computations.

7.4 The L-Function of an Elliptic Curve

Let E/k be an elliptic curve defined over the number field k. In this section we
define the Hasse-Weil L-function L(s, E/k) associated to E. Before doing that,
we need a little more theory of elliptic curves.

7.4.1 More on Elliptic Curves

We introduce the `-adic Weil pairing on the Tate module and then give some
point counting results concerning elliptic curves over finite fields.

The Tate Module and the Weil Pairing

Let E/k is an elliptic curve over a perfect field and let ` ∈ Z be a prime. The
`-adic Tate module of E is the group

T`(E) = lim
←−

E[`n]

where the inverse limit is taken with respect to the natural maps

[`] : E[`n+1] −→ E[`n].

Since each group E[`n] is a Z/`nZ-module, T`(E) naturally acquires the struc-
ture of a Z`-module. If ` is non-zero in k, then by Proposition 76, we have a
group isomorphism

T`(E) ∼= Z` × Z`.

From now on we shall use ` to denote a prime that is non-zero in k and we write
p for the characteristic of k (which may be zero). Also, since the multiplication-
by-integer maps are defined over k, the Galois group Gal(k̄/k) commutes with
multiplication and therefore acts on E[`n]. This gives an action of Gal(k̄/k) on
T`(E).

Let ψ ∈ End(E). Since ψ is an isogeny we have ψ(P + Q) = ψ(P ) + ψ(Q)
for all P,Q ∈ E (cf. [Sil], III.4.8). In particular, ψ maps E[`n] to E[`n] and the
following diagram commutes:

E[`n+1] E[`n+1]

E[`n] E[`n].

ψ

[`] [`]

ψ
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As a consequence, we get a well-defined group homomorphism which commutes
with the action of Z`:

ψ` : T`(E) −→ T`(E), P 7→ (ψ(Pn))∞n=1.

This construction gives a ring homomorphism

End(E) −→ EndZ`(T`(E)), ψ 7→ ψ`.

This homomorphism is injective since ψ` = 0 implies that E[`n] ⊂ ker(ψ) for
all n. But any non-zero isogeny is a finite map and in particular the kernel is
finite. This forces ψ = 0. Choosing a basis for T`(E) as a free Z`-module of
rank two, we get an injective homomorphism of rings End(E) −→M2(Z`).

For any integer m prime to p, there is a pairing, called the Weil pairing on
E,

em : E[m]× E[m] −→ µm.

One can show that this is a bilinear, alternating, non-degenerate and Gal(k̄/k)
invariant pairing (cf. [Sil], III.8.1). Moreover, if ψ : E1 −→ E2 is an isogeny,
then ψ and its dual isogeny ψ̂ : E2 −→ E1 are adjoint with respect to this
pairing (cf. [Sil], III.8.2). The definition of em relies on the following fact:

Proposition 82. Let E/k be an elliptic curve and let D =
∑
nP (P ) ∈ Div(E).

Then D is a principal divisor if and only if

deg(D) = 0 and
∑

[nP ]P = OE .

Proof. Since principal divisors have degree zero we must have D ∈ Div0(E).
Next, we have

D ∼ 0 ⇐⇒ σ(D) = 0 ⇐⇒ σ
(∑

nP ((P )− (OE))
)

= 0

⇐⇒ σ
(∑

nPκ(P )
)

= 0

⇐⇒
∑

[nP ]P = OE

where in the second equivalence we used the fact that deg(D) = 0 and in the
last equivalence we used Definition 29.

The pairing is constructed as follows: if T ∈ E[m], then by Proposition 82
we can pick f ∈ k̄(E) such that div(f) = m(T ) −m(OE). Next, consider the
divisor

[m]∗(T )− [m]∗(OE) =
∑

P∈[m]−1E(k̄)

(P )−
∑

R∈E[m]

(R) =
∑

R∈E[m]

(T ′ +R)− (R)

where T ′ ∈ E(k̄) is any point such that [m]T ′ = T . This is a divisor of degree
zero and ∑

R∈E[m]

T ′ +R−R = [#E[m]]T ′ = [m2]T ′ = [m]T = 0

since T ∈ E[m]. By Proposition 82 there exists g ∈ k̄(E) such that

div(g) = [m]∗(T )− [m]∗(OE).
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We have

div(f ◦ [m]) = div([m]∗f) = [m]∗div(f) = m([m]∗(T )− [m]∗(OE)) = div(gm).

Therefore f ◦ [m] and gm differ by a constant c ∈ k̄ so without loss of generality
we may suppose that

f ◦ [m] = gm.

Now, let S ∈ E[m]. Then for any point X ∈ E we have

g(X + S)m = f([m]X + [m]S) = f([m]X) = g(X)m

so that g(X + S)/g(X) ∈ µm. Consider the morphism

E −→ P1, X 7−→ g(X + S)/g(X).

Since µm is finite, this map cannot be surjective and must therefore be constant.
We conclude that the value of g(X +S)/g(X) does not depend on the choice of
X. We define

em(S, T ) =
g(X + S)

g(X)

where X ∈ E and this is the em-Weil pairing.

Proposition 83. There exists a bilinear, alternating, non-degenerate and Ga-
lois invariant pairing

e : T`(E)× T`(E) −→ T`(µ)

called the `-adic Weil paring on the Tate module. Moreover, if ψ : E1 −→ E2 is
an isogeny between elliptic curves and ψ̂ : E2 −→ E1 its dual, then ψ` and ψ̂`
are adjoint with respect to the above pairing.

Remark 51. Here T`(µ) denotes the `-adic Tate module of k̄∗. It is the inverse
limit

T`(µ) = lim
←−

µ`n

taken with respect to the natural maps [`] : µ`n+1 −→ µ`n .

Proof. In order to define the pairing e, one needs to check that the following
diagram commutes:

E[`n+1]× E[`n+1] µ`n+1

E[`n]× E[`n] µ`n

e`n+1

[`×`] [`]

e`n

for all n ≥ 1. This amounts to proving that

e`n+1(S, T )` = e`n([`]S, [`]T )

for all S, T ∈ E[`n+1]. This can achieved by using the properties of the Weil
pairing (cf. [Sil], III.8.1). The fact that these diagrams commute give a well-
defined pairing

e : T`(E)× T`(E) −→ T`(µ)

by setting e(S, T ) = (e`n(Sn, Tn))∞n=1. One easily verifies that all the properties
of em hold for e.
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Recall that we have an injective homomorphism of rings

End(E) −→ EndZ`(T`(E)) ∼= M2(Z`)

upon choosing a Z`-basis for T`(E). Therefore, if ψ : E −→ E is an isogeny,
then we can compute det(ψ`) and tr(ψ`). These are both elements of Z` and do
not depend on the choice of basis. Amazingly, as this next result shows, these
quantities do not depend on the prime `.

Proposition 84. Let ψ ∈ End(E) and let ψ` : T`(E) −→ T`(E) be the induced
map on the Tate module of E. Then

det(ψ`) = deg(ψ) and tr(ψ`) = 1 + deg(ψ)− deg(1− ψ).

In particular, det(ψ`) and tr(ψ`) are in Z and do not depend on `.

Proof. Choose a basis {v1, v2} of T`(E) as a Z`-module and write

ψ`(v1) = av1 + cv2 and ψ`(v2) = bv1 + dv2

where a, b, c, d ∈ Z`. The matrix of ψ` relative to this basis is
(
a b
c d

)
. Using the

properties of the `-adic Weil pairing, we have

e(v1, v2)deg(ψ) = e([deg(ψ)]v1, v2) = e(ψ̂` ◦ ψ`(v1), v2)

= e(ψ`v1, ψ`v2) = e(av1 + cv2, bv1 + dv2).

The first equality uses bilinearity of e while the third one uses the fact that ψ`
and ψ̂` are adjoint with respect to e. Using bilinearity and the fact that e is
alternating, we see that

e(v1, v2)deg(ψ) = e(v1, v2)ad−bc = e(v1, v2)det(ψ`).

We have shown that e(v1, v2)deg(ψ)−det(ψ`) = 1. By non-degeneracy of e, the
latter implies deg(ψ) = det(ψ`). Finally, for any 2 × 2 matrix A one has the
formula

tr(A) = 1 + det(A)− det(1−A)

and the trace formula follows.

Elliptic curves over finite fields

In order to define the local L-factors of elliptic curves we need a few results
concerning elliptic curves defined over finite fields.

Theorem 7.4.1 (Hasse). Let E/Fq be an elliptic curve defined over the finite
field Fq of cardinality q. Then

|#E(Fq)− q − 1| ≤ 2
√
q.

Proof. Choose a Weierstrass equation for E and let φ : E −→ E denote the
q-th power Frobenius isogeny. By Remark 47 we have #E(Fq) = ker(1−φ). By
Proposition 75, the map 1− φ is separable and therefore #E(Fq) = deg(1− φ)
(cf. [Sil], III.4.10 (c)). The degree map is a positive definite quadratic form on
End(E) (cf. [Sil], III.6.3). By the Cauchy-Schwarz inequality, for any α, β ∈
End(E) we have

|deg(α+ β)− deg(α)− deg(β)| ≤ 2
√

deg(α) deg(β).
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Applying this inequality with α = 1 and β = −φ, and using the fact that
deg(1) = 1 and deg(φ) = q by Proposition 74 (iii), we obtain

|#E(Fq)− q − 1| ≤ 2
√
q.

Proposition 85. Let E/Fq be an elliptic curve and denote by φ : E −→ E
the q-th power Frobenius isogeny. We define a = q + 1 − #E(Fq). Consider
the polynomial T 2 − aT + q ∈ Z[T ]. The roots α and β of this polynomial are
complex conjugates and satisfy |α| = |β| =

√
q. Moreover, φ2 − aφ + q = 0 in

End(E) and we have the following formula: for all n ≥ 1,

#E(Fqn) = (qn + 1)− (αn + βn).

Proof. Consider the homomorphism φ` : T`(E) −→ T`(E). By Proposition 84
we have

det(φ`) = deg(φ) = q

tr(φ`) = 1 + deg(φ)− deg(1− φ) = 1 + q −#E(Fq) = a.

Therefore, taking the characteristic polynomial of φ` we get

det(T − φ`) = T 2 − tr(φ`)T + det(φ`) = T 2 − aT + q.

Computing the discriminant of this polynomial, we get a2 − 4q which is non-
positive by Theorem 7.4.1. As a consequence, α and β are either equal or
complex conjugates. In either case, by comparing coefficients, we have αβ = q
so that |α| = |β| = √q. This proves the first part.

By the Hamilton-Cayley Theorem, φ` is annihilated by its characteristic
polynomial so that by Proposition 84 we have

deg(φ2 − aφ+ q) = det(φ2
` − aφ` + q) = det(0) = 0

which implies φ2 − aφ+ q = 0.
Finally, let n ≥ 1. Putting φ` in normal Jordan form, we see that

det(T − φn` ) = (T − αn)(T − βn).

By Remark 47 we have #E(Fqn) = deg(1− φn). Using Proposition 84 we have

#E(Fqn) = deg(1−φn) = det(1−φn` ) = det(φn` ) + 1− tr(φn` ) = q+ 1−αn−βn

as desired.

7.4.2 The L-function

We define the Hasse-Weil L-function of an elliptic curve in two steps. Then we
state the conjectural functional equation of the completed L-function.
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The Incomplete L-Function

Let k be a number field and let E/k be an elliptic curve. Let S be the set
of places containing M∞k and all finite places of bad reduction of E. For a
place v 6∈ S, we let Av be the associated ring of integers and πv be a choice
of uniformizer. We denote by Fv = Av/πvAv the corresponding residue field
which is finite of cardinality denoted by qv. The fact that v does not belong to
S means that there is a model for E with coefficients in Av and v(∆) = 0 so
that the reduced curve Ẽv/Fv is an elliptic curve. We define

av = 1 + qv −#E(Fv)

and consider the characteristic polynomial of the qv-th power Frobenius isogeny
φqv of Ẽv:

hv(t) = det(1− φqv t) = 1− avt+ qvt
2 = (1− αvt)(1− ᾱvt).

The elements αv and ᾱv are roots of the polynomial t2−at+q and by Proposition
85 they are complex conjugates and |αv| = |ᾱv| =

√
qv. The polynomial hv(t)

is the reciprocal of the formal local L-factor of Ẽv:

L(Ẽv/Fv, t) = hv(t)
−1.

We substitute t by q−sv to get the local L-factor

Lv(E/k, s) = L(Ẽv/Fv, q−sv ) = (1− avq−sv + q1−2s
v )−1.

Remark 52. Note that we have

Lv(E/k, 1) = (1− avq−1
v + q−1

v )−1 =
qv

#Ẽv(Fv)
.

Definition 40. We define the incomplete L-function of E to be

LS(E/k, s) =
∏
v 6∈S

Lv(E/k, s).

Proposition 86. Let E/k be an elliptic curve. The incomplete L-function
LS(E/k, s) converges absolutely in the half-plane <s > 3/2.

Proof. We will achieve this by comparison with the Dedekind zeta-function of
k. For any v 6∈ S we have the following estimate

|1− αvq−sv | ≥ |1− |αv|q−<sv | = |1− q1/2−<s
v |.

It follows that

|Lv(E/k, s)| = |(1− αvq−sv )(1− ᾱvq−sv )|−1 ≤ |1− q−(<s−1/2)
v |−2

so that

|LS(E/k, s)| ≤
∏
v

|1− q−(<s−1/2)
v |−2 = |ζk,S(<s− 1/2)|2.

Since ζk,S(s) converges absolutely in the half-plane <s > 1 we conclude that
LS(E/k, s) converges absolutely in the half-plane <s > 3/2.
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The Completed L-Function

The general theory of L-functions suggest that they should admit a meromorphic
continuation to the whole C and satisfy a functional equation. Before this is
possible in the case of elliptic curves, we need to complete the L-function by
adding in local factors at the primes of bad reduction and at the infinite places.
Recall that S is the set of infinite places and finite places of bad reduction. For
finite v ∈ S we define the local L-factor as follows:

Lv(E/k, s) =


1 if E has additive reduction at v
(1− q−sv )−1 if E has split multiplicative reduction at v
(1 + q−sv )−1 if E has non-split multiplicative reduction at v.

Proposition 87. Let v be a place of bad reduction of E. We have

Ẽnsv (Fv) ∼=

{
F+
v if E has additive reduction at v

F∗v if E has split multiplicative reduction at v.

If E has non-split multiplicative reduction at v, let α1 and α2 denote the slopes
of the tangent lines at the singular point of Ẽv/Fv. Let L = Fv(α1, α2). Then

Ẽnsv (Fv) ∼= {α ∈ L∗ : NL/Fv (α) = 1}.

Proof. See [Sil], III.2.5 and Ex. 3.5.

Proposition 88. Let v be a finite place of k. Then

Lv(E/k, 1) =
qv

#Ẽnsv (Fv)
.

Proof. If v is a place of good reduction then this is Remark 52. If v is a place
of additive reduction, then Lv(E/k, 1) = 1 and #Ẽnsv (Fv) = #F+

v = qv so the
formula is correct. If the reduction at v is split multiplicative, then Lv(E/k, 1) =
qv/(qv − 1) and #Ẽnsv (Fv) = #F∗v = qv − 1 so the formula is correct. Finally,
if the reduction at v is non-split multiplicative, then Lv(E/k, 1) = qv/(qv + 1).
We have

#Ẽnsv (Fv) = |{α ∈ L∗ : αqv+1 = 1}| = qv + 1

since there are at most qv + 1 distinct qv + 1-th roots of unity and L contains
them all. This proves the formula in this case.

Definition 41. The Hasse-Weil L-function of E/k is

L(E/k, s) =
∏
v-∞

Lv(s, E/k).

Definition 42. The completed L-function of E/k is

Λ(E/k, s) = ((2π)−sΓ(s))[k:Q]L(s, E/k).

Before discussing the conjectured functional equation of Λ we define the two
following quantities which measure bad reduction. These two quantities also
appear in the statement of the Birch and Swinnerton-Dyer Conjecture.
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Definition 43. The minimal discriminant for E/k, denoted by D(E/k), is the
integral ideal of k defined by

D(E/k) =
∏
v-∞

pv(∆v)
v

where pv denotes the prime ideal of k associated to the finite place v and ∆v

denotes the discriminant of a minimal Weierstrass model of E for v.

Remark 53. Notice that if v is a prime of good reduction, then v(∆v) =
0. Since there are only finitely many primes of bad reduction, the product
defining the minimal discriminant is finite and contains only information about
the primes of bad reduction. Note that a Weierstrass model for E/k is a global
minimal Weierstrass model if and only if D(E/k) is principal generated by the
discriminant ∆.

Definition 44. The conductor of E/k, denoted by N(E/k), is the integral ideal
of k defined by

N(E/k) =
∏
v-∞

pfvv

where

fv =


0 if E has good reduction at v
1 if E has multiplicative reduction at v
2 + δv if E has additive reduction at v,

where δv is a non-negative integer. We do not give its definition but only mention
that it is zero whenever the characteristic of Fv is not 2 or 3.

Conjecture 7. Let k be a number field and E/k and elliptic curve. The holo-
morphic function Λ(E/k, s) on the right half-plane <s > 3/2 admits an analytic
continuation to the entire complex plane and satisfies the functional equation

Λ(E/k, s) = ±A1−sΛ(E/k, 2− s)

where A = N(N(E/k))d2
k.

Remark 54. This conjecture has been proved in the case k = Q as a conse-
quence of the Theorem of Wiles, Breuil, Conrad and Taylor otherwise known
as the Modularity Theorem. It is generally not known to hold. The Birch and
Swinnerton-Dyer Conjecture is a conjecture on the order of the L-function of
E/k at the reflexion point s = 1 of the presumed functional equation.

7.4.3 Artin Formalism for L-Functions of Elliptic Curves

Let k be a number field, E/k and elliptic curve and ` ∈ Z a prime. Since
addition on E is defined over k the action of Gal(k̄/k) on E commutes with
addition and therefore the Galois group acts on E[`n] for all n. Consequently,
the Galois group acts on the Tate module T`(E). Upon choosing a basis for the
2-dimensional Q`-vector space V`(E) = T`(E)⊗Z`Q`, this action gives an `-adic
Galois representation

ρE,` : Gal(k̄/k) −→ GL2(Q`).
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Let v be a finite place of k and choose an extension of v to k̄ so that we have
an embedding k̄ ↪→ k̄v and therefore a restriction map

rv : Gal(k̄v/kv) −→ Gal(k̄/k).

We then have a representation

ρE,` : Gal(k̄v/kv) −→ GL2(Q`).

Denote by Iv the inertia group of v which is defined by the exact sequence

1 −→ Iv −→ Gal(k̄v/kv) −→ Gal(F̄v/Fv) −→ 1.

Let φv denote a representative in Gal(k̄v/kv) of the Frobenius element in the
quotient group Gal(k̄v/kv)/Iv = Gal(knrv /kv). The action of φv on V`(E) de-
pends on the choice of representative and to eliminate this dependency, we
restrict our attention to the subrepresentation V`(E)Iv .

Proposition 89. Let E/k be an elliptic curve and let v be a finite place of k.
Suppose that E/k has good reduction at v. If m ≥ 1 is an integer coprime to
the characteristic of Fv, then E[m] is unramified at v meaning that the inertia
group Iv acts trivially on E[m]. As a consequence, if ` ∈ Z is a prime not equal
to the characteristic of Fv, then T`(E) is unramified at v.

Proof. Let E/kv be given by a minimal Weierstrass equation for v with discrim-
inant ∆. Let K ′/kv be a finite extension such that E[m] ⊂ E(K ′) and let w be
the extension of v to L. Denote by Aw the ring of integers of w and by Fw the
corresponding residual field. By our assumption that E/k has good reduction
at v, we have v(∆) = 0. Since w(·) = ev(·) where the non-zero integer e is
the ramification index of K ′/kv, we see that w(∆) = 0 and consequently the
Weierstrass equation for E is minimal for w and E has good reduction at w.
By the theory of formal groups of elliptic curves (cf. [Sil], Chapter IV), one
can show (cf. [Lil], Proposition 4.37) that the reduction map gives an injective
homomorphism

E[m] ↪→ Ẽw(Fw). (7.4.1.1)

Let P ∈ E[m] and let σ ∈ Iv. We need to prove that Pσ = P . By definition of
the inertia group, Iv acts trivially on Fw and therefore on Ẽw(Fw). Therefore,

P̃σ − P = P̃σ − P̃ = OẼw .

By (7.4.1.1), this implies that Pσ = P .
Let ` be a prime not equal to the characteristic of Fv. Then for all n, E[`n]

is unramified at v and since T`(E) is the inverse limit of these groups the same
is true for T`(E).

Let v be a good prime of k and choose ` such that v - `. By Propo-
sition 89, V`(E)Iv = V`(E) so that ρE,`(φv) is a 2-by-2 matrix with coeffi-
cients in Q`. The reduction map E(k̄) −→ Ẽv(F̄v) is a homomorphism of
groups (cf. [Lil], Appendix A). We therefore get a homomorphism of Gal(k̄/k)-
modules E[`n] −→ Ẽv[`

n] where Gal(F̄v/Fv) is viewed as a Gal(k̄/k)-module.
By (7.4.1.1) this map is injective and by comparing cardinalities we see that
it is an isomorphism. It induces a reduction map T`(E) −→ T`(Ẽv) which is
an isomomorphism of Gal(k̄/k)-modules. Let σ ∈ Gal(k̄v/kv) and denote by σ̄
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image of σ in Gal(F̄v/Fv). The action of φ̄v on Ẽv is the same as the one of the
qv-th power Frobenius isogeny φ so that ρE,`(φv) = φ` and by Proposition 84,
the characteristic polynomial of ρE,`(φv) is given by

Pv(X) = det(1− ρE,`(φv)X|V`(E)) = 1− avX + qvX
2 ∈ Z[X]

so that the local factor Lv(E/k, s) is equal to Pv(q−sv )−1. Let S denote the finite
set of places consisting of the archimedean ones, and all places of bad reduction.
Choose ` a prime that is divisible by a place in S. Then we have shown that

LS(E/k, s) =
∏
v 6∈S

det(1− ρE,`(φv)q−sv | V`(E))−1.

We point out the similarities in the construction of the incomplete L-function
of an elliptic curve and the construction of Artin L-functions. Let K/k is a
finite Galois extension with Galois group G and let S denotes the set of places
containing the archimedean ones and all finite primes of k that ramify in K (the
"bad" primes). Let (ρ, V ) be a finite-dimensional complex representation of G.
For any v 6∈ S, we consider the characteristic polynomial of a Frobenius element
φw

gv(t) = det(1− ρ(φw)t).

Here w is any choice of a prime above v and the characteristic polynomial does
not depend on this choice. Define the formal local Artin L-factor to be the
reciprocal of this polynomial:

L(t, V,K/k, v) = gv(t)
−1.

The the local Artin L-factor is defined by substituting t with N(v)−s = q−sv :

Lv(s, V,K/k) = L(q−sv , V,K/k, v).

Finally, the incomplete Artin L-function is

LS(s, V,K/k) =
∏
v 6∈S

det(1− ρ(φw)q−sv | V )−1.

We mention without proof that the analogy works all the way and one can
prove the following:

Proposition 90. Let E/k be an elliptic curve over a number field. Then we
have the formula

L(s, E/k) =
∏
v-∞

det(1− ρE,`(φv)q−sv |V`(E)Iv )−1

where φv denotes a representative of the Frobenius element in Gal(k̄v/kv)/Iv.

As a consequence, the L-function attached to an elliptic curve is similar in
construction to an Artin L-function, the difference being that the representation
in question is over Q` and not C and that the represented group is infinite.
Nevertheless, it is not suprising that the L-function of an elliptic curve shares
properties similar to the ones of the Artin L-functions. This is illustrated in the
following result that we mention without proof.
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Proposition 91. Let E/Q be an elliptic curve defined over Q and let k be a
finite Galois extension of Q. Let ρE,` denote the `-adic Galois representation
Gal(Q̄/Q) −→ GL(V`(E)) and let ρ̃E,` denote its restriction to the subgroup
Gal(Q̄/k). Choosing an embedding Q` ↪→ C we can view these representations
as finite-dimensional complex representations. Let ηi : Gal(k/Q) −→ GL(Wi)
be the irreducible finite-dimensional complex representations of Gal(k/Q) and
denote again by ηi their inflation to Gal(Q̄/Q). Then we have the following
Artin-type decomposition:

L(E/k, s) =
∏
i

L(s, ρE,` ⊗ ηi)dim(ηi)

where where L(s, ρE,` ⊗ ηi) denotes the Euler product∏
p

det(1− ρE,` ⊗ ηi(φp)p−s|(V`(E)⊗Wi)
Ip)−1.

7.5 The Global Period of an Elliptic Curve

The purpose of this section is to define the global period of an elliptic curve
defined over a number field k. This requires the notion of a measure on the
adeles of k and of a measure on E(kv) for any place v of k. Our references here
are [CF], Chapter X as well as [We1], Chapter I and II.

7.5.1 Adeles

Let k be a number field and denote as usual by Mk the set of non-equivalent
normalized absolute values on k. For any place v ∈ Mk we denote by kv the
completion of k at v. If v is a finite place, that is, a non-archimedean absolute
value, then kv is complete with finite residue field and therefore locally compact
in the v-adic topology and the closed unit ball Ov, that is, the ring of integers,
is compact in this topology. Let S be any finite subset of Mk that contains the
archimedean places and consider the subset of

∏
v∈Mk

kv defined by

AS =
∏
v∈S

kv ×
∏
v 6∈S

Ov.

This set comes naturally with the product topology and is locally compact with
respect to this topology. As a set we define the adeles of k as

Ak =
⋃
S

AS

where the union is over all finite subsets of Mk that contain the archimedean
places. We give the set Ak the final topology associated to this inductive limit,
that is, we define a subset U ⊂ Ak to be open if and only if U ∩ AS is open in
AS for all S with respect to the product topology. We call Ak together with this
topology the adeles of k. The AS are open in Ak and each AS is locally compact
whence Ak is locally compact with respect to its topology. Moreover, Ak is a
ring for the operations of addition and multiplication defined componentwise.
Hence Ak is a locally compact topological ring.
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An element a ∈ Ak is an infinite vector (av)v in
∏
v∈Mk

kv such that for
all v, except for a finite number, we have av ∈ Ov. A basis of open sets for
Ak consists of products

∏
v∈Mk

Uv where Uv is open in kv and for all but a
finite number of v we have Uv = Ov. Alternatively, one could have defined Ak
to be the restricted topological product of the kv with respect to the Ov (cf.
[CF], Chapter II). Since k embeds in all its completions, k embeds diagonally
in Ak. The image of the embedding consists of the principal adeles and we will
naturally identify k with this image. On can prove that k is discrete in Ak and
that the quotient Ak/k is compact in the quotient topology. Furthermore, one
has the Strong Approximation Theorem. See [CF] for these results.

Each k+
v is a locally compact group and therefore has a left-invariant Haar

measure which is unique up to scalar multiplication. Let dxv denote the choice
of a Haar measure for k+

v subject to the following normalization:

• If v is a real archimedean, then kv = R and we take dxv = dx the Lebesgue
measure.

• If v is complex archimedean, then kv = C and we take dxv to be the
Lebesgue product measure on R× iR.

• If v is non-archimedean, we normalize the measure dxv by setting∫
Ov

dx = 1.

We define a measure dx on Ak to be the one for which a basis of measurable
sets is the

∏
v∈Mk

Mv where Mv ⊂ kv has finite dxv-measure and Mv = Ov for
almost all v and where ∫

∏
Mv

dx =
∏∫

Mv

dxv.

Note that this product is convergent thanks to our normalizations of dxv for v
non-archimedean. The restriction of dx to AS is the standard product measure.
We will often denote the measure dx by

⊗
v∈Mk

dxv. It is not difficult to check
that this measure on Ak is invariant under additive translation by elements of
k. We therefore get an induces measure dx on the compact quotient Ak/k.

Proposition 92. We the above notations, we have

µk :=

∫
Ak/k

dx = 2−r2 |dk|1/2.

Proof. Let S be the finite subset of Mk consisting of the archimedean places of
k. Let r1 be the number of real archimedean places and let r2 be the number
of complex archimedean places. Note that kS :=

∏
v∈S kv = Rr1 × Cr2 is the

Minkowski space of k. As an R-alegebra it is isomorphic to Rn where n = [k : Q].
The field k diagonally embeds in kS via the map σ : (σ1, . . . , σr1+r2) where
σi : k ↪→ C are the corresponding real or complex embeddings. Moreover,
σ : k⊗Q R −→ kS is an isomorphism of R-algebras. Note that Ok = AS ∩ k sits
as a lattice in kS . Let O′(S) denote the projection of Ok onto kS . Note that
O′(S) = σ(Ok). Consider the map

AS ↪→ Ak � Ak/k.



186CHAPTER 7. THE BIRCH AND SWINNERTON-DYER CONJECTURE

Let x ∈ Ak. Then for all but finitely many v 6∈ S we have xv ∈ Ov. Let v ∈ S.
Then by the strong approximation theorem, for all ε > 0 there exists β ∈ k such
that |xw − β|v ≤ ε for all w 6= v. In particular, x − β ∈ Ow for all w 6∈ S so
that x − β ∈ AS . This proves that the above map is surjective. The kernel of
this map is Ok so that we have an isomorphism AS/Ok ∼= Ak/k. Let F denote
a fundamental domain for the lattice σ(Ok) in kS . Then F ′ = F ×

∏
v-∞Ov is

a measurable set for the measure dx of representatives of the quotient AS/Ok
so that

µk =

∫
AS/Ok

dx =

∫
F ′

dx =

∫
F

∏
v∈S

dxv = v(Ok) = 2−r2 |dk|1/2

by Proposition 2.

7.5.2 Measure on E(kv)

Let k be a number field and let v be a finite place of k. Let E/kv be an elliptic
curve. Suppose that E is given by a minimal Weierstrass model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let ωv denote the invariant differential

ωv =
dx

2y + a1x+ a3
∈ ΩE .

This differential is unique up to a unit of Ov. One can associate to such a
differential a left Haar measure |ωv| on E(kv). We do not define this measure
here and refer the reader to [We1]. However, we will show how one may compute
the integral ∫

E(kv)

|ωv|

under certain conditions on v.

Denote by Ẽv/Fv the reduced curve obtained by reducing the coefficients of
the above Weierstrass equation modulo πvOv. This curve may be singular and
we denote by Ẽnsv the smooth part of Ẽv. Note that if E has good reduction
at v, then Ẽnsv = Ẽv is an elliptic curve. In either case, one can check that the
chord-and-tangent process still works on Ẽnsv and thus that Ẽnsv is an algebraic
group. Denote by ρ the reduction map E(kv) −→ Ẽv(Fv) and define E0(kv) =
ρ−1(Ẽnsv (Fv)) and E1(kv) = ρ−1(OẼv ). There is an exact sequence of abelian
groups

0 −→ E1(kv) −→ E0(kv)
ρ−→ Ẽnsv (Fv) −→ 0

(cf. [Sil], VII.2.1). Moreover, one can prove that E0(kv) is a subgroup of finite
index in E(kv) (cf. [Sil], VII.6.2).

We have

E1(kv) = {(x, y) ∈ E(kv) | v(x) < 0 and v(y) < 0} ∪ {OE}

and if (x, y) ∈ E1(kv), then 2v(y) = 3v(x) (cf. [Lil], Proposition 4.32). Thus
for some m ≥ 1 we have 2v(y) = 3v(x) = −6m which implies that v(x) = −2m
and v(y) = −3m. For each m ≥ 1 we let

Em(kv) = {(x, y) ∈ E(kv) | v(x) ≤ −2m and v(y) ≤ −3m} ∪ {OE}.
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Let z = −x/y. Then z is a uniformizing parameter at OE and we can get
expansions

• x(z) = z−2 − a1z
−1 − a2 − a3z − (a4 + a1a3)z2 − . . .

• y(z) = −z−3 + a1z
−2 + a2z

−1 + a3 + (a4 + a1a3)z + . . .

• ωv = (1 + a1z + (a2
1 + a2)z2 + (a3

1 + 2a1a2 + a3)z3 + . . .)dz = P (z)dz

with coefficients in Ov and we can define a formal group law

F (z1, z2) = z1 + z2 + . . . ∈ Ov[[z1, z2]]

by z(P +Q) = F (z(P ), z(Q)) (cf. [Sil], IV.1). The completeness of Ov ensures
that these expansions converge for z ∈ πvOv and we denote by Ê(πvOv) the set
πvOv with the group structure given by the formal law F . This is an abstract
group and one can prove that

ψ : Ê(πvOv) −→ E1(kv), z 7−→ (x(z), y(z))

is an isomorphism of groups (cf. [Sil], VII.2.2) under which the subgroups
Ê(πmv Ov) correspond to the subgroups Em(kv) for all m ≥ 1.

For any n ≥ 1, we claim that we have an isomorphism

Ê(πnvOv)/Ê(πn+1
v Ov) ∼= πnvOv/πn+1

v Ov

induced by the identity map. As sets, these two groups are equal and we there-
fore only need to prove that it is a homomorphism of group. Let z1, z2 ∈ πnvOv.
Then

z1 ⊕F z2 = F (z1, z2) = z1 + z2 + (higher order terms)

≡ z1 + z2 mod π2n
v

≡ z1 + z2 mod πn+1
v

and therefore it is a homomorphism.
On the other hand, we have an isomorphism

Ov/πvOv
∼−→ πnvOv/πn+1

v Ov

defined by α 7→ πnvα. We conclude that the quotient groups

Ê(πnvOv)/Ê(πn+1Ov)

are isomorphic to F+
v for all n ≥ 1. We therefore have a filtration

E(kv) ⊃ E0(kv) ⊃ E1(kv) ⊂ E2(kv) ⊃ . . .

with 
E(kv)/E0(kv) finite,
E0(kv)/E1(kv) ∼= Ẽv(Fv)
Em(kv)/Em+1(kv) ∼= F+

v for all m ≥ 1.

Giving E(kv) the filtration topology makes it into a topological group.
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Theorem 7.5.1 (Tate). Let E be an elliptic curve over kv where v is a finite
place of k and choose a minimal Weierstrass model for E. Let ωv be an invariant
differential, defined over Ov, which does not vanish modulo πvOv and let dxv
be the Haar measure on k+

v which gives Ov volume 1. Then∫
E(kv)

|ωv| =
[E(kv) : E0(kv)]

Lv(E/k, 1)
.

Proof. Assume that E is given by the minimal Weierstrass model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

and take ωv to be the invariant differential

dx

2y + a1x+ a3
∈ ΩE .

Let logÊ denote the formal logarithm associated to Ê(πvOv), that is, the
formal power series

logÊ(z) =

∫
P (z)dz ∈ kv[[z]].

(cf. [Sil], IV.6). The logarithm induces a homomorphism of groups

logÊ : Ê(πvOv) −→ k+
v

and for an integer m that is large enough, it induces an isomorphism

logÊ : Ê(πmv Ov)
∼−→ πmv Ov

(cf. [Sil], IV.6.4).

The above tells us that E(kv) contains a finite index subgroup Em(kv) which
is isomorphic via logÊ to πmv Ov for some m ≥ 1. The group πmv Ov comes
equipped with the v-adic topology and is compact with respect to this topology.
The map logÊ is an isomorphism of topological groups, that is, an isomorphism
of groups and a homeomorphism.

Pull-back dxv to Ê(πvOv) via logÊ . This gives

log∗
Ê

(dxv)(z) = d logÊ(z) = |P (z)|vdz.

Note that P (z) = 1+O(z) so that if z ∈ πvOv, then by the ultrametric property
of the valuation v we have |P (z)|v = 1.

We can now compute that∫
Em(kv)

|ωv| =
∫
Ê(πmv Ov)

|P (z)|vdz =

∫
πmv Ov

dxv = q−mv .

We then have ∫
E1(kv)

|ωv| = qm−1
v

∫
Em(kv)

|ω|v =
1

qv
.
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Using the fact that E0(kv) is the disjoint union of #Ẽnsv (Fv) copies of E1(kv)
together with the translation-invariance of our measure, we see that∫

E0(kv)

|ωv| =
#Ẽnsv (Fv)

qv
= Lv(E/k, 1)−1

where in the last equality we used Proposition 88. Using now that E0(kv) is
a subgroup of finite index in E(kv) together with the translation-invariance of
our measure we get ∫

E(kv)

|ωv| =
[E(kv) : E0(kv)]

Lv(E/k, 1)
.

7.5.3 The Global Period
Let k be a number field and let E/k be an elliptic curve. Let ω be an invariant
differential on E/k. It gives an invariant differential ωv on E/kv for all v. Let
dx = ⊗vdxv denote a measure on Ak subject to the normalization∫

Ak/k

dx = 1.

This can by achieved, by letting dxv denote the normalized Haar measures on k+
v

for all finite places and by taking the standard measures dxv for v archimedean
introduced in Section 7.6.1 and rescale them by real number cv such that∏

v∈M∞k

cv = 2r2 |dk|−1/2

by Proposition 92.

Definition 45. The global period of E/k is

P (E/k) = P (ω) =
∏
v-∞

(
Lv(E/k, 1)

∫
E(kv)

|ωv|

)
·
∏
v|∞

∫
E(kv)

|ωv|.

Remark 55. The above product is well-defined. In fact, for almost all prime v,
the differential ωv satisfies the conditions of Theorem 7.5.1 in that ωv is defined
over Ov and does not vanish module πvOv. For those v we have

Lv(E/k, 1)

∫
E(kv)

|ωv| = [E(kv) : E0(kv)].

For all but finitely many v we have E(kv) = E0(kv) so that only finitely many
terms in the above product are not 1.

Proposition 93. The global period is independent of the choice of a differential
ω on E/k.

Proof. If ω′ is another differential on E/k, then there exists α ∈ k∗ such that
ω′ = αω. But then

P (ω′) = P (ω)
∏
v∈Mk

|α|v

which is P (ω) by the product formula.
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7.6 Statement of the Conjecture
We now have all ingredients in hand to state the conjecture of Birch and
Swinnerton-Dyer.

Conjecture 8 (BSD). Let E/k be an elliptic curve over a number field and
assume that L(E/k, s) has a meromorphic continuation to a neighborhood of
the point s = 1.

(1) If n is the rank of the finitely generated abelian group E(k), then

ords=1(L(E/k, s)) = n.

(2) Let c(E/k) = P (E/k) ·R(E/k) ·#X(k,E). Then

L(E/k, s) ∼ c(E/k)(s− 1)n, as s→ 1.
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