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Introduction

There are two classes of L-series. One is comprised of L-functions associated to
ray-class and Grossen-characters and L-functions associated to Hecke operators.
These are defined in the region $s > 1 as infinite sums, have an expression as
an Euler product in the region s > 1, can be analytically continued to the
whole complex plane as meromorphic funtions and satisfy a functional equation
centered at s = 1/2. These we will call Hecke type L-functions. The other class
contains Artin L-functions and L-functions associated to algebraic varieties over
number fields. One first defines local L-factors at all finite places and then
takes their product to form an Euler product in some right half-plane. These L-
functions encode arithmetic data of number fields and data concerning rational
points on algebraic varieties. These we will call Artin type L-functions.

It is often difficult to prove analytic properties from the definition of an
L-function of Artin type and thus it becomes an important problem to show
that these are of Hecke type. This is the purpose and importance of reciprocity
laws. For instance, the quadratic reciprocity law relates the Dedekind zeta-
function of a quadratic number field to the Dirichlet L-function of the Legendre
symbol. Via a more general reciprocity law, the Dedekind zeta-function of a
cyclotomic field is connected to general Dirichlet L-functions. Artin reciprocity
in class field theory connects the Artin L-function of a 1-dimensional character
to the L-function of a ray-class character, known as a Weber L-function. Fi-
nally, modularity relates the L-function of an eliptic curve defined over Q to
the L-function of a Hecke form. Thus every time one equates L-functions, an
important reciprocity theorem is involved. These reciprocity laws constitute the
bridge between the complex analytic world of Hecke type L-functions with the
arithmetic world of Artin type L-functions. The introduction of L-functions in
number theory has proven to bring great insight in the arithmetic of numbers.

The first examples of L-series bear the name of Dirichlet L-series and were
introduced in 1837 by Pierre Gustave Lejeune Dirichlet in his paper [Dir]. These
are functions in the complex variable s defined for Rs > 1 by

o~ X(n)
L(s,x) =Y e
n=1
where x is a so-called Dirichlet character. In his paper, Dirichlet used these
newly introduced functions to prove a purely arithmetic result, the theorem on
primes in arithmetic progressions, which says that if ¢ and ¢ are two positive
coprime integers, then there are infinitely many primes in the progression a+Zgq.
Dirichlet proved that his L-functions have an Euler product in the region s > 1,

7



8 CONTENTS

that they can be extended to the whole complex plane via analytic continuation
and that they admit a functional equation centered at the point s = 1/2.

Perhaps more important is the work of Dirichlet and Richard Dedekind on

the Dedekind zeta-function of a number field k. This type of function was
introduced by Dedekind and is defined for Rs > 1 by

1
)= 2 Ny

where the sum is over all non-zero integral ideals of k. A major theorem in
algebraic number theory says that this function has a simple pole at the point
s = 1 with residue given by the formula

2 (2m)2 Ry

Ress—1(Ck(s)) wk|dk|%

k

where r1, 19, wg, Rx and hy are respectively the number of real embeddings
of k, the number of pairs of complex embeddings of k, the number of roots of
unity in k, the regulator of k and the ideal class number of k. This formula
is known as the analytic class number formula. It was proved in the case of
a quadratic field by Dirichlet and later extended to arbitrary number fields by
Dedekind. It relates important arithmetic invariants of the number field k£ with
a special value of an Artin type L-function. The Dedekind zeta-function was
shown by Erich Hecke to admit analytic continuation to the complex plane as a
meromorphic function via a functional equation centered at the point s = 1/2.
The analytic class number formula was then transferred to the point s = 0 and
gave the neater formula

hi Ry gritra—1
Wi,

Ck(s) ~ — , as s — 0.

We remark that the order of the Dedekind zeta-function at s = 0 is the rank of
the unit group of k£ by Dirichlet’s Unit Theorem and that the leading coefficient
of the Taylor expansion of {j around s = 0 is the product of an algebraic number
with the determinant of a square matrix of size r; + r9 — 1 whose entries are
logarithms of the absolute values of a system of fundamental units of k.

Emil Artin introduced Artin L-functions in his 1923 paper [Arl]. If K/k is a
finite Galois extension of number fields with Galois group G, then to a character
x of G, Artin associated the L-function denoted by

L(s,x, K/k).

This new class of functions encompasses Dirichlet L-functions and Dedekind
zeta-functions. Artin proved his Artin Reciprocity Theorem and hereby com-
pleted class field theory. This enabled him to show that Artin L-functions
of 1-dimensional characters are Weber L-functions which are of Hecke type.
Based on this observation and on a result he proved in representaton theory
called Artin’s Induction Theorem, he was led to conjecture that his L-functions
admitted an analytic continuation to the whole complex plane as meromor-
phic functions and holomorphic functions in the case of a non-trivial character.
This is today known as Artin’s Conjecture and remains unproven. However, in
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1947 Richard Brauer proved a stronger version of Artin’s theorem, now called
Brauer’s Induction Theorem, which made it possible to show that Artin L-
functions admit an analytic continuation to the complex plane as meromorphic
functions via a functional equation centered at the point s = 1/2. Artin proved
the following formula

Ck(s) = H L(s, x, K/k)X®

X

where the product is over all irreducible character of the Galois group G.

In the beginning of the 1970’s it occurred to Harold Stark in view of the
above decomposition that there might exist and analogue of the analytic class
number formula for Artin L-functions. More precisely, one should be able to
obtain a formula for the leading coefficient of the Taylor expansion of Artin L-
functions around s = 0 in the form of an algebraic number times the determinant
of a square matrix of size the rank of the Artin L-function at s = 0. Having
computed this rank and defined an analogue of the regulator of a number field
called the Stark regulator, he verified his ideas in a large number of specific cases
which let him to conjecture in his series of papers [StI], [StII], [StIII] and [StIV]
what became known as Stark’s Conjecture. John Tate expanded the ideas of
Stark and gave the conjecture its modern formulation in his book [Tal]. In
the rank one abelian case, Stark was led to further refine his conjecture. This
refined conjecture, known as the abelian Stark conjecture, relates the values of
the derivative of Artin L-function of 1-dimensional characters at s = 0 to the
logarithm of the absolute value of a special type of unit, known as a Stark unit.
Since by Artin Reciprocity these specific Artin L-functions are actually ray-
class character L-functions, this refined conjecture has a connection to Hilbert’s
Twelfth Problem. The conjecture has only been proved in the cases where
the class field theory of k is known and this might suggest that a solution to
Hilbert’s problem is needed in order to prove Stark’s conjecture. The original
Stark’s Conjecture is still largely unproven except for specific cases but there is
a large amount of computational evidence suggesting its truth. There is however
no clear strategy of proof today.

In the theory of arithmetic geometry, Louis Mordell proved in his 1922 paper
[Mor] what is known as Mordell’s Theorem. It says that the group of rational
points over Q of an elliptic curve E/Q is finitely generated. André Weil extended
this result to the case of an arbitrary number field &k in [We2| and this is known
as the Mordell-Weil Theorem.

A rather naive idea was that one might expect a larger number of rational
points to yield a larger number of points on reductions modulo finite places. In
this case, if L(E/k,s) denotes the Hasse-Weil L-function of the elliptic curve
E/k and S is the set of infinite places and finite places of bad reduction, then

the partial product
F,
Ls(B/k 1) =" ] _#
o #E,(F,)

would tend to be relatively small. Supported by numerical evidence assembled
by Peter Swinnerton-Dyer in the early 1960’s, Bryan Birch and Swinnerton-Dyer
formulated in their 1965 paper [BSD| what became known as the Birch and
Swinnerton-Dyer Conjecture. It says the following: if E/k is an elliptic curve



10 CONTENTS

defined over a number field and n denotes the rank of the Mordell-Weil group
E(k), then the Hasse-Weil L-function L(E/k, s) has a meromorphic continuation
to a neighborhood of the point s = 1 and

L(E/k,s) ~ P(E/k)R(E/k)|UI(k,E)|s", as s = 1

where P(E/k),R(E/k) and HI(k, E) are respectively the global period, the
regulator and the Tate-Shafarevitch group of E/k. This formula is analogous to
Dirichlet’s class number formula for number fields and again relates important
arithmetic invariants of the elliptic curve to the special value of an L-function
of Artin type. Note that due to the Modularity Theorem, it is known that
L-functions of elliptic curves defined over Q admit an analytic continuation to
the whole complex plane and satisfy a functional equation centered at s = 1.

The conjecture of Birch and Swinnerton-Dyer is one of the Millenium Prize
Problems and is still largely unsolved. Using ideas analogous to the ones of
Stark, Benedict Gross was led in [Grl] to propose a refinement of the conjec-
ture of Birch and Swinnerton Dyer using Heegner points on the modular curve
Xo(N). Extending these methods together with Don Zagier, they proved in
1986 the Gross-Zagier Formula in [GZ] which implies that if a modular elliptic
curve defined over Q has a first order zero at s = 1, then it has a rational point
of infinite order. Note that the modularity assumption (necessary to assume at
the times) is needed in order to connect the worlds of Heegner points Xy (V)
and the elliptic curve. Further progress has been made in the rank 0 and rank
1 case but virtually nothing is known about the higher rank cases.

In chapter 1 we prove Dirichlet’s analytic class number formula. It will
involve defining all the necessary ingredients in the formula and we will prove
the finiteness of the ideal class number as well as Dirichlet’s unit theorem. We
mostly follow the exposition of Pierre Samuel in [Sam]. For the proof of the
analytic class number formula we follow the book of Serge Lang [Lan)].

The aim of the next three chapters is to go through the background needed
to define Artin L-functions. Chapter 2 is devoted to a rapid exposition of
the main results of global class field theory without the proofs. Our reference
here is the book of David Cox [Cox|. In chapter 3 we present the theory of
finite-dimensional complex representations of finite groups following the book
of Jean-Pierre Serre [Sel| on the subject. Chapter 4 is concerned with finite-
dimensional representations of finite groups over non-algebraically closed fields.
We also follow [Sel] and use the book of Joseph Rotman [Rol] as a reference
for the theory of non-commutative algebra.

In chapter 5 we introduce L-functions and in particular Artin L-functions
and study the properties of these. We follow [Lan| for most of the proofs. We
also profited from [Cog].

In chapter 6 we introduce Stark’s Conjecture. After explaining the moti-
vation behind the conjecture and defining the necessary objects, we state the
main conjecture and show how it is independent of the various choices made
in the statement. We then analyze special cases of the conjecture. We prove
it in the case of rank 0 and analyze in depth the case of rank one. Here we
introduce Stark units and study the abelian rank one Stark conjecture. We end
this chapter with an example with cyclotomic units. Our main reference here
is the book of Tate [Tal]. We have also profited from the expositions [Das| and
[Mos].
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In chapter 7 we state the Birch and Swinnerton-Dyer Conjecture. We give an
introduction to elliptic curves and sketch the proof of the Mordell-Weil Theorem,
defining the regulator of an elliptic curve as well as the Tate-Shafarevitch group
as we go along. We then introduce the L-function associated to an elliptic curve
and show how its construction relates to the one of Artin L-functions. Finally,
we define the global period of an elliptic curve and state the conjecture. We
follow the paper of Gross [Gr2] and supplement it with results concerning the
theory of elliptic curves using the book of Joseph Silverman [Sil].

We have attempted to keep this thesis as self-contained as possible. All
theorems that we do not prove are given clear references. The only needed
prerequisites for reading this paper is a course in basic algebraic number theory.
The bibliography lists all references cited in the text and also references that
the author has been reading throughout the course of the project.
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Basic Notations

Let k£ be a number field, that is, a finite extension of Q. We shall write d for
the absolute discriminant of k. Let Oy be the ring of integers of k& which is a
Dedekind domain. We will denote by U the multiplicative group of invertible
elements O;. Let M, be the set of absolute values on k modulo equivalence.
Elements of M), will be denoted by v and referred to as places of k.

Let Mg denote the set of infinite places, that is, the places corresponding
to archimedean absolute values. Let r; be the number of real infinite places
and let ro be the number of pairs of conjugate complex infinite places. Then
|M°| =r1+rg and [k : Q] =71 + 2ro. We define kg = R™ x C™,

Let M} be the set of finite places, that is, the places corresponding to the
non-archimedean absolute values. This set is in bijection with the set of prime
ideals p of Ok. We will indifferently use the notation v or p to designate a finite
place of k. For a finite place v, let k, denote the completion of k with respect to
the metric defined by v. One can check that this is a topological field. Let O,
be the closed unit ball {x € k| v(z) > 0} in k, with respect to this metric, also
called the ring of v-integers. This is a discrete valuation ring with maximal ideal
the open unit ball m,. We will use 7, to denote a uniformizer for v. It is unique
up to multiplication by a unit of ©O,. With this notation we have m, = 7,0,,.
We denote by F,, the residue field k,/m, = O /p which is a finite field of order
N(p) where N denotes the ideal norm of k. We will often write g, = |F,|.

When referring to a place v of k, we are referring to an equivalence class of
absolute values. We will always have in mind a preferred absolute values and
we make the following normalization:

e If v is a real archimedean place, corresponding to an embedding o : k — R,
then we set |x|, = |o(x)| where the latter is the standard absolute value
on R.

e If v is a complex archimedean place, corresponding to an embedding o :
k — C, then we set |x|, = o(z)F(x).

e If v is a finite place, then we set |m,|, = q;!.

With these normalizations, we have the product formula
H lal, =1, for all o € k™. (0.0.0.1)
See (|Lil], App. C) for a proof of this result.

Let v be a finite place of k. Then k, is complete with finite residue field,
hence locally compact and the ring of v-integers O, is compact. Moreover, k,

13
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is also Hausdorff and second countable. There exists therefore a unique (up to
normalization) Haar measure j, on k. The measure y, is uniquely defined by
the condition u,(0,) = 1. If x € k,,, then we denote by m, the multiplication-
by-x automorphism of k,. Then the pull-back m*(u,) = uy © m, is again a
Haar measure on k7. It differs by uniqueness from p, by a constant and one
can show that with the above normalizations we have mZ(u,)/py = |z|p. It
follows that pu, (M) = u, (770,) = ¢, ™.

Let S be a finite subset of M}, containing Mg°. We let Oy, s denote the ring
of S-integers of k, that is,

Ors={zek|v(x)>0, forallv¢g S} = ﬂOv.
vgS

This is a Dedekind domain whose prime ideals are in bijection with the prime
ideals of Oy that do not belong to S. This type of ring generalizes the ring
of integers in the sense that O = Ok7M§°- We shall use Uy s to denote the
multiplicative group Of .

Let Iy s denote the group of fractional ideals associated to Oy g, that is, the
group of finitely generated sub-Oj g-modules of k. It is isomorphic to the free
abelian group on the prime ideals of Oy g. Let Py g denote the subgroup of
principal fractional ideals. The quotient group Cl(Oy s) = I /P s is called
the S-ideal class group of k. As we shall see, this groups is finite of cardinality
hi,s called the S-ideal class number.

Let M be a Z-module and let E be a field of characteristic zero. We shall
write EM for the tensor product E®z M. If f : M — N is a homomorphism,
then we shall again denote by f the homomorphism of vector spaces 1 ® f :
EM — EN. When tensoring over a ring R other than Z, we will indicate this
with the notation ®g.



Chapter 1

The Analytic Class Number
Formula

We present and prove three classical results of algebraic number theory, namely
the finiteness of the ideal class group, Dirichlet’s unit theorem and the analytic
class number formula. We will employ only elementary methods using euclidean
lattice theory. Our main references in this chapter are [Sam] and [Lan)].

1.1 Euclidean Lattices

Let n > 1 be an integer. We review some results concerning lattices in the
euclidean space R™ with the standard euclidean topology. A discrete subset X
of R™ is a subset for which the induced subset topology is the discrete topology.
That is, for every x € X, there exists an open subset U of R™ such that X NU =
{z}. Alternatively, one could define X to be discrete if and only if for any
compact subset K C R” the intersection X N K is finite. In fact, if X is discrete
and K is compact, then X N K is both discrete and compact. Consider the
open covering X N K = |J,cynx{7}. By compactness it must have a finite
open subcover, whence X N K is finite. Conversely, suppose that X N K is finite
whenever K is compact. For every integer m > 1, let B,, denote the closed ball
centered at 0 with radius m. We have X = Um>1 X NB,, and each X N B,, is
finite. Thus X is at most countable infinite and thus necessarily discrete.
The following result concerns discrete subgroups of R"™.

Proposition 1. If G is a discrete subgroup of R™, then G is a free Z-module
generated by r < n elements that are linearly independent over R.

Proof. Let e1,...,e,. be elements in G that are linearly independent over R
and suppose that r is maximal with this property. Evidently we have r < n.
Consider now the compact subset of R™ defined by P = {>"/_, a;e;|a; € [0,1]}.
Let = be an element of G. By maximality of r, there exist real constants \;
for ¢ = 1,...,7 such that © = Y ;_, A;e;. For every integer m > 1, consider
Ty =max—Y.._[mN]e; =Y i_ {m\;}e; where the brackets denote the integer
part and the braces denote the fractional part. We have x,, € P N G for all
m. Since x = x1 + Y_;_;[\i]e; and z is an arbitrary element of G, we see that
G is generated as a group by the intersection P N G. This intersection is finite

15



16 CHAPTER 1. THE ANALYTIC CLASS NUMBER FORMULA

by discreteness of G and compactness of P so we have shown that G is finitely
generated as a group.

On one hand the intersection P N G is finite and on the other hand we have
Tm € PN G for all m > 1. Therefore, there exist at least two integers j and
k such that z; = xy. This implies that > ;_, ({j\i} — {kAi})e; = 0 and by
linear independence of the e; we obtain {j\;} = {kA;} for all 4. In other terms,
we have (7 — k)\; = [jAi] — [kA;] and this proves that \; is rational for all i.
Consequently, every z,, is a rational combination of the e;. We conclude that
G is generated by finitely many elements which are all rational combinations
of the e;. Let d be the product of all the denominators of the all the rational
coefficients of all the finitely many generators of G. Then dG is a sub-Z-module
of the free module @;_, Ze;. It follows that dG is free of rank ¢ < r (see [Sam],
§ 1.5 Theorem 1). But dG is isomorphic as a group to G and the latter contains
@;:1 Ze; so that s = r. There exist non-zero integers a; such that the a;e; form
a basis of dG (see [Sam], § 1.5 Theorem 1). Then a;e;/d is a basis of G of size
r which is linearly independent over R by linear independence of the e;. O

Definition 1. A euclidean lattice A is a discrete subgroup of R™ of rank n
which has a basis that is linearly independent over R. In other words, it is a
free Z-module such that A ®z R = R".

Alternatively, one could define a lattice A to be a subgroup which is both
discrete and cocompact, meaning that R™ /A is compact in the quotient topology.
In fact, suppose that A is a lattice and let e = (e, ..., e,) be a basis of R such
that A = @', Ze,. Define

P, = {Zaiei | o; € [0,1[} .
i=1

This is called the fundamental domain of A with respect to the basis e. It
has the property that the quotient map P. — R™/A is surjective. Indeed,
if x € R”, then we may write x = Z?Zl Aie; uniquely with \; € R. Let
A=3"[Nilei € A. Then z — XA =3""_{\i}e; € P. so that z and \ are equal
in the quotient R”/A. In particular, if P. denotes the closure of P, which is
compact, then R™/A is the image of P, under a continuous map so that R /A
is also compact.

Conversely, suppose that R™/A is compact. Since A is a discrete subgroup
of R™, by Proposition 1 we know that A is a free Z module of rank r < n and
that A ®z R = R". The compactness of R™/A implies that » = n so that A is
indeed a lattice.

We have seen that the map P, — R"™/A is surjective. We now show that
it is also injective. Suppose that z,y € P. and that x —y € A. We may write
r =31 e and y = > 1 Bie; with a;, 8; € [0,1[. There exist integers n;
such that r = y+ Z?:l n;e;. By linear independence of the e;, this implies that
«; = B; + n; which is only possible if n; = 0 for all 4. This proves injectivity.
We conclude that we have a homeomorphism P, —~ R"™/A.

Let p denote the Lebesgue measure on R™ normalized so that the unit n-
cube spanned by the standard orthonormal basis of R™ for the euclidean inner
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product (-,-) has measure (or volume) equal to 1. The fundamental domain P,
is the unit n-cube spanned by the basis e and its volume is given by

p(Pe) = | det({e, ¢;))|'/? = | det E|

where E is the base change matrix from e to the standard orthonormal basis.

Suppose that €’ is another basis of A and denote by E’ the base change
matrix from e’ to the standard orthonormal basis. The base-change matrix M
of A from €’ to e is given by M = E~'E’. Tt is an invertible matrix of size n with
coefficients in Z since both e and €’ are integral bases. Thus the determinant of
M is £1. We have det E' = det E det M so that u(P,) = p(P. ). This proves
that p(P.) is independent of the choice of basis. We may therefore make the
following definition:

Definition 2. Let A be a lattice in R™. We define the covolume of A to be the
real number
v(A) = p(Pe) = | det({ei, e5))["/?

where e denotes any choice of basis of A that is also a basis for R”.

The bijection P. — R™/A tells us that R" = (J, . (z+ P.) where the union
is disjoint. The next result shows that P. is the "largest" subset of R™ with this
property of mutual disjointness.

Proposition 2. Let A be a lattice in R™ and let M be a Lebesgue-measurable
subset of R™ with the property that the sets x + M are mutually disjoint as x
ranges over A. Then pu(M) < v(A).

Proof. Let P. be the fundamental domain associated to a basis e of A which is
also a basis for R™. Since the sets x + P, with x € A cover R™, we have

M(M):N<UMm(x+Pe)>-

zEA
Since all these sets are mutually disjoint we obtain
p(M)=> (M0 (z+P))=> p((M—z)NP)=> u((M+z)NP,).
TEA TEA TEA

All these set are mutually disjoint by assumption so that the latter is equal to
w(Uzep, (M + ) N P,) which in turn is less than u(P,) = v(L). O

The negation of this proposition will be useful to us and we therefore record
it as a corollary:

Corollary 1. Let A be a lattice in R™ and let M be a Lebesgue-measurable
subset of R™ such that u(M) > v(A). Then there exist two distinct elements
z,y € A such that (x + M) N (y + M) # 0. In particular, there exist distinct
elements m and m’' of M such that m —m’ € A.

Proof. Since (z 4+ M) N (y+ M) # 0 there exist m,m’ € M such that x +m =
y + m’. This implies that m’ —m =2 —y € A\ {0}. O

This allows us to prove the following:
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Proposition 3. Let A be a lattice in R™ and let M be a Lebesgue-measurable
subset of R™. Suppose that M is convexr and symmetric around the origin. If
one of the following conditions hold:

(1) p(M) > 2"v(A)
(i) p(M) > 2™v(A) and M is compact,
then M N (A\ {0}) is non-empty.

)
Proof. Proof of (i): set M’ = LM. This is a Lebesgue-measurable set and
w(M") =27"u(M) > v(A) by assumption. By Corollary 1, there exist m,m’ €
M’ distinct elements such that m —m’ € A. We may write this difference as
m—m' = ((2m)+ (—2m’))/2. By symmetry of M, —2m’' € M and by convexity
m —m/' € M. We conclude that m —m’ € M N (A \ {0}).

Proof of (ii): let € > 0 be an arbitrary real number and set M, = (1 +¢)M.
This is a Lebesgue-measurable set. It is convex, symmetric around the origin
and even compact since this is true for M. Moreover, we have u(M.) = (1 +
€)" (M) > p(M) > 2™v(A). By (i), we see that M. N (A '\ {0}) is non-empty.
This holds true for all € > 0. In particular, we have a nested sequence

1+1H)MnA\N{0}D <1+;>MOA\{0}.. (1+ >M0A\{O}D

of non-empty compact (actually finite since discrete and compact) sets. By
Cantor’s Intersection Theorem (cf. Theorem 1.1.1 below), we have

N (1+7711>M|’1A\{0}7£(Z).

m>1

Thus there exists « such that z € (1+ )M N A\ {0} for all m > 0. In
other words, for every m there exists x,, € M such that x = (1 + 1/m)z,,. By
compactness of M, the sequence x,, admits a subsequence that converges to a
limit in M. Obviously, z is that limit so that x € M. In conclusion, we have

x e MNA\{0}. O
Remark 1. We now give a proof of the result on nested sets referred to earlier.

Theorem 1.1.1 (Cantor’s Intersection Theorem). Let X be a compact subset
of R™ and let (Cy,)59_, be a nested sequence

CioCyD...0C,D...
of non-empty compact subsets of X. Then the intersection (,,~, Cm is non-
empty.

Proof. Suppose that (,,~; Cm = 0 by contradiction. Let U,, = X \ C,, for
every m. The U,, are open subsets of X and we have

UUn=x\[)Cn=X

m>1 m>1

By compactness of X we can extract a finite subcover (U,,)k,_;. Since the
sequence C, is nested we have U,, C U1 for all m. Thus X = U, and

C}, = 0 which is a contradiction. O
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1.2 Application to Number Fields

Having introduced euclidean lattices and studied some of their basic properties,
we now turn to their application to algebraic number theory. Let thus k be
a number field of degree n. Consider the tensor product R ®g k. This is an
R-algebra of dimension n and we have a natural embedding k¥ — R ®q k.

Let M be a free sub-Z-module of k. A basis of M is also a Q-basis of k
and therefore M naturally sits as a lattice in R ®g k. In particular, the ring
of integers Oy is a free Z-module of rank n (cf. [Sam| § 2.7, Theorem 1) and
therefore Oy, is a lattice in R ®q k.

Moreover, let a be a non-zero ideal of O;. In other words, a is a sub-Z-
module of the free Z-module Oy. It is therefore free of rank ¢ < n (cf. [Sam)]
§ 1.5, Theorem 1 (a)). Let = € a be a non-zero element. Then a contains the
ideal O}, which is isomorphic as a Z-module to Oy. This implies that the rank
of a is greater or equal to n. We conclude that a is free of rank n and therefore
is a lattice in R ®q k.

Finally, let a be a non-zero fractional ideal of k. By definition, there exists
an element o € Ok such that aa is an ideal of 0. By the above, aa is a free
Z-module of rank n. Since a and aa are isomorphic as Z-modules this implies
that a is a free Z-module of rank n and in particular it is a lattice in R ®q k.

We have just seen that all non-zero fractional ideals of k are lattices in
R ®q k, meaning that they are free of rank n as Z-modules and contain a basis
of R ®g k. We are interested in computing the covolumes of these lattices and
in order to do so we need some euclidean structure on R ®g k. We choose real
and complex embeddings of k to make an isomorphism of R ®g k with products
of R and C. More precisely, let o1,...,0,, be the real embeddings & — R
corresponding to the real archimedean places of k and fix a choice of complex
embedding oy, 41,...,0.,4r, Oof k corresponding to the complex archimedean
places of k. We have n = r1 + 2rp and |[M°| = r1 + 7. Additionally, if 7
denotes complex conjugation then we set 70 0y, 4i = Oy 4pp4i for i =1,...79.
Then o4, ..., 0, are all the distinct Q-homomorphisms of k into an algebraically
closed field containing k. Consider the R-algebra kg := R"* x C"2 of dimension n.
This is sometimes referred to as the Minkowski space of k. Define the diagonal
embedding

ok — kg, T (01(X), .oy Oy oy (X))

We extend o to R ®qg k by tensoring and denote the resulting map by o again.
This gives an injective homomorphism of R-algebras from R ®q £k to kr. Since
these algebras have the same dimension over R, this map must be an isomor-
phism. Explicitly, if x1,...,z, is a basis of k over Q then 1 ® z1,...,1 ® x,, is
a basis for R ®g k over R and for A; € R we have

a<iAi(1®xl> Z)\axl (ZA(H ), ZA%M :m)ekR.
i=1

In kg we have a euclidean structure given by an inner product and an orthonor-
mal basis for this structure is given by choosing as basis for C over R the basis
{(1,0),(0,7)}. We sum this up in the following diagram:

ko Regk = kg 2R x (R®iR)"™ (1.2.0.1)
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where all isomorphisms are ones of R-algebras. Thus o provides a basis for
R ®g k and an inner product with respect to which this basis is orthonormal.
The lattice computations in R ®g k will be performed in this basis.

A typical element of kg will be denoted & = (x1,..., Ty Tri 41y« s Trytro)
where z; for j =1,...,71 isreal and x; for j =r; +1,...,7 4+ ro is complex.
In the latter case we write x; = y; +iz;. When writing an element in the above
orthonormal basis we shall use vector notation so that

T = (331’ sy Ty s Yr 415 Bryg 1y e - 7y7‘1+7‘2az7"1+r2)-

An element x of k is expressed in the orthonormal basis for R ®q k as follows:
T = (01 (J?), -0y (J?), §):EO-T'1-|‘1(33)7 %07'14-1(7;)7 R §R0'7“1-"-7‘2 (J?), 30'7—14,_7«2 (.13))

Remark 2. The map o is not conceptually important. It is merely there to
allow for a nice choice of basis for R ®g k. We equip R ®g k£ with this basis and
make no further reference to kr or o. When we write

T = (L1, ey Ty Trytly -+ oy Trybry) € R®g K

this is simply the expression of z in kg via 0. We identify R ®q k with kr and
we identify k& with its image in R ®q k which is now also o(k) in kg.

We extend the map Ny g : k — Q to a map N : R®g k — R by defining
N(z) = det m,, where m, : R ®g k — R ®q k is multiplication by the element
x. In the orthonormal basis m, is given in matrix form by

T1

Try
Yri+1l  —Rri41
Zri+l Yri+l

Yridra  —Rritrs
Zri4ra Yritrs

so that
N(II]) =T1... 'rrl (ygl—‘rl + Z£1+1) e (ygl-‘r?"g + Z?1+r2)
R I Y L F O L

Remark that if € k, then N(z) = Nj () and therefore N does extend Ny, /g
as claimed.

Proposition 4. Let M be a free sub-Z-module of k of rank n and let x1,...,x,
be a basis of M. The covolume of M as a lattice in R ®q k is given by

v(M)=27"

det (0i(z;))

1<i,j<n

Proof. The covolume of M in R ®q k is the absolute value of the determinant
of the matrix, say D, whose columns are given by the vectors

(Ul <x1)7 sy Oy (‘TZ)’ 3%07"1+1(xi)ﬂ %O—Tﬂrl(xi)? SR §RJTHH‘z <x2)7 %UT1+T2 (xl))
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Using the formulas

1
Ry, 4j(zi) = 5(0r1+y‘(5€i) + 0yt (%))

1
S0y 15 (Ti) = = (0r+5(Ti) = Ty 15 (20)),

23
we see that the determinant of D equals (2i)7"2 det(D’) where D’ is the same
matrix as D but every 1 + 25 line, for j = 1,...,75, multiplied by 2i. By
adding every 71 + 25 line to the r; + 25 — 1*® line and then subtracting the
r1+ 2§ — 10 line from the 71 + 25 line we get | det(D’)| = | det(o;(x;))|. We
have thus found that |det(D)| = 27"2| det(o;(x;))]. O

Corollary 2. Let a be a non-zero ideal of Or. Then the covolumes of O and
a in R®q k are given by

0(0)) =27 |di|2,  wv(a) = 27"2|dy|2 N(a).

Proof. Let z1,...,x, be a basis of O. Applying Proposition 4 with M = Oy
and using the fact that d, = det(o;(z;))? (cf. [Sam]| § 2.7, Proposition 3) we
obtain the first assertion.

For the second assertion, use the fact that there exists a basis z1,...,z, of
Ok, and non-zero integers cy, . .., ¢, such that c;z1,...,c,2, is a basis of a (cf.
[Sam] § 1.5, Theorem 1 (b)). Applying Proposition 4 to a we see that

v(a) =27"2|det(cjoi(z;))| = 27| det(Diag(ca, . .., cn) - (0s(xj)))]-

But the determinant of Diag(cy,...,c,) is ¢1...¢,. On the other hand, the
quotient O /a is isomorphic as a Z-module to @', Z/c¢;Z. Thus the product
of the ¢; is |0y /a] which by definition is N(a). Hence v(a) = 27"2|dy|2 N(a) as
desired. O

1.3 Finiteness of the Ideal Class Group

If £ is a number field, we denote by Ij its group of fractional ideals and Py the
subgroup of principal fractional ideals. The quotient group Cl(Oy) := I/ Py
is called the ideal class group of k. In this section we prove that this quotient
group is finite. Its cardinality, denoted by hy, is called the ideal class number,
hence the name of this section. This finiteness of the ideal class number is due
to Dirichlet. We will end this section by showing a similar finiteness result in
the case of the ring of S-integers. Everything relies on the following bound due
to Minkowski.

Proposition 5. Let a be a non-zero ideal of Or. Then a contains a non-zero
element x for which

4 "2 ’I’L' 1
M) < (1) Zlduli ).

Proof. For any element x of k we have

INie(@)l = T lalo=]Tlow@)] T loj(@)*

vEME® i=1 j=ri+1
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Using the geometrical-arithmetic inequality (apply Jensen’s inequality to the
convex function — log) yields the inequality

n
1 T2

\Nk/@(w)\S% Z|0i(x)|+2 Z loj(@)] | - (1.3.0.1)

i=1 j=ri+1

In order to bound [Ny ()|, it is natural to look to bound the quantity

Z oi@)+2 Y Joy(x)].

j=ri+1

Define

T T2
By = ('7517"'7wT15$T1+17""x7‘1+7’2)ER®Qk : Z‘JJH—I—Q Z |xj|§t

i=1 j=ri+1

where t is a positive real number. Proving the proposition amounts to proving
that the intersection B; N (a\ {0}) is non-empty for a suitable ¢.

From the definition of By, it is obvious that it is measurable, convex, sym-
metric around the origin in R ®g k and compact. Its volume is given by

m\"2 t"

n(By) = 2™ (5)

(cf. [Sam], Chapter IV, Appendix).
Choose tg such that u(By,) = 2"v(a), that is, take ¢y so that

n!

2\
tn =2 <7T> n!|dp|? N(a).

We apply Proposition 3, which says that By, N (a\ {0}) is non-empty. Let = be
an point in this intersection. By (1.3.0.2), we get that
tn 4 2 TL' 1
Mie@) < & = (2) " Zja i),

nm ™

Corollary 3. FEvery ideal class of k contains an integral ideal b such that

ro
N(b) < <4> ”%\dkﬁ.
™ n
Proof. Let C € Cl(Oy) and let a be a non-zero fractional ideal in C. Let o
be the inverse of a. Without loss of generality, we may suppose that a’ is an
integral ideal. It is of course non-zero. By Proposition 5 there exists a non-zero
element x of o’ such that | Ny /g ()] < (£)"* 24 |dy|2 N(o’). Define b’ = za. This
is an integral ideal of k since a’a = O and thus za C O. Moreover b belongs
to C' and by multiplicativity of the norm, we get
' ’ 4\ n! 1 ’
N(EN() = (o) = NaOw) = Nugola) < (2] Zhaul V@)

Dividing on both sides by N(a’), which is non-zero, we obtain the desired result.
O
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Corollary 4 (Dirichlet). Let k be a number field. Then the ideal class number
hy is finite.

Proof. We prove that there are only finitely many ideals of Oy with a given norm.
Let a be an ideal with norm equal to the natural number m. By definition, this
means that the quotient Oy /a is of order m. The order of an element of a group
divides the order of the group. Thus, if x is an element of Oy then ma must
belong to a. In particular, if we take = to be 1 we get that m belongs to a. Thus
a contains the ideal mOy, or in other words a divides mOj, which has only finitely
many divisors. There are therefore only finitely many possibilities for a. As a
consequence, O, contains only finitely many ideals whose norm is bounded. In
particular, there are only finitely many ideals that satisfy the bound in Corollary
3 and therefore there can only be finitely many ideal classes. O

As announced in the introduction of this section we will now generalize this
result. More precisely, let S be a finite subset of M, containing M*, let I g
denote the group of fractional ideals associated to Oy s and let P g denote the
subgroup of principal fractional ideals. We will prove that the S-ideal class group
Cl(Ok,s) = Ix,s/Px,s is finite. This will be an easy consequence of Corollary 4
once we have the following:

Lemma 1. Let S be a finite subset of My, containing Mg°. Let p be a prime
ideal of Oy, that does not belong to S and define S’ = SU{p}. If [p] denotes the

class of p in Cl(Oy,s), then we have a short exact sequence of groups
1 — ([p]) — Cl(Ok,s) — Cl(Of.5) — 1.

Proof. We have a homomorphism from I s to I s given by a — a0y s .
We claim that this is a surjective homomorphism. Indeed, if a’ € Ij g then
it decomposes uniquely as a' = Hqgs, q”q(“l)(’)k)sf where vq(a’) is an inte-
ger since O s is a Dedekind domain and its primes ideals are exactly the
ones of O that do not belong to S’. Then for any non-negative integer e,
ac := p°Og,s qus/ q'a" Oy g is an element of I ¢ whose image is @’. This
proves our claim.

Notice that Py s C ker(Iy ¢ — Irg — Cl(Og,s)) and thus from the uni-
versal property of the quotient we get a surjective homomorphism of groups
¢ Cl(@k,s) — Cl(@k75/).

It is clear that ([p]) is contained in the kernel of ¢. Conversely, let [a] be an
element of ker(¢). Then aOy s/ belongs to Py s/. As a consequence, there exists
an element § € k* such that aOy g = SOy g. It follows that for all q & 5,
we have vq(a) = vq(BO0k,s/) = v4(B0k,s). Let e = vy(a) — v, (8Ok,s). Then
a=p°B0Oy s and [a] = [p]°. This proves that ker(¢) = ([p]). O

Corollary 5. Let S be a finite subset of My, containing M°. Then hy g =
|CI(Ok.5)] is finite.

Proof. We prove this by induction on n = |S\ M*°|. The case n = 0 is Corollary
4. Suppose the result true for all sets S” with S\ Mp?| = n — 1. Let p be
a finite place in S and define S’ = S\ {p}. Then hy g is finite by induction
hypothesis and by Lemma 1, if m denotes the order of [p] in Cl(Ok s/), then
hi.s = hi,s/m and is therefore finite. O
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1.4 The Unit Theorem

We give a full proof of Dirichlet’s famous unit theorem originally proved in 1846
as well as a proof of its generalization due to Chevalley and Hasse in 1940 and
1980 respectively, namely the S-unit theorem. We end this section by defining
the S-regulator of a number field. We begin with some notations.

Let S be a finite subset of M}, containing M °. Let Y} s be the free abelian
group on S, that is, Y s = @ Zv. Consider the surjective homomorphism
of group

veES

aug : Yy s — Z, Z NV —> Z Ty
veS veS

called the augmentation map. Define the subgroup

Xk,g = {ZTLUU S Yk,S | Z’ﬂv = 0}

veES vES

so that we have an exact sequence
0—>Xk,s—>Yk,gﬁZ—>O.

It is not difficult to verify that for any choice of vy € S, we have

Xk,S = @ Z(U — ’Uo)

U#Uo

and thus X} ¢ is a free abelian group of rank |S| — 1. Denote by RY} ¢ and
RX} s the respective tensor products R ®z Yy, ¢ and R ®7 Xj, 5. We consider
the map
>\k-,S kY — RYk,S; T — Zlog ‘$|U”U.
vES

This is a homomorphism of groups. We will be interested in the restriction of
this map to the multiplicative group of S-units Oy, ¢ that we shall denote by
Uk.s. We claim that the image Ag, s(Ug,s) lies in RX}, 5. Indeed, if u € Uy g
then |ul, =1 for all v ¢ S and by the product formula (0.0.0.1) we have

1=TT tulo = I ule-

vEM], vES

Taking the logarithm, we get ) g log|ul, = 0 which proves that Ay s(Us,s) C
RX}, s. Let Gj, s denote the kernel of this map so that we have an exact sequence

1— Gis—Ups — )\k,s(Uk,S) — 0.

The S-unit theorem consists of proving on one hand that G s = g, that is, the
finite cyclic subgroup of Uy, g consisting of the roots of unity contained in k£ and
on the other hand that Ay s(Uy,g) sits as a lattice in the (|S| — 1)-dimensional
real vector space RX}, s. In particular, Ay s(Uy,s) is a free group and the above
sequence splits and we obtain:

Theorem 1.4.1 (S-unit theorem). Let k be a number field and let S be a finite
subset of My, containing Mg°. Then Uy g = py % ZI81-1,
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As with the proof of the finiteness of the S-ideal class group (Corollary 5),
we will start by treating the simplest case S = M° and then we generalize the
result using a suitable lemma.

Set S = Mg°. In this case, we drop the subscript S in all of the above
defined notations and we have the exact sequence

1*>Gk HUk —)Ak(Uk) — 0.

Let 71 and ro be the usual numbers attached to k and order the elements of
M* so that the ry first ones correspond to the real places and the ry remaining
ones correspond to the complex places. This case of the unit theorem is due to
Dirichlet:

Theorem 1.4.2 (Dirichlet). Let k be a number field and let r = r1 + ro — 1.
Then Uy = pp X Z7.

Proof. 1dentify RX} with R” by choosing a basis and give it the standard eu-
clidean topology. Let B be a compact subset of RX} and consider the set
M. H(B) € Uy, Let u € \;'(B). Since B is bounded in R", we see that
log|o;(u)| is bounded for all i = 1,...,7r; + ro and thus |o;(u)| is bounded
from above and below. In particular, all elementary symmetric functions in
the o;(u) are bounded in absolute values. In particular, the coefficients of the
minimal polynomial of u over Q are bounded. But u is an algebraic integer, so
these coeflicients lie in Z. Consequently, there are only finitely many possibili-
ties for the minimal polynomial of v over Q and thus finitely many possibilities
for the value of u. This proves that \; '(B) is finite. There are two important
consequences to this:

e The group Gy, = A}, ' ({0}) is finite. It is therefore a product of finite cyclic
groups Cg, X...XCy  and we may suppose that d;|d;+; fori =1,...,m—1.
As a consequence, we have y%» = 1 for all y € G,. But there are at most
dp, elements in k satisfying this equation. Thus d,,, > |G| = dy ... dp,.
This implies that m = 1 and thus Gy, is cyclic comprised of roots of unity.
If ¢ denotes a root of unity in k, then |o;(¢)|=1foralli =1,...,r1 + 1
and therefore ( € G,. We have therefore proved that Gy = pj as desired.

e The image \;(Uy) is a discrete subgroup of RXy s. In fact, if B C RX},
is compact, then A\ (Ux) N B = )\k()\I;I(B)) is finite. By Proposition 1,
A (Ug) is a free Z-module of rank s < 7.

It remains to be proved that Ag(Uy) contains r linearly independent vectors
over R. We will prove that for any non-zero linear form f : RX; — R we
have f(Ax(Ug)) # 0. We claim that this will end the proof. Indeed, pick fi to
be a non-zero linear form on RX),. Choose u; € Uy, such that f1(Ax(u1)) # 0.
Rescaling f; if necessary, we may suppose that f1(Ag(u1)) = 1. Let fo be a non-
zero linear form such that fa(Ax(u1)) = 0. This is obviously possible. Choose
ug € Uy, such that fo(Ag(u2)) # 0 and rescale fs so that fo(Ag(uz)) = 1. At the
m-th stage, for 1 < m < r —1, we have linear forms f; and elements u; € Uy for
every ¢ < m such that f;(Ax(w;)) =1 and f;(Ax(u;)) =0 for all j < i. We pick
a non-zero linear form f,,1+1 such that f,,11(Ax(u;)) =0 for all ¢ < m. This is
possible since we impose m < r conditions on r variables. Choose u,,11 € Uy
such that fr,4+1(Ag(ums1)) # 0 and rescale so that fr11(Ag(ums1)) = 1. At
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the r-th stage of this procedure, we have produces linear forms f; and elements
u; € U for i = 1,...,r such that

fi(u)) =1 fi(A(uj)) =0 for j<i .

Let a; be real numbers for ¢ = 1,...,r and suppose that >\, a;A,(u;) = 0.
Applying f,. to this relation, we obtain a, = 0 and the remaining equation is
Z:;ll a; i (u;) = 0. Applying f,_1 to this equation yields .1 = 0. Proceeding
like this r times gives a;; = 0 for all ¢. This proves that Ag(uq),..., \;(u,) are
linearly independent over R.

It thus remains to prove our claim. Let f: RX; — R be a non-zero linear
form. Let vy be a complex archimedean place of k. Then a basis for RX}, as a
real vector space is given by (v —vg) for v € S\ {vg}. We order this basis by
letting the 71 first elements correspond to the real places of k and the remaining
ro — 1 elements correspond to the complex places except vg. We shall write
(z1,...,2,) for the element > ~z,(v—vo) and we thus explicitly identify
RX}, with R". We may write f in the form

flxy,...,z) =1z + ... + ¢pxy, with ¢; € R.
Let v = (y1,...,7r) be an element of RY, and choose 7,41 € Rs( such that
1 r1+72 ) 2 T2 .
[T+ II = <W> |di|? == C.
i=1  j=ri41
Consider the subset of R ®q k defined by
By ={(x1,. ., T s Tri41, - Trygry) ER®g K ¢ 25| < iy |25 < Yy b

This is a Lebesgue-measurable compact subset which is convex and symmetric
around the origin of R ®qg k. Moreover, we have

T1 r1+7T2 T2
2 1
)= T T i =2 (2) el = 2000
i=1

j=ri+1

where in the last equality we made use of Corollary 2. By Proposition 3 the
intersection By N (O \ {0}) is non-empty. Let a, be an element in this inter-
section. Since a, is a non-zero algebraic integer, its norm is a non-zero integer.
Consequently, we have

1 r1+72
1 < |Nijglaqy)| = H laylo < H’Yi H '7]2‘ =C. (1.4.2.1)
veM>® =1 j=ri+1
Fori=1,...,r1 + ro if we let v; denote the corresponding place of k we have

-1

v = |Nk/Q(a'y)| H |a'y‘v > 'Vz‘EiC_l’
v#vU,

Vit 2 lay

where ¢; is 1 if v; is real and 2 if v; is complex. This implies that

0 <log~;' —log|ay|,, <logC.
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It follows that

T T

Z ciloglay|y, — Z cilog v’

=1 =1

< lOgCZ|Ci|-

i=1

Let 5 > 0 be a constant that is larger than the right hand side. For every m > 1,
choose an r-tuple v(m) = (y1(m), ..., v-(m)) of positive real numbers such that
doioi cilogi(m)S = 28m. Let aq(y) be a non-zero element of B,y N Oy.
Then for all m > 1 we have

Zci 1og |@y(m)lv; —28m| < B.
=1
As a consequence, we have
(2k = 1)B < |>_ cilog|aymyle, | < (2k +1)8.
=1

We conclude that all the real numbers Y 7, ¢;10g |ay () lo, are distinct. By
(1.4.2.1), we see that N(a.(m)Or) = | Nk g(ay(m))| is bounded. In the course of
proving Corollary 1.4.2, we showed that the number of ideals of Oy with norm
bounded by a given constant is finite. We conclude that there exist at least two
distinct integers [ and j such that a.;)Ok = a(;)Ok. Hence, there exists a unit
u € Uy such that a,) = ua,(;). But then we have

T T
FOw(w) = eiloglay@ylu, — D cilog |as(j)lo, # 0.
=1 i=1

This completes the proof by our above discussion. O

Our goal is now to prove Theorem 1.4.1. This is an easy consequence of
Theorem 1.4.2 once we have the following:

Lemma 2. Let S be finite subset of M}, containing M7F. Let p be a prime ideal
that does not belong to S. Define " = S U {p}. Then Uy g = Uy s X Z.

Proof. Let m be the order of [p] in Cl(Of s). By definition of m, the ideal
p™ O, s is a principal fractional ideal of the ring of S-integers so there exists an
element o of £* such that p" O s = a0 5. We will show that « is a unit in
O, s and that it generates Uy g/ /Uy, s.

Let u be an S’-unit. We have vy () = m and therefore 0 < vy(uad) <m—1
for a suitable choice of an integer j. Since vq(ua?) = 0 for all q & S, we have
ua? Oy g = p?» )0y ¢ so that [p]?»(“>) = [1] in Cl(Ok ). This implies that
vp(ua?) is a multiple of m by definition of the order and consequently that
vp(ua®) = 0 so that ua? is an S-unit. Thus [u] = [a77] in Uy g /Uks and
the claim is proved. Since vy(a?) = jm for all integers j it is clear that o/ is
an S-unit if and only if j = 0. Thus « has infinite order in Uy g/ /Uy s and
Uk,s'/Ux,s = Z. We have an exact sequence

1—Uks — Ursg — Z — 1.

It splits since Z is free, so that Uy g = Uy g5 X Z. O
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Proof of Theorem 1.4.1. We will perform a proof by induction on s = |S\ M°|.
The case s = 0 is Theorem 1.4.2. Suppose the result true for sets S’ with
[S"\ M| = s—1. Let p be a finite place of S and define S’ = S\ {p}. By
induction hypothesis we know that Uy s/ 2 px x Z5172. By Lemma 2, we have

Ur,s = Uy, X L=y, x 215171,
0

We know now that Ag s(Uyg) sits as a lattice in RXj, g = RISI=1. The
covolume of this lattice is an important invariant of the number field k. We
make the following definition:

Definition 3. Let £ be a number field and let S be a finite subset of My
containing Mp°. We define the regulator of k associated to S to be

Ris = |S|72v(An.s(Ur.s)).

Up to a constant, the regulator is the volume of a fundamental domain for
the lattice A, g(Ug,s) in the vector space RXjy g. One can give the following
more explicit and less geometric formula for the regulator:

Proposition 6. Let k be a number field and let S be finite subset of My con-
taining Mg°. Let uy,...,uig—1 be a system of fundamental units of Uy s, that
is, a basis for the free Z-module Uy s/uy. We have the formula

Rrs = det (log |u;ly
s = | _det (g uil)
1<i<|S|—1

where vy is any valuation in S.

Proof. The family Ag, s(u1), ..., A s(ujg/—1) is a basis for the lattice A\ s(Uy,s)
and we denote by P the fundamental domain associated to this basis. We know
that the volume is independent of the choice of basis. Define

ut=SI7E(1,., 1) =875 Y v e RY s
vES

This vector is orthogonal to RX}, g = RISI=1 and has length equal to 1. Thus
u*, Ag,s(u), .. .,)\k7s(u‘g|,1) forms a basis of RY) g =2 RIS and the (1S] = 1)-
dimensional volume of P equals the |S|-dimensional volume of the fundamental
paralleliped in RISl constructed on this basis. This volume is equal to the
absolute value of the determinant of the |S| x |S| matrix whose columns consist
of the basis vectors. This is equal to |S|~% times the absolute value of the
determinant of the same matrix but where we have multiplied the first column
by |S |%. Now we add all the rows to the row corresponding to some vy € S
which becomes

(|S|, aUgO‘k,S(ul))J EERE) aUg()‘k,S(UIS\fl)) = (|S|7 0,..., 0)

by definition of X} ¢. Expanding the determinant with respect to this row we
obtain

Ri s = det (log|u;ly)] -
s = |, det(loglu,)
1<i<|S|—1
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Remark 3. We have the following exact sequence
1 — pe — Uk,s — Ai,5(Ur,s) — 0.
Tensoring with C over Z we get an isomorphism of C-vector spaces
Mgt CUg s — CXy 5

since pu, is finite. Actually, this map is 1 ® A; g but we shall keep the notation
Ak,s. Let ui,...,ug—1 be a choice of basis for CUy s. For a choice vy € S,
(v — vo)ves is a basis for CX} g. By Proposition 6, the regulator Ry g is the
absolute value of the determinant of the map Ay ¢ corresponding to these choices
of bases. Moreover, this determinant is independent of the choice of vg.

The following result relates the regulator Ry s with Ry ¢ for sets S and S’
that differ only by one element. It will prove to be useful later on.

Proposition 7. Let k be a number field and let S be a finite subset of My
containing Mg°. Let p be a prime ideal that does not belong to S and define
S' = SU{p} and let m be the order of [p] in Cl(Ok,s). Then

Ryi,sr = mlog N(p)Rk,s.

Proof. By definition of m, the ideal p" Oy, s is a principal fractional ideal of
the ring of S-integers so there exists an element o of k* such that p" Oy g =
aOgs. Let uy,...,us—1 be a system of fundamental units of Uy s. In the
course of proving Lemma 2, we saw that u1,...,u|5/_1,u|s) := a is a system of
fundamental units of Oy s/. Let vg € SN S’ and define

Ms = (log|uilv)ves\{vo},  Ms = (log |tilv)ves {vo} -
1<i<|s|-1 1<i<|s|
Then by Proposition 6 we have Ry g = |det Mg| and Ry g+ = | det Mg/|. Since
vq(uysy) = 0 for all g in S we see that

M(S') = ( Mso 0 >

log |u)g)lp

so taking the absolute value of the determinant yields the desired result since
luysilp = N(p)~™. O

1.5 The Analytic Class Number Formula

The analytic class number formula is an important formula in the theory of
basic algebraic number theory: it constitutes a bridge between the arithmetic
of a number field and the analytic theory of a number field. All arithmetic
invariants associated to a number field that we have defined so far such as the
class number, the regulator and the discriminant are related in this formula to
the leading coefficient of the Taylor series at s = 1 of a function of one complex
variable attached to k called the Dedekind zeta-function of k. This formula
means that one can compute for example the class number of k£ by using the
other arithmetic invariants of k and by knowing the zeta-function of k. One can
understand the arithmetic of a number field via analytic methods and vice-versa.
Our main reference for this section is [BS|, Chapter 5, § 1.
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1.5.1 Statement of the Theorem

We define the Dedekind zeta-function of k and state the class number formula.
We then present the main tool in the proof of the formula. We believe that this
motivates the study of the fundamental domain in the next section and clarifies
the strategy of the proof.

Definition 4. Let k£ be a number field. The associated Dedekind zeta-function
is the function of one complex variable s which is defined for s > 1 by the

Dirichlet series
C(s) =Y _ N(a)™®
a

where the sum runs over all non-zero ideals of Q. If S is a finite subset of
M, containing M°, then we define the S-modified Dedekind zeta-function for
Rs > 1 by the formula

Gos(s)= D> N(a)™

(a,9)=1

where the sum runs over all non-zero ideals of Oy, that are coprime to S.

Remark 4. The infinite sum above is to be understood as follows:

o Y

a a:N(a)<m

where for all m > 1 the sum on the right hand is finite (cf. proof of Corollary
4). Let Ny, := [{a: N(a) = m}|. Then for fs > 1 we have

. IR\
Ck(s) = lim Y N@ = T
a:N(a)<m i=1

Remark 5. Once we prove that (i (s) converges absolutely for s > 1, it will
follow that it has an Euler product expression in this region given by

G(s) =T =N ™)™

p

where the product runs over all prime ideals of Q. This is a consequence of
the fact that the norm function is completely multiplicative and follows from
general theory of Dirichlet series.

We can now formulate the analytic class number formula:

Theorem 1.5.1 (Analytic class number formula). Let k be a number field of
degree n. Denote by wy, the order of the finite group ui. The Dedekind zeta-
function (i (s) converges in the region Rs > 1 and has a simple pole at s = 1
with residue given by the formula

971 (27772
_2m@m)" Ry,

Ress:l(Ck(s)) Wk‘dkﬁ

k-

The proof of this theorem relies on the next result. By a cone in R™ we refer
to a subset X C R™ with the property that if x € X then £x € X for all £ > 0.
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Theorem 1.5.2. Let X be a cone in R™ and let F : X — Rsqg be a function
subject to the conditions:

(i) F(&x) =E&"F(x) for allz € X and all £ > 0.

(ii) The set T = {x € X : F(z) < 1} is bounded and Lebesgue-measurable
with non-zero measure.

Let A be a euclidean lattice in R™ and consider the function

)= Fla)™

reANX

in the complex variable s. The function ((s) converges for ®s > 1 and has a
stmple pole at s = 1 with residue given by

w(T)
v(A)

Res,=1(C(s)) =
Remark 6. The sum above is to be understood as the limit

Z F(x)_s:il_iglo Z F(x)~*.

zeANX zeANX
F(x)<i

The set {x € AN X | F(x) < i} is bounded by (i7) and discrete so it is finite
and therefore the sums in the limit are finite.

Proof. For any positive real number r we define A, = r~'A. We have v(A,) =
r~"v(A). Since T is bounded by (ii) and A is discrete, the intersection T'N A,
is finite for all » > 0. We define n(r) := [T'N A,|. By (i), T is Lebesgue-
measurable and by definition of the Lebesgue measure its volume is given by

the limit -
. ooon(r
w(T) = TILH;O n(r)v(A,) = v(A) Tlg{.lo e
Meanwhile, we also have n(r) = |rT N L|. We have y € rT N A if and only if
y =rx € A for some z in T. By (i), we then have F(y) = F(ra) =r"F(z) < r™.
We conclude that

rTNA={ye ANX|F(y) <r"}.

Since a euclidean lattice is countably infinite, we have in particular that LN X is
countable. We choose a ordering LN X = {1, z2,...} such that F(z;) < F(x;)
whenever i < j. For every integer i > 1 we set r; to be the real positive number
ri = {/F(x;). If i <j, then F(z;) =} < F(x;) = r}. Thus for all 7, the set
r;T N L contains the points 1, ..., z; and thus n(r;) > i. On the other hand,
for any € > 0, z; does not belong to (r; —€)T. As a consequence, n(r; —¢€) < i.

Thus ( ) ( )( )" ' (rs)
n(ri—e) n(ri—e) (ri—e Sign?ﬂi.

I (ri—e)n T

We conclude that lim; oo n(r;)/r = lim; o0 ¢/7? and therefore

J(T) = v(A) lim —= = v(A) Tim ——.

i—00 T;ﬂ i—00 F(l’z)
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We have
i/ F(w:)*)

ZS

/Q\
N
I
N
3
S_g =
hry
I
g

i>1

Since lim; o0 (i/ F(x;)) = u(T) /v(A), the sequence (i/F(x;)) is bounded and by
comparing ¢ with the Riemann zeta-function ¢ we see that ((s) converges for
R(s) > 1. Also from the existence of this limit, for all € > 0 there exists a rank
ig such that

(W(T)/o())* = € < i/ P(:))* < (u(D)/o(A))* +¢
for all ¢ > ip. Thus, for R(s) > 1, we have
(/A =03 % < 3 o < (/A +9 Y

Multiplying by (s — 1), taking the limit as s — 17 and using the fact that the
Riemann zeta-function has a simple pole at s = 1 with residue equal to 1, we
see that

: = w(T)
lim (s —1 =
which is non-zero by (i7) and the proof is complete. O

1.5.2 Fundamental Domain of a Number Field

Henceforth, our goal is to apply Theorem 1.5.2 to the Dedekind zeta-function
(k. It is not obvious how this can be done and first we need to write (5 in the
appropriate form. This implies finding a suitable cone and a suitable lattice.
This section is concerned with the cone.

By Corollary 1.4.2 there exists a system of fundamental units uq, ..., u, of k,
that is, a basis for Uy /ux. Then Ag(u1), ..., Ax(u,) are linearly independent over
R and form a basis for the lattice Ay (Uy) in RX. Let u* = (1,...,1,2,...,2) =
EUGM,:C €,0 € RY;, =2 R™! where e, = 1 if v is real and e, = 2 if v is complex.
The family (u*, Ag(u1), ..., A\g(u,)) forms a basis of RY}.

We extend the map A\, : k* — RY}; a map on (R ®g k)* by defining the
map X : (R®q k)* — RY}, by letting = (21, .., Try; Try 415 - - - » Try+r,) AP
to

(log|z1],...,log |z, |,log |z, 11]%, ..., 10g [Ty 1ry]?)-
It is an extension since if z € k, then A\(x) = A\ (z).
For any z € R®qk, there exist unique real coefficients ¢, &1, . .., & such that

M) = &u™ + ) &t (wi). (1.5.2.1)

Definition 5. With the notations above, we define the fundamental domain of
k with respect to the given system of fundamental units to be the subset X of
R ®q k consisting of elements © = (x1,...,%r; Try 41, - -, Try+r,) such that

e N(z)#0;
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o The coefficients in (1.5.2.1) satisfy 0 < ¢; < 1;
e If 1y > 1, then 1 > 0 and if r; = 0, then 0 < argx; < 27/wy.

We first claim that X is a cone in R ®q k. Indeed, let o be a positive real
number and let x € X. We have

N(azx) = axy ... oz, oz, 1% ... |axe 10|? = " N(x) # 0.

Moreover, we have

Maz) =logau™ + A(z) = (loga + §)u* + Zgi)\k(ui).

i=1

Finally if vy > 1, then axz; > 0 and if r; = 0, then arg(ax;) = argx;. This
proves that ax € X and thus that X is a cone as claimed.

Proposition 8. FEvery class of the quotient group (R ®q k)* /Uy has a unique
representative that lies in X.

Proof. Let y € (R®g k)* and write

Ay) ="+ vide(w),  v,mER
i=1

Let n = u[l’“] ...u[f“] € Uy and set z = yn~!. Then

A=) = AMy) = M) = v+ {7 h(us)

i=1

where the brackets as usual denote the fractional part. If vy > 1, then z or —z
belongs to X and we have y = zn and we have proved existence. If r; = 0,
then let m be the integer in {0,...,w; — 1} such that 2rm/w, < argz; <
21 (m+1)/wy. Pick t € ux NR®q k with ¢, = e2™/“» and set = zt~*. Then
0 <argzy < 2m/wy and

A@) = A(2) = Ak(t) = A(2)

since py = ker Ag. It follows that x € X and y = x(tn) and we have proved
existence in the case r1 = 0.
We now prove uniqueness. Suppose that y = xve = 2'¢’ with z,2’ € X and

€, € Uy. Write e = tuf'...ul" and € = t’u?1 .. up” with ¢t € py and

n;,n; € Z. We have A\(z) — A(z") = M\p(€') — Ak (€) so that

T

(€ =& + Z(éi — DAk (w) = Y (nf = ni) e (wi).

i=1

By linear independence we obtain { = ¢ and §; — &, =n,—n; foralli =1,...,r.
But & — ¢ €] — 1,1] so that n; = n) and therefore & = &/. We have € = (pe
for some (g € py so that x = 2'(y. If 1 > 1 we must have (; = +1 but the
condition zy, 2} > 0 forces {y = 1. If 1y = 0, then argz; = arg ) + arg (o and
the condition on argz; and arg ) imply that arg(yp = 0 so that ¢, = 1. O
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Corollary 6. Let o € k*. Then there is a unique 5 € kN X such that Oy =
BOy.

Proof. We have a@ € (R ®q k)* so by Proposition 8 there exist a unique j
in X and a unique € € Uy such that « = Be. We have 8 = ae™! € k and
Oz(’)k = B(’)k O

Theorem 1.5.3. With notations as above, the set T = {x € X : |[N(z)| < 1}
1s bounded, Lebesgue-measurable and its volume is given by

_ 2MamR

w(T) "

In particular this volume is non-zero and independent of the choice of funda-
mental units.

Proof. We start by proving that T is bounded. Let S = {z € X : |N(x)| = 1}.
Since |N(az)| = o™|N(x)| for all a > 0, it is easy to see that

T={azx : z€S,a€]0,1]}.
Therefore, if S is bounded then T too is bounded.

In order to ease the notation we define ¢; =1 fori=1,...,7 and e; = 2
for j=r14+1,...,74+ 1. For x € R®g k we have the expression

i=1

We sum the r + 1 coefficients of the left hand side vector and obtain

T1 T2

S loglal + 3 log|a 2 = log |N(z)].

i=1 j=1
We do the same on the right hand side and obtain

I
En+ Y Gaug(Mi(us)) = &n.
=1

We conclude that ¢ =log |N(x)|/n. In particular, if = belongs to S then & = 0.
In this case, for all 1 < j <7+ 1, we get

@)y =D Ew(u); < - Anlwi); = C.

Consequently, we have the inclusion S C {zx € R®@g k : |z;] < €%, |z;|*> < e}
which proves that S is bounded.

We now turn to the computation of the volume of T'. It will become clear that
T is measurable during the process. Let ¢ € urNR®gk such that ¢; = e%. Note
that if ;1 > 1 we have wy = 2 and ( = —1. Consider for £k =0,1,...,wxg —1 the
multiplication-by-¢* map on R®qk which we denote by Lj. The determinant of
this map is Ny q(¢) = £1 so that these transformations are volume preserving.
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Define Vp = ;2 ' L;(T). This is the subset of R®gk consisting of elements
z such that 0 < [N(z)| <1 and Az) = §u* + > &EMi(u;) with 0 < & < 1.
We have eliminated the original constraint on the first coordinate z;. Since
the above transformations are volume-preserving, we have p(T) = u(Vr)/ws.
Consider the subset

Vi={zeVp|z;>0,1<i<r}.

Let A be the set of elements of R®gq k with first r; coordinates equal to £1 and
the last ro equal to 1. This is a set of cardinality 2. For any § € A, denote
by Ls the multiplication-by-6 map which is volume preserving. We have the
equality of sets Vp = (J; V7 so that

2" p(Vr)

) =—_

So it remain to prove that p(V}) = 7™ Ry. We recall that V. consists of
elements = that satisfy:

e 0<|N(z)| <13

e For all j, AN(z); = Zlog|N(z)| + > i1 &Ednlus); with 0 < & < 1;

e zy,...,x, >0.

We transit to polar coordinates by setting

Ti = Pis iil,...,Tl
— 105 M
Zj = Pri+j5€ Ty )= 1?"'3T2

The Jacobian of this change of variables is equal to pr, 41 ... pr,+r, and the new
variables are subject the following conditions:

® D1y Proitry > 0, HT1+T2 o <1
° 1ng;j =% log HT1+T2 p;j + 22:1 fl)\k(ul)‘] with 0 < gi < 1.

We perform a new change of variable (p1,p2,..., pri4r) & (£, &1, &)
given by
1T S(e)
= 5"
i=1
Note that £ = H“M2 . The set VJ. becomes the set of elements x with

zip = &n [[_y e =1 r
‘rj _fnewln lAkul)Jv]:r1+17"~vr1+r2

subject to the conditions 0 < { <1l and 0 <& < 1fori=1,...,r. There are
no conditions on the ;’s. The Jacobian |J| of this change of variables is given
by

% p1l1(€1) plll(er)

pr;% pn%lrﬁ-rz(el) prl%lh-i-rz(er)
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This determinant is in turn equal to

€1 11(61) N ll(ér)
P1---Pritry . .
ng2r2 :
ritrs lrigr(€r) oo lrgrs(6r)

Summing all the rows with the first row we obtain the same matrix but with
first row given by (n,0,...,0) and expanding the determinant with respect to
this row yields
‘J| _ P1--- pr1+T2Rk )
£2r2

We may now compute the volume of V7.
w(Vy) = / dry...dx,, dz; .. .dz,.,
T

= / Pri4+1---Pri+ry dpr .. dpr1+r2d91 9r2

/2w /% / / HTIJZ;Z’JJ Ry .. dB,,dEdEy . . . dE,

= 71'7’2Rk7

since £ = Hrﬁ'r"’ : O

1.5.3 Proof of the Class Number Formula

Proof of Theorem 1.5.1. Let s > 1 be real. Since all terms in the Dirichlet
series defining the Dedekind zeta function are positive, we rearrange the terms

as follows:
Gs)= > Chels),  Cuels) =) Nla

CeCI(0y) acC

Fix an ideal class C € Cl(Oy) and an integral ideal b in C~!. If a is an
integral ideal in C, then ab = aOy, for some o € Oy. This gives a bijective
correspondence between integral ideals a in C' and associate elements a in Oy
such that b divides aO. Two elements o and 3 in Oy, are said to be associate
if they determine the same principal ideal or equivalently if they differ by an
element of Uj. Using the multiplicativity of the norm, we may rewrite (i ¢ as

follows:
Cro(s) =N(b)* > [Nyjgla) ™.
aOj:a€b

By Corollary 6, if a € Oy then there is a unique x € kN X and a unique
e € Uy such that « = ze. If o belongs to b, then so does z. Moreover,
Nijo(a) = Nijg(xz) = N(z). Therefore there is a bijection between ideals aOy
with « € b and elements of the intersection b N X. We may then write

Cro(s)=N(0)* Y |[N(2)|™".
rebNX

By Theorem 1.5.3, the set T'= {x € X : |[N(z)| < 1} is bounded and Lebesgue-
measurable with non-zero measure. We apply Theorem 1.5.2 with the cone
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X, the lattice b and the function |N(-)| in order to conclude that the function
Ck,c(s) converges absolutely in the region s > 1 and has a simple pole at s = 1
with residue given by

2" "2 Ry,

Reso=1(Gho(s)) = NO)p(T)/o(b) = ==y

where in the last equality we made use of Corollary 2 and Theorem 1.5.3. We
finally get that (x(s) converges absolutely for s > 1 and has a simple pole at
s = 1 with residue given by the formula

271 (27)"
_ 2 (2m) B,

k-
wk|dk|%

Ress=1(Ck(s))
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Chapter 2

Global Class Field Theory

We give a brief introduction to global class field theory, going through the
main theorems but without proofs. The central objects of study in class field
theory are finite abelian extensions of number fields and the theory establishes a
correspondence between such extension and certain subgroups called generalized
ideal class groups. Our main reference here is Chapter 8 of [Cox|. A presentation
of this theory with ideles can be found in [CF].

2.1 Generalized Ideal Class Groups

Let k£ be a number field. Denote respectively by I, and Pj the group of fractional
ideals of k and its subgroup of principal fractional ideals. As we have seen (cf.
Corollary 4), the ideal class group Cl(Oy) = Ii /Py is finite. Moreover, we have
the following exact sequence

1— Uy — k" — P, — I, — Cl(Of) — L.

In what follows we will refer to elements of M}, as primes of k whether they are
finite or infinite. The reason for this is that infinite places behave much like
primes.

Definition 6. A formal product of primes of k

m= [[ v

vEMK
is called a modulus of k if the following conditions are satisfied:

e All m(v) are non-negative integers and m(v) = 0 for all but finitely many
primes.

e If v is a complex archimedean prime, then m(v) = 0.
e If v is a real archimedean prime, then m(v) < 1.

We write m = mgmy, in order to distinguish the finite and infinite parts of
the modulus. Note that if k is totally imaginary, then a modulus of k is simply
an integral ideal of k. We write v|m if m(v) > 0 and we say that v divides the
modulus.

39
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If m is a modulus of k, we denote by I (m) the subgroup of I; that consists
of fractional ideals of k coprime to m (meaning coprime to mg), that is, the
free abelian group generated by primes ideals of Oj that do not divide the
modulus m. Similarly, we define Py(m) to be the subgroup of I(m) consisting
of principal fractional ideals prime to m. We define Py 1(m) to be the subgroup
of I, generated by principal fractional ideals aOg where

e € ﬂp‘mo Oy,

e =1 mod mg,

e o,(a) > 0 for all v|m, where o, denotes the embedding k — R corre-
sponding to the real archimedean place v.

We summarize these conditions by writing simply a« =* 1 mod m.

Proposition 9. Let m be a modulus of k. The group Py 1(m) is a finite index
subgroup of I,(m). The finite quotient group Clg(m) := Iy(m)/Py 1(m) is called
the m-ray class group of k.

Proof. From the definition it is obvious that Py (m) is a subgroup of Ij(m).
For the finite index assertion, we follow [Lan] p. 124-126.

We start by claiming that the map I;(m) — I, — Cl(Of) is surjective.
Indeed, let a be an element of I;. Without loss of generality we may assume
that a is an integral ideal. We have a decomposition a = Hp pU» (¥ where the
vp(a) are non-negative integers and all but finitely many are zero. For every
p that divides a, we denote by 7, a uniformizer for p. By the Approximation
Theorem (cf. [CF] Chapter II § 15), there exists a solution to the system

— . vp(a)

x=m, vp (a)+1

mod 7, . plm.

But then az =10y belongs to I;(m) and is a representative of the same class as
a in Cl(Oy). The kernel of the above map is P, N Ix(m) = Pr(m) and from the
inclusion Py 1(m) C Py(m) we get the exact sequence

In order to prove the finiteness of Cli(m) it thus suffices to prove the finiteness
of Py (m),/ Pl (m).

We denote by kg, ; the subgroup of k* consisting of elements a in k* such
that aOk € Py 1(m) and we define Uy, 1 = UrNky 1. If Ky, denotes the elements
«a of k* for which the fractional ideal aQy is coprime to m, then we have an
obvious surjective homomorphism of groups k% — Py(m) — Py(m)/P;1(m)
whose kernel is Uy.k | so that we obtain an isomorphism

m,1
kw/Uk kg1 = Pe(m)/ Py 1(m).
Consider the following map:

vk — [] (op/(w;"“’)))* < T ®* /R

plmo vlmoo

defined for each component by ¥(a), = a mod ﬂ'gb(p) and (o), = o,(a)
mod Rs. Note that R*/Rs¢ = {£+1} and each Op/(?'(;n(p)) is finite.
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The map 1) is well-defined homomorphism: if o belongs to k7, then v, (o) = 0

for all p|mg so that the class [@], of « in the quotient group O,/ mgl(p) is relatively

prime to wgl ®) which implies that it is invertible in this quotient by Bézout’s

identity (the local ring O, is a principal ideal domain and therefore has a well-
defined notion of divisibility and ged).

We claim that 1 is also surjective. Let ([y]y)yjm be an element of the above
product. Given any € > 0, by the Approximation Theorem (cf. [CF| Chapter 1T
§ 15), we may find « € k such that

| — ay |y <€, for all vjm.
Taking € < ming|m, {N(p) "™®)}, we see that
vp(a — ap) > m(p), for all plmg

which implies that o — ap € (F;n(p)). Moreover, for p|mg, we have

vp(a) = vp(a—ap +ap) = vp(ay) =0

so that o € k. Taking e even smaller if necessary, we see that for v real, o, («)
and o0, (a,) have the same sign which implies equality in the quotient R* /R<.
Thus 9 (a) = ([av]v)vjm and we have proved surjectivity.

The kernel of ¢ is exactly ky, ; and we therefore have an isomorphism

Kb =TT (00/(™)) ¢ T] R /Rs.
plmo vlmes

This proves that k7 / ky.1 is a finite group. By the universal property of the
quotient we have a surjective homomorphism

kb — kn/Uk-kg
and therefore the latter is finite. O

Definition 7. Let m be a modulus of k. A subgroup H of I;(m) is called a
congruence subgroup for m is it satisfies the inclusions

Pk,l(m) CHC Ik(m)

In this case, the quotient group I, (m)/H is called a generalized ideal class group
for m.

Example 1. Consider the case K = Q. This example will help better under-
stand what the ray class groups are and why we choose to include infinite primes
in the definition of a modulus. In the present case, O, = Z which is a principal
ideal domain. Consequently, the ideal class group is trivial and every fractional
ideal of Q is of the form §7Z with ged(a,b) = 1. There are only two possible
sorts of moduli in this case.

(1) Consider a modulus of the form m = mZ where m is an integer. In this
case m = mg. Write m = pi™ ...p". Then

Ig(m) = {%Z © pi ta,pi t b, ged(a,b) = 1}.
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The condition ¢ =*

% =" 1 mod m translates as a = b mod m, that is, ab~1 =
1 mod m. This last notation makes sense since b is prime to m and
thus invertible in Z/mZ. Thus Py 1(m) consists of principal fractional
ideals which can be expressed as (a/b) with ab=! = 1 mod m. We say
"expressed" since there is no unique way to write a principal ideal: the
other generator of this ideal is —a/b. Thus Py ;(m) actually consists of the
principal fractional ideals (a/b) such that ab=! = £1 mod m. Consider

the following map
Io(m) — (Z/mZ)* J{%1}, %Z — [ab™1).

This is well-defined since [ab~1] = [~ab~!] in the target and both a and
b are invertible in Z/mZ. It is clearly a homomorphism and it is sur-
jective since for any n coprime to m, the ideal nZ belongs to Ig(m) and
maps to [n]. Finally, the kernel is exactly Pg 1(m). We therefore have an
isomorphism

Clg(mZ) = (Z/mZ)* /{£1}.

(2) Let voo denote the unique archimedean place of Q. This is simply the
standard absolute value. Consider now the modulus of the form m =
mZvs. The group Ig(m) remains the same as Ig(mZ). The condition
% =*1 mod m translates as ab~* =1 mod m and ¢ > 0. Thus Py (m)
consists of principal fractional ideals which can be expressed as a/bZ with
ab=' =1 mod m and ¢ > 0. Denote by (a/b); the positive generator of

the ideal a/bZ. Consider the following map
* a —
Io(m) — (Z/mZ)*, (g)+ s [ab™ 1.

This is a well-defined surjective homomorphism of groups with kernel equal
to Pg,1(m). We therefore have an isomorphism of groups

Clg(mZvs) = (Z/mZ)*.

2.2 Finite Galois Extensions of Number Fields

We quickly review the main results concerning finite Galois extensions of number
fields and define the Frobenius element associated to a prime ideal. More details
are available in [Sam], VI or [Lil] Appendix B.3.

2.2.1 Decomposition and Inertia Groups

Let K/k be a finite Galois extension of number fields of degree n and let G =
Gal(K/k). Let p is a prime ideal in Of. The Galois group G act transitively on
the prime ideals B of Ok that lie above p. If B divides p and o € G, then we
have the relation

2] () = lo™!(z)|q, for z € K.

We define the decomposition group Dy, associated to ‘B to be the subgroup
of G given by

Dyypi={o e Gla(P) =P}
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It is the stabilizer of B. One has a surjective homomorphism of groups
D%/p — Gal(Fqg/Fp)

where Fy and [Fy, respectively denote the residue field of K at B and k at p. The
map is given by sending o to the automorphism of Fgz which sends  mod
to o(x) mod P for x € Ox. We define the inertia group Iy, of B to be the
kernel of this map so that we have the exact sequence

1 — Ig/p — Dyyp — Gal(Fy /Fp) — 1.

Remark 7. When the context is clear and there is no possible risk of confusion
we shall use the notation Dy and Iy instead of the more tedious Dy, and

I‘B/w

Because G acts transitively on the prime ideals above p, these all have the
same ramification and residual degrees that we therefore simply denote by e,
and f, respectively. We thus have the following decomposition

POk = [ o®)

0€G /Dy

and we have the degree formula n = e, f,|G/Dg| so that |Dg| = ey f,. But
Dy /Iy is isomorphic to Gal(Fy /F,) which has order f, by definition of the
residual degree. Therefore |Iy3| = ep,. It follows that B is unramified in K/k if
and only if the inertia group Iy is trivial.

The next lemma shows that the decomposition and inertia groups of two
primes lying above the same prime in O are conjugates:

Proposition 10. With the above notations, we have Dgsp)y = O'Dq30'_1 and
Ioepy = olygo™! for all o € G and all prime ideals P of O .

Proof. Fix 0 € G and a prime 8 C Ok. Let 7 be an element of the decompo-
sition group Dgz. Then

oro (0(B)) = o(7(P)) = o(P)

so that o7o~! belong to D). This proves that oGyo™! C G5 (). This holds
for all o. Applying this with the inverse o' to (), we see that 0G0 C
Gy which implies that G, ) C O’Gq30'_1 and we therefore obtain equality.

Let 7 be an element of the inertia group Iy. Then for all z € Ok,

oro Hz) —z=o(r(c™ (x)) — o7 () € o (R).

This proves that o7o~" belongs to I,y and thus olpo™" C I,p). By the
same argument as before we obtain equality. O

We will now study the relation between different inertia and decomposition
groups in finite Galois towers of number fields. Let L/K/k be such a tower. Let
p be a prime ideal in k, let 5 be one of K that lies above p and let p denote a
prime ideal of L that lies above . We have the tower of prime ideals p|B|p.
It is not difficult to see that both the ramification and residual degrees behave
multiplicatively, that is,

e(p/p) = e(p/R)e(PB/p) and f(p/p) = f(p/B)f(B/p).
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Proposition 11. With the above notation, the restriction map from Gal(L/k)
to Gal(K/k) induces isomorphisms

Deyp/Dyyp = Dyyy and Iy /I p = Inyp.

Proof. The restriction map Res : Gal(L/k) — Gal(K/k) is a surjective group
homomorphism with kernel Gal(L/K).

Consider the restriction of the above map to the decomposition group Dy, y,.
We claim that the image of this map lies in Dy/,. In fact, let o € D, /,. We
must prove that Res(o) () = P. We have o(p) = p and

Res(a)(PB) =o(PNOk) CpNOx =P

because K is a normal extension of k£ and o is a k-homomorphism so that
0(Ok) = Ok. Applying this with the inverse of sigma we obtain Res(c) ™1 () C
B so that P C Res(o)(B). This prove that Res(o) € Dy, whenever o € D, /y.
Consequently, we have a homomorphism Res : D, /, — Dy, with kernel equal
to Dy, N Gal(L/K) = D, q3. Therefore we have an injective homomorphism
of groups

Dyp/ Do — Dy

Using the fact that the ramification and residual degrees behave mutiplicatively
we see that the cardinalities of the two groups are equal and therefore the above
map is an isomorphism.

We further restrict the map Res to the inertia group I,/,. We claim that
the image of this map lies in Iyp/,. In fact, let 0 € I/, and let z € Og. By
the above we know that Res(o) € Dy /,. We have o(z) — 2 € p. We also have
o(x) —x € Ok and therefore o(z) —x € PB. This proves that Res(o) € Ip/p.
We therefore have a homomorphism Res : I/, — Iy/,. The kernel of this
homomorphism is I/, N Gal(L/K) = I,p. We therefore have an injective
homomorphism of groups

Tore/Iosm — Ipyp-

Again by comparing cardinalities, this map must be an isomorphism. O

2.2.2 The Frobenius Element

Let P be a prime ideal of O above p. The extension Fys /F,, is a finite extension
of finite fields of degree f,. The order of F, is N(p). By general theory of finite
field extensions, the Galois group of this extension is generated by the N(p)-th
power Frobenius automorphism of Fyz which is defined by z — N ®) | Since
Dy / Iz is isomorphic to Gal(Fg /Iy ), this element corresponds to an element in
Dy /Iy which we call the Frobenius element of K/k at 3 and which we denote by
(B, K /k). It generates the quotient group Dy /Isz. A representative of (B, K/k)
in Dy will be denoted o and is characterized by oq(z) = zV®) mod B for
all z € Og. Note that if p is unramified, then (3, K/k) is an actual element of
G and we will interchangeably use the notations (5, K/k) and og in this case.
The Frobenius element is then uniquely determined by the congruence condition
above and the fact that it belongs to Dg. We have the following result:
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Proposition 12. Let p be a prime ideal of k and let B be a prime ideal of K
above p. Let oy denote a representative of (B, K/k) in Dy. For all o € G, we
have copo™ is a representative of (o(P), K/k) in Dy(sp)-

Proof. First of all, by Proposition 10 we know that 00330_1 does indeed belong
to Dy(py. Let 2 € Ok. We have op(z) — x € PB. We have 07 (z) € Ok and
thus oo~ !(z) — o7 (z) € P. Consequently, we have

oopo H(z) —x = a(opoH(z) — o (2)) € ) (R).

By definition, this shows that cogo™! is a representative of (o(), K/k) in

Remark 8. If K/k is an abelian extension, meaning that G is an abelian group,
then for any prime ideal p in Oy there is only one decomposition group and one
inertia group above p since by Proposition 10 these are all conjugates. We will
therefore simply write D, and I, in this case. Also, if p is unramified, then
there is also only one Frobenius element above p by Proposition 12 and we will
denote this element by (p, K/k) or oy.

We have the following result concerning the behavior of Frobenius elements
in towers:

Proposition 13. Let L/K/k be a tower of finite Galois extensions of number
fields. Let o|Blp be a corresponding tower of prime ideals. Denote by Res
the restriction map Gal(L/k) — Gal(K/k). If o, denotes a representative of
(9, L/k) in Dy, then Res(oy,) is a representative of (B, K/k) in Dy/y.

Proof. By Proposition 11, we have Res(D,,/,) = Dgjp. Let 2 € Op. Then
oo(x) — VNP € o If z € Ok then o,(z) € Og because K/k is normal.
Thus o,(z) — 2 € Ox Np = P. Thus Res(o,,) is indeed a representative of

(B, K/k). H

Let K/k be a finite Galois extension of number fields. Let G = Gal(K/k)
and let H be a subgroup of G. We set F = K. Note that F/k is Galois if
and only if H is a normal subgroup of G. We fix a prime p in k. In F' we have
the following decomposition pOr = q5*...q%". For each i, we let f; denote the
residual degree of q; over p. For each q; we let B; denote a prime of K that lies
above q; and we denote by e} and f/ the associated ramification and residual
degrees of B, over q;. We let e and f be the ramification and residual degrees
of P; over p. We have the following formulas:

Zeifi = [F: K] e = eie; f=Fffi
i=1

The prime ideal 3; all lie above p and G acts transitively on the prime ideals
of Ok that lie above p. We let n; € G be such that n;(P1) = P;. Let D;
and I; be respectively the decomposition and inertia groups of 3; over p. Then
by Proposition 10 we have D; = mDm;l and I; = 171-[177;1. Let 01 € Dy be
an element such that (1, K/k) = o117 and choose o; € D; such that o; =
mami_l by Proposition 12. Note that D; N H and I; N H are respectively the
decomposition and inertia groups of 3; over q;. The order of the group D, is
ef and the order of D; N H is ¢} f/ and thus the index of D; N H in D; is e; f;.
Let {vi,} for v =1,...,e;f; be a system of right coset representatives of the
quotient D;/(D; N H).
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Lemma 3. With the above notations, the family {v;,n;} fori=1,...,r and
v=1,...,e;fi is a system of distinct right coset representatives of the quotient
H\G.

Proof. We first prove that they each represent a distinct coset. Suppose that
H~; vni = Hy;,,m;. Then fywnmj_lvj_’; € H. Since v, , belongs to D; we have

Vi (B;) = B; and thus 77 'y, (B;) = Pa. Since n;(P1) = P, and 7, ,, belongs
to D;, we see that 'yi_,,,nm;l'y;j (B;) =*B;. But elements of H permute divisors
of prime ideals in O and therefore we must have that *B3; divides q; which
implies that ¢ = j. But then ’yi,y'y;i € H so that v;, and v; , represent the
same element in the quotient (D; N H)\ D; and this implies v = . This proves
that each element of our system represents distinct cosets. Since our system
is comprised of >, _,eifi = [F : k] = [G : H] elements we have proved our
claim. O

Lemma 4. With the above notations, for each i we let ¢; be an element of the
decomposition group D; N H of B; over q; such that (B;, K/F) = ¢i(I; N H).
For any integer j, the intersection o] I; N H 1is non-empty if and only if f; divides
j. Moreover, if this is the case, then

oI, H = ¢/ (I, N H).

Proof. Suppose that O'{T belongs to H for some 7 in I;. Then by definition of

the inertia group, for all z € Ok, we have o) 7(z) = o) (x) mod ;. The residue

field Ok /P, is an extension of Op/q; of degree f/ and since o7 belongs to H,
U{T(x) = gz for all z in Op. By definition of the Frobenius element, o;(x) =
2N ®) mod P, for all z in Ok. By composition, af (z) = 2N® mod PB;. But
we just saw that a{ 7 corresponds to an element of the Galois group of the
extension (Ok /B;)/(Or/q;) which is a cyclic group generated by the Frobenius
automorphism ¢; : z — v ®’ Thus of 7 is some power of ¢;. This implies
that f; divides j.

Suppose that this is the case. The element ¢; is characterized by the fact
that ¢;(z) = NP mod B, for x in Ok . Thus agT and ¢7/f have the exact
same effect on Ok /P; and they both belong to D; N H. They therefore share
the same coset of I; N H. This implies that

olI;nH c ¢!/7 (1,1 H).

If 7 belongs to I; N H then for all z € Ok, qbk/fiT(x) = (bf/fi () mod*P; =

2N @)’ mod 9B; and therefore qﬁf/f’ﬁ' has the same effect as o7. Both belong to
D; and thus share the same coset of I;. Since qbg/fiT also belongs to H, we get

¢)Z/f" (I; N H) C o) I; " H and this finishes the proof. O

2.3 The Artin Map

Let K/k be a finite abelian extension of number fields with Galois group G.
Let p be an unramified prime ideal of k. By Proposition 10 and Proposition 12,
the decomposition group Dsy, the inertia group Iz and the Frobenius element
(B, K/k) do not depend on the prime P dividing p since we are in the case
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where G is an abelian group. We will therefore use the notation D, I, and
(p, K/E).

Let m be a modulus of K that is divisible by all prime ideals of O, that ramify
in k. Let p be a prime ideal that does not divide m. Since it is unramified in K,
the inertia group I, is trivial and the Frobenius element (p, L/K) is an element
of the decomposition group D,. In this case, (p, K/k) is also called the Artin
symbol of p. We extend the notion of Artin symbol to Ij(m) multiplicatively.
Explicitly, if a = [], pU(%) is a fractional ideal in Ij(m), then all the primes in
its decomposition are unramified and we may define its Artin symbol by

(0. K/k) = [0 K /)@ € G,
P

Definition 8. With the above notations, the group homomorphism
Cr/m : Ip(m) — Gal(K/k), ar— (a, K/k)

is called the reciprocity law map or the Artin map of K/k relative to the modulus
m.

Notice that if p is unramified in K/k, then (p, K/k) is trivial if and only
if Gal(Fy/F)p) is trivial, that is, if and only if f, = 1. So p has trivial Artin
symbol if and only if p splits completely in K/k.

2.4 Main Results

Before stating the theorems, we make the following definition:

Definition 9. Let K/k be a finite extension of number fields. If v is an infinite
real prime of k, then we say that v is unramified or that it splits in K/k if for
every extension 7 of o, to K we have 7(K) C R. A complex infinite prime of &k
is always said to be unramified or split.

The first theorem of class field theory is due to Artin and says that the Galois
group of any finite abelian extension of number fields is a generalized ideal class
group for some modulus of k. The precise statement is as follows:

Theorem 2.4.1 (Artin Reciprocity). Let K/k be a finite abelian extension of
number fields and let m be a modulus of k containing all primes, finite or infinite,
that ramify in K. The following statements concerning the Artin map are true:

(i) The map Pg/pm is surjective.

(ii) If the exponents m(v) of the modulus m are sufficiently large, then the
kernel of @k /i m is a congruence subgroup for m, that is,

Pk,l(m) C ker(fl)K/k)m) C Ik(m)
The isomorphism
I (m) /ker (P g /i m) = Gal(K/k)

shows that Gal(K/k) is a generalized ideal class group for m.
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Suppose that K/k is a finite abelian extension and that Gal(K/k) is a gen-
eralized ideal class group for a modulus m. Let n be a modulus of k that is
divisible by m. It is clear that Py 1(n) C Py1(m) and Iy(n) C Iy(m). The
map P /p, o is the restriction of the map ® g /4, to I(n) so that ker(Pg i n) =
ker(® /i, m) NI (n) contains Py 1(m) NI (n) which contains Py 1(n). Therefore,
we have

Pk’l(‘ﬂ) C keI‘((I)K/k_’n) - Ik(‘fl)

This proves that Gal(K/k) is a generalized ideal class group for infinitely many
moduli. But as the following theorem shows, there is a preferred modulus.

Theorem 2.4.2 (Conductor Theorem). Let K/k be a finite abelian extension
of number fields. There exists a modulus f = §(K/k), called the conductor of
K/k, such that:

(i) A prime of k, finite or infinite, ramifies in K if and only if it divides f.

(i) Let m be a modulus of k divisible by all primes, finite or infinite, that
ramify in K. Then ker(®g/,, m) is a congruence subgroup for m if and
only if § divides m.

To the Galois group of any finite abelian extension of number fields, one
can associate a congruence subgroup given a suitable choice of modulus. The
following theorem gives a converse result:

Theorem 2.4.3 (Existence Theorem). Let k be a number field, m a modulus of
k and H a congruence subgroup for m. There exists a unique abelian extension
K/k all of whose primes that ramify divide m and such that H = ker(®g j m)-

Given the above results of class field theory we deduce the following.

Corollary 7. Let K/k and L/k be two finite abelian extension of the number
field k. Then K C L if and only if there exists a modulus m of k divisible by all
primes in k that ramify in either K or L such that

kal(m) C ker(CI)L/k,m) - ker(CDK/k7m).
Proof. Suppose that K C L and consider the restriction map
ri : Gal(L/k) — Gal(K/k)

that has kernel equal to Gal(L/K). By Theorem 2.4.1, there exists a modulus
m of k divisible by all primes that ramify in L and such that

Pk,l (m) C ker(d)L/k’m).

If a prime of k ramifies in K, then it also ramifies in L. Thus m contains all
primes that ramify in K. Let p be a prime ideal in O, that is unramified in L.
Then it is also unramified in K and by Proposition 13 we have rx ((p, L/k)) =
(p, K/k). This implies that rx o @/ m = Pr/km and therefore ker(®p/pm) =
<I>Z/1k7m(Gal(L/K)). The latter implies in particular that ker(®g /x ) contains
ker(®y i m). This proves that

Pkyl(m) - ker(@L/kvm) C ker(@K/k,m)

as desired.
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Conversely, suppose that the above inclusions hold for a certain modulus
m. This implies that ker(®x k) is a congruence subgroup for the modulus
m. Define H = ®p/p w(ker(®g/pm)). This is a normal subgroup of the group
Gal(L/k) since the latter is abelian. Hence the fixed field L7 C L is an abelian
extension of k. By the reasoning of the first part,

ker(®pm /p, m) = ‘I’Z/l;@m(H) =ker(®p/pm)-ker(Px/pm) = ker(Pr/pm),

where in the last equality we used the inclusion ker(®y, /4 ) C ker(®g/4,m). By
the uniqueness part of Theorem 2.4.3, we must have K = L and in particular
K CL. O

2.5 Ray Class Fields

Let k be a number field and let m be a modulus of k. Then P i(m) is a
particularly simple example of a congruence subgroup for m. Theorem 2.4.3
ensures that there exists a unique abelian extension of k, say k(m), that has the
following properties:

e All primes of k that ramify in k(m) divide m.
e The kernel of the Artin map ®p(m)/x,m is Pr,1(m).

The second property and Theorem 2.4.1 ensure that we have the exact sequence
1 — Pyi(m) — I(m) — Gal(k(m)/k) — 1.

In particular, the m-ray class group Cli(m) is isomorphic via the Artin map to
Gal(K(m)/K). As a consequence, the field k(m) is referred to as the m-ray class
field of k.

Proposition 14. Let K/k be a finite abelian extension of number fields. There
exists a modulus m of k such that K C k(m). In particular, K is a subfield of
k(n) for any modulus n divisible by m. Moreover, the conductor of K/k is the
smallest modulus for which K is a subfield of the corresponding ray class field.

Proof. By Theorem 2.4.1, there exists a modulus m such that

Pp1(m) = ker(®pm)/k,m) C ker(Pr/pm)

and then by Corollary 7 K is a subfield of k(m). This proves that if Gal(K/k)
is a congruence subgroup for some modulus, then K is a subfield of the cor-
responding ray class field. Since Gal(K/k) is a congruence subgroup for any

modulus n divisible by m the result follows. The final statement is clear from
Theorem 2.4.2. O

A consequence of Proposition 14 is that the description of the ray class fields
of a given number field provide a good description of the finite abelian extensions
of this field. In the next example, we shall give the ray class fields in the simplest
case k = Q.

Example 2. Let m be an integer larger or equal to 3 that is either odd or
divisible by 4 so that ¢(m) is even. Here, ¢ denotes the Euler totient function.
Let ¢ be a primitive m-th root of unity and consider the cyclotomic extension
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Q(¢)/Q. It is well known that this extension is abelian of degree ¢(m) with
Galois group isomorphic to (Z/mZ)*. Also, it is known that Og) = Z[(] and
the absolute discriminant is
_1)6(m) /2, 6(m)
do(¢) = ) ¢(m)772 —1)°
Hp\mp P

(2.5.0.1)

The latter implies that the primes p that ramify in Q(¢) all divide m. Moreover,
since m is greater than 3, the infinite place vy, of Q ramifies in Q(¢). Therefore,
the modulus m = mZvs, contains all ramified primes of Q in Q(¢). Consider
the composition map

Iom) —  (Z/mZ)" — Gal(Q(()/Q)
(%)+ Z +— ab”!' modm
a modm +—— (04:(— ().

This is the Artin map ®qg(¢)/Q,m- By Example 1, its kernel is Pg i(m). Thus
Q(¢) is the (mZuvy )-ray class field of Q.

Let K = Q(¢)" be the maximal real subfield of Q(¢). Every field homo-
morphism of K into K is obtained by restricting o, : ¢ — ¢® to K for some
a € (Z/mZ)*. A basis of Q(¢) as a Q-vector space is given by 1,¢,..., (¢ =1,
If + € K, then there exist rational numbers \; such that z = ), NCOTIf T
denotes complex conjugation, then

T(oa(x)) =7 (Z AlC”) = Z M7 = o,(7(z)). (2.5.0.2)
1 ]

Since x is real we have 7(x) = x and therefore 7(0,(z)) = 04(z) so that o,(z) is
also real. Thus o,(K) is a real subfield of Q(¢) and must therefore by definition
of K be contained in K. This proves that K/Q is a normal extension and thus
abelian. Moreover, since ( is a root of unity its absolute value is 1 and its inverse
is 7(¢). By (2.5.0.2) it follows that o4 (z) = 0_4(x) so that 4|k = 0_o|Kx. Asa
consequence, the Galois group G of K/Q is isomorphic to (Z/mZ)*/{£1} and
the degree of the extension is ¢(m)/2. Let p be a prime number. If p does not
divide m, then p is unramified in Q(¢) and therefore also unramified in K. Thus
a prime that ramifies in K must divide m. Moreover, since K is totally real the
infinite prime v, is unramified in K. Thus, all primes that ramify in K divide
m. Finally, the composition map

Io(mZ) — (Z/mZ)*/{£l} —  Gal(K/Q)
47 — [ab™! mod m]
[a mod m] —  (0alk (=),

is the Artin map ® g /g mz and by Example 1 its kernel is Pg,1(mZ). We conclude
that K is the mZ-ray class field of Q.

We now show how class field theory can be used to prove the famous:

Theorem 2.5.1 (Kronecker-Weber). Any finite abelian extension of Q is a
subfield of some cyclotomic field Q(C).

Proof. Let K/Q be a finite abelian extension. By Proposition 14 there exists a
modulus m of Q such that K is a subfield of Q(m) and this is true for all moduli
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divisible by m. In particular, it is true for some modulus of the form (mZvy,).
By Example 2, Q(mZvs) = Q(¢,n) where (,, is a primitive m-th root of unity
and the proof is complete. O

We remark that the Kronecker-Weber Theorem was proved long before the
development of the theory of class fields. The result was stated by Kronecker
in 1853 and proved by Weber in 1886. It can be viewed as the starting point of
what is today known as class field theory.

If k£ is a number field, a particularly interesting ray class field is the one
corresponding to the empty modulus 1 of k. This field is called the Hilbert
class field of k and is often denoted by Hy or simply H when there is no risk of
confusion.

Proposition 15. Let k be a number field. The Hilbert class field Hy has the
following properties:

(i) It is the mazimal everywhere unramified abelian extension of k.

(i) Its Galois group Gal(Hy/k) is isomorphic to the ideal class group Cl(O)
of k via the Artin map.

(iii) A prime ideal splits completely in Hy /k if and only if it is a principal ideal
Of Ok‘

Proof. By definition of the ray class field, every prime that ramifies in Hy must
divide the modulus 1. Thus, no prime of & is ramified in Hy. In other words, Hy
is totally unramified. If K is any finite abelian extension of k that is unramified
everywhere, then by Theorem 2.4.2 (i), the conductor of K/k must be 1. By
Proposition 14, K is a subfield of Hy. Therefore, Hg is indeed the maximal
totally unramified abelian extension of K.

The second claim follows from the fact that I (1) = I, and Py 1(1) = Py so
that Clk(l) = Cl(@k)

A prime splits completely if and only if its Artin symbol (p, Hy/k) is trivial
which is true if and only if p belongs to the kernel of the Artin map ®g, /i, -
But this kernel is P hence the result.
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Chapter 3

Linear Representations of
Finite Groups

We give an introduction to the theory of finite-dimensional complex linear rep-
resentations of finite groups. We closely follow the exposition in [Sel|. In this
section, by representation or linear representation we mean finite-dimensional
complex linear representation.

3.1 Definition and First Properties

Let G be a finite group. A linear representation of G is a finite-dimensional com-
plex vector space V together with a homomorphism of groups p : G — GL(V).
A representation of G will most often simply be referred to by V', keeping the
homomorphism p implicit. When in need of specifying the homomorphism we
will talk about the representation (p, V).

The homomorphism p gives a left action of G on V defined by
GxV —YV, (o,v) — p(o)(v).

We will often denote the action of o on v simply by cv. Consequently V' has the
structure of a finite-dimensional complex vector space and a left G-module and
these two actions commute: V' is a finite-dimensional left C[G]-module where
C[G] denotes the group ring of G over C. This is a free C-vector space whose
basis is one-to-one with G. It is a ring with multiplication extending linearly
the one of G. As a C-algebra it is isomorphic to @, Co.

Conversely, a finite-dimensional C[G]-module is a linear representation of G.
Both points of view will turn out to have their advantages. The words C[G]-
module and representation will be used interchangeably and both will implicitly
contain "finite-dimensional".

Remark 9. Let V be a C[G]-module. An element o of C[G] can be viewed a
C-linear map « : V' — V. In order for this map to be a C[G]-homomorphism,
it is necessary and sufficient that « be central in C[G], that is, for all 8 € C[G],
we have a8 = Sa. It even suffices to check this only in the case 5 € G since C
is commutative.

93
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Let G be a group. Two representations V; and V, of G are said to be
isomorphic if they are isomorphic as C[G]-modules. In other words, there exists
an isomorphism f : Vi — V5 of C-vector spaces such that for all ¢ € G and all
x € V1, we have o f(z) = f(ox).

Another remark concerning the definition of a linear representation is that
upon choosing a basis for the n-dimensional complex vector space V', we can
identify GL(V) with GL, (C), the set of all n x n invertible matrices with coef-
ficients in C.

Let V4 and V5 be two representations of G and let f : Vi — V5 be an
isomorphism. Choose bases for V; and Vo and let Ri(0) and Rs(o) denote
the respective matrices in GL(V}) and in GL(V3) of o € G. Let A denote the
matrix of f with respect to these bases. Then the fact that f is an isomorphism
of representations tells us that Ry(c) = A~'Ry(c)A for all o € G.

Let G be a finite group and let V' be a representation. A subrepresentation
W of V is a sub-C[G]-module of V. In other words, W is a sub-vector space of
V' that is stable under the action of G.

Proposition 16. Let G be a finite group. Then C[G] is a semisimple ring.

Proof. It is enough to prove that any left C[G]-module is semisimple (cf. [Ro2],
Chapter 4, Proposition 4.5). So let V be a left C[G]-module. Showing that V'
is semisimple is equivalent to proving that every sub-module of V is a direct
summand (cf. [Ro2], Chapter 4, Proposition 4.1). Let therefore W be a sub-
C[G]-module of V. In particular, W is a sub-vector space of V so there is a
projection map p : V. — W, that is, a C-linear map such that p(z) = « for all
x € W and p(V) = W. Let g denote the order of G and define

1
0 —1
p—fE opoc V. — V.
g

We claim that p°(V) = W. In fact, let v € V. Then p(c—1v) € W since p is
a projection and o(p(c~1v)) € W since W is stable under the action of o. Let
w € W. Since W is stable under the action of o—!, we have o~ 1w € W. Since
p is a projection onto W we have p(c~tw) = o~!w so that p’(w) = w. This
proves that p° is a projection onto W.

We now prove that p® is a C[G]-module homomorphism. The actions of C
and of G on V commute and p is C-linear. We conclude that p° is also C-linear.
Let 7 € G. Then for all v € V we have

1 1
() == Toplev) = =Y npn~'rv = pO(rv)
9 oceG g neG

where we performed the change of variables n = 7o. We conclude that p° is a
C[G]-module homomorphism. If W° = ker(p"), then we have an exact sequence
of C[G]-modules

0— W' —VvV 2 w-—o.

Let i : W < V be the inclusion. Then p” o = id|y so i is a section and the
sequence splits and V = W @ W9 We conclude that W is a direct summand of
V. O
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Remark 10. Semisimple rings R are specially nice to work with since every
short exact sequence of left (or right) R-modules splits and every left (or right)
R-module is semisimple and projective (cf. [Ro2], Chapter 4, Proposition 4.5).
In particular, every left (or right) R-module is flat.

Definition 10. Let G be a finite group. A representation V of G is said to be
irreducible if it is simple as a C[G]-module.

Corollary 8. Every representation V' of G can be written as a finite direct sum
of irreducible representations.

Proof. In fact, C[G] is a semisimple ring so the C[G]-module V is semisimple
as a module. By definition of semisimplicity, it can be written as a direct
sum of simple sub-modules (or irreducible representations). Since V is finite
dimensional over C, the representation V' can be written as a finite sum. O

Remark 11. One can ask if the decomposition of a representation V into a
direct sum of irreducible representations is unique. We quickly realize that
this is not the case: suppose that the action of G on V is trivial. Then each
irreducible component of V' is a one-dimensional complex vector space and there
are many ways to decompose a vector space into a direct sum of lines.

3.2 Character of a Representation

Let G be a finite group. Let (p, V) be a representation of G of dimension n. If
we choose a basis of V' over C, then p(c) becomes an n x n invertible matrix
with coefficients in C and we can define the trace and the determinant of p(o)
as a matrix. These quantities associated to o are independent of the choice of
basis since changing basis leads to a matrix that is conjugated with respect to
the previous one. We can therefore speak of the trace and the determinant of
p(o) without ambiguity.

With this in mind, we define the character associated to the representation
(p, V) to be the complex valued function

x:G—C, o — tr(p(0)).

If the dimension of V is n, then y is a said to be of dimension n and if V is
irreducible as a representation, then y is said to be an irreducible character.

Note that if (p1, V1) and (p2,V2) are two isomorphic representations of G
with respective characters x; and ys2, then x; = x2. In fact, we noted in
the previous section that in the given case, the matrices p;(o) and py(o) are
conjugates and therefore their traces coincide. Later we will see the converse:
if two representations of G have the same character, then they are isomorphic
as representations. Thus the study of representations reduces to the study of
characters of G.

We remark that a representation V of dimension 1 coincides with its char-
acter x. In this case, y : G — C* is a homomorphism of groups which takes
values on the unit circle S! since G is finite.

In what follows we use the notation Z to mean the complex conjugate of the
element z.

Proposition 17. Let G be a finite group and let (p, V') be a representation with
character x. We have the following properties:
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(i) x(1) =dimc V.
(ii) x(c=1) = (o) for all o € G.
(iii) x(tor™1) = x(0) for all 0,7 € G.

Proof. By definition we have x(1) = tr(p(1)) = tr(id) = dimc¢ V. For the
second assertion, let A;(c) denote the eigenvalues of p(o) for ¢ € G. Since p
is a homomorphism and G is finite, the matrix p(c) is of finite order and it

follows that the same is true for the eigenvalues. In particular, |\;(o)] = 1 so
that A\;(0)~! = X\;(0). Thus,

X0 = (o)) = S o) = S N) = Xl

The last assertion follows directly from the fact that the trace operator com-
mutes pairs of elements. O

Let x be a character of G and denote by Q(x) the finite field extension of Q
obtained by adjoining to Q all the values x(co) for o € G.

Proposition 18. Let x be a character of a representation (p,V) of G. Then
Q(x) is an abelian extension of Q.

Proof. Denote by A;(o) the eigenvalues of p(c). Let g denote the order of G.
Then X;(0) is a g-th root of unity for all 7 and all 0. Let ¢ denote a primitive
g-th root of unity. Then Q(x) is contained in the cyclotomic field Q(¢) and
every embedding of Q(x) into C is the restriction to Q(x) of o, : ¢ — ¢ for
some a € (Z/gZ)*. We have

7a(x(0) = 3 0u(M(0) = 3 Al0)” = X(0") € Q)

so that Q(x)/Q is a normal extension and thus Galois. It is a subextension of
the abelian extension Q(¢)/Q and is therefore itself abelian. O

3.3 Representations of Quotient Groups

Let G be a finite group and let H be a normal subgroup of G. Let V be a
representation of the group G/H. This is a finite-dimensional C[G/H]-module.
The natural quotient map G — G/H endows G/H with the structure of a
G-module. This G-module structure on G/H gives a G-module structure on V,
making it into a representation of G. Denote this new representation by InﬂgV
or simply InflV and call it the inflation of V. Note that

Infl : C{g/H]Mod — C[g]MOd
is an exact functor from the category of left C[G/H]-modules to the category
of left C[G]-modules.
We denote by Inflx the character of InflV which is given by the diagram

Infly : G — G/H = C.
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Conversely, starting with a representation V' of G we would like to define a
representation of G/H. Consider the subspace V' of H-invariants. Explicitly,
we have

VE={veV :or=uaforalocH}.

This is a sub-C[G]-module of V. In fact, let 0 € H and 7 € G. Since H is normal
in G, there exists o/ € H such that o7 = 70’. Hence, if v € V then o(rv) =
7(c’v) = v and 7v € VH. So we have a homomorphism G — GL(V).
The kernel of this map contains H so this map factors through H and gives a
homomorphism G/H — GL(V#). In other words, VI is a representation of
G/H. If  is the character of V, then we denote by x*! the character of V. If
o € G, then we shall use the notation [o] to denote the image of o in G/H.

Consider Z as an H-module, the action of H being trivial. Let Homg (Z, V)
denote the set of H-module homomorphisms f : Z — V. This a group under
addition and inherits the structure of a C[G]-module from V. Explicitly, the ac-
tion of an element x € C[G] is defined by (xf)(n) = xf(n) where the right hand
side makes use of the action of C[G] on V. The action of H on Hompg(Z,V) is
trivial since for o € H we have (o f)(n) = f(on) = f(n). Therefore Hompy (Z, V)
has the structure of a G/H-module. Note that an element f € Hompy(Z,V) is
uniquely determined by the image f(1) in V. Moreover, as an element of V,
f(1) is fixed by H. We therefore have a bijection of sets between Hompg (Z, V')
and VH# which is a C[G//H]-module isomorphism.

Note that

(7)H = HomH(Z, 7) : C[@]Mod — C{(;/H]Mod

is a covariant left-exact functor from the category of left C[G]-modules to the
category of left C[G/H]-modules.

Proposition 19. Let G be a finite group and H a normal subgroup of G. Define

1
Npg ==Y 7eC[H]
‘H| TEH

This is a central element of C[G]. Moreover, if V is a representation of G, then
Ny acts on 'V as the projection onto V.

Proof. We check that this is a central element of C[G]. In fact, if 0 € G then
we have

1 1
oNyg = — oT = — 7’0 = Nyo
2,7 2

where we performed the change of variables 7/ = 070! and used the fact that
the subgroup H is normal to deduce that 7" € H. Note that if o € H, then
0Ny = Nyo = Ng. Moreover, if v € VH then Nyv = v. Thus the action of
Ny on V is the projection onto V. O

Corollary 9. Let G be a finite group and H a normal subgroup of G. Let V' be
a representation of G with character x. For o € G we have

" 1 1
X" (lo]) = @;x(m) =T > x(o7).

TEH
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Proof. We compute that

x?([0]) = tr([o]Ny) = tr(Ngo) = \H| Z tr(ro) = =1 TEZH TO)

The last equality is obtained by change of variables and by using the fact that
H is a normal subgroup. O

Corollary 10. Let G be a finite group and H a normal subgroup of G. Let V
be a representation of G with character x. We have

dime VH =

2
Proof. By Corollary 9 we have x([0]) = ﬁ > -cm X(07) and by Proposition
17 (i) we have

. H _
dimc V ‘H| > x(r
TEH

3.4 Representations of Subgroups

Let G be a finite group and let H be a subgroup of G. Let V be a representation
of G. This is a C[G]-module. The natural inclusion H — G endows G with
an H-module structure. Consequently, this inclusion gives V' the structure of a
C[H]-module. In other words, V is a representation of H. This representation
will be denoted ResV or Res% V. Note that

Res : C[g]MOd — C[H]Mod

is an exact functor from the category of left C[G]-modules to the category of left
C[H]-modules. If y is the character of V', then we denote by Resy the character
of ResV given by the diagram

Resy: H — G =% C.

Conversely, given a representation V of H we would like to define a repre-
sentation of G. In other words, given a C[H]-module V', we would like to give it
a C[G]-module structure. The answer to this problem is provided by the tensor
product of modules and we define the induced representation IndV or IndgV
to be

IndV = (C[G] QcH] V.

By properties of the tensor product, IndV is uniquely defined up to isomorphism.
Note that
Ind = C[G] QcrH) — ¢ C[H]Mod — C[g]MOd

is an exact functor from the category of left C[H|-modules to the category of
left C[G)-modules by Remark 10.

If x is the character of V' then we denote by Indy the character of IndV.
In order to give an expression for Indx (o) with ¢ € G and actually be able to
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do computations, we need a more explicit description of IndV. We have the
following decomposition of C[G] as a complex vector space:

Clal=2=@Co= @ P cCo= fH Pcrr= H ClHM

ocG reH\GocHr re H\G TeH re H\G

Denote by 1 : C[G] — €D, ¢\ C[H]r this isomorphism. Define a G-action
on B, g\ ClH]r as follows: if 0 € G and v € €D, g\ ¢ C[H]r, then we define

o(v) = (o (¥™"(v)).

Then the map ¢ becomes an isomorphism of C[G]-modules.

One can explicitly write down this action: let ¢ € G and let r € H \ G.
Then or € Hr' for some v’ € H \ G and therefore there exists 7 € H such that
or = 7r’. The action of o on C[H]r is given by o(ar) = 7(a)r’ for a« € C[H].
Extend this linearly to @TEH\G C[H]r.

By general properties of the tensor product, we see that

mdv= @ vr (3.4.0.1)
re H\G

as C[G]-modules. In particular, dim¢ IndV = |H \ G| dim¢ V.

Theorem 3.4.1. Let G be a finite group and H a subgroup of G. Let V be a
representation of H with character x. Let R be a full set of representatives of
the right cosets of H\ G. Then for o € G we have the formula

Indy (o) = Z X(r_lm“):ﬁ Z x(t7tor).

reR TEG
r~lorcH r—loreH

Proof. Let R = {ry,...,r;}. Take as basis for IndV the one of @le Vr;. Then

if o € G we have
k k
g (Z Uﬂ‘qi) = Zﬂi(vi)’rs(i)

i=1 i=1
where or; = 7ry;) with 7; € H and s an element of the permutation group
Sy of nelements. Express o in matrix form in this basis. If r,;) # r;, then we
get only zeroes on the diagonal in the part of the matrix where we plug in the
image of the basis vectors of Vr;. So the trace only takes into account the i’s
for which ry;y = r;. This happens exactly whenever r;” Yor; = 7, € H and the
sum of the diagonal terms in this part of the matrix is x(7;). Taking the trace
of the whole matrix we get

k k
Indx(o) = > x(m)= > x(r;'or).
i=1 i=1
o toreH o eH
To prove the second formula, note that if 7 is in the coset defined by r;, then 7 =
r;h for some h € H and by Proposition 17 (ii4), x(7~'o7) = x(h~'r{‘orih) =

x(r;tor;). Since there are |H| elements in each coset, we see that

> x(r7lor) = [H|x(r; 'ors)
TEHT;
r—loreH

and the second formula follows. O
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3.5 The Dual Representation

Let G be a finite group and let V' be a representation of G. Denote by V'V the
dual vector space Home(V,C) of V.

Proposition 20. Let G be a finite group and let V' be a representation of G
with character x. The dual VV has the structure of a left C[G]-module and is
therefore a representation of G. Moreover, its dimension is the one of V and
its character is X. Finally, V is irreducible if and only if V'V is irreducible.

Proof. Let 0 € G. Then we define a left action on VV by setting (o.f)(v) =
f(o=tv) for f € VV and v € V. One easily checks that this is indeed an action.
Let x1,...,x, be a basis for V as a C-vector space and denote by x!,...,z"™ the
corresponding dual basis. Explicitly, we have

i=1

Let M (o) be the matrix expression of o in the basis 21, ..., z,. Then the matrix
expression of o in the dual basis is the transposed matrix M (oc=1)!. It follows
that the character of V'V is given by o — x (0~ !). By Proposition 17 (ii), this
is x.

Finally, suppose that V'V is reducible. Then its character can be written as
a sum of character f; + 5. Since its character is Y, we obtain y = 6; + 6, which
is a contradiction. The converse is similar. O

Proposition 21. Let G be a finite group and let V and W be two representations
of G. Then we have an isomorphism of C[G]-modules

VY ®c W — Home(V, W).
Proof. Define
F:VYxW — Home(V.W),  (fiw) — (v— f(v)w).
We check that this map is biadditive. If f1, fo € V'V, then
F((fr + f2,w))(v) = (f1 + f2) (v)w = F((f1, w))(v) + F((f2, w))(v)
so F'is linear in the first variable. If w; € wy, then
F((f, w1 4+ w2))(v) = f(v)(wr +w2) = F((f,w1))(v) + F((f, w2))(v)

so F' is linear in the second variable.
Moreover, if A € C, then

F((fAw))(v) = (F M) (0w = fAv)w = f(v)(Aw) = F((f, lw))(v).
By the universal property of the tensor product, there is a unique C-linear map
F VY ®&cW — Home(V, W)

such that F(f @ w) = F((f,w)).
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We check that F is injective. In fact, suppose that (f ®w) = 0 for all f
and w. Then f(v)w =0 for allv € V. If w # 0, then f(v) = 0 so that f = 0.
in either case, f ® w = 0. Finally, since

dim¢ VY ®@c W = dim¢ Home (V, W) = dime V dime W

we must have that F is an isomorphism of C-vector spaces.
Note that VY @c W € ¢jg/Mod where the action is given for o € G by

o.(fow)=(fo ) (ow).
Also, Homc(V, W) € ¢jgjMod where the action is given for o € G by

(0.9)(v) = og(c™ 0).
Let 0 € G. Then
Flo.(f@w)) = F((fo ') ® (ow)) = fo™v)(ow) = (0.F(f @ w))(v)
so that F is a C[G]-isomorphism. O
Corollary 11. Let G be a finite group. Let V and W be two representations of G

with respective characters xv and xw. Then the character of the representation
Homc(V, W) is xvxw-

Proof. By Proposition 20, the character of the dual representation V'V is ¥y .
One checks easily that the character of the tensor product of two representations
is the product of their characters. Therefore the character of the representation
VYV ®c W is Yxyxw. By Proposition 21, the representations VV ®c W and
Homg (V, W) are isomorphic and thus share the same character. O

Corollary 12. Let G be a finite group and let V and W be two representations
of G. Then we have an isomorphism of complex vector spaces

vV Qcia W - HomC[G](V, W).
Proof. We have
Homg(g(V, W) = Home (V, W) and VY @cig) W = (VY @c W)°.

Since (—)% is a functor we get the desired result by using Proposition 21.  [J

3.6 Orthogonality Relations for Characters

In order to talk about orthogonality we must first define a scalar product on
characters. Let G be a finite group and define 7 (G, C) to be the space of complex
valued function ¢ : G — C. This is a complex vector space of dimension |G|.

Definition 11. Let G be a finite group of order g. We define the bilinear
symmetric operator

(g : F(G,C) x F(G,C) — C, qu

UEG

and the inner product

UGG
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Remark 12. Let ¢, € F(G,C). If we define Y:G— Chyow— o),
then (o|Y), = <¢,z/J>G. In particular, if y is a character of G, then Y = x by
Proposition 17 (iz) and thus (¢X)s = (6, X) -

Lemma 5. Let G be a finite group. Let V and W be two representations of G
with respective character xyv and xw. Then we have

dim(c HomC[G](V, W) = (XV|XW)G .

Proof. We have Homcg(V, W) = Homc(V, W)¢ and by Corollary 11 the char-
acter of the representation Home (V, W) is Yy xw. By Corollary 10, we have
. 1 _ —_—
dimc Home (V, W) = il > xvio)xw(o) = (xwlxv)g = Oevlixmw)g:
oceG

Since dime Homg (V, W)% is an integer, complex conjugation has no effect here
and we obtain the desired result. O

Lemma 6 (Schur). Let G be a finite group and let Vi and Va be two irreducible
representations of G. Let f : Vi — Vi be a C[G]-module homomorphism. Then

(i) If the two representations are not isomorphic, then f = 0.
(i) If Vi = Vi, then f is a homotethy.

Proof. For the first assertion, we will show that if f is not zero, then it is
necessarily an isomorphism. Suppose therefore that f is non-zero. Consider the
sub-C[G]-module kerf of V;. By simplicity of V; we have either ker f = 0 or
ker f = Vi. The latter is not possible since f is not the zero map and therefore f
is injective. Similarly, imf is a sub-C[G]-module of V5 and by simplicity we have
either imf = V5 or imf = 0. Again the latter is not possible and we conclude
that f is an isomorphism of C[G]-modules.

For the second assertion, suppose that f is not the zero map and let A be
a non-zero eigenvalue of f. Define f := f — Aid. For all 0 € G and v € V', we
have

flov) = f(ov) = Aov = o (f(v)) — o (M) = o (f(v)).
In other words, f is a C[G]-endomorphism of V. In particular, ker f is a non-
zero sub-C[G]-module of V' and by simplicity we have ker f = V. This proves
that f(v) = Av for all v € V. O

Corollary 13. Let G be a finite group and let G denote the set of irreducible
characters of G. Then G forms an orthonormal system with respect to the inner
product (-]-) -

Proof. Let x and 6 be irreducible characters of G. Let V' and W be irreducible
representations of G with respective characters y and §. By Lemma 5, we have

(x]0)¢ = dimc Homgg)(V, W).

By Lemma 6, if V' and W are non-isomorphic then dim¢ Homgg(V, W) = 0
and dimc Homgg)(V, V) = 1. We conclude that

0 ifx#0
9 =
e {1 if x = 0.
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Corollary 14. Let V and W be two irreducible representations of G with re-
spective characters x and 0. Then V and W are isomorphic if and only if

(X|9)G =1

Proof. If V=2 W then x = # and by Corollary 13 we have (x|0), = 1. If V and
W are not isomorphic, then by Corollary 13 we have (x|0), = 0. O

Proposition 22. Let V be a representation of G with character ¢ and let
V=W &d...0 W,

be a decomposition of V into irreducible representations. Let x; be the character

of W; for each i. Let W be an irreducible representation of G with character x.

Then the number of W that are isomorphic to W is equal to (¢|x)q

Proof. We have ¢ = x1 + ...+ xi and therefore

@)e =Y (il

i=1

=

and by Corollary 13 this is equal to the number of i’s such that (x;[x)s = 1
which is the number of W; isomorphic to W by Corollary 14. O

Corollary 15. Two representations of a finite group are isomorphic if and only
if they have the same character.

Proof. We already know that if two representations are isomorphic, then they
have the same character. The converse follows Proposition 22. O

The following is a useful criterion to determine whether or not a representa-
tion is irreducible.

Proposition 23. Let V be a representation of G with character ¢. Then V
is irreducible if and only if (¢|¢), = 1. Moreover, (4|¢)s is always a positive
mteger.

Proof. Let x1,...,xn denote the distinct irreducible characters of G with cor-
responding representations Wy, ..., W}. Then the representation V' has a de-
composition

V=Weo.. owWdm

where the m; are natural numbers. Thus ¢ = mix1 + ... + mpxn and by
Corollary 13 we have m; = (¢|x;) for all i so that ¢ = 2?21 (1Xi) e Xi-

We see that (¢|@)g = >, ; mum; (Xilxj)g = 2 m? and this is a positive
integer. If ¢ is irreducible, then we already saw that (¢|¢), = 1. On the
other hand, if (¢|¢); = 1 then >, m? = 1 and therefore there exists j such
that m; = 1 and m; = 0 for ¢ # j and this implies that ¢ = x; which is
irreducible. O
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3.7 The Canonical Decomposition

Let G be a finite group of order g. Let G denote the set of distinct irreducible
characters of G and for each x € G let n, be the dimension of x.

If V is a representation of G with character 8, then by Corollary 8 we may
decompose V into a finite direct sum of irreducible representations, say V =
@.", U;. Define V, to be the direct sum of those U; whose character is x. By
Proposition 22, each V,, is a direct sum of (x|0)., irreducible representations.
We now have a decomposition

V=P

xe@

This is called the canonical decomposition of V. It is canonical because as we
will see in the next result the components V, do not depend on the choice of
the Uj;.

Proposition 24. With the above notations, for each x € G we define

P = % 3" x(0)o € ClG.

ceG
The action of py, on V is the projection of V' onto V.. Since p, does not depend

on the original decomposition of V' and p, determines V,, completely, this shows
that V, is independent of the original decomposition.

Proof. We start by checking that p, lies in the center of C[G]. In fact, if 7 € G
then

n _ n ., n _
P =X Y X(o)or =X x(ror) = XY x(n)mn = Thy
9 9 oceG g neG

where in the second equality we used Proposition 17 (iii).

Let W be an irreducible representation of dimension n with character £&. The
action of p, on W is a C[G]-endomorphism of W. By Lemma 6 (i¢), p, acts on
W by multiplication by, say A. Taking traces on both sides we obtain

1 ifeE=y

_ _ ey
ny (€lxX)g =nA = A= n (€ x)e = {0 otherwise

by Corollary 13.

Thus p, acts as the identity on representations with character equal to x
and as the zero map otherwise. Thus p, acts as the identity on V, and as the
zero map on V,, for x' # x. In other words, p, acts as the projection of V' onto

Vi O
Let x € G. Then the X-component V,, of V' is the eigenspace
Vi={veV :puw=uv}.

Suppose now that y has dimension 1 so that x is a homomorphism. Let v € V,,
and o € G. Then we have

1 _ 1 L
oV = 0Py v = p Z X(T)oTv = 7 Z (o™ ) T(v) = x(0)v.
TG TEG



3.8. THE REGULAR REPRESENTATION 65

Conversely, if v € V and ov = x(o)v for all 0 € G, then

v =1 3" %Ox(r)o = (o Xy =
T7€G

so that v € V.. We have proved the following:

Proposition 25. With the above notations, if x € G has dimension 1 then we
have
Vy={veV :ov=x(o)v, Vo € G}.

In other words, the xy-component of V' consists of simultaneous eigenvectors
for the action of o € G with eigenvalues x(o).

3.8 The Regular Representation

Let G be a finite group. The (left) regular representation of G is the group ring
C[G] seen as a left module over itself. This is a C-vector space of dimension |G]|
whose basis can be identified with G. Explicitly, the left action of G on C[G] is
the one of left multiplication of G on itself extended C-linearly. We denote this
action by Rg : G — GL(C[G]).

Proposition 26. Let G be a finite group and let rg be the character of the
representation C[G]. Then rq(1) = |G| and rg(o) =0 for o # 1.

Proof. From Proposition 17 (i) we know that r¢(1) = dimc C[G] which is equal
to |G|. Let o # 1 be an element of G. If we write Rg(o) in matrix form with
respect to the basis (o)., then the diagonal of this matrix is zero and thus its
trace is zero. Therefore we have rg(o) = 0. O

Corollary 16. Let G be a finite group. Let G denote set of distinct irreducible
characters of G and for each x € G we let ny, denote the dimension of x. The
reqular character decomposes as follows:

ra = Z Ny X-

xe@

As a consequence, we have ) & n} = |G| and > oyeaxx(o) =0 forallo # 1.

Proof. We have r¢ =} & (ralx)g x. For each x € G we have

(rel)e = ran)a = = 3 ra(@)x(o) = érGa)x(l) = (1) = ny,
oeG

by Proposition 26. This proves the first formula. We obtain the second and
third formula by evaluating the first at 1 and then at o # 1 respectively. O

3.9 The Space of Class Functions

Let G be a finite group. We say that a function f € F(G,C) is a class function
of G if is has the property that f(ro7=1) = f(o) for all 0,7 € G. We denote
by C(G,C) the space of all class functions of G. It is a complex subvector
space of F(G,C) of dimension the number of conjugacy classes of G, say h. By
Proposition 17 (7i7), all characters of G are class functions of G.
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Proposition 27. Let f € C(G,C) and define py = > . f(o)o € C[G]. Let

V' be an irreducible representation of G of dimension n with character x. Then
ts on V. ltiplication by 11 (f|x

py acts on 'V as multiplication by == (f|X) -

Proof. We check that ps is central in C[G]. In fact, if 7 € G then we have

pyr =3 f@)or =3 frlor)or = 3 f)rn = oy

oeG oeG neG

It follows that the action of py on V' is a C[G]-endomorphism of V. By Lemma
6 (i7) py therefore acts on V' as multiplication by, say A. Taking traces, we see
that
nA =" f(o)x(o) = G| (/X -
ceCG
O

Theorem 3.9.1. The set of irreducible characters G of G forms an orthonormal
basis of C(G, C) with respect to the scalar product (-|-).

Proof. By Corollary 13 we already know that G is an orthonormal system in
C(G,C) with respect to the above scalar product. In order to show that this
system spans C(G,C), it suffices to prove that the orthogonal complement of
Span(y | x € G) is trivial. So let f € C(G,C) such that (fIX)g = 0 for all
y € G and consider Pf = > seq flo)o € C[G]. By Proposition 27, if W is an
irreducible representation of G of dimension n and character x, then p¢ acts
on W by multiplication by % (fIX)g = 0. Let V' be any representation of G.
It decomposes into irreducible components and the action of py being the zero
map on each component, we must have that p; : V. — V is the zero map. In
particular, take V' to be the regular representation and let (e,),ecc be a basis

of V. Then
prler) = g flo)es =0.
ceG

Since the e, are linearly independent over C this implies that f(o) = 0 for all
o so that f = 0. The proof is complete. O

Corollary 17. The number of irreducible representations of G (up to isomor-
phism) is equal to the number of conjugacy classes of G.

Proof. The number of irreducible representations of G up to isomorphism is
equal to the number of irreducible characters. By Theorem 3.9.1, these form a
basis of the vector space C(G, C) which has dimension the number of conjugacy
classes of G. O

Proposition 28. For o € G we let ¢(o) denote the order of the conjugacy class
of o0 in G. Then we have the following:

ﬁ > W) =

% if o and T are conjugates
0 otherwise.
Proof. Fix 0 € G and consider the class function f, : G — C defined by

1 if o and 7 are conjugates
I U( ) = .
0 otherwise.
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By Theorem 3.9.1, we can write f,(7) = er@ (fIX)e x- We compute that
(fIX) e Cl(g‘)fg(a). It follows that

c(o _
folr) = 92 S x(onr)
Gl —~
XEG
and the result follows from the definition of f,. O

Proposition 29. A finite group G is abelian if and only if all irreducible rep-
resentations of G have degree 1.

Proof. Let g be the order of G and let h = |G|. Denote by n, the dimension

of x € G. The group G is abelian if and only if G has g distinct conjugacy
classes. By Corollary 17 the number of distinct conjugacy classes is h. Thus G
is abelian if and only if g = k. By Corollary 16 we have eré ni =g. Thus G

is abelian if and only if n, =1 for all x € G. O
Combining this with Proposition 25 we get:

Corollary 18. Let G be an abelian group and V a representation of G. The
canonical decomposition of V' is the following eigen-decomposition of V :

V=PV, Vi={veV :ov=x(ow, VoeG}
xe@
3.10 Frobenius Reciprocity

The close relation between the Hom functor and the tensor functor is illustrated
in the following theorem, known as the Adjoint Isomorphism Theorem:

Theorem 3.10.1. Let R and S be rings. Let A € gkMod, B € sModg and
C € sMod. There is a natural isomorphism

Ta,B,c = T : Homg(B ®g A,C) — Hompg(A, Homg(B, C))
defined as follows: consider f: B@p A —s C and define the map
7(f) : A— Homg(B,C),  7(f)(a)(b) = f(b® a).
Proof. Let us check that the above map is well-defined. If s € S, then
7(f)(a)(sb) = f((sb) ®a) = f(s(b@a)) = sf(b@a) = s7(f)(a)(b)
since f is an S-map. So 7(f)(a) € Homg(B,C). Let r € R. Then
T(f)(ra)(b) = f(b@ (ra)) = f((br) @ a) = 7(f)(a)(br) = (r.7(f)(a))(b)

so that 7(f)(a) € Homg(A,Homg (B, ()).
Let us check that 7 is a homomorphism of groups. Let f,g € Homg(B ®g
A,C). Then

T(f+9)(@)(b) = (f+9)(b®a) = fb@a) + g(b@a) = 7(f)(a)(b) +7(9)(a) (D).
This shows that 7(f + ¢) = 7(f) + 7(g).



68 CHAPTER 3. LINEAR REPRESENTATIONS OF FINITE GROUPS

Let us check that 7 is injective. Suppose that 7(f) = 0. Then for alla € A
and all b € B we have f(b® a) = 0 and thus f = 0 since it is zero on all
generators of B @ A.

Let check that 7 is surjective. Let F' : A — Homg(B,C) be an R-map.
Define ¢ : B x A — C by ¢((b,a)) = F(a)(b). Obviously ¥ is biadditive.
Also, if r € R, then ¢((br,a)) = F(a)(br) = F(ra)(b) = ¢((b,ra)) since F' is an
R-map. By the universal property of the tensor product, there exists a unique
S-map 1) : B®p A — C such that ¢(b ® a) = ¥((b,a)). Then 7(¢)) = F.

To check the naturality of the map, we fix for example B and C' and show
that

7:Homg(B ®g —, C) — Hompg(—, Homg (B, (C))

is a natural isomorphism of functors. Let A, A’ € gpMod and f € Hompg(A, A").
The only thing we need to check is that the following diagram commutes:

Homg(B ®r A,C) —2—+ Hompg(A, Homg (B, C))
(1B®f)*T Tf*
Homg(B ®g A’,C) ——+ Hompg(A’, Homgs(B, C)).

Let F: B®r A' — C be an S-map. Then taking the right-up path we arrive
at the R-map 74/(F)o f: A— Homg(B,C) given by

T4 (F)(f(a))(b) = F(b® f(a)).

Taking the up Fo(1® f) : B®r A — C which maps b® a to F(b® f(a)).
Taking now the right path, we arrive at 74(F o (1® f)) : A — Homg(B,C)
given by

Ta(Fo(1® f))(a)(b) = Fo(1® f)(b®a) = F(b® f(a)).

We have proved that the diagram commutes.
One can similarly check the naturality of the map in the other variables. [

Corollary 19. Let G be a finite group and let H be a subgroup of G. Let V be
a representation of H and let W be a representation of G. We have a natural
isomorphism

7 : Homgg)(IndV, W) — Homg g (V, ResW).

Proof. We have C[G] € ¢jgjModcy), V € ¢gMod and W € ¢ Mod.
Applying Theorem 3.10.1, we have a natural C-linear isomorphism

Homg¢) (C[G] ®cia) V, W) — Homgg(V, Homeg (C[G], W)).
Note that Homc(q(C[G], W) € ¢jgzjMod, the action being given by
Af)(@) = fzA)
for f: C[G] — W, z € C[G] and X € C[H|. Consider the group isomorphism

Homgg) (C[G], W) — ResW, f— f(1).
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If A € C[H], then we have
A o (WD) = F(LA) = F1) = Af(1)

since f is a C[G]-map. Therefore, the above map is a C[H]-module isomorphism
and we have a natural isomorphism of groups

7 : Homgg)(IndV, W) — Homgg](V, ResW).
O

Theorem 3.10.2 (Frobenius Reciprocity). Let G be a finite group and let H be
a subgroup of G. Let V' be a representation of H and let W be a representation
of G with respective characters x and 6. Then we have

(Indyx, 6) = (x,Rest) .
Proof. By Corollary 19, we have
dim([j HomC[G] (IndV, W)) = dim(c[H} (Vv, ResW).

By Proposition 5 and Remark 12, this is the desired formula. O

3.11 A Theorem of Brauer

We will prove a refinement of a theorem of Brauer assuming the proof of Brauer’s
original theorem given below. Let G be a finite group. A character x of G is
said to be monomial if y = Indé for some 1-dimensional character of a subgroup
of G.

Theorem 3.11.1. Every character of a finite group can be written as a Z-linear
combination of monomial characters.

Proof. See Chapter 10 of [Sel]. O

Explicitly the theorem says the following: if x is a character of GG, then there
exist integers n;, subgroups H; and 1-dimensional characters 8; of H; such that

X = Z niIndgi 0;.

Let G be a finite group. Denote by [G : G] the commutator subgroup of
G and let G; = Homy(G,C*) be the multiplicative group of 1-dimensional
characters of G. We claim that

Infl = Inﬂ[%:G] (G/IG:G)1 — Gy

is an isomorphism of groups.

This map is obviously well-defined homomorphism of groups. Let x € G;.
Then x : G — C* is a homomorphism of groups and therefore its kernel
contains the commutator subgroup. By the universal property of the quotient,
there is a unique homomorphism y : G/[G : G] — C* such that x (o) = x([o]).
In other words, there is a unique x € (G/[G : G])1 such that Infly = x. This
proves that the map Infl is a bijection.
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In particular, we have |G1| = [(G/|G : G])1|. But G/[G : G] is an abelian
group and by Proposition 29, we have (G/|G : G])1 = G/|G : G], that is, the
group of irreducible characters of G/[G : G]. In particular, we have |(G/[G :
G))1| =|G/[G : G]|. We conclude that

G1| = |G/[G : G]. (3.11.1.1)

Let Z = Z(G) denote the center of G and let H be a subgroup of G. Then
[ZH : ZH] = [H : H] and therefore by (3.11.1.1) we have

(ZH)\| = |ZH/|ZH : ZH)| = |ZH/[H : H)| = [ZH : H||H, |
Consider the homomorphism
Res: (ZH), — Hy, X — Xx|H-

This map is surjective: for if x € Hj, then we define ¥ € (ZH); by setting
X(zh) = x(h) for z € Z and h € H. This does indeed define a homomorphism
since for z1, 20 € Z and hy, ho € H we have

X((z1h1)(22h2)) = X((2122)(h1h2)) = x(h1h2) = x(h1)x(h2) = X(21h1)X(22h2).

Finally we have Resy = x and this proves that Res is surjective. By comparing
cardinalities, we see that the kernel of this map must be of order [ZH : H]. We
conclude that the map Res is a [ZH : H]-to-1 homomorphism.

Theorem 3.11.2. Let G be a finite group with center Z = Z(G) and let x
be an irreducible character of G. The restriction of x to Z is a multiple of a
1-dimensional character ¥ of Z and we may write

X = Z niIndgi 0;

where, for every i, H; is a subgroup of G containing Z, 0; is a 1-dimensional
character of H; whose restriction to Z is ¥ and the n; are integers.

Proof. Let H be a subgroup of G. By the above discussion, the map
Res : (ZH)l — H1

is a [ZH : H]-to-1 homomorphism of groups. In other words, there are exactly
[ZH : H] ways to extend an element of Hy to (ZH);.

Let 6 be in Hy and let §; with ¢ =1,...,[CH : H] be the distinct extensions
of § to ZH. By Theorem 3.10.2 we have

<Indf[H0,t9¢>ZH = (0,Rest;) ;= (0,0),; =1

by Corollary 13. By Proposition 22 this means that every character 6; appears
in the decomposition of the character IndgH 0 with multiplicity 1. Since IndgH 0
is of dimension [ZH : H] we must therefore have the decomposition

[ZH:H]
md7"0= > 6.

i=1
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For any left C[H]-module M, we have
ClG] @cjcn) (CICH] ®cia M) = C[G] @ciu) M
by associativity of the tensor product. In other words, we have
Ind$% M = Ind$ ,; Ind G M.
Since tensoring is an additive functor, this implies that

(ZH:H]

Indf0 = > Indg 0.
i=1

Combined with Theorem 3.11.1, this shows that we can choose the subgroups
H; in the statement of the present theorem to contain the center Z.

Let V be a representation of G with character y. Then ResV = ResgV
is a representation of the center Z. Let W be a simple sub-C[Z]-module of
ResV with character ¢. Since Z is an abelian group, by Proposition 29, we
have dim¢c W = 1. Denote by (ResV), the v component in the canonical
decomposition of ResV. By Proposition 24, the element

b= 7 2 () € Clz] € C@

z€Z

acts on ResV as the projection onto (ResV),. Let ¢ € G. Using the definition
of the center Z, we see that

PO = % Z P(2)z0 = % Z Y(2)oz = apy.

z€Z zeZ

Thus, if v € (ResV)y, we have py(ov) = ov. In other words, ov belongs
to (ResV)y. This proves that (ResV)y is a sub-C[G]-module of V. But V
is irreducible so that ResV = (ResV), and Resxy = x(1)y. This proves the
assertion that the restriction of y to Z is a multiple of a 1-dimensional character
of Z.

We write x = >, niIndgi 0; where the H; are subgroups containing Z and
the characters 6; are 1-dimensional. Let 6 be any irreducible character of G.
By the above discussion, there exists a 1-dimensional character 1y of Z and a
positive integer mg such that Resge = mgtg. By Theorem 3.10.2 we have

(Indf0,,6) = (6, Res10),, .
If ReSIZ{iQi = 1, then 6; cannot be a summand of Resgﬁ. In other words, we

have <6i, Resgi@ = 0 by Proposition 22. Consequently, we have

H.
Resti0; # 1y = <Ind§i9i,9>c = 0.
Perhaps more usefully, we have

<Ind§i9i,9>c >0 = ResZ0; = vy. (3.11.2.1)
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We split the sum as follows:

Reslzii ;=1 ResIZj{i 0, #Y

By (3.11.2.1), every irreducible character of G that appears in the first sum
must be a multiple of 1 when restricted to Z and no irreducible character of
G appearing in the second sum can be a multiple of ¥ when restricted to Z.
It follows that the sets of irreducible characters respectively appearing in the
first sum and in the second sum are distinct sets. Since the appearance of y is
necessarily in the first sum, the second sum must be zero. This shows that

X = Z nl—Indgi 0;
Resoi0,=v

and finishes the proof. O



Chapter 4

Rationality of Characters

Until now we have only considered linear representations over the field of com-
plex numbers C and their characters. But in fact all the results we have proved
hold for algebraically closed fields of characteristic zero. Let K be any field of
characteristic zero and let C be a fixed algebraic closure of K. As usual, G will
denote a finite group. A linear representation of G over K is a K[G]-module
V' which is finite-dimensional as a K-vector space. A character of such a rep-
resentation of GG is the trace map G — K associated to the action of G on
V.

Let V be a representation of G over K with character x. Define V= to be the
extension of scalars C®g V. It is a C-vector space of dimension equal to dimg V.
Moreover, V¢ has the structure of a left G-module given by o(c®v) = c¢® (ov).
Thus V¢ is a left C[G]-module which is finite-dimensional over C. In other
words, it is a representation of G over C. The action of G on Vg can be
summarized by the diagram

G %5 GLg (V) 223 GLe(Ve).

The character of Vi is still x : G — K. A representation of G over C' is said
to be defined or rational over K if it is isomorphic to a representation Vg as
constructed here for some representation V of G over K. This is equivalent to
saying that a representation V of G over C' is rational over K if there exists a
basis of V' in which the coefficients of the matrices of o € G lie in K.

Starting with a representation of G over K we can produce a representation
of G over C' by extension of scalars. The question that we will answer in this
chapter is how to determine when a representation of G over C' is rational over
some subfield K of C.

4.1 First Results

We start with some notations. We define R(G) = Rc(G) to be the free abelian
group on the irreducible characters of G over C'. Explicitly, if x1, ..., xs are the
irreducible characters of G over C', then

RG)=Zx1 ®...® Zx,

73
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An element of R(G) is a character of G over C if and only if it is a Z-linear
combination of the y; with non-negative coefficients. A general element of R(G)
is called a virtual character of G over C. Since multiplying two characters results
in a new character (realized by tensoring the corresponding representations), we
see that R(G) has a multiplication and actually forms a ring. By Theorem 3.9.1,
the x; form an orthonormal basis of the C-vector space of class functions C(G, C)
with respect to the symmetric bilinear form (¢, ), = ﬁ >vec @(o"HY(0).
Therefore we have C(G,C) =2 C ®z R(G) as C-vector spaces.

We let Ry (G) denote the subring of R(G) generated by characters of rep-
resentations of G over K. We also let R(G, K) denote the subring of R(G)
consisting of those elements that take values in K. Of course we have the
inclusion Rk (G) C R(G, K).

Proposition 30. Let V;, i = 1,...,h, be the distinct (up to isomorphism)
irreducible representations of G over K with characters x;. Then the x; form
an orthogonal basis of Ry (G) with respect to the bilinear form (-,-) . Moreover,
we have (xi, Xi) g = dimg End kg (V;).

Proof. From the definition of Rx(G) it is clear that it is generated by the x;.
Let V and W be two representations of G over K with characters yy and xw .
Then by Lemma 5 we have

dimg Homg g (V, W) = dimc Homeg)(Ve, We) = (xv, xw)g -

Applying Shur’s Lemma 6 (a), whose proof does not require K to be alge-
braically closed, we see that if i # j, then Homgg)(V;, V;) = 0. Combined with
the above equality this implies that (x, x;), = 0 for i # j, proving orthogonal-
ity of the y; which in turn implies Z-linear independence of the x;. We conclude
that the x; form an orthogonal basis of Rk (G). O

Remark 13. Let V be an irreducible representation of G over K with character
X- We have just proved that (x,x), = dimc Endg(g)(Ve) which is an integer
greater than or equal to 1. It is 1 if the representation V¢ is irreducible by
Corollary 13. But this is not always the case as illustrated in the next example.

Example 3. Let 3 be the group of third roots of unity. If ¢ = €>/3, then ug =
{1,¢,¢%}. This group acts on C by multiplication. By choosing {(1,0), (0,4)}
as a basis of C as an R-vector space of dimension 2, we get a 2-dimensional real

representation of ug given by the homomorphism p : u3 — GL2(R) defined by:

_1 V3 _1 _v3
=i 9) o= (55 %) wo=(4 )

The character x of this representation is given by

x=2 x(@=-1 x(¢)=-L

The characteristic polynomial of p(¢) and p(¢?) is given by T?+T+1 so that the
eigenvalues of these matrices are ¢ and ¢? which do not belong to R. Therefore
p(¢) cannot be diagonalized over R and consequently the above representation
is irreducible over R. But even though it is irreducible, we have

1
XX)g = §(4+1+1):2.
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If we now tensor this representation over C, we get a 2-dimensional complex
representation of pg. But pg is abelian so by Corollary 29, this representation
cannot be irreducible. For the sake of the example we here show how this
representation decomposes over C. By computation we find that the eigenspaces
of p(¢) for the eigenvalues ¢ and ¢? are respectively given by

Vi = Span { (1)} cc? and V5 = Span { (11)} c C2.

Base changing {(1,0), (0,1)} to {(1,4), (1, —4)} we obtain an isomorphic repre-
sentation p : G — GL2(C) given by

=y 9) w0=(5 &) wer=(5 9)-

The element ¢ acts on V; by multiplication by ¢ and on V5 by multiplication by
¢2. Our original representation decomposes over C as Vi @ Va.

Proposition 31. Let V be a representation of G over K with character ¢ and
let

V=W a...eW;

be a decomposition of V into irreducible representations of G over K. Let x;
be the character of W; for each i. Let W be an irreducible representation of G
over K with character x. Then the number ny of W; that are isomorphic to
W independent of the above decomposition. In particular, two representations
of G over K are isomorphic if and only if they share the same character.

Proof. We have ¢ = Zle Xi- By Proposition 30 we have

k
(DX =D (XX -

i=1

This is equal to nw dimg Endgq (W) so that n, is independent of of the
decomposition. O

Corollary 20. Any representation of G over K has a canonical representation
over K.

Proposition 32. A representation of G over C is defined over K if and only
if its character belongs to Rk (G).

Proof. Let V be a representation of G over C' with character x. It is clear that
if this representation is rational over K, then x belongs to Rx(G). On the
other hand, suppose that x belongs to Ri(G). If x1, ..., xn are the irreducible
characters of G over K, then there exist integers n; such that x = 2?21 NiXi
and by Proposition 30 we have (x, xi) = 7 (Xi» Xi) - The bilinear form (-, -)
is a scalar product on characters of G over C. Since y and x; are both characters
of G over C, we must therefore have (x, x:) > 0 so that n; > 0. If Vq,...,V},
are irreducible representation of G over K with characters y;, then the latter
implies that W = € Vi@"" is a representation of G over K with character x. In
particular, W is isomorphic to V' and therefore V is defined over K. O
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Let V' be a representation of G over C'. We claim that V is always defined
over some finite extension L of K. In fact, let x1,...,xs be the irreducible
characters of G over C and let (p1,V4),..., (pn, Vi) be corresponding irreducible
representations of G over C. Choose bases for each V; and write p;(o) in matrix
form with respect to the chosen basis for each 0 € G. Define L to be the
finite extension of K obtained by adjoining to K all matrix coefficients of the
pi(c). Then each V; is defined over L. In other words, x; € Rp(G) for all
i = 1,...,h and consequently we have Ry(G) = Rc(G). By Proposition 32,
every representation of G over C is defined over L. Let d = [L : K].

Let V' be a representation of G over L with character x. Let Vi denote
the restriction of scalars of V' to K. As a set, Vi is the same as V but where
we have forgotten the L-vector space structure on V. Since L is a K-vector
space of degree d, the restriction of scalars Vi is a K-vector space of degree
ddeg; V. In particular, it is a representation of G over K. Let xx denote the
character of V. One checks that xx = trp g ox : G — K. We therefore have
trr/kx € Ri(G).

Now, if § € Ro(G) = RL(G), then 0 = Z? nixi. By linearity of try x we

obtain
h

tI‘L/K9 = ZnitrL/KXi S RK(G)

i=1

In particular, if € R(G, K), then tr g0 = df € Rx(G). This proves that
dR(G,K) C Rk (G). As already noted, we have the trivial inclusion Ri(G) C
R(G, K). We therefore have the inclusions

dR(G,K) C Rg(G) C R(G, K).
This gives a surjective homomorphism of groups
R(G,K)/dR(G,K) — R(G,K)/Rk(G).
Since the first quotient group is finite, we have proved the following;:
Proposition 33. The group Ry (G) has finite index in R(G, K).

Remark 14. Let V be a representation of G over C with character y. In
general, in order for V' to be defined over K, it is not enough for x to belong to
R(G, K) as the following example shows.

Example 4. Consider the Hamilton quaternion algebra Hg over a field K of
characteristic 0. This is a 4-dimensional K-vector space with basis {1,1,j, k}
with the following multiplication rules:

) j2:_1a Zj:k7 jZ:_k

One defines a norm form N : Hx — K by defining N () to be the determinant
of the multiplication-by-a map on Hg. It is not difficult to check that

N(z +vyi+ zj + th) = 2% + % + 22 + 2.
The algebra Hy also comes equipped with an involution defined by

r4+yi+zj+th=x—yi—zj —tk.
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One now checks that N(o) = aa. This norm form is multiplicative and it
becomes clear that « € Hj if and only if N(«) # 0. In particular, Hg and Hg
are skew-fields, that is, non-commutative division rings.

If —1 is a sum of two squares in K, that is, if there exist o, € K such that
a?+ 3% = —1, then we have a K-algebra isomorphism ¢ : Hx — My(K). This
can be described by

s =(y )ew=(5 2)on= (7 J)ew=(2 5.

In the case K = C, one can for example take « =i and § = 0.

In particular, we get a homomorphism G — GL2(K) and we thus have a
2-dimensional representation of G over K. This representation is defined over
Q(a, B). Tts character x is given by

X(£1) = £2, x(£i) = x(£j) = x(+k) = 0.

In particular, we see that x € R(G,Q). However, this representation is not
defined over QQ since the sum of any two squares in QQ is non-negative.

4.2 Non-Commutative Algebra

We prove the structure theorem of simple left Artinian rings due to Wedderburn.
A good reference for this section is [Rol].

4.2.1 Semisimple Rings

Let R be a ring. It is not assumed to be commutative but we will assume that
R has a multiplicative unit 1. We have already encountered semisimple rings:
remember that the group ring C[G] is a semisimple ring for example. We start
by recalling the definition of semisimplicity.

A left R-module is said to be simple if it has no left sub-R-modules other
than (0) and itself. A left R-module M is said to be semisimple if it can be
written as a direct product of of simple left sub-R-modules. A ring R is said to
be left semisimple if it is semisimple when viewed as a left module over itself.
A simple left sub-R-module of R is a minimal left ideal, that is, a non-zero left
ideal of R that does not contain any left ideals other than (0) and itself. We
say that a ring R is simple if it has no two-sided ideals other than (0) and itself.
Note that a simple ring is not necessarily simple as a left module over itself.
An example is the matrix ring M, (C) which has no proper two-sided ideals but
the set Col(j) of matrices with entries only in the j-th column is a non-zero
proper left ideal. Also, our definition of simple rings does not imply that they
are semisimple.

Lemma 7. If a ring R is a direct sum of left ideals, say R = @, Li, then
only finitely many L; are non-zero. In particular, a left semisimple ring is a
finite direct sum of minimal left ideals.

Proof. Since every element of the direct sum has finite support by definition, we
may write 1 = ey + ...+ e, uniquely where e; € L;. Let a € L; for j #1,...,n.
Then

a=al=ae;1+...+ae, € L;N (L1 &...® L,) = {0}
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This implies that L; = {0} and R = @], L.

If R is left semisimple, then R is semisimple as a left R-module. By definition
this means that R is a direct sum of simple submodules. Thus R is a direct sum
of minimal left ideals and by the above, this sum is finite. O

Let R be a ring. A left R-module M is said to be Artinian if it has the
descending chain condition on left submodules. That is, any descending chain
of left sub-R-modules of M

MlDMQDMgD...

stabilizes, meaning that there is a rank n such that M,, = M, for all m > n.
Artinian modules have the property that any submodule contains a minimal
submodule with respect to inclusion.

A ring R is said to be left Artinian if it is Artinian when viewed as a left
module over itself. A left Artinian ring has the property that every non-zero
left ideal of R contains a minimal left ideal.

Let R be a ring. We define the left Jacobson radical, J(R), of R to be the
intersection of all left maximal ideals of R. This is a left ideal of R.

Proposition 34. Let R be a ring. The following statements are equivalent for
T € R:

(i) x € J(R).
(i) 1 — z is left invertible for all z € Rx.
(i1i) M = {0} for every simple left R-module M.

Proof. (i) implies (i¢): Suppose that x € J(R) and by contradiction that there
exists 7 € R such that 1 — rz is not left invertible. Then R(1 — rx) is a proper
left ideal of R and is contained in some maximal ideal I. But rz € J(R) since
J(R) is a left ideal and J(R) C I. Thus 1 = (1 —rx) +rxz € I so that I = R
and this is a contradiction.

(#4) implies (#9¢): Suppose that 1 — z is left invertible for all z € Rx and by
contradiction that there is a simple left R-module M such that M # {0}. Then
there exists a non-zero m € M such that xm # 0 and thus the left ideal Rzm
is non-zero. This is a non-zero submodule of M and by simplicity Rxm = M.
Therefore, there exists r € R with rzm = m. In other words, (1 — rz)m = 0.
Let v € R such that 1 = w(1 — rx). Then m = u(l — rx)m = 0 which is a
contradiction.

(#4i) implies (7): For every maximal left ideal T of R, R/I is a simple left
R-module. By assumption z(R/I) = {0} which implies that z € I. Thus
z € J(R). O

An ideal I of R is said to be nilpotent if I"™ = {0} for some integer m.

Proposition 35. Let R be a ring. The left Jacobson radical J(R) contains all
nilpotent left ideals of R.
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Proof. In fact, let I be a nilpotent left ideal and let m be such that I™ = {0}.
Let « € I. For all r € R we have rz € I and therefore (rz)™ = 0. In particular
1 — (rz)™ = 1 which can be written as

(1+ (rx) + (re)? 4+ ...+ (re)™ H(1 —rz) = 1.

This proves that 1 — ra is left invertible and thus « € J(R) by Proposition
34. O

Lemma 8. A left semisimple ring R is left Artinian and J(R) = {0}.

Proof. A simple left submodule of R, that is, a minimal left ideal of R, is
certainly left Artinian. A finite direct sum of left Artinian modules is again left
Artinian. Therefore, by Lemma 7, a left semisimple ring is left Artinian.

By Lemma 7, we may write R = @, L; where the L; are minimal left
ideals and the sum is finite. Let M; = €P,,; L;- Then R/M; = L; which is
a simple left module. Thus M; is a maximal left ideal of R. Finally, we have
J(R) C (; M; ={0}. O

Proposition 36. A left semisimple ring R is isomorphic as a ring to a direct
product of simple left Artinian rings which are two-sided ideals of R.

Proof. By Lemma 7, we may write R = @, L; where the L; are minimal left
ideals of R and the sum is finite. For each pair L; and L;, L;L; is a also a left
ideal and it is contained in L; since L; is a left ideal. By minimality of L; we
must have that L;L; is either {0} or L;. Suppose that L;L; = L;. Then there
exists « € L; such that L,z # {0}. Then m, : L, — L;,y — yx is a non-zero
left R-module homomorphism. The kernel of this map is a left ideal and by
simplicity of L; it must be {0} so m, is injective. The image L;z is non-zero
and by simplicity of L; we have L;xz = L;. In particular, m, is an isomorphism
of left R-modules.

We claim that L;L; # {0} is an equivalence relation on the set of ideals L,.
In fact, let us first prove that L? # {0}. Suppose that L? = {0} by contradiction.
Then L; is a nilpotent left ideal and is contained in J(R) by Proposition 35. By
Lemma 8 we have L; = {0} which is the desired contradiction. Suppose that
LiLj 35 {O} Then LiLj = Lj and LJLzLJ = Lij # {O} so that LJLz }é {0}
Fmally, if LZL] # {0} and L]Lk # {0}, then LiLk = LZL]L]C = Lij # {0}

Regroup the finite direct sum R = @, L; according to equivalence classes
and for each class form the direct sum of all L; in that class and call this A;.
This gives a decomposition R = A1 & ... & A,, for some n.

For each i, A; is a direct sum of left ideals and is therefore itself a left ideal.
We claim that it is also a right ideal of R. To see this we need to prove that
A;R C A;. Let L and L' be two minimal left ideals such that L ~ L; and
L' ~ L; for some j # i. Then we have LL’ = {0}. Consequently, we see that
for j = i we have

AA; = <Z L> Yo' c> Lr ={o}.
L~L; L'=L;
We therefore have
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since A; is a left ideal. This proves that A; is a right ideal.

Since A; is a left ideal we have A;A; C A; which shows that A; is closed
under multiplication. In order for A; to be a ring we only need to show that it
has a unit element. Let 1 =e; 4+ ...+ e, with e; € A;. Then for any a; € A;
we have

e;a; = eia; +...+epa; = la; = a;

since e;ja; = 0 for all j # i since A;A; = {0}. The same reasoning shows that
a;e; = a;. This proves that A; is a ring. Moreover, the fact that A;A4; = {0}
for ¢ # j shows that addition and multiplication in R is done componentwise.
Therefore, as rings we have an isomorphism

R A x...x A,.

There is a surjective ring homomorphism R — A; for each i. Thus any left
ideal of A; is also a left R-module and therefore a left ideal of R. It follows that
each A; is left Artinian since by Proposition 8 R is left Artinian. It remains to
prove that the A; are simple rings.

By construction, we may write A; = EB]. L; where the L; are minimal left
ideals of R such that L;Lj; = Lj. Let I be a two-sided ideal of A;. Then
IL; is a left ideal contained in L;. It is therefore either {0} or L;. Suppose
that IL; = {0}. Then for every k we have IL, = IL;L; = {0}. In this case,
I=1A; =%, 1L, = {0}. Otherwise, IL; = L; for all j. But I is a right ideal
so IL; C I. It follows that L; C I and therefore A; C I which implies I = A;.
This proves that A; has no two-sided ideals, that is, A; is a simple ring. O

4.2.2 Division Rings

By a division ring D, we mean a not necessarily commutative ring with the
property that every non-zero element of D is multiplicatively invertible. In other
words, the set D\ {0} with the multiplication law forms a not necessarily com-
mutative group. A commutative division ring is a field and a non-commutative
division ring is also sometimes called a skew-field. In Example 4 we saw that
the Hamilton quaternion algebra over QQ is an example of a non-commutative
division ring.

Non-commutative division rings D share many properties with fields and
many of the classical theorems of linear algebra do not make use of the commu-
tativity of multiplication in fields. For example D-modules, which we shall call
D-vector spaces, behave much like actual vector spaces. Note that because of
the non-commutativity one needs to specify whether it is a left or right module.
Any left (or right) D-vector space V has a basis and the number of elements in
a basis is independent of the choice of basis. We call this number the dimen-
sion of V' over D and denote it by dimp V. Any linearly independent set of
elements in V can be completed to form a basis of V. If W is a sub-D-vector
space, then there exists a complementary module W’ so that V. =W @ W’ and
dimp V = dimp W + dimp W’. Finally, if f : V; — V5 is a homomorphism
between finite-dimensional left D-vector spaces, then

dimp Vi = dimp ker f + dimp imf.

Let D be a division ring and let V' be a left D-vector space of finite dimension.
Let {x1,...,2,} be a basis of V. For any f € Homp(V,V) = Endp(V) we may
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write .
flag) =) aix;
i=1

and associate the n x n matrix (a;;)" to f with coefficients in D. This gives a
map
EndD(V) — M,L(D), f — (Clij)t.

This is an isomorphism of groups, it maps idy to the identity matrix but it
reverses multiplication in M, (D). We therefore have an isomorphism of rings

Endp (V) & M, (D)% = M, (D°P). (4.2.0.1)

If V was a right D-vector space, we would write
n
flay) =) wiai;
i=1

and assign to f the matrix (a;;). This gives a ring isomorphism Endp (V) =
M, (D).

Proposition 37. Let D be a division ring. Then M, (D) is both a left (and
right) semisimple ring and a simple left (and right) Artinian ring.

Proof. For each j = 1,...,n we denote by Col(j) the subspace of M, (D) con-
sisting of matrices with entries only in the j-th column. This is left ideal of
M, (D). If E;; denotes the matrix whose (,j) entry is 1 and all other entries
are zero, then (E;;)_, is a basis for Col(j) as a left D-vector space. Let I be a
non-zero left ideal of M, (D) that is contained in Col(j). Let B be a non-zero
element in /. Then there exist elements d; in D such that B = Z;L:l diE;j.
Since B is non-zero, there exists an index ¢ such that d;, is non-zero and thus
invertible in D. Therefore we have

Bel

0%o

Eiy; =di'E;

since I is a left ideal. But then F;; = E;;, Fy,; € I since I is a left ideal and this
is true for all ¢ = 1,...,n. Thus I contains the basis (E;;); of Col(j) so that
I = Col(j). This proves that Col(j) is a minimal left ideal of M, (D). Since
M, (D) = @’_, Col(j) we have proved that M, (D) is left semisimple. One can
similarly prove that M, (D) is right semisimple by using rows instead of columns
in the above. By Lemma 8 M, (D) is both left and right Artinian.

Let k # j and consider the map

CO](]) — COl(k), ZdiEij — ZdzEzk

This is simply multiplication on the right by Eji so that the left multiplication
is preserved by this map. Therefore it is a left M,,(D)-module homomorphism.
It is clearly an isomorphism.

Suppose that I is a non-zero two-sided ideal of M, (D). Let A be a non-zero
matrix in I. Then it has a non-zero entry, say a;; # 0. Since it is a two-sided
ideal, I contains the matrix Ey;AEj = a;;E. Since D is a division ring, a;; is
invertible and thus I contains EYy; for all k,{. But this is a basis for M, (D) so
that I = M, (D). This proves that M, (D) is simple. O
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4.2.3 Classification of Simple Artinian Rings

We have just seen that a matrix ring over a division ring is a simple Artinian
ring. We will now prove the converse: every simple Artinian ring is isomorphic
to a matrix ring over a division ring. We need some lemmas.

Lemma 9 (Schur). Let R be a ring and let M be a simple left R-module. Then
Endg (M) is a division ring.

Proof. Let f: M — M be a non-zero R-module homomorphism. Then ker f
is a left sub-R-module of M. By simplicity, it is either trivial or all of M. Since
f is not the zero map, the kernel must be trivial. This proves injectivity. The
image imf is also a left sub-R-module of M and must be either trivial or all
of M. Since f is not the zero map the latter must be true and this proves
surjectivity. As a consequence f is an isomorphism and therefore invertible in
EndR(M). ]

Let R be a ring and let M be a left R-module. Let D = Endg(M). Note
that M is a left D-module, the action being given by

Dx M — M, (fym) — f(m).
Define a map
A: R — Endp(M), r— (A :m = rm).
This is well-defined. In fact, if f € D, then
Ar(f(m)) = rf(m) = f(rm) = f(A-(m))

since f is a left R-module homomorphism. Therefore A, € Endp(M) for all
r € R. Moreover, the map A is a ring homomorphism. In fact, it is easily seen
to be a group homomorphism. Also, A\;(m) = 1.m = m for all m € M so that
A1 = idpy. Finally, if r,7’ € R then

At (M) = (rr")(m) = r(r'm) = A\, o A\ (m), for all m € M
so that A.,. = A 0 A\,

Theorem 4.2.1 (Rieffel). Let R be a simple ring and let M be a non-zero left
ideal of R. Let D = Endg(M). Then the above defined map A : R — Endp (M)
18 a Ting isomorphism.

Proof. Since A is a ring homomorphism, the kernel of A is a two-sided ideal of
R. Since Ay = idps, A is not the zero map and this kernel can not be all of
R. By simplicity of R we must have ker A = {0}. Is remains to prove that X is
surjective.

We claim that A(M) is a left ideal in Endp(M). Let f € Endp(M) and
x € M. For m € M we have f o A(z)(m) = f(xm). Consider

Ly : M — M, U — um.

This is a left R-module homomorphism. Indeed, if ' € R then L,,(r'u) =
(r'u)m = r’(um) = r' L, (u). This shows that L,, € D. But f € Endp(M) and
therefore we have

foA(@)(m) = flzm) = f(Lm(x)) = L (f(x)) = f(z)m = Ap@)(m).
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This proves that f o A(z) = Ao f(z) € A(M) for all z € M. This proves that
A(M) is indeed a left ideal in Endp(M).

Consider M R. Since M is a left ideal, this is a two-sided ideal of R. It is
non-zero because M is non-zero and M R contains M. By simplicity of R we
must have MR = R. Then A(R) = AM(MR) = A(M)A(R). This proves that
A(R) is a left ideal of Endp (M) since A(M) is a left ideal. Since 1 € A(R) we
obtain A(R) = Endp (V). O

Lemma 10. Let D be a division ring and let M be a left D-module. Then
Endp(M) is left Artinian if and if dimp M < oo.

1%

Proof. Suppose that dimp M = n. Then by (4.2.0.1) we have Endp(M)
M,,(D°P) as rings and by Proposition 37 M, (D°P) is left Artinian.
Suppose that dimp M = oco. Then we can create an ascending chain of

subspaces
My C My & Mz & ...

where M; has dimension ¢ over D. Define L; = {f € Endp(M) : f(M;) = 0}.
This is a left ideal of Endp(M). Moreover, we have L; D L; 1 since it is always
possible to construct a linear form that vanishes on i basis elements but not on
the other ones. We have therefore constructed an infinite descending chain of
left ideals

L1 2Ly DL32D...

and therefore M is not left Artinian. O

Theorem 4.2.2. Let R be a simple left Artinian ring, let M be a minimal left
ideal of R, let D = Endg(M) and n = dimp M. Then

R 2 Endp(M) 2 M, (D).

Proof. By Lemma 9 D is a division ring. By Theorem 4.2.1, R is isomorphic
to Endp (M) as a ring. Since R is left Artinian, the same is true for Endp(M).
By Lemma 10 M is of finite dimension over D, say n. By (4.2.0.1), we have
Endp (M) = M, (D°P) as rings. O

Corollary 21. A ring is simple and left Artinian if and only if it is isomorphic
to a matrix ring over a division ring.

Corollary 22. The center of an Artinian simple ring R is a field.

Proof. By Theorem 4.2.2 R is of the form M, (D) where D is a division ring.
The center Z(D) of D is clearly a field and the center of M, (D) consists of
scalar matrices with coefficients in Z(D), that is, matrices of the form xI,, with

x € Z(D) and where I,, denotes the size n identity matrix. Thus the center of
R is isomorphic to Z(D) which is a field. O

Corollary 23. A ring is left semisimple if and only if it is isomorphic to a
direct product of matrix rings over division ring.

Proof. Let R be a left semisimple ring. By Proposition 36 R is isomorphic to
a direct product of simple left Artinian rings, say R = A; X ... X A,,. By
Theorem 4.2.2, each A; is isomorphic to a matrix ring over a division ring, say
A; & M,,(A;). Thus

i

R M, (A1) X ...x My, (Ap).
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Conversely, let D be a division ring. By Proposition 37 M, (D) is left
semisimple. A direct product of left semisimple rings is again left semisim-
ple. O

Corollary 24. A ring is left semisimple if and only if it is right semisimple.

Proof. Follows from Proposition 37 which says that M, (D) is both left and
right semisimple for a division ring D. O

4.2.4 Uniqueness of Decompositions

We have seen that simple Artinian rings are isomorphic to matrix rings over
division rings. We now examine the uniqueness of the size of the matrix ring
and the division ring.

Proposition 38. Let R be a simple left Artinian ring. All non-zero simple left
R-modules are isomorphic. In particular, if R = M, (D) = M,/ (D’) where D
and D' are division rings, thenn =n' and D = D’'.

Proof. Let M be a non-zero simple left R-module and let L be any minimal
left ideal of R. Then LM is a left sub-R-module of M. By simplicity of M we
either have LM = {0} or LM = M. Suppose that the former is true. Then
L C Anng(M). The annihilator of M is a two-sided ideal of R. By simplicity
of R it must be {0} and therefore L = {0} which is not possible. Therefore
we have LM = M. Let © € M be an element such that Lz # {0}. Then the
multiplication-by-z map

L — M, Y= yx

is a non-zero left R-module homomorphism. By simplicity of L and M it is an
isomorphism.

Let R = M, (D) and R’ = M,/(D’) and let ¢ : R — R’ be an isomorphism
of rings. Let L = Col(1) in R and let L' = Col(1) in R'. By Proposition 37, L
and L’ are minimal left ideals of R and R’ respectively. The preimage ¢~!(L’)
is a minimal left ideal of R and by the first part, there exists an isomorphism
between L and ¢~1(L'). We may view L’ as a left R-module via ¢. We then
have an isomorphism f : L — L’ of left R-modules. Consider now the map

Endg(L) — Endg(L), o« — faf™ '

This is well-defined homomorphism of groups in that faf ! does indeed belong
to Endgr(L’) whenever « belongs to Endg(L). It is injective and surjective
because f is an isomorphism. Moreover, idy is mapped to idp, and ad’ is
mapped to fao'f~! = faf~'fa'f~'. We conclude that it is an isomorphism
of rings.

The ideal L is a left D-module of dimension n. Let A = Endp(L). Then
A = M, (D°P) and Enda (L) = Endyy, (py(L)°P. By Theorem 4.2.1 we have D =
Endyy, (py(L)? = Endg(L)°P. Similarly, one shows that D" = Endg/ (L") =
Endg(L')°P. We conclude that D = D’. Finally, the left R-module isomorphism
f : L — L' is in particular a left D-module isomorphism. Therefore n =
dimp L =dimp L' =n'. O
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Proposition 39. Let R= A1 ®...® A, be a decomposition of a ring R where
each A; is a minimal two-sided ideal of R. Any two such decomposition are the
same up to permutation.

Proof. Let I be a non-zero two-sided ideal of R. Then [A; C A; is a two-
sided ideal. By minimality we either have TA; = {0} or [A; = A;. Thus
IR=3"" IA; =3 A; where the last sum is over those i for which JA; = A;.
Thus any two-sided ideal is a sum of the A; and therefore the minimal two-sided
ideals of R are exactly the A,. O

From Proposition 36 the minimal two-sided ideals A; are simple rings and
we have a ring isomorphism

R=A x...x A,
Moreover, we have A;A; = {0} whenever i # j.

Corollary 25. The decomposition of a semisimple ring into a direct product of
simple rings is unique up to isomorphism.

Proof. Suppose that R = A; X...x Ay,. Then A; = {0} x...x A; x...x {0} is
a minimal two-sided ideal of R and R = A} @ ...® A}, and this decomposition
is unique up to order. O

4.3 Semisimple Algebras

A ring is central over a field k if k£ is exactly its center. A k-algebra is a
ring with a copy of k in its center, making it into a k-vector space and a ring
simultaneously. A k-algebra homomorphism is a k-linear ring homomorphism.
By a finite-dimensional semisimple k-algebra, we mean a k-algebra which is of
finite dimension over k and semisimple as a ring.

If A is an algebra, then we give it the Lie bracket

[,]:AxA— A, [a,b] = ab — ba.

It is bilinear, skew-symmetric and satisfies the Jacobi identity. Note that if I is
a two-sided ideal of A, then if a € I and b € B, then [a,b] € I. The Lie bracket
is very useful in that the center of A is characterized as follows:

Z(A)={a€ A : [a,b =0, forall bec A}.

Theorem 4.3.1. Let A be a finite-dimensional semisimple k-algebra. Then A
is isomorphic as a k-algebra to a finite product of matriz rings M,,(A;) over
division rings A; whose center is a finite field extension of k. The integers
n; and the division rings A; are unique up to k-algebra isomorphism and the
decomposition of A is unique up to permutation.

Proof. Since A is a semisimple ring, by Corollary 23 A is isomorphic as a ring
to a finite product of matrix rings over division rings, say

AX A X X A 2 M,y (A1) X oo x My, (Ar).

This decomposition is unique up to order and ring isomorphism. Here the A; are
the minimal two-sided ideals of A. They are simple rings. Each A; contains k in
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its center and therefore each A; is a simple k-algebra and the above isomorphisms
are ones of k-algebras. For each i, the center of My, (4A;) is the set of scalar
matrices with coefficients in Z(A;) and it is therefore isomorphic to the center
Z(A;). Since My, (4;) is a k-algebra, this implies that k is contained in Z(A;).
By Theorem 4.2.2, A; = Endy, (L;)°? where L; is a minimal left ideal of A;.
Since A; is finite-dimensional over k it is also true that A; is finite-dimensional
over k. It follows that Z(A;) is a finite field extension of k. O

Proposition 40. Let A be a central simple algebra over k and let B be a simple
k-algebra. Then A ®y, B is a simple k-algebra. Moreover, Z(A &y B) = Z(B),
that is, any element of the center of A®y B has the form 1 ®b for some unique
b€ Z(B). In particular, if B is a central simple k-algebra, then so is A ®y B.

Proof. The tensor product A ®; B is a k-vector space. It has a ring structure
given on basis elements by

(a@b)(a' @) = (aa) ® (bV')

and extended linearly to all elements.

We will now prove that it is simple. We assume here that the dimension of
B over k is finite for simplicity. The proof in the general case is similar to the
one we now produce.

Let by,...,b. be a basis of B over k. Any element z € A ®; B can be
written as >, a; ® b; with a; € A. Define the length of >°!_, a; ® b; to be
[{¢ : a; # 0}|. Let I be a non-zero two-sided ideal of A®y B and choose x € I a
non-zero element of minimal length. By reordering the b;, we may assume that

= 1®b1+zai®bi
i=2
with a; € A. For all a € A we compute that

T

[a®1,2] = Z[a,ai] ® b;.

1=2

Since x € I we have [a ® 1,z] € I. Since the length of [a ® 1, ] is less than the
one of z, by minimality we must have [a ® 1,2] = 0 for all a € A. This implies
that [a,a;] = 0. In other words, aa; = a;a for all @ € A so that a; € Z(A) =k
for : =2,...,r. But then

x:1®b1+21®(aibi):1®b
=2

where b=by +Y.._, a;b; € B\ {0}. For any b1, b, € B we have
(1@b)z(1®by) =13 (bibby) €1

since I is an ideal. Thus BbB C B is a non-zero two-sided ideal of B. By
simplicity BbB = B and thus 1 ® B C I which implies that A ® B = I. This
proves that A ®; B is simple.

Let z = )., a; ® b; be an element of Z(A ®;, B). Then for all a € A we

have
s

0=la®1l,2] = Z[a,ai} ® b;.

i=1
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This implies that [a,a;] =0 for all a € A so that a; € Z(A) =k fori=1,...,r.

We may then write
r=1® (Zalbl) =:1®0.
i=1

For all z € B we have 0 = [l ® y, 2] = 1 ® [y, b] so that b € Z(B). O

Corollary 26. Let A be a central simple k-algebra and let K be a field extension
of k. Then A ®y K is a central simple K-algebra.

Lemma 11. There are no proper finite-dimensional division algebras over an
algebraically closed field.

Proof. Assume that k is algebraically closed and let D be a finite-dimensional
division k-algebra. Let « € D\ k. Since D is finite-dimensional over k and k(x)
is contained in D, the extension k(z)/k must be finite and thus algebraic. Since
k is algebraically closed, this forces k(z) = k and thus = € k. This proves that
D =k. O

Definition 12. Let A be a central simple k-algebra. A field extension K of k
is called a splitting field for A if A ®; K is isomorphic to a matrix ring over K.

Definition 13. Let A be a central simple k-algebra and let K be a splitting
field of k. Let ¢ : A®, K — M,,(K) be a K-algebra isomorphism. Define the
reduced trace and the reduced norm on A to be the composite maps

tr

tr,: A9 A @y K -2 Mo (K) 5 K

and
det

N, A9 A, K -2 M, (K) 25 K

Example 5. In Example 4, we saw that a splitting field of the 4-dimensional
central division Q-algebra Hg is K = Q(«, 8) where o + 2 = —1. An element
of a=x+yi+zj+thk € Hx = Hy ®qg K is expressed in matrix form as

r+ya+zB yb—z—ta
yb+z—ta x—ya—tp)"

Thus tr, () = 2z and N,.(a) = 2% + y? + 22 + 2.

Proposition 41. Let A be a finite-dimensional central algebra A over a field
k. Let k denote a fixed algebraic closure of k. Then k is a splitting field for A.
In particular, dimyg A is a perfect square.

Proof. Denote by k a fixed algebraic closure of k. By Corollary 26, A ®y, k is
a finite-dimensional simple central k-algebra. By Proposition 4.3.1, A ®y, k is
isomorphic as a k-algebra to a matrix algebra over a finite-dimensional division
k-algebra. By Lemma 11 there are no finite-dimensional division algebras over
k other than k itself. Thus A ®j, k is isomorphic to M,, (k) for some integer n.
In other words, k is a splitting field for A. Consequently, we have

dimy A = dimg A ®x k= dimg, Mn(];) =n”.
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4.4 Schur Indices

We now relate our discussion of semisimple algebras to the theory of representa-
tions and more precisely to the question of rationality of representations. Here,
K will denote a field of characteristic zero and C' will denote a fixed algebraic
closure of K. Let G be a finite group. Then the group ring K|[G] is a finite-
dimensional K-algebra. It is semisimple by Proposition 16 whose proof does
not require K to be algebraically closed. Therefore K[G] decomposes into a
direct sum of finite dimensional simple K-algebras by Proposition 4.3.1. Going
through the proof of Proposition 36, we see that this decomposition corresponds
to the canonical decomposition of K[G] as a representation. But K[G] is the
regular representation of G over K and by Corollary 16 this decomposition is
given by
K[GI 2 A x...x Ay

where A; is the simple component of K[G] corresponding the irreducible charac-
ter x; of G over K. Let V; be a representation of G with character y; and denote
by n; its dimension over K. Then A; is isomorphic as a left K[G]-module to
the direct sum of n; copies of V;. The representation V; is the minimal left ideal
of the simple ring A;. We say the minimal left ideal because by Proposition
38 all minimal left ideals of A; are isomorphic as left modules. By Proposition
4.3.1 and Proposition 38, each A; is isomorphic as a K-algebra to a matrix ring
over a division ring, say M, (4;), where [; = dima, V; and A; = (End g4, (V;))°P.
Note that Enda, (Vi) = Endgg) (Vi) since the left action of K[G] on V; is left
multiplication which is done componentwise with respect to the decomposition
K|[G] into the direct product of the A;. Summing this up, we have a K-algebra
isomorphism

K[G] = Ml1 (EndK[G](‘/l)Op) X ... X Mlh (EndK[G](Vh)Op).

By Proposition 41, C is a splitting field of each A;. It follows that we have an
isomorphism of C-algebras

C[G] = Mll(C) X ... X Mlh(C)

Definition 14. With the above notations, denote by Z(A;) the center of A;.
Since A; is of finite-dimension over K and Z(A;) contains K as a subfield, A; is
of finite dimension over Z(A;). Thus A; is a finite-dimensional central division
Z(A;)-algebra. By Proposition 41, we have [A; : Z(A;)] := dimga,) A; = m?
for some integer m;. This integer m; is called the Schur index of the character
xi over K.

Proposition 42. Let G be a finite group. Let x1,...,Xxn denote the irreducible
characters of G over K and let m; be their respective Schur indices. Then the
family of characters {xi/m;}!_, forms a Z-basis of R(G, K).

Proof. See § 12.2 Proposition 35 of [Sel]. O

Theorem 4.4.1. Let x be an irreducible character of G over C. Then there
is an irreducible representation of G over K(x) with character x' such that
X' = my, where m is the Schur index of x' over K(x). Furthermore, the
character ¢ = trg(y)/x © X' is the character of an irreducible representation of

G over K.
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Proof. Let V; be the distinct (up to isomorphism) irreducible representations of
G over K(x) with characters x;. Let D; = Endg ([ Vi and denote by E; the
center of D; so that the Schur index m; of x; over K (x) satsifies m? = [D; : E;].
Evidently x takes values in K () and thus x € R(G, K(x)). By Proposition 42,
there exist integers d; such that x =, d; X-. By Proposition 30, we have

mg

_)dimgy Dy ifi=j
(X X]>G - {0 otherwise.

Since y is assumed to be irreducible, we obtain

2 2
.

1= (one = 02 e = Y 5 (0:: K]

i K2

= D BB K] = Y @E:: K,

This implies that all d; are zero except for one, say d;,, and moreover, dfo =1
and F;, = K(x). As a consequence, we have m;,x = d;,X;,- Evaluating both
sides at 1 € G, we see that d;, > 0 and this implies d;, = 1. This proves the
first part of the theorem.

We rename m = m,, and x;, = x’ as in the statement of the theorem and
let (p,V) be a representation of G over K(x) with character x’. We also write
D' = D,;, and E' = E;; = K(x). Let T be the Galois group of K(x)/K which
is a Galois extension by Proposition 18 (the same proof works with Q and C
replaced by K and C). Define ¢ = tr(y)/x(X') and ¢ = trg(y)/x (x). We have

mp =Y mx* = (mx)* =¢.

acl acll

The representation V is a K (x)[G]-module of finite dimension equal to, say n.
Since K (x) is a |I'|-dimensional vector space over K, we can view V as a K[G]-
module of dimension n|T'| over K by restriction of scalars. The character of the
K[G]-module V obtained in this way is ¢ and therefore ¢ is realizable over K.

Let W be a realization of ¢ over K. We need to prove that the representation
W is irreducible. Let therefore Wi be a K[G]-submodule of W. By semisim-
plicity, there exists a K[G]-submodule W5 of W such that W = W; @ Ws. By
definition of realizability, the representation K(x) ® x W is a realization of ¢
over K(x) and is therefore isomorphic as a K (x)[G]-module to the representa-
tion @, V. By distributivity of the tensor product with respect to direct
sums we have

(K(x) @k Wh) ® (K(x) @k Wa) = K(x) ®x W = V™.

ael

It follows that one of the two left summands contains an isomorphic copy of V|
say the first. Since K (x) ® k W1 is stable under the action of T', it must contain
at least one copy of each V. Now, if « is not 1, then we cannot have (x')* = x’
since otherwise « fixes K (') which is equal to K () which implies & = 1. Thus
a # B in T implies that (x)® # (x’)? so that V' is not isomorphic to V2. Thus
K(x) ®x W1 = @ er V* and K(x) ®x Wo = 0 which implies that W5 = 0.
This proves that W is indeed irreducible. O
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Chapter 5

L-Functions

Before Artin introduced his L-functions in his 1923 paper [Arl], people had
already studied other less general L-functions. The study of L-functions can
be traced back to Leonard Euler who introduced and studied what is today
known as the Riemann zeta-function. In particular, he proved that it admitted
an expression as an Euler product in the region s > 1. He also gave a modern
proof of the infinity of the prime numbers. Bernard Riemann was the first to
view this function as a complex variable function. He showed that his zeta-
function admitted a functional equation and an analytic continuation to all of
C. He also discovered the deep link between the zeros of the Riemann zeta-
function and the prime numbers and proved the explicit Weil formula for his
function. In his study he was led to conjecture that the non-trivial zeros of the
Riemann zeta-function all lie on the line $s = 1/2. This is now known as the
Riemann Hypothesis.

Later, Dirichlet introduced what is known as Dirichlet L-functions by attach-
ing what is called a Dirichlet character to the Riemann zeta-function. These
L-function were also shown to possess a functional equation which gave them
analytic continuation to C. Finally, Dedekind introduced the Dedekind zeta-
function of a number field, generalizing the Riemann zeta-function to number
fields. It was Weber who generalized Dirichlet’s methods and attached ray-class
characters to the Dedekind zeta-function and created what is called Weber L-
functions. Hecke was the one that proved that these L-functions admitted a
functional equation and an analytic continuation. Later Hecke introduced his
Grossencharakter, now known as a Hecke character, and attached to them a
generalization of both Dirichlet and Weber L-functions in the form of a Dirich-
let series that has an Euler product. The L-functions introduced by Artin
generalize all of these previous L-functions.

5.1 L-Functions before Artin

We briefly introduce Dirichlet and Weber L-functions.

91
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5.1.1 Dirichlet L-functions

Let m > 1 and let x be 1-dimensional complex representation of the group
(Z/mZ)*. We extend this to a function x : Z — C by letting

x(n) = {X([n]) it (nym) = 1

0 otherwise.
This is called a Dirichlet character of modulus m.

Suppose that m/|m. Then we have an inclusion mZ C m'Z and thus a
surjective homomorphism Z/mZ — 7Z/m’Z. Moreover, (a,m) = 1 implies that
(a,m') = 1 so that we have a surjective homomorphism (Z/mZ)* — (Z/m'Z)*.

The smallest m*|m such that x factors through (Z/m*Z)* is called the con-
ductor of x and is denoted m*. The extended character x* : (Z/m*Z)* — C
is then called a primitive Dirichlet character.

One can check that if x factors through (Z/m’Z)* and (Z/m’'Z)* where both
m’ and m” divide m, then y factors through (Z/ ged(m’, m”")Z)*. Existence and
uniqueness of the conductor m* is proved by simply taking m* to be the gcd of
all divisors of m that x factors through.

Once we have the definition of Dirichlet characters we can form Dirichlet L-
functions. If y is a Dirichlet character then we define this function, for s > 1,

to be
L(s,x) = X::) 1] (1 B x(p)>_1.

s
n>1 P p

These are generalizations of the Riemann zeta-function which is obtained by tak-
ing the trivial character of modulus 1. One can show that Dirichlet L-functions
admit a functional equation centered at s = 1/2 and extend analytically to
holomorphic functions if y is not trivial. If x is the trivial character then the
Dirichlet L-function is the Riemann zeta-function and has a simple pole at
s = 1 with residue 1. Moreover, one can prove that the L-function of a non-
trivial Dirichlet character has no zeros on the line R(s) = 1 and actually no
zeros in a region away from the line s = 1 except possibly one which is known
as Siegel’s exceptional zero. These functions are central when studying primes
in arithmetic progression and primes in general. One for example studies these
functions when proving the Maynard-Zhang Theorem on bounded gaps between
primes.

If x is a Dirichlet character of modulus m and x* is the corresponding
primitive character of modulus m*, then we have

L(s,x) = pl;[n (1 — X;(Sm>_1 = }:[n (1 — X;@) L(s, x").

Thus the L-function of x only differs by finitely many factors from the L-function
of x* and it therefore suffices to study only primitive Dirichlet L-functions.
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5.1.2 Weber L-functions

Let k be a number field and m a modulus of k. Let x be a 1-dimensional complex
representation of the m-ray class group Clg(m) of k. Extend this to a function
X : Ix — C by letting

(a) = {x([a]) if a € Iy(m)

~]o otherwise.
This is called a ray-class character of modulus m.

Suppose that m’|m and let « =1 mod *m. Then we have =1 mod *m’.
As a consequence, we have the inclusion P, C P, and we have a homomorphism
of groups Cl(m) — Cl(m’).

Definition 15. Let x be a ray-class character of modulus m. The conductor
f(x) of x is the smallest modulus m’ of k with the property that there exists a ray-
class character x’ of modulus m’|m such that the following diagram commutes:

Cly(m) —— C*
| A
Clk (m’)
The corresponding Hecke character x* : Cli(f(x)) — C* is said to be primitive.

The existence and uniqueness of the conductor of a ray-class character comes
from constructing it again as the ged of all moduli that divide m and have the
above property.

Definition 16. Let x be a ray-class character over k of modulus m. The Weber
L-function associated to x is defined, for Rs > 1, to be

w210~ )

where the sum is over all non-zero integral ideals of k and the product is over
all non-zero prime ideals of k.

Remark 15. By Example 1 a Dirichlet character of modulus m is a ray-class
character for Q of modulus mZwv,, and their L-functions coincide.

Proposition 43. Let x be a ray-class character for k of modulus m. The
Weber L-function L(s,x) converges absolutely for Rs > 1 and therefore defines
a holomorphic function in this region which has no zeros.

Proof. Since x : Cl(m) — C* is a homomorphism of groups, x takes values on
the unit circle. We therefore have, for s > 1,

Ll =| 5 e

(a,m)=1

1
< ; N = (k(Rs)

and we already know that the Dedekind zeta function converges absolutely for
Rs > 1. O
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In view of Remark 15, these Weber L-functions are generalizations of Dirich-
let L-functions. As in the previous section, if y is a ray-class character and x*
denotes the corresponding primitive character, then

o 1) = _X®) ) pg o
L(s.) lem(l 2B s

Thus the Weber L-function of x only differs by finitely many factors from the
one of x*. It follows that in order to understand Weber L-functions it suffices
to consider the case of primitive characters. Note that the Weber L-function as-
sociated to the primitive trivial character is exactly the Dedekind zeta-function
(x. Hecke proved that these L-functions can be analytically continued to the
whole complex plane via a functional equation. In order to state this theorem
we first need to complete L(s, x) with local factors corresponding to the infinite
places of K.

Definition 17. Let x be a ray-class character of k with conductor f. If v denotes
an infinite place of K, then we define the local factor at v as follows:

Tr(s) =n"20 (%) if v 1§ and is real
Ly(s,x) =S Tp(s+1)=7""=T (= if v|f and is real
Ie(s) =Tr(s)Tr(s 4+ 1) = 2(27) °T'(s) if v is complex.

We also define Loo(s,x) = HveM? L,(s,x)-

Theorem 5.1.1. Let x be a primitive ray-class character of k of conductor
f(x). The completed Weber L-function

A(s,x) = (|dr| N (F(x)0))* Loo (s, X) L(5, X)

extends holomorphically to C (unless x is trivial in which case it has simple
poles at s = 0,1) and has a functional equation

A(s,x) = Q)AL = s,X)
where |e(x)| = 1.

Proof. The proof, which is due to Hecke, is inspired by the proof of the functional
equation for Dirichlet L-functions but uses more general and complicated Hecke
©-functions. See Chapter XIII, § 3 of [Lan]. O

Corollary 27. The Weber L-function of a non-trivial ray-class character is
holomorphic on C.

Proof. Let x be a non-trivial ray-class character of modulus m and let x* be
the corresponding primitive character. As already noted, we have

L(s,x) = H (1 — ]957*(23))5> L(s, x*)

plm

and as a consequence holomorphicity of L(s, x) only depends on holomorphicity
of L(s,x*) since the finite product is holomorphic.
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We may therefore suppose that y is a primitive non-trivial Weber character
with conductor f(x). By the functional equation we have
(Idk|N (7(x)0)) % Loo (s, X)
Looking at the definition of the I'-factors in Definition 17 and using the fact

that I" has a simple poles at s = —n for non-negative integers n and no zeros it
becomes clear that L(s, x) is holomorphic on C. O

L(s,x) = e(x)

Corollary 28. Let k be a number field. The completed Dedekind zeta-function
Ap(s) = |di| 5T (s)" Te(5)" Gk (5)-

extends meromorphically to C with two simple poles at s = 0,1 with polar part
given by
2" h. Ry, 1 1
Wik s—1 s

and satisfies the functional equation Ak(s) = Ax(1 —s).

Proof. This is a consequence of our observation that (i(s) is the Weber L-
function for the trivial primitive ray-class character. Therefore N(f(x)o) = 1
and Lo, = I'r(s)™T'c(s)™. The polar part result is a consequence of Theorem
1.5.1. O

5.2 Artin L-functions

Weber L-functions were a great tool in proving global class field theory. But we
only have a class field theory for abelian extensions of number fields. Meanwhile,
Weber L-functions are functions associated to characters of abelian groups.
Artin was interested in L-functions more general than the ones of Weber and
Hecke that may be associated with not necessarily abelian Galois extensions
of number fields. He introduced his L-functions in his 1923 paper [Arl] and
completed his work on them in his 1930 and 1931 papers [Ar2] and [Ar3].

5.2.1 Definition

Let K/k be a finite Galois extension of number fields and let G = Gal(K/k).
Let v = p be a finite place of My. Pick a prime ideal ¢ of Ok that divides p
and let ey and fy be the ramification and residual degrees of 8 over p. Denote
by (B, K/k) the Frobenius element of 3. This is an element of the quotient
group Dy /I.

Let (p, V) be a finite-dimensional complex representation of G and consider
the representation (pg, VI%) of the quotient group Dgy /1. For any s € C with
Rs > 1, consider the element 1 — pg (B, K/k))N(p)~* of Endc (V). Since the
order of py (B, K/k)) is f = fi, the above element has an inverse given by

f—1
(L=NE) )™ pp((B, K/E) N (p) .

Jj=1

In particular, 1 — pg ((B, K/k))N(p)~* belongs to GL(V'*) and its determinant

is non-zero.
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Definition 18. Let K/k be a finite Galois extension of number fields and let
G = Gal(K/k). Let (p, V) be a finite-dimensional complex representation of G.
The Artin L-function of V is defined, for s € C with Rs > 1, by the product

L(s,V,K/k) = ] det(1— pos((B, K/k))N(p)~* | V'®)~!
peM)

where P8 denotes any prime ideal of K that divides p.

Remark 16. We claim that this definition does not depend on the choice of
the prime PBlp. For, any other prime that divides p is of the form o(B) for
some element o of G. Let og denote a representative of (B, K/k) in Dy. By
Proposition 12, ooqo ™! is a representative of (B, K/k) in D). Then by
definition of the quotient representation we have

Pop) (0(P), K/k)) = plooga™) = p(o)px (B, K/k))p(0) "

It follows that

1= pocp) (0 (B), K/k))N (9) ™ = p(0) (1 — pp (B, K/k))N (p)*)p(0) "

As a consequence, we have
det(1 — po ) ((0(B), K/k))N(p)~*) = det(1 — py((B, K/k))N(p) ).

Remark 17. Let (p/, V') be an isomorphic representation. Then there exists an
isomorphism of complex vector spaces f : V. — V' such that fop(c) = p'(c)o f
for all o € G. It follows that p(c) = f~! o p/(c) o f and det(1 — p(o)) =
det(1 — p'(0)). We conclude that

L(s,V,K/k) = L(s,V', K/k).

Thus, the Artin L-function is actually defined for isomorphism classes of repre-
sentation. This last observation hints toward the fact that we should be able to
get an expression of the L-function that only depends on the character of the
representation.

Remark 18. When the context is clear and no confusion is possible, we shall
write L(s, V) instead of L(s,V, K/k) for the Artin L-function of V.

Proposition 44. Let K/k be a finite Galois extension of number fields and
let G = Gal(K/k). Let (p,V) be a representation of G over C. The Artin
L-function L(s, V) converges absolutely in the region Rs > 1.

Proof. For each prime p of k and any choice of a prime 3 in K that divides p,
we denote by dim() the degree of the representation V/%#. Also, we denote
by )\?3 the eigenvalues of the matrix py((B, K/k)) for ¢ = 1,...,dim(). For
the following computation we drop the VI* in the determinant notation. With
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these notations, we have

[L(s, V)| = [T Idet(1 — py (B, K/k)N (0) ")~

p
dim(3)
_H H 1= A¥N(p)~s|~!
d1m(§]3
<H H (1 — [NF|N(p)~ %)t
dimm)
=11 II a-~Nw™™)
P i=1
< (1 . N(p)fé)%)dimcv
p
— Ck(%s)dimc\/

where (i denotes the Dedekind zeta-function of k. Note that we made use of
the fact that the absolute value of the eigenvalues of pyp((B, K/k)) is 1. This
is due to the fact that pg is a homomorphism of groups and therefore of finite
order since Dy /Iy is finite. Since ¢, converges for s > 1 we get the desired
result. O

Proposition 45. Let K/k be a finite Galois extension of number fields and let
G = Gal(K/k). Let (p,V) be a representation of G over C with character x.
For Blp we denote by xq the character of the representation VIs . Then, for
Rs > 1, we have

log L(s, V) = szm %K/k )
pog=1

where o denotes any representative of the Frobenius element (B, L/K) in Dy.

Proof. We use the same notations as in the previous proof. Taking the logarithm
of the L-function, we obtain

log L(s,V) =Y —logdet(1 — (P, L/K)N(p)~*))
' dim P dim P

—Z logH 1-AFPN(p ZZ —log(1 = AP N (p)™).

Using the Taylor expansion of —log(1l — x), we see that

dimB oo ()\q3 j B oo dlmm()\?}).]

p j=1

But the (A?)j are the eigenvalues of the j™ power of py((%, L/K)) and thus
their sum is x5 ((B, L/K)’) and this concludes the proof of the first equality.
The second equality is a direct consequence of Proposition 9. O
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Remark 19. Proposition 45 shows that the Artin L-function of a Galois repre-
sentation only depends on the character of this representation. We will therefore
speak about the Artin L-function of a character and we will interchangeably use
the notations L(s, V) and L(s, ).

By Proposition 9 we have

J
log L(s, x) ZZ TGIB (%37).

p j=1

We use this expression to extend the definition of Artin L-functions to class
functions of G.

Definition 19. Let K/k be a finite Galois extension of number fields and let
G = Gal(K/)k. For any class function ¢ € R(G,C), we define the Artin L-
function of ¢ for Rs > 1 to be

log Ls.) = 3 % TEIB ‘b("g’?”

p g=1

where oy denotes any coset representative of the Frobenius automorphism
(B, K/k) in Dyp.

5.2.2 First Properties

We study the behavior of Artin L-functions with respect to the operations of
addition, induction and inflation on representations and their characters.

Proposition 46. Let K/k be a finite Galois extension of number fields and let
G = Gal(K/k). Let 1¢ denote the trivial character of G. Then, for Rs > 1, we
have

L(s,1g) = Ck(s).
Proof. By Proposition 45 we have

log L(s, 1) = ZZ]N

poj=1
Using the Taylor series of log(1 — =) we get
log L(s,1¢) = »_ —log(1 — IOgH (1- = log (i ().
p
O

Proposition 47 (Additivity). Let K/k be a finite Galois extension of number
fields and let G = Gal(K/k). Let x1 and x2 be two characters of G. Then, for
Rs > 1,

L(87 X1 + XZ) = L(S7X1)L(S7 X2)

Proof. By Proposition 45 and using absolute convergence of the Artin L-function
in the region $s > 1 we see that

log L(s, x1 + x2) = log L(s, x1) + log L(s, x2).
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Proposition 48 (Inflation). Let K/k be o finite Galois extension of number
fields and let G = Gal(K/k). Let H be a normal subgroup of G and let x be a
character of the quotient group G/H. Then, for s > 1, we have

L(s,Inflf x, K /k) = L(s, x, K /k).

Proof. Let K' = K and let T' = Gal(K’/k). By Proposition 11, the restriction
map Res : G — T induces and isomorphism Iy /(I N H) = Iy,

If opr and oy denote representatives of the respective Frobenius elements,
then for any positive integer j we have

1 ,
Z X(U%ﬂ/) Z agn,Ros 7).
P el 6q:v|ff.p eIy N H] rely

Note that |[Iy N H| = egp/ep. By Proposition 13, we may suppose that
Res(og) = oy Thus

1 o1
’ = — I ﬂ
E X(og ') c E (RGS(O}pT E nfl7x( Uq}T

ey’
¥ 7€l T€ly reIm

By Proposition 45, we obtain equality between the L-functions. O

Proposition 49 (Induction). Let K/k be a finite Galois extension of number
fields and let G = Gal(K /k). Let H be a subgroup of G and let x be a character
of H. Then, for %s > 1, we have

L(s,Indfyx, K/k) = L(s, x, K/K*™).

Proof. By Proposition 45 it suffices to prove the following: for all p prime in k
with B a prime in K that divides p we have

ZIHdHX,g((m,K/k ZZX@ @’K/K ))

i>1 IN(w)? qlp n>1
where the right-hand side sum is over prime ideals q of K that divide p and p

is any prime ideal of K that divides g.

We set F = K. We fix a prime p in k. In F, we have a decomposition of p,
say pOp = q7* ... q5 . For each i, we let f; denote the residual degree of q; over
p. For each q; we let B; denote a prime of K that lies above g; and we denote
by e} and f] the associated ramification and residual degrees of 3; over q;. We
let e and f be the ramification and residual degrees of *J3; over p. The prime
ideal B3; all lie above p and G acts transitively on the prime ideals of O that lie
above p. We let 7); € G be such that 7;(1) = ;. Let D; and I; be respectively
the decomposition and inertia groups of 3; over p. Then by Proposition 10 we
have D; = niDmfl and I; = nilmfl. Let 01 € Dy be an element such that
(B1, K/k) = o111 and choose o; € D; such that o; = 771‘01772-_1 by Proposition
12. Note that D; N H and I; N H are respectively the decomposition and inertia
groups of B; over q;. The order of the group D; is ef and the order of D;N H is
e} f! and thus the index of D;NH in D; is e; f;. Let {v;,} forv=1,...,e;f; be
a system of right coset representatives of the quotient D;/(D; N H). By Lemma
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3, the family {v;,n;} fori=1,...,rand v =1,...,e;f; is a system of distinct
right coset representatives of the quotient H \ G.
Using Theorem 3.4.1, we see that if 7 is an element of G, we have

roeifi

Indgx(m) =D > XOwmirn; i)

=1 v=1

where the symbol / in the sums means that the sums are over all 7 and v such
that v, .m0, 17;’ Vl belongs to H. It follows from Proposition 9 that

IndeX‘«B((m,K/k)j) = IndHXffBl ‘71 Z IndHX (717'
7'611
rooeifi
- 7 Z Z Z ’Yz,unio'{T'r]i_eri_,yl)
TEIl =1 v=1
r e fs

- Z Z Z %,uﬁifT{n;lmT”;lV;l})

7'6117, 1 v=1

r eifi

72 Z Z WZ,VUgTi'Yitl})-

i=1 v=1 m;€l;

Since I; is a normal subgroup of G; and G;/I; is abelian, conjugation of Uf I; by
elements of G; does not affect o I;. It follows that

Ind% o (B, K/k)7) Z/ezfz Z (o77)
Tel;

where the sum is over the ¢’s and the 7 for which af 7 belongs to H. By Lemma
4, the intersection o'g I; N H is non-empty if and only if f; divides j. Moreover,
if ¢; is a representative of (;, K/F) in the decomposition group D; N H of B;
over q;, then if f; divides j we have

JI NH = ¢]/f7,( ﬂH)

It follows that

s (B, K/ = 28 37 (o)

3 [ 3 — !/
since e} = |I; N H|. Since e = e;e}, we get

IndHqu((‘B K/k‘ Zsz‘BZ gﬁz,K/F)]/ﬂ)
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We can now compute

ZIndeg( T, K/k Z 3 PRE( ‘»BmK/F)”ﬂ)

i>1 IN(p) i=1 £ Np)?
(B, K/F)™)
722]2 an nf“s
1=1n>1
szmq mlaK/F) )
1=1n>1
as promised. O

Proposition 50. Let K/k be a finite Galois extension of number fields and let
G = Gal(K/k). Let G denote the set of irreducible characters of G over C. For
Rs > 1, we have the formula

s)= [ L(s, )X

xe@
In particular, if 1 denotes the trivial character of G, then we have the formula

HLSX

x#la

Proof. Consider the trivial subgroup {1} of G. It has only one irreducible
character, namely the trivial character 1(;3. By Theorem 3.4.1, the induced
character on G is given by

\G| ifo=1

otherwise.
TEG

—lor=1

By Proposition 26, this is equal to the regular character r¢ of G. By Corollary
16 we have rg = eré x(1)x. By Proposition 47 applied repeatedly we have,
for Rs > 1, the formula

L(s,rg) HLSXX(I
x€G

By Proposition 49 and Proposition 46, we have
L(s,Ind{y 11y, K/k) = L(s, 11y, K/K) = (k(s).

We thus obtain
= 1 L0

Xeé
which proves the first formula. By Proposition 46, we have L(s,1¢,L/K) =

Ck(s) so that
Cre(s) = G(s) T LCs)X™.
x#la
By Remark 5 the function {j(s) can be expressed as an Euler product for s > 1
and therefore has no zeros in this region of the complex plane. We can therefore
divide the previous expression by (i(s) on both sides to obtain the desired
formula. O
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5.3 Artin L-Functions of 1-dimensional Charac-
ters

Let K/k be a finite Galois extension of number fields with Galois group G.
Let x be a 1-dimensional character of G. Then x factors through it kernel.
Explicitly, there exists a homomorphism x’ : G/kery — C* such that the
following diagram

G ——C
LA
G/ ker x

commutes. In other words, we have x = Inﬂf;r Xx’ . Since ker y is a normal
subgroup of G, the extension K**X/k is a Galois extension. Moreover, it is
abelian. The latter is because the kernel of x contains the commutator [G : GJ,
whence K¥') is a subfield of KI¢Gl. Since K**(X) is Galois over k, its Galois
group is a quotient of the abelian group G/[G : G] and is therefore abelian. By
Proposition 48, we have

L(s, x, K/k) = L(s,x', K" X [k).

Thus the L-function of a 1-dimensional character is the L-function of a 1-
dimensional injective character of an abelian extension of k.

Assume now that K/k is an abelian extension with Galois group G. Let x
be a 1-dimensional injective character of G. The conductor f = §f(K/k) of K/k
is the smallest modulus of k for which K is a subfield of the corresponding ray
class field by Proposition 14. Let Res denote the restriction map

Gal(k(f)/k) — G.
It induces an isomorphism of groups
Gal(k(f)/k)/Gal(k(f)/K) — G.
Define the character
X7 = Infige D7) (x o Res) : Gal(k(f)/k) — C*.

Composing with the Artin map we get a character X% = Xj © Pr(f) k. of Cli(f)-
We extend X;; to a ray-class character X% : I, — C of modulus f by setting

@) {x%([a}) if a € Li(f)

X 0 otherwise.

We consider the Weber L-function associated to this ray-class character

Lw(s,x)) = [ (1 = x5 (0)N ) ~)
ptf

-1

We have
L(s,x, K/k) = [ J(1 = xp (0, K/R))N(p) = | Vo)~
p
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We have V7» = {0} if and only if x(I,) = 1. By injectivity of x this implies
that I, is trivial which is equivalent to p being unramified. By Theorem 2.4.2,
p is ramified if and only if p divides f. We conclude that

L(s,x, K/k) = [ [(1 = x(op)N(p)~*) "
ptf

If p is unramified, then

X5(p) = xp((p, k() /E)) = x(Res((p, k(f/k)))) = x(op)

where we used Proposition 13 in the last equality. We conclude that

L(s, x. K/k)) = L (s, X}). (5.3.0.1)

To recapitulate, using class field theory and the properties of Artin L-
functions we have shown that the Artin L-function of a 1-dimensional character
of a finite Galois extension is equal to a Weber L-function. By Theorem 5.1.1 all
Weber L-functions admit a functional equation centered at % By Corollary 27,
these L-functions are holomorphic on C if the ray-class character is not trivial
and meromorphic with a pole at s = 1 if the character is trivial. In conclusion,
we have proved the following:

Theorem 5.3.1. The Artin L-function of a 1-dimensional characters of finite
Galois extensions admits a meromorphic continuation to C and a functional
1

equation centered at s = 5.

Theorem 5.3.2. Let x be a 1-dimensional non-trivial character of a finite

Galois extension K/k with Galois group G. Then L(s, x, K/k) is non-zero at
s=1.

Proof. We have just proved that L(s,x, K/k) is actually the Artin L-function
of a 1-dimensional character of an abelian extension. It thus suffices to prove
the result in the special case where K/k is abelian. Every irreducible character
of K/k is then 1-dimensional and by Proposition 50 we have the formula

Ck(s)
C(s)

= [I ZGs,x'. K/k)

X'#la

where the product runs over all irreducible characters of K/k that are not the
trivial character 1¢. By our above discussion, each L(s,x’, K/k) is a Weber
L-function and extends holomorphically to C by Theorem 5.1.1. On the other
hand, by Theorem 1.5.1, both (i and (i have a simple pole at s = 1 and thus the
?}:((;)) has neither zero nor pole at s = 1. Since all L(s, x’, K/k) on the
right hand side are holomorphic, if one factor has a zero at s = 1 then it cannot
be balanced out by the other factors and the right hand side would have a zero
of order at least 1 at s = 1 which is a contradiction. Thus L(1,x’, K/k) # 0
and in particular this proves that L(1, x, K/k) # 0 as desired. O

quotient

5.4 Functional Equation of Artin L-Functions

Let K/k be a finite Galois extension of number fields with Galois group G and
let x be a character of G. By Brauer’s Theorem 3.11.1, there exist subgroups
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H,; with one-dimensional characters 8; and integers n; such that
X = Z niIndgi 0;.
i

By Proposition 47 and Proposition 49 we have the equality

L(s,x, K/k) =[] L(s, 0:, K /K )™,

7

By Theorem 5.3.1, each L(s, 0;, K/ K') satisfies a functional equation centered
at 1. Therefore the same is true for L(s, x, K/k) and therefore Artin L-functions
extend to meromorphic functions on C via a functional equation centered at
s = % Since the functional equations of Artin L-functions of 1-dimensional
characters relate the completed L-function of the character with the one of the
conjugate character and the conjugate of a Z-linear combination of characters is
the same Z-linear combination of the conjugates of the characters, the functional
equation of a general Artin L-function will also relate the completed L-function
of x with the one of y. But how do we get an explicit well-defined completed
Artin L-function? One way to obtain this completed L-function would be to
write the Artin L-function as a Z-linear combination of monomial characters
using Brauer’s Theorem 3.11.1 and then defining the completed Artin L-function
as the product of the completed L-functions of the monomial characters. But the
expression obtained via Brauer’s Theorem 3.11.1 is not unique and one cannot
a priori guarantee that the completed Artin L-function obtained in this way is
consistent with the different expressions. Moreover, the completed L-function
would have to satisfy properties consistent with the addition, induction and
inflation properties of Artin L-functions. Having made this observation we will
not dwell on this problem any further but simply give the completed Artin
L-function and state the functional equation.

In order to accomplish this, we need some notation and the definition of the
Artin conductor. Let K/k be a Galois extension of number fields with Galois
group G. Let V be a finite-dimensional complex linear representation of G with
character y. Having fixed the field extension K/k, we will simply write L(s, x)
for the Artin L-function of .

We start by adding in Gamma factors corresponding to the infinite places
of k. The Galois group G acts on infinite places w of K in the following way:

|$|U(w) = |U_1(x)‘w-

Suppose that w lies above the infinite place v of k. Since o fixes k, the infinite
place o(w) also lies above v. It is not difficult to see that G acts transitively on
the places above v.

Let v be an infinite place of k£ and let w be a place in K that lies above v.
Define the decomposition group of w over v to be

Dy =Dy ={0€G : o(w)=w}

If w is a complex place and v a real place, then D,, is of order 2 and contains
the identity and complex conjugation. Otherwise, D,, is the trivial group.

If D, is non-trivial, then let x4 and y_ respectively be the trivial and the
non-trivial irreducible character of D,,. Since D,, is abelian, both characters
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have dimension 1. Decomposing x into irreducible characters of D,, yields
Resg, X = ny(w)x+ +n_(w)x—.

We have ny (w) = <Resgw , X+>Gw = dim¢ VP». Evaluating the above equation
at the identity yields dim¢ V' = n4(w) + n_(w) by Proposition 17 (i) so that
n_(w) = codim¢V P». The particular choice of a place w above v does not affect
the above decomposition since the decomposition groups of two places above v
are conjugate (same proof as Proposition 10). We therefore write n (v) and
n_(v). We define

Ly(s,x+) =Tc(s) if v is complex
Ly(s,x+) =Tr(s) if v is real
L,(s,x-)=Tr(s+1) ifwisreal

We define the local factor at v by
Ly(s,x) = Lu(s, X+)n+(v)Lv(57X—)n7(v)-

For the definition of I'g and I'c see Definition 17.
We also define

() = Y ne() and ax() = Y n-(v).

v real v real

It follows that

1
x(1)

n=k:Q = (a1(x) +a2(x) + 2r2x(1)). (5.4.0.1)

Explicitly, we then have

. s a1(x) 1\ 2200
[ Lo(s,x) = 27XO0) g =22 =nx(D 3 (g)rax(Dp (%) F(ﬁ ) :

v|oco

Our next task is to define the exponential factor of the completed L-function.
Let p be a finite place of k£ and let 8 be a place above p. For all i > 0 we define
the 7*® ramification group G; to be the subgroup of Dq consisting of elements
that act trivially on O /PB+!. Explicitly, we have

G; = {o’ c D;Is : Um(o’(x) —1‘) >¢+1forall z € OK}.

This gives a filtration
qu :GODG1I>G2D...
with G; = {1} for ¢ large enough. If g; denotes the order of G; then we define

oo

gi . G.
,p) = “—codim¢c V™.
f(x:p) E % C

=0

This definition does not depend on the choice of 3. In fact, if 3’ is another place
above p then P’ = o(P) for some o € G and if G} denotes the ith ramification
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group of P’, then G, = 0G0~ L. In fact, if 7 is an element of G;, then for
x € Ok, we have

O'TU_l(l‘) —Tr= O'(T(o'_l(x)) _ 0'_1(1,‘)) c U(‘Biﬂ) _ %’Hl.

This proves that G; D 0G;07!. Applying this inclusion with o=! gives the
desired equality.

Furthermore, if p is unramified, then f(x,p) = 0 and one can prove that
f(x,p) is an integer for any p.

Definition 20. The Artin conductor of x is the ideal of Oy, defined by

Fo0) = [Ip %

p

Definition 21. The completed Artin L-function of y is defined, for s > 1, by

A(87X) = (|dk|X(1)N(f(X)))% H Lv(‘SvX)L(SﬂX)'

v|oo

Theorem 5.4.1. The completed Artin L-function of x admits a meromorphic
continuation to the whole complex plane and satisfies the functional equation

A(]- - SVX) = W(X)A(S, X)
where |W(x)| = 1.

Remark 20. We have seen that Artin L-functions satisfy additivity, inflation
and induction properties in the region s > 1. One can check that these prop-
erties extend to all of C.

Artin did not prove Theorem 5.4.1. He proved Artin Reciprocity which
is Theorem 2.4.1 and Theorem 2.4.2 and hereby completed global class field
theory. This enabled him to prove the relation between Artin L-functions of 1-
dimensional characters and Weber L-series which was established in the previous
section. He also proved the following:

Theorem 5.4.2 (Artin). Any character of a finite group can be expressed as a
Q-linear combination of monomial characters.

This enabled him to decompose his Artin L-functions into the product of
rational powers of Artin L-functions of 1-dimensional characters which he knew
by Hecke’s work could be extended meromorphically to C via a functional equa-
tion centered at s = % However, since the powers were rational, he could not
conclude that his Artin L-functions could be extended meromorphically to C.

Suspecting however that this was true, he conjectured the following:

Conjecture 1 (Artin). Any character of a finite group can be expressed as a
Z-linear combination of monomial characters.

This became known as Brauer’s Theorem in 1946 when Brauer confirmed
Artin’s intuition. As we discussed in the beginning of this section, this result
ensured that Artin L-functions admit a meromorphic continuation to C. But
Artin went even furtherand conjectured the following:
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Conjecture 2 (Artin). Every Artin L-function, except those associated to triv-
1al characters, can be extended to a holomorphic function on C.

This result is commonly referred to as "Artin’s Conjecture". It is known to
hold, as we have already seen, in the case of one-dimensional characters. But
for higher dimensional characters this is still an open problem and an active
area of research today. Progress has been made in the 2-dimensional case by
considering L-functions attached to certain modular forms of weight 2.
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Chapter 6

Stark’s Conjectures

The Stark Conjecture was introduced by Stark in the 1970’s in his series of
papers [StI], [StII], [StIII] and [StIV] and was later expanded by Tate in his
book [Tal]. It gives conjectural information concerning the leading term of the
Taylor expansion of Artin L-function around s = 0 and generalizes the analytic
class number formula of the Dedekind zeta-function. In the abelian rank 1 case
Stark gave a more refined version of his conjecture. That is why this section is
called Stark’s conjectures in plural. We shall follow the exposition in [Tal].

6.1 Preliminaries

The idea here is to present the motivation behind Stark’s conjecture as well as
defining the ingredients needed to state the conjecture.

6.1.1 The Class Number Formula at s =0

Let k be a number field. In chapter 1 we proved Theorem 1.5.1, known as the
class number formula, which states that the Dedekind zeta-function has a simple
pole at s = 1 with residue given by

_272m" Ry,

Ress=1(Ck(s)) PR

By Corollary 28, the completed zeta-function Ag(s) extends to all of C with
simple poles at s = 0 and s = 1 and satisfies a functional equation Ag(s) =
Ar(1 —s). We will use this to translate the above formula into information
about (; at s = 0.

Proposition 51. The Dedekind zeta-function (i (s) admits a meromorphic con-
tinuation to C with a simple pole at s = 1 with residue given by the class number
formula. The Taylor expansion of (x(s) at s =0 is

Culs) =

= Tk RpsmitTmly O,
Wk

Proof. Using Theorem 28, we see that

Cu(s) = [yl oo 1/2mg(as- 1y (

S (45 e

109
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Since I',(s) has a simple pole at s = 0 we see that (j(s) is indeed holomorphic
at s = 0 and the order of annulation of (;(s) at s = 0is r; + 72— 1. We compute
)

that lim,_,q sfi% is equal to

(dy b F2mioreT (;) P gim (20(2)) 7 (5T() 7 Lim —(5'~1)G(s).

s—0 \2 2 s'—1

Using the fact that I'(s) has a simple pole at s = 0 with residue 1, that the
value of T'(s) at s = 1/2 is 7~ '/? and the class number formula 1.5.1, we see

that L
m _Gkls) = —"FR,.

s—0 gMitrz—1 W

O

Remark 21. This result is truly remarkable. First of all, the leading coefficient
of the Taylor series of (i(s) around s = 0 is given by a global invariant of the
field kK, namely its regulator, times a rational number. Secondly, the order of
annulation of (;(s) at s = 0 is the rank of the unit group Uy, by Theorem 1.4.2.

Definition 22. Let S be a finite subset of M}, containing M °. We define the
S-modified Dedekind zeta-function, for s > 1, by the Euler product

Gos(s) = A =N@E) ™) =Gls) [ 1-NE)™).

pgs peS\ M

Using the functional equation of (j(s) we see that (4 s(s) also admits a
meromorphic continuation to the whole of the complex plane.

Proposition 52. Let S be a finite subset of M, containing M°. Letyp & S
and define S’ = SU{p}. Then, as s — 0, we have

Ck,s1(s) ~ log N(p)sCk,s(s)
meaning that the ratio tends to 1 as s — 0.

Proof. We have (i s/(s) = (1 — N(p)~°)Ck,s(s). Thus

Ch,s'(8) . 1—N(@{p)~— .. 1

lim ———=—~+~—— = =lim—F———=1
550 log N(p)sCrs(s) 520 slogN(p) 530 1+ slog N(p)
where we used the rule of I’'Hospital in the second equality. O

Corollary 29. Let S be a finite subset of Mj, containing Mg°. The Taylor
expansion of (. s(s) at s =0 is

Cr,s(s) = —ho’j’s Ryiss5171 + O(5191).
k

Proof. We prove this by induction on n = |S\ M3?|. The case n =0 is Propo-
sition 51. Suppose the result true for n — 1. Let p be a prime in S and consider
S’ =8\ {p}. By induction hypothesis, we have

. Cr,s7(8) hi,s
im =—
s—50 glSI—2 Wi

Ry.s.
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If m denotes the order of [p] in C1(Ok,s/), then by Lemma 1 we have hy s =
mhy,s and by Proposition 7 we have Ry ¢ = mlog N(p)Ry,s:. Thus
Cr,s'(8) hi,s

i = — Ry s.
50 SIS2 T Tlog N(pJao 0

Finally, by Proposition 52, we have

e h
lim Ces(s) _ log N (p) lim Crys(s) _ has Ris
s—0 glSI-1

s—0 glSI=2 Wi ’
and the proof is complete. O

Remark 22. We see that the leading term of the Taylor expansion of (i s(s)
around s = 0 is the product of a rational number with the S-regulator of k. The
latter is the determinant of a (|.S| — 1)-dimensional matrix with coefficient that
are logarithmic. The order of (i s(s) at s = 0 is the rank of the S-unit group
Uyi,s by Theorem 1.4.1.

6.1.2 The Order of Artin L-Functions at s =0

Let K/k be a finite Galois extension of number fields with Galois group G. Let
(p,V) be a complex representation of G with character x. Let S be a finite
subset of M}, that contains M°.

Definition 23. With the above notations, we define the S-modified Artin L-
function of x, for Rs > 1, by

Ls(s,x, K/k) = [ ] (det(1 — pos (B, K/k)N (p)~*)[V13)) .
pes

This function admits a meromorphic continuation to the whole complex
plane by Theorem 5.4.1. We write its Taylor expansion around s = 0 as follows:

Ls(s, x. K/k) = es(x, K/R)7s00K/M) 1 O(sms00R/M41),

Having fixed the extension K/k we will write Lg(s, ) instead of Lg(s, x, K/k)
in the rest of this section. Similarly, we write cg(x) and rg(x). In this section
we shall compute rg(x). First, we fix some notations.

Let Sk be the finite subset of M consisting of the places that lie above the
ones in S. Recall from Section 1.4 that Y g, denotes the free abelian group
on the set Sk and X g, fits in the exact sequence of groups

O*)XK,SK HYK,SK %ZHO

The Galois group G acts on the left on the set of valuations Sk and for any
v € S, G acts transitively on the places w € Sk that lie above v. By giving Z
the trivial G-action, the groups Yk s and X g naturally come with a left action
of G. Thus both Yk g and Xk ¢ have the structure of a left Z[G]-module. It is
an easy exercise to check that the above exact sequence of groups is an exact
sequence in the category of left Z[G]-modules.

By tensoring with C over Z we get an exact sequence in the category of left
C[G] modules

0 — CXgs5, — CYr 5, 8 C—0.
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By Proposition 16, C[G] is a semisimple ring, and by Remark 10 the above exact
sequence splits. Consequently, as left C[G]-modules, we have

CYk s 2 CXk 5, ®C. (6.1.0.1)

As a consequence, if xy, s, and Xx, g denote respectively the characters of
the representations CYx 5, and CXg g, , then we have
XYk s, = XXk ,sp +1a.

By distributivity of the tensor product with respect to direct sums, we have the
following isomorphisms of left C[G]-modules:

CYk.s = @ Cw=PEPCuw.

wESK veS wlv

If v € S, then G acts transitively on the set {w € Sk : w|v}. Pick one w € Sk
that lies above v. Then, as left C[G]-modules, we have

@Pcw= P Cow)=ndj, C

wlv [c]€G/ Dy,
where we used (3.4.0.1) for the last isomorphism. We have proved the following:

Proposition 53. With the above notations, we have

XYK,SK = XXK,SK +1g = Z IndgwlDw-
veS

In particular, Xy, s, and Xx, s, belong to R(G,Q).

Proposition 54. Let K/k be a finite Galois extension of number fields with
Galois group G. Let V' be a complex representation of G with character x. With
the above notations, we have

rs(x) = Z dime VP» — dime V@
veS
= <X7XXK,SK >G
= dim@ HomC[G](VV, (CXK,SK)

where w is any place of Sk that lies above v.

Proof. The choice of w € Sk does not matter. In fact, let w’ be another place
above v. Then there exists 0 € G such that w' = o(w). By Proposition 10
we have D,y = oDyo~! and thus VPew) = og(VP»). As a consequence,
dimg¢ VPow) = dimg¢ VDw,

We now turn to the proof of the proposition. For simplicity in this proof we
drop the subscripts K and Sk in our notations. Thus Xk g, becomes X and

XXk s, becomes xx.
By Proposition 20 the character of V'V is ¥. By Lemma 5 we have

dim¢ Homc[g] (Vv, (CX) = <927 XX>G .
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But (X, xx)g = (X, Xx)¢ and by Proposition 53 we have xx € R(G,Q) so that
Xx = Xx- We conclude that

dlmCHomC[G](V ,CX) = (X, xx)e

By Proposition 53, we have
Xx = Zlndgwlpw - 1g.
veS
Using Theorem 3.10.2 we have
oxx)e =Y <X,Ind%w1Dw>G7<x, 1o)g = Y (Resg, X, 1p,) . —(x: 1)
vES vES
By Lemma 5 we obtain

<Xa XX>G = Z dim¢ VDw — dim¢ VG.
veS

It remains to prove equality between rg() and any of the three quantities.
By Theorem 3.11.1, there exist subgroups H; of G with 1-dimensional characters
0; and integers n; for i = 1,...,m such that

X = Z niIndgi 0;
i=1

By Proposition 47 and Proposition 49, we have

Lg HLSsIndH ”z—HLSso

=1

If r5(60;) denotes the order of Lg(s,6;) at s = 0, then we have

= Z n;rs(6;)

On the other hand, by linearity of the scalar product and by Theorem 3.10.2,
we have

X XX an <IndH 17XX> = an <0i7Res§iXX>Hi '
1=1

i=1

It thus suffices to prove that rg(6;) = <9¢,Resgi XX>H1- for each ¢ in order to
conclude the proof.

We have reduced the proof to the case where y is a 1-dimensional character
of G. We will prove that 75(x) = (x, xx)o. We distinguish two cases:

e x = lg: By Proposition 46 we have Lg(s,x) = Ck.s(s) and by Corol-
lary 29 we have rs(1g) = |S| — 1. Moreover, we have V¢ = V so that
dime V¢ =dime V =1. If v € S and w € Sk lies above v, then

w

dime VP = <Resgwx, 1Dw>Dw = (le,,1cu)ag, = 1-

We conclude that Y-, ¢ dimg VP» —dime VY = [S] — 1 = rg(x).
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e \ # 1g: We have dim¢ V& = (x, 1a)e = 0 by orthogonality. By Theorem

5.3.2, L(s,x) neither has a pole nor a zero at s = 1. By Theorem 5.4.1,
the completed Artin L-function A(s, x) is equal to

WO (DN () [ Lot L(1—5,X).
v|oo

By equating the orders at s = 0, we obtain

—r2 —ai(x) +7(x) =0

where 7(x) denotes the order of L(s, x) at s = 0. This implies, by (5.4.0.1),
that

r(x) =712+ ai1(x) =n —az(x) —r2 =711 +r2 — az(x).
But r1 47y = |Mg°| and since dim¢ V' = 1 this is equal to ZveM?, dim¢ V.
It follows that
r(x) = Z (dimg V — codimcVP=) = Z dimg VP»

veEME® veEME®

which is the desired formula in the case S = Mg°.
We have

Ls(s,x) = L(s,x) [ det(l = xsp((R, K/R))N(p)=*)[V'¥).

peES\Mg

But V% is either V or 0 since V is of dimension 1 and we have V% =V
exactly when x(Iyp) = 1. Since V is of dimension 1, the character x is a
homomorphism from G to C*. Thus, if oy is a representative of (B, K/k)
in Dy, then by Proposition 9 we have

X (B J/K) = = 3 xowm) = xlow) (Resfyxe 1y )

P T€ly

Hence if x(I) = 1, then xp((B, K/k)) = x(op). As a consequence, we

have )

So we collect a zero at s = 0 in the product exactly when x(ogp) = 1. But
since x(Ip) = 1 and [og] generates Dy /Iy we get x(Dg) = 1. Thus

rs(x) =r(x) +{p € S\ M : x(Dg) = 1}

_ dimg VPw <R G 1 >
Z img¢ + Z €8Gy Xo L Dy D

Ls(s,x) = L(s

eS\M,fo (

x(Igz)=1

vEM® peS\M°
= § dime VP + § dim¢ VP
vEM® peS\M*

= 3" dime VP,

veS
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O

In the course of the proof we proved the following result which we record as
a corollary for future use:

Corollary 30. Let K/k be a finite Galois extension of number fields with Galois
group G. If x is a 1-dimensional character of G, then

rs(x) = IS| =1 if x = 1¢
{vesS : x(Dy) =1} otherwise.

6.1.3 Partial Zeta-Functions
Let K/k be a finite abelian extension of number fields with Galois group G.

Definition 24. Let S be a finite subset of M), containing M:° and containing
all finite ramified places of k. Let s denote the product of all finite places in S.
This is an ideal of O. Let o0 € G and define, for Rs > 1, the function

(s(s,0)= > N(a)*
(a,5)=1
PR ks (@)=

where the sum is over all integral ideals of k£ coprime to s whose Artin symbol
is o.

Remark 23. By comparing with the Dedekind zeta function (i one sees imme-
diately that the above sum is absolutely convergent for Rs > 1. Moreover, one
can show that these functions admit a meromorphic continuation to the whole
complex plane and satisfy a functional equation. These extended functions are
known as partial zeta functions of K/k relative to o.

Proposition 55. Let K/k be a finite abelian extension with Galois group G.
Let S be a finite subset of M, containing Mg as well as all finite places that

ramify in K/k. The functions (s(s,:) : G — C and Lg(s,) : G — C are
Fourier and inverse Fourier transforms of one-another for the group G. That
18,

CS SaU |G| Z LS S XvK/k) LS(57X7K/k) = Z X(U)CS(SvJ)'
x€G ceG

Proof. Let s be a modulus of k£ with factors all finite places in S and all real
places of S and such that the conductor f of K/k divides s. By Theorem 2.4.2,
K is a subfield of the ray class field k(s). Denote by Res the restriction map
Gal(k(s)/k) — G. It induces an isomorphism of groups

Gal(k(s)/K)/Gal(k(s)/K) — G.
Let x € G. By Corollary 29, x is a 1-dimensional character of G. We define

Gal(k k *
= Infigh (Vo) /%) (x 0 Res) : Gal(k(s)/k) — C

and Xy = Xs © Pi(s)/k,5- The latter is a character of Cli(s). We claim that
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In fact, let p ¢ S. Then p is unramified and its Frobenius element o, belongs
to G. Since we are in the abelian case, the Frobenius element is independent of
the choice of a prime P over p. On one hand we have

Ls(s,x, K/k) = [ (1 = x(op)N(p)~*)~".
pgsS

On the other hand we have

Lw(s,xe) = [T (1 = xa ()N () =)~
peS

But if p € S, then by Proposition 13 we have
Xs(p) = xs((p, k(5)/k)) = x(Res((p, k(s)/k))) = x((p, K/k)) = x(0p).

This proves (6.1.0.2).
If p € S, then by Proposition 13 we have

Res((p, k(s) /k)) = (p, K /).
It follows that for any a coprime to s we have
Res((a, k(s)/k)) = (a, K/E).
Let 0 € G and suppose that (a, K/k) = 0. Then we have
x(0) = x((a, K/k)) = x((Res((a, k(§) /k)))) = xs((a, k() /k)) = x5(a).
We now compute that
Xs () Xola) /
Z 7)¢s(s,0) Z Z N(a)* (Z N(a) Ly (s, X5)-

ceG o€G (a,5)=
(a, K/’C)

By (6.1.0.2) the proof of the second formula is complete.

Using this formula and Proposition 28, we also have

‘Glz o) Ls(s, X, K/k) = |G‘Z (@) Y x(7)¢s(s,7)

x€G x€G TEG
- Z Cs(s,7) G Z
TG | |
xEG
= Cs(&o).

O
The following theorem is due to Siegel. We do not prove it in this paper.

Theorem 6.1.1 (Siegel). Let K/k be a finite abelian extension of number fields
with Galois group G. Let S be a finite subset of M, containing M° as well as
all finite places that ramify in K/k. For any o € G, we have

Cs(o, 0’) e Q.
Proof. See p. 101-102 of [Sie|. O
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6.2 The Stark Regulator

6.2.1 Motivation and Definition

Let K/k be a finite Galois extension of number fields with Galois group G. Let
S be a finite subset of M}, containing Mp° and let Sk denote the finite subset
of Mg consisting of those places that divide the ones in S. Corollary 29 says
that, as s — 0, we have

h
(ks (8) ~ =25 Rye g, 5195171,
WK

This is the analytic class number formula. By Remark 3, the Sk-regulator is
the absolute value of the determinant of the map

Ax,si i CUk s — CXk 5,0, u—> Z log |u],w
weSK

with respect to a basis {u1, ..., ug, -1} of Uk s, and a basis {w—wo }wes\fwo}
for some wy € Sk .

By Proposition 50, we have

(ks (s) = [ Ls(sx. K/k)XD.
XG@

Since (x5, has the analytic class number formula, it occurred to Stark in view
of this decomposition that it might be possible to break this formula up into
pieces. Hence, the Artin L-function of an irreducible character x should have an
analogue of the class number formula corresponding to a piece of the formula for
the zeta-function. Moreover, the class number formula that we know for (x g,
should be the result of a piecing together of the formulas for Artin L-functions.

Finally, if 0 is any character of GG, then by the canonical decomposition, it
may be written uniquely as
1= 3 mx

xeé

where the m, are non-negative integers. By Proposition 47, we obtain

L(s,0) = ] L(s.x)™.

XG@

If the Artin L-functions of irreducible characters had an analogue of the class
number formula, by piecing these together one should be able to deduce such a
formula for the Artin L-function of 6.

The class number formula of (x g, relates the leading coefficient of its Taylor
expansion around s = 0 to the product of a rational number with the determi-
nant of a matrix of size the rank of (x g, at s = 0. Stark was lead to conjecture
that the leading coefficient of the Artin L-function of a character 6 of G should
be the product of some algebraic number with the determinant of a matrix of
size the rank of L(s,f) at s = 0. By Proposition 54, this rank is equal to
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rg(0) = dimc Hom(VY,CXk g, ). In this section, we present the type of regu-
lator introduced by Stark to play the role of the determinant of the matrix of
size rg(6), which is accordingly called the Stark regulator.

We consider the group homomorphism

Mcsi i Ukse — RXgs,,  ur— Y loglulyw.
wWESK

The kernel of this map is px and the image sits as a lattice in RX g g, (cf. §
1.4).

The group G acts on the left on Uk s, and Xg g, . By letting G act trivially
on R, the real vector space RXg g, acquires the structure of a left G-module.
We claim that Ag s, is a homomorphism of left G-modules. In fact, if 0 € G
and v € Uk s, then

oAk s (W) = Y loglulyo(w) = Y log |uly-1(umw
wESK weSK
= > loglo(u)lww = Mo (u)).
wESK

We therefore have a short exact sequence of left Z[G]-modules
1 — pux — Uk,sx — Ak,56 (Ur,sc) — 1.
Tensoring with C over Z, we get an exact sequence of left C[G]-modules
1— Curx — CUk 5, — CAg, 5, (Uk,s,) — 1.

Since p is finite, we have Cux = {1}. Since Ax s(Uk,s) is a lattice in RXk g,
we have RAg s(Uk,s) = RXg s,,. We conclude that we have an isomorphism
of left C[G]-modules

/\K,SK : CUK,SK — (CXK,SK~

As a consequence, the character of the representation CUk s, of G is xx. gt
By Proposition 53 we know that

XxXxs, =2 Ind3 1p, —1¢ € R(G,Q).
vES

Notice that 1p, € Rg(Dy) and 1g € Rg(G). Moreover the Q-representation
Q[G] ®q[p,,) Q of G has character Indgwl D,- As a consequence, Indgw 1p, €
Rg(G) and we conclude that xx, 5, € Ro(G). By Proposition 32, the repre-
sentations CUk s, and CXg s, are defined over Q.

The rational representations QU g, and QX s, share the same character
XXk s, and therefore they must be isomorphic as left Q[G]-modules. But there
is no canonical way to define an isomorphism. Let

f : @XK,SK — QUK,SK
be such an isomorphism. By tensoring get an isomorphism of left C[G]-modules

f : CXK,SK — CUK,SK
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which is defined over Q. By composition we get a left C[G]-module isomorphism

)\K,SK o f : (CXK,SK — (CXK,SK

Let V be a complex representation of G with character y. By applying the
functor Homgg)(VY, —), we get a C-linear isomorphism

()‘K,SK o f)v : HomC[G](Vv,(CXKySK) — HomC[G](VV,(CXK’SK)
¢ — AK, Sk © f 0.

Definition 25. With the above notations, we define the Stark regulator of x
relative to f by

Rs(x, f, K/k) = det((Ak,sx © f)v).

Remark 24. The definition of the Stark regulator does not depend on the
choice of the realization V of x. In fact, suppose that W is another realization
of G. Then there exists an isomorphism v : V. — W of left C[G]-modules
which induces an isomorphism of left C[G]-modules * : WY — V'V defined by
g — gotp. By naturality of the Hom functor, we have the following commutative
diagram:

AK, of)
HomC[G](VV,(CXK,SKS & ‘i{omC[G] (VV,CXKSK)

Homc[c](w*nyXK,sK)i lHomC[G] (", CX K 55 )

HOIH(;[G](WV,(CX}QSK? —_— HomC[G](WVaCXK,SK)-

Ak, s50f)w

In fact, if € Homgg)(VY,CXk,s)), then both paths map ¢ to Mg s, 0 fogor)™.
This implies that

(Ak,sxof)v = Homeg)(¥*, CXk 5, )~ o(Ak, s o f )w oHomeg) (¥, CX k5, )
and the determinants are equal.

Proposition 56. Let V be a representation of G with character x. With the
above notations, we have

Rs(x, f, K/k) = det(ly @ (Ak.s 0 f)|(V @c CXk 5)).
Proof. By Corollary 12, there is an isomorphism of C-vector spaces
Homg(q(VY, CXk 5,c) = (V ®c CX g 5,0
We claim that the diagram

(Px.sgof)
HOHIC[G}(VV,(CXKﬁK) KSL ﬁomc[g](vv,CX}gsk)

gT Tg

G G
(V ®C CXK7SK) 1m) (V ®(C CXK,SK)

commutes.
In fact, let v € V and z € CX g, . Taking the up-right path we arrive at

)‘K,SK © f O Lyge - g )\K,SK © f(g(v)x) = g(v)/\K,SK © f(‘r)
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and taking the right-up path we arrive at
Fogrrsyof @) 1 9+ 9(0)AK s © f(2).
Thus Rg(x, f, K/k) = det(ly ® (Ak,s 0 f)). O
Remark 25. Recall that we have an isomorphism of left C[G]-modules
Ak,sx t CUk s — CXk s

An idea would have been to apply the functor Homg(g)(V"Y, —) and get a C-
linear isomorphism

HomC[G] (Vv, )\K,SK) : Hom(c[G] (VV, CUK,SK) — Homc[G] (VV, (CXK,SK)-

Then one would take the determinant of this isomorphism. But this determinant
depends on the choices of bases that we make. This makes this definition very
difficult to manipulate. Choosing a non-canonical left C[G]-isomorphism f :
CXk s, — CUkg, g, defined over Q enables us to define without ambiguity
the determinant of (Ax s, © f)v since this is now an C-linear automorphism of
a vector space. Basically, choosing f amounts to making a choice of basis but
this description due to Tate is much easier to use.

6.2.2 Compatibility of the Map )\ in Towers

Let K/K'/k be a tower of finite Galois extensions of number fields. Let G =
Gal(K/k) and let H = Gal(K/K') so that Gal(K'/k) = G/H. Let S be a finite
subset of M}, containing M °. Let Sk and Sk be respectively the finite subsets
of Mk and M consisting of those places that lie above the ones in S.

For simplicity in this section, we remove the indices K, Sk and K’, S/
and simply write A = Ag g, U = Ug,s,X = Xk g, and similarly N =
Ak 5, U =Ukr s, X' = Xk 5, -

Let p be a finite place in S. Let 3’ be a place of Sk above p and let 3 be a
place of Sk above ’. Denote by K, Kgsy and k, the respective completions and
let [ : *P'] denote the degree of the extension Kq /Ky, . Let (e, ), (eqp, fypr)
and (e, fy) be respectively the ramification index and residual degree of /p,

PB’/p and P/P’. By multiplicativity we have ey = e’mesp/ and fip = f& fopr. We
also have [P : P'] = ey fy. It follows that

S OB :P] =K K. (6.2.0.1)
BB
Lemma 12. With the previous notations, the restriction of |- |p to K’ is equal
t . [‘Bm/]
ol g™
Proof. For any z € K’, we have
ey = N(R) 5 = N ()~ @)

Fopel
L?B'um/(x)

= N(p)feeavw @ = N(g) 7w
_ N(m/)—f&;eﬁnvm/(x) _ |x|$[g3,:‘43/]_
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Remark 26. A similar result is true for archimedean places. Suppose that
v € Mg and w,w’ are places above v such that w|w’. Denote by K, and
K|, the completions and by [w : w’] the degree of K,,/K/,. This is equal to

either 1 or 2. It is immediately verified that if x € K’, then similarly we have
2l = Ja]f"

Moreover, since K/K' is Galois, we have [w; : w'] = [wsy : w'] for all places
wy and wy that lies above w’ and we have the formula

> w:w]=[K:K']. (6.2.0.2)

w|w’

Proposition 57. Let E be a field of characteristic zero. With the above nota-
tions, there exists a left E|G/H]-module isomorphism

j=ix/x s EX — (EX)H.
Proof. Consider the map

ji X — X, w'r—>2[w:w/]w.

w|w’

This is well-defined. In fact, if Zw’ESK/ new' € X' then by definition we have
Zw’eSK, ny = 0. We have

j Z Npw' | = Z Z[w:w’]nw/w.

w' €S ger w!' €S per wlw!

By (6.2.0.1) and (6.2.0.2) we have

Z Z[w:wl]nw/:[K:K/} Z nw,:()

w’ €S g1 wlw’ w’ €S ger

which proves that j (Zw’GSK/ nwfw’) € X.

It is easily seen that the map j is an injective homomorphism of groups.
Note that if w’ € Sgs and wy is some place in Sk that lies above w’, then we
have

jw)=" Y [h(wo) : w')h(wo)

[hEH/D /0t

since H acts transitively on the places that lie above w’. The order of the
decomposition group D,/ is [wo : w'] and for all places w|w’ we have [w :

w'] = [wp : w'] since K/K' is Galois. Hence, we have
Jw') =[Duyl Y h(wo) =Y h(wo).
[W€H/ Doy, heH

It follows that j(X') = NgyX where Ny = .y h € Z[G]. We have shown
that we have an isomorphism of groups

j: X — NpX.
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We claim that Ny X is a subgroup of X of finite index. It is easily seen
that it is indeed a subgroup. Let a = ZwGSK nww be an element of X . Then
for all h € H, we must have

a=h(a)= Z nyh(w) = Z N1 () W-

weSK weSK

By comparing the coefficients, we see that a belongs to X if and only if
Nw = Np(w) for all h € H. In other words, all w that lie over the same w’ in Sk
must share the same coefficient n,, which consequently only depends on w’. We
may therefore write n,, = n,, for all w|w’. It follows that o can be written as

o= Z nw/Zw: Z Ty Z h(wo)

w' €S g wlw! w' €Spr [h€H /Gy,
for some choice of valuation wy that lies above w’. But we have
S hwe) = ——— 3 h(wo).
[wp : w')
[WE€H/Gw, heH

Thus a belongs to Ny X if and only if [wp : w'] divides n,, for each w’ in which

case we have
Mo
o = NH %wo .
Zw/ [wo : w']

We conclude that

NpX ={ Z now € X7 2 [w: w|g]|nw, Yo € Sk}
wESK

We consider the map

o: XH — X Zf[wp: w7, anw — (Nw, mod [wo : w'])wes,.,

w' €S yr w

where wg denotes an arbitrary place of Sk that lies above w’. This map is
well-defined by our characterization of X . Moreover, ¢ is clearly a surjective
homomorphism of groups and its kernel is exactly Ny X by our characterization
of NgX. We conclude that we have an isomorphism of groups

X" /NyX — X Z/[w : w']Z.

w €Sgr
In particular, Ny X has finite index in X .

Let E be a field of characteristic zero. Tensoring with F over Z we get an
exact sequence of E-vector spaces

0 — E(NgX) — EX" — B(X¥/NyX) — 0.

Since X /Ny X is finite we have E(XH /Ny X) = 0 and therefore we have an
isomorphism of E-vector spaces

E(NgX) — EXx!
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induced by the inclusion map. Since X’ is isomorphic to NgX via j we get an
isomorphism of E-vector spaces

j:EX — EXH,

It remains only to check that this is also a homomorphism of left G/H-modules:
if [o] € G/H,w' € Sk and wy is a place in Sk that lies above w’, then we have

(ol(w)) =Y hlo(we)) = Y o(h(wn)) = [o](j(w'))

heH heH

by normality of H. We conclude that the map j is a left E[G/H]-module
isomorphism. O

Remark 27. By tensoring with R over Z we get an injective homomorphism
of R-vector spaces jk ks : RXkr s, — RXg g, which is a left R[G/H]-
isomorphism on its image RX Ilg 55+ We claim that the following diagram com-
mutes:

AK,Sk

UK,SK RXK,SK

I TjK/K’,S

/
UK/,SK/ AK/ S’ RXK/,SK,.
St

Let v’ € Uks,s,.,. Then, by Lemma 12, we have

Jr/skr s (W) = jrk/krs Z log [t |y’

w' €S

- Z log [t/ | Z[w w'w

w €Sgr wlw’

= > S o)l e

w €S wlw’

= > ) logluww

w €S wlw’

= Z log |/ ] w

wESK
= )‘K,SK (U/).

It follows by tensoring that the diagram

AK, Sk
CUk s —25% CX g5

I TjK/K’,S

CUk' s, 'wang CXk' 5,

S et

is also commutative.
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6.2.3 Properties of the Stark Regulator

Let K/k be a finite Galois extension of number fields with Galois group G. Let
S be a finite subset of M}, containing M:° and let Sk be the finite subset of
M consisting of the places that lies above the ones in S.

Definition 26. Let V be a complex representation of G with character x.
For any left C[G]-endomorphism 6 of CXk s we denote by 6y the C-linear
endomorphism Homg(q(VY, 0) of Homgg(VY,CXk,s, ) and we define

5S(X7 97 K/k) = det<9V)
which is independent of the realization V' of x by naturality of the Hom functor.

Remark 28. With the notations of the previous section, we have
RS<X7 fa K/k) = 6S<X7 )‘K,S o f7 K/k>
Proposition 58. The function ds satisfies the following properties:

(i) If x and X' are two characters of G then we have
6S<X + X’,@,K/k‘) = 6S(X797 K/k)5S(X/7 0; K/k)

(i) If H is a subgroup of G with character x then we have

8s(IndGx, 0, K/k) = 85, , (x,0, K/K*).

(iii) Let K/K'/k is a tower of finite Galois extensions of number fields. Let
G = Gal(K/k), H = Gal(K/K') and let x be a character of G/H. Then

we have
ds(Infifx. 0, K/k) = ds(x, 0, K' /k)

where §' = j;(}K/,S o 9|CXII?,SK ojK/K’,S'
(v) If 6 and §' are two left C|G]-endomorphisms of CXk g, then
ds(x, 000", K/k) = ds(x,0, K/k)ds(x, 0", K/k).
Proof. Proofof (i): Let V and V' be representations of G with respective charac-
ters x and x’. Then V@V’ is a representation of G with character x+x’ and we

have an isomorphism of C-vector spaces between Homgq(V & V')Y,CX ks, )

and
Homgyg (VY, CXk s ) & Homee (V')Y, CXk 55 )

so that det(fy gy ) = det(fy @ Oy) and the result follows.
Proof of (ii): Let W be a representation of H with character x. We have
(Ind§ W)Y = Home (C[G] @cpa) W, C).

By Theorem 3.10.1, Proposition 21 and Corollary 12 we have left C[G]-module
isomorphisms

(IndG W) = Homeyp) (W, CIG]Y) = WY @¢) C[G]".
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By Proposition 21, the character of C[G]Y is 7¢ where rg denotes the regular
character of G. By Corollary 16 this character takes values in Q so that 7¢ = rg
and therefore, as left C[G]-modules, we have C[G] = C[G]Y. Finally we have an
isomorphism of left C[G]-modules

(Ind§ W)Y 2 C[G]" &cim WY 22 C[G] @cp WY = Indg (WY).
By Proposition 19 we have a natural isomorphism of C-vector spaces
Homeg) (IndG W)Y, C Xk 5,0 ) = Home (WY, CX k5,0 )-
By naturality we get the desired result.

Proof of (iii): Let V be a representation of G/H with character x and let
M be a representation of G with character ¢. We claim that there is a natural
isomorphism of C-vector spaces

HomC[G] (Inﬂfl (Vv), M) = HomC[G/H] (Vvv7 MH)

Let Ng = ﬁ > nhen h € C[H]. By proposition 19 Ny belongs to the center of

C[G] and acts on M as the projection onto M. Moreover, N commutes with
the action of G/H on M*. Thus we obtain a well-defined homomorphism of
C-vector spaces

(NH)V : HomC[G] (Inﬂg(Vv), M) — HomC[G/H] (Vv, MH)

defined by f — Np o f. This map is easily seen to be surjective. By Corollary
11 and Proposition 21 we have

dim¢ Hom(C[G] (Inﬂg (Vv), ) <InﬂHX7 ¢>G

and
dimg¢ Homc[g/H](Vv, M) = <>_<7 ¢H>G/H :

Denoting by [g] the class of an element g in G/H, we compute that

<IHH§X7¢>G = é Z Infl§; x(9)b(9) |G|| Z > Infifx(gh)e(9)

gGGheH
\GH 2 2 nflix(9)5(gh) = |G|Z
geGheH geq
H B _
— g X x0)5(0) = (06"
ceG/H

Thus the dimensions are equal and (Ng )y is an isomorphism of C-vector spaces.
We now prove naturality. Let f : M — N be a left C[G]-module homo-
morphism. We claim that the following diagram

(Ng)
Homge) (Infi§ (VV), M) —"5 Homeg,m(VY, M)

Homc[c](lnﬂg(vv),f)i iHOIIlc[G/H](VVJIMH)

Homeyg) (Inflf (VV), N) e Homg (g, (VY, N*)
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commutes. In fact, let w € Homgg (Infi§ (VV), M). Both paths send w to the
map VV — N given by

|H| Zh (fow(g

heH

Applying this to the present situation we have a natural isomorphism of
C-vector spaces

Homcyg(Infl (VV), CX ks, ) = Homeyg m (VY, CXf 5, ).
The naturality property applied with M = N = CXg s and f = 6 implies
that dg(Infl§ x, 0, K/k) = det((@lcxs , )v). Meanwhile, by definition of ¢’, the
K

following diagram commutes:

0/
Homgeq/m(VY,CXkr s, ) —— Homgic ) (VY,CXkr.s,.,)
HOHIa:[c/H](VV,jI_(}K/,S)TE %THomc[c/H](Vv»j;(}K/'S)

HomC[G/H] (VV (CXK SK() HomC[G/H] (V (CXK SK)

Q‘CX K)
Hence det((0lcxn )v) = ds(x,0’, K'/k) and we conclude that

6s(InASx, 0, K/k) = 6s(x, 0, K'/k).
Proof of (iv): By functoriality, (§06’)y = 6y 06}, and the result follows. [

Let @ € Aut(C). Then a must fix Q and we see that Aut(C) = Autg(C).
Note that C can be viewed as a C-vector space with scalar multiplication via
a. We specify this by using the notation C¢. If W is any finite-dimensional
complex vector space, we denote by W< the tensor product C* ®¢ W. In other
words, W is a C-vector space with the same elements as W but where scalar
multiplication goes through «. If § is an endomorphism of W, then we denote
by 6% the endomorphism 1 ®,, 6 of W,

Proposition 59. Let V be a representation of G with character x. If a €
Aut(C), then V¥ is a representation of G with character x* = «a o x.

Proof. In fact, let vq,...,v, be a basis of V' as a C-vector space. Let p be the
homomorphism G — GL(V) associated to the representation V' and denote by
(ai;j(0)) the matrix of p(o) with respect to this basis for o € G. By definition,

we have .
0)(2 Aiv;) = Z a;j (o) Ajv;.
i=1

A basis of V' is given by 1®v1,...,1Qu, and we denote by (aj;(s)) the matrix
of the automorphism p(o)* of V corresponding to this basis. We have

Y di(0) (1@ v;) = p(o)* (L@ wv) = 1® p(o)(vi) = 1® Zaji(a)vy

a(aji(0))) @ v; = Z a(aji(0))(1 ® v;).

1 j=1
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Thus a;;(0) = aoa;j(o) for all ¢ € G and all i, j. In particular, the character
of V¥ is a0 x and we have det(p(0)®) = a(det(p(o))). O

Proposition 60. Let a« € Aut(C) and let V' be a representation of G with
character x. We have

5S(X797K/k)a = 6S(Xaa 0a7K/k)

Proof. By Proposition 59, the representation V¢ has character x*. We have
the identification

HOHI(C[G]((Va)v, (CXK’SK)OC) = HOHI@[G](VV, (CXK}SK)OC.

Therefore (8%)ye = 1 ®, 0. Taking determinants we get det((0%)ye) =
det(6y )™ as desired. O

Corollary 31. The Stark requlator satisfies the following properties:
(Z) RS(X + Xl7 f7 K/k) = RS(X7 f> K/k)RS(XI7 f7 K/k)
(ii) Rs(Indfx. f,K/k) = R, (x. f, K/ K™).

(iii) Let H be a normal subgroup of G and write K' = K. Let x be a character
of G/H. Let f" be a left QG /H]-isomorphism QXk's,., — QUk' s,
and suppose that there exists a Q[G]-isomorphism

f : QXKSK — QUK,SK
making the following diagram commute:

!

QXK 55 QUk, sy

jK/K/,ST I

QXkr 5, — QUk s,

Then Rs(Infix, f, K/k) = Rs(x, f', K'[k).

Proof. Properties (i) and (ii) are direct consequences of Proposition 58 and
Remark 28. We now prove the third property. By tensoring and using the
commutative diagram in the end of the previous section we get a commutative
diagram:

f AK,s

jK/K’,ST I TjK/K’,S

CXkr 5, 4’;’ CUk' s, 'vang CXkr s,

) K/
which by restriction gives a commutative diagram

Ak, sg0of
H PK H
(CXICSK o CXK,SK

jK/K’,ST%' ETJ'K/K’,S
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so that
At 8, 0 f = j;}ﬂgg o (ks © f)|cx;g,s °JK/K",S

and by Proposition 58 (i4i) and Remark 28 we obtain the desired result. O

Remark 29. Given a left Q[G/H]-isomorphism f' : QXg+ 5., — QUxk: s,,
we can always find a left Q[G]-isomorphism f : QXk 5, — QUg, s, making
the diagram in Proposition 31 (#i¢) commute. In fact, by semisimplicity of Q[G]
(cf. Proposition 16), there exists a left Q[G]-submodule M of QX g, such
that
QX5 =QX{ g, ®M = QXgr 5, ®M

as Q[G]-modules. Also by semisimplicity, there exists a left Q[G]-submodule
N of QUk,s; such that QUg s, = QUk's,., ® N. Necessarily M and N are
isomorphic as left Q[G]-modules. Choose a Q[G]-isomorphism h : M — N and
take f to be (f' 0 ji) g 5) @ h.

6.3 The Main Conjecture

6.3.1 Statement

We give the statement of Stark’s main conjecture as formulated by Tate in [Tal].
Let K/k be a finite Galois extension of number fields with Galois group G. Let
S be a finite subset of M}, containing Mp°. Let Sk be the finite subset of Mg
consisting of the places that lie above the ones in S. Let

I (CXK,SK — (CUK,SK

be a left C[G]-module isomorphism that is defined over Q. Let x be a character
of G and denote by cg(x, K/k) the leading coefficient of the Taylor expansion
of the Artin L-function L(s,x, K/k) around s = 0. We define

RS(X7f7 K/k)
CS(XvK/k)

Conjecture 3 (Stark). With the above notations, for all o € Aut(C), we have

AS(X7f> K/k)a = AS(Xa7f7 K/k)

Remark 30. By Proposition 18, Q(x) is a finite abelian extension of Q. Let
a € Autg(,)(C). Then x® = x and therefore Conjecture 3 implies that

AS(X7f7K/k)a = AS(vavK/k)

This implies that As(x, f, K/k) € Q(x). Also, every a € Gal(Q(x)/Q) is the
restriction of some element of Aut(C) so that Ag(x, f, K/k)* = As(x*, f, K/k).

Conversely, if As(x, f, K/k) € Q(x) and As(x, f, K/k)* = As(x“, f, K/k)
for all & € Gal(Q(x)/Q), then Conjecture 3 holds true.

As(x, [, K/k) = eC.

From this remark it follows that Conjecture 3 is equivalent to the following:

Conjecture 4. With the above notations, we have

AS(X7f7K/k) GQ(X)v
AS(X?f’ K/k)a = AS(Xa7f7 K/k)v fOT’ all a € Gal(Q(X)/Q)
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Remark 31. Conjecture 4 says that the leading coefficient of the Taylor ex-
pansion of L(s,x, K/k) is equal to As(x, f, K/k) ' Rs(x, f, K/k) which is the
product of am algebraic number with the determinant of a matrix of size the
order of L(s, x, K/k) at s = 0. In this sense, the conjecture generalizes the class
number formula at s = 0.

6.3.2 Independence of the Choice of f

Another equivalent statement of Conjecture 3 was formulated by Deligne. In-
stead of requiring f to be defined over Q, we consider any field E of characteristic
zero which can be embedded in C. Let V be a representation of G over E with
character x. Let f : EXg s, — EUk s, be a left E[G]-module homomor-
phism. Any embedding « : E — C fixes Q and gives C the structure of a vector
space over IZ. We use the notation C* to denote C with its structure of E-vector
space coming from «. Note that for any Z-module A, we have

C*®p EA=C*®p (E @z A) = CA.

Consider the complex character x® and its complex realization V* := C* Qg V.
To the character x* corresponds the Artin L-function Lg(s,x®, K/k). Define
£ to be the left C[G]-module homomorphism

1 ®a f: C% @ EXk.5, — C* ®p EUg.s,.
Explicitly we have
ffs@(e@r)=s0 fleor)=s@ef(lor)=sa(e)® f(1@ )
Composing with Ag s, gives a left C[G]-homomorphism
Ar,sx © f* 1 CXk 5,0 — CXk 55

which induces a C-endomorphism (Ag,s o f*)ye of Homeg((V*)Y,CXk s, )-
Define
Rs(x™, [*, K/k) = det((Ak,s © f*)ve).

Conjecture 5 (Deligne). With the above notations, there exists an element
As(x, f, K/k) € E such that for all o : E — C we have

RS(Xa7 faa K/k) = A(Xa .f7 K/k)aCS(Xaa K/k)
Proposition 61. Conjecture 5 implies Conjecture 3.

Proof. Consider the case where £ = C and take fg : QXg s, — QU s, to
be a left Q[G]-isomorphism. Tensor it to get a left C[G]-module isomorphism
f:CXk s — CUk,s,. Let o be any C-automorphism. Now,

=104 f =184 (18q fo) = 1 ®g,al, fo-

But the restriction of a to Q is the identity so the latter is simply f. Thus
f¢ = f and the statement of Conjecture 5 in this case is exactly the statement
of Conjecture 3. O

Remark 32. In the course of the proof we showed that if f : CXg ¢ — CUg g
is defined over Q, then f* = f for all & € Aut(C).
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Proposition 62. Let E = C and suppose that Conjecture 5 is true for one par-
ticular left C[G]-isomorphism fo: CXg g, — CUk g, . Then it is true for all
left C[G]-homomorphisms f : CXk s, — CUg s,. In particular, Conjecture
8 implies Conjecture 5 in the case E = C.

Proof. There exists Ag(x, fo, K/k) in C such that for all « € Aut(C) we have
RS(XaafoaaK/k‘) = AS(X?anK/k)aCS(XavK/k)' Let f : (CXK,SK — (CUK,SK
be a left C[G]-module homomorphism and define

AS(X7 f7 K/k) = AS(X’ fO;K/k)6S(Xa 05 K/k) eC
where 6 = f; ' o f. By Proposition 58 (iv) and Proposition 60 we have

As(x, f, K/k)* = As(x, fo, K/k)%ds(x, 0, K/k)"
Rs(x*, [, K/k) a ga
= s, KJR) ds(x*, 0% K/k)
05X A5 0 f5) K[k
B cs(x, K/k)
ds(X*, Ak,sic © f&, K/k)
cs(x®, K/k)
_ Rs(x*, %, K/k)
cs(x, K/k)

Thus Conjecture 5 is true for f.
Suppose that Conjecture 3 is true for some left C[G]-isomorphism

3s(x, (fo o )™, K/k)

g: (CXK,SK — CUK,SK

defined over Q. Since it is defined over @, by Remark 32, ¢* = ¢ for all
a € Aut(C) and therefore Conjecture 5 is true for g and therefore in general in
the case F = C. O

Corollary 32. Conjecture 8 is equivalent to Conjecture 5 with E = C.

Corollary 33. The truth of Conjecture 3 is independent of the choice of the
left C[G]-module isomorphism f : CXg s, — CUk g, defined over Q.

Remark 33. It is true that Conjecture 3 is equivalent to Conjecture 5 for any
E. We refer the reader to Chapter I, § 6 of [Tal| for the proof of this.

6.3.3 Independence of the Choice of S

Having proved that the truth of Stark’s conjecture does not depend on the choice
of a left C[G]-module isomorphism f : CXg g, — CUg s, defined over Q, we
now prove that it neither depends on the choice of the set S. First we give some
properties of Ag(x, f, K/k).

Proposition 63. The following properties are true:

(i) If x and X' are two characters of G then we have

AS(X-FX/,f,K/k) = AS(X7f7K/k)AS(X/7f7K/k)
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(i) If H is a subgroup of G with character x then we have
As(Indfyx. f,K/k) = A, (x. £, K/K™).

(iii) Let H be a normal subgroup of G and write K' = K. Let x be a character
of G/H. Let f" be a left QG /H]-isomorphism QXk' 5., — QUk' s,
and by Remark 29 let f : QX s, — QUk s, be aleft Q[G]-isomorphism
making the following diagram commute:

QXK 55 QUk, sy

jK/K’,ST I

QXK' 5, — QUk' 5,0/

Then we have As(InfiSx, f, K/k) = As(x, f', K'/k).
Proof. By Proposition 47 we have

LS(Sa X+ Xla K/k) = LS(’S; X5 K/k)LS(vala K/k)

so that cs(x + X', K/k) = cs(x, K/k)cs(x', K/k) and the first property follows
from Corollary 31 (4).

By Proposition 49 we have Lg(s,Ind%yK/k) = u (8, K/K™) so that

cs(Ind$x, K/k) = cs(x, K/K™) and the second property therefore follows from
Corollary 31 (ii).

By Proposition 48 we have Lg(s,Infi%y, K/k) = Lg(s,x,K’'/k) so that
cs(Inﬂgx,K/kj) = ¢s(x, K'/k) and the third property therefore follows from
Corollary 31 (ii3). O

Proposition 64. As a consequence we have:

(i) If Conjecture 8 holds for all finite Galois extensions K/Q, then it holds in
general.

(ii) If Conjecture 3 holds for all 1-dimensional characters of all finite Galois
extensions K/k, then it holds in general.

Proof. Let K/k be a finite Galois extension of number fields with Galois group
G and denote by K2 the normal closure of K over Q. Let x be a character
of G. We have an isomorphism of groups G = Gal(K% /k)/Gal(K%* /K) and
therefore by Proposition 63 (ii7) and (i) we have

al(KC2 a
AS(X7 fa K/k) = AS(I ﬂgaiggGM;]}c{)X f KG 1/]43)

B Gal(K%*/Q) Gal(KS™ k) Gal
= Aslo(In dGal(KGal/k In ﬂGal(KGal/K) LEEY/Q)

for a suitable f’. This proves (i).

By Theorem 3.11.1 there exist integers n; and subgroups H; with characters
0; of dimension 1 such that
X = Z niIndgi 0;.
i
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By Proposition 63 we have

As(x. f. 5 /k) = [ [ As(d 05, £, K/k)" = [ As, 0, 0, £, K/ K.

Since (Indgi 0,)* = Indgi 0% for all a € Aut(C) the result follows. O
Proposition 65. Conjecture 3 is independent of the choice of the set S.

Proof. Let K/k be a finite Galois extension of number fields with Galois group
G and let S be a finite set of places of k containing M. Let p be a prime ideal
of Oy, that is not contained in S and define S” = S U {p}. Let x be a character
of G and let V' be a representation of G with character x. By Proposition 64,
we may suppose that y is a 1-dimensional character. Since x is 1-dimensional
and therefore a homomorphism of groups, x factors through its kernel. That is,
there exists by universal property of the quotient, a unique homomorphism of
groups X' : G/kery —> C* such that the diagram

G —X* .+

lq I
G /ker(x)

commutes. In other words, x = Inﬂlf';r(x) X' and by Proposition 63 (iii) we can
work with the character x’ instead of y. We will therefore assume that x is an
injective 1-dimensional character.

For simplicity we shall drop the indices K and S in our usual notations and
use ' to denote objects defined for S’. For example, we shall write ¢/(x) instead
of cs/(x, K/k) and U’ instead of Uk s, .

Let f: QX — QU be a left Q[G]-isomorphism. By semisimplicity of Q[G]
we may view QX and QU as direct summands of QX' and QU’ and extend f
to a left Q[G]-isomorphism f': QX' — QU’. We define the quantity

Ox) = Alx f)

A
It suffices to prove that ©(x)* = O(x®) for all & € Aut(C). In fact, if this is
true, then
ACG D) AP
A6 e A, f)
so that Conjecture 3 is true for S if and only if it is true for S".

Let B be a prime ideal of Ok that lies above p. We consider two cases:

e X(Dy) # 1: In this case, by Corollary 30, we have r’(x) = 7(x). By
Proposition 54 this implies that Homgg)(VY,CX’) and Homg¢(VY, CX)
have the same dimension as complex vector spaces. But since CX is a
C[G]-submodule of CX’ we have an injective C-linear map

HomC[G] (VV, (CX) — Homc[g] (Vv, (CX’)

which must in turn be an isomorphism of vector spaces. We have the
following commutative diagram:
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cx’ . cvr 2 cx
I I I
CX —— CU —— CX.

In fact, the left square commutes by choice of f/ and for the right square,
if w € U then

N(u) = Z log |ul,w = A(u) + Zlog [ulww = A(u)

weSy wlp
since |ul, = 1 for all w & Sk. This induces a commutative diagram

HomC[G] (Vv, (CX/) (mv HomC[G} (Vv, (CX/)

ET Tg

Homgg (VV,CX) m Homg g (VV,CX).

so that R(x, f) = R'(x, [').

Moreover, if x(Ip) is non-trivial, then Lg/(s,x) = Lg(s,x) and thus
c(x) = ¢(x), whence O(x) = 1. If @ € Aut(C), then the character x“ is
also 1-dimensional with x*(Gsy) and x®(Iy) non-trivial since a is injective.
The same argument shows that O(x*) = 1 so that O(x)* = 1 = O(x?).

On the other hand, if x(fy) is trivial, then by injectivity of x we see that
Iy is trivial so that 3 is unramified over p. In this case we have

Ls:(s,x) = (1 = x(op)N(p) ") Ls(s, x)

where oz denotes the Frobenius element of 8 which lies in Dy. Notice
that x(ogp) # 1 since otherwise we would have x(Dg) = 1 because the
Frobenius element generates the decomposition group in the unramified
case. Thus ¢/(x) = (1—x(op))c(x) and as a result O(x) = (1—x(op)) "
Again, the character x* has the same properties, that is, x*(Iy) is trivial,
so that the exact same argument shows that O(x*) = (1 — x*(ogq)) "
which is equal to O(x)®.

X(Dg) = 1: By injectivity of x this implies that Dy is trivial. By Propo-
sition 54 we then have

' (x) = r(x) + dimc VP¥ = r(x) + 1.

Moreover, p splits completely in K/k meaning that each P dividing p is
unramified and has residual degree equal to 1. We have

L (s,x) = (L= N(p)~")Ls (s, x)

and

1— N(p)—*
¢ () = lim s~ OO+ L g, (5. ) = Tim LN

s—0 s—0 S

c(x) = log N(p)c(x)

by the rule of I’'Hospital.
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Suppose that P is of order m in Cl(Og s, ) and let 7 be a generator of the
principal ideal POk g, . Then o(P)" Ok g, is generated by o(w). Since
p splits, S% contains |G| more elements than Sk, namely the conjugates
of P and by Lemma 2 we know that the family (o(7)),eq generates U’ /U
as a free Z-module so that

U'=Ua& @D Zo(r) = U & Z[G]r
oceG

as Z[G]-modules. Tensoring with Q we get the following Q[G]-isomorphism
QU' = QU & Q[G]r.

On the other hand, let wy denote any place in Sk, let

:ﬁZer[G]

ceG

Ng

and define x = (P — Ng(wp)) € X'.

Note that if 7 € G, then 7(x) = (7(P) — Ng(wp)) since N¢g is invariant
under left multiplication by G. We now verify that Q[G]z is a Q[G]-
submodule of QX’. First of all we have the inclusion Q[G]z C QX’. In

fact, if @ = (3, Ar7)x is an element of Q[G] we see that

a= YA (r(P) — Nowp).

TEG
Summing the coefficients we get
1
> A i@l D A=0
T7€G T,0€G

and this proves that a € QX’. We notice also that if € G then

n(a) = (Z /\m17> r € Q[G]x

TEG

so that Q[G] is stable under the action of G. We have proved that Q[G]x
is a sub-Q[G]-module of QX".

But QX is also a Q[G]-submodule of QX' and clearly QX NQ[G]x = {0}.
Moreover, since p is split, we have

dimQQX’ = ‘S}(‘ —1=(Sk|-1)+ |G| = dimg QX +dim@Q[G]x.

We conclude that QX' = QX @ Q[G]z.

By tensoring with C we get isomorphism of left C[G]-modules:
CU' =2 CU & C[G]m
CX' =2 CX o C|G]x.

Let w : Q[G]xz — Q[G]7 be the left Q[G]-module isomorphism that sends
z to m. By Corollary 33, we may and will assume that f' = f ® w. We
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choose bases for QX and QU as Q-vector spaces and complete them with
{o(2)}sec and {o(7)}sec (Where G has been given an ordering which is
respected between these two bases) in order to form bases for QX' and
QU'’ with respect to their respective decomposition. These also serve as
bases for the complex vector spaces obtained by tensoring with C. Let
M(f), M(f"), M()\) and M()\') denote the matrices of f, f'; A, N with
respect to these bases. Then by the choice of our bases and by choice of
f', we claim that

M(f') = ( Méf) I|OG| ) and  M(X) = ( MéA) loglﬂquI\G\ )

The expression for M(f') is clear. The first |Sk| — 1 columns of M()\')
come from the fact that A\’ and A commute with the inclusions (see diagram
earlier in this proof). The last |G| columns of M()\) come from the
computation:

= > loglo(m)|ww

weSY,
= Y toglo@lww + 3 log o) )7 (F)
wESK T€G
= ™)+ Y loglo(m)|rq7(@) + > log |o()|- (g N (wo)
T€G TG
5210g|0 7)|rep)7(x) mod CX
TeG

= log|o(m)|sepyo(z) mod CX
= log |m|po(x) mod CX
where in the second last equality we use the fact that [o(7)|-(qp) = 1 for

all 7 # o by definition of m and the last equality is the definition of the
valuation o (3).

As a consequence we have

’opry M(Ao f) ¥
M(/\Of)( 0 1og7flqs1|c)'

With the above decomposition we have isomorphisms of C-vector spaces
HomC[G] (Vv, (CX/) = Hom(C[G] (Vv, CX)e® Hom«;[g] (Vv, C[G]x).

Moreover, C[G]x is isomorphic as a left C[G]-module to C[G]. If r¢ denotes
the regular character of G, then by Lemma 5 we have

dim¢ Homeg(VY, C[Glz) = (X, ra) g = (ra: X)g = dimc VY =1

Choose a basis of Homgg(VY,CX) as a vector space over C and com-
plete it with a non-zero element of Homg(g)(VY, C[G]z) to form a basis of
Homg(q(VY,CX’). With this choice of basis for Homgg (VY,CX’) we

get
M((XNof)y)= ( M((Ag o) logTﬂlm ) '
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We deduce that R'(x, f') = log |7|gR(x, f).
We conclude that

T logltly  gNE) T m

since p is split and thus N(p) = N (). Hence O(x) is a rational number
that is independent of x so the proof is complete.

O

6.4 Special Cases

We prove Conjecture 3 in the the case where the Artin L-function has rank zero
at s = 0. We then analyze the still unproven case of rank 1. In the abelian case,
we present a refinement of Conjecture 3 and introduce the notion of Stark unit.

6.4.1 The Trivial Case

We prove that Stark’s Conjecture 3 is true for the trivial character. Let K/k be
a finite Galois extension of number fields with Galois group G. By Proposition
65 we may without loss of generality take S = Mg°. We shall write X for
Xk, Mg and Uk for Uk, M- We accordingly adjust other notations involving
subscripts.

Let f be a left Q[G]-module isomorphism QXx — QUg. We have 15 =
Inﬂ?l}l{l}. Thus, by Proposition 63, we have

A(f7 1G7K/k) = A(f/7 1{1}) k/k)

where f': QX — QUj is a left Q[G]-module isomorphism such that f extends
f'. We may therefore suppose that K = k.

Consider the isomorphism A, : CU, — CXj of left C[G]-modules. Let
U1, ...,Uu, be a system of fundamental units of Ug. Let vy be an archimedean
place of k and choose as basis for CXj, the family {v — vy : v € M\ {vo}}.
By Remark 3, the regulator of k£ is the absolute value of the determinant of
A, with respect to these bases. We conclude that with choice of bases we have

det(Ag o f) = =Ry det f. Since
HOIH((;((CV, CXk) 2 C®c CX, =2 CXy

we see that R(141y,k/k) = det(Ag o f).
Meanwhile, L(s, 141y, k/k) = (i (s) by Proposition 46 and by Proposition 51
we have bR
0(1{1},k//€) = — k k.

Wi

It follows that
wy det f

hi
This is a rational number since f is defined over Q. Therefore Conjecture 3 is
true for the trivial character.

A(f, 1y, k/k) = £
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6.4.2 The Rank 0 Case

We show how this case reduces to a result of Siegel on partial zeta-functions
(Theorem 6.1.1) by using a refined version of Brauer’s Theorem (Theorem
3.11.2).

With notations as in Conjecture 3, we assume in this section that
rs(x, K/k) = 0.
By Proposition 54, we then have
HOHl((:[G](VV, CXks)=0

so that the Stark regulator equals 1 in this case for any choice of f. Also
by Proposition 54, we see that S C S’ implies that rg(x) < rg/(x). So if
rs(x, K/k) = 0, then rpse(x, K/k) = 0. By Proposition 65 we may therefore
assume without loss of generality that S = M. For simplicity we will write
L(s,x) instead of Lz (s, X, K/k) and r(x) instead of ryree(x, K/k). Since
r(x) = 0, we know that L(0, x) is non-zero. In our present case, Conjecture 3
can be restated as follows:

L(0,x)* = L(0, x“), for all @ € Aut(C). (6.4.0.1)

We start by simplifying the situation. Let (p,V) be a realization of y.
Quotienting out by ker(p) we get an injective homomorphism of group

o' G/ker(p) — GL(V)

with character x’ : G/ker(p) — C such that x = Inﬂfer( X'« By Proposition
48, we have L(s,x, K/k) = L(s,x’, K¥*(°) /k). In particular r(x’) = 0. Since
xX® = Inﬂf;r(p)(x’)a, it suffices to prove (6.4.0.3) for x’. So by replacing K
with K¥(P) we may assume that the representation is faithful, that is, p is an
injective homomorphism.

Suppose that x = x1 + x2. By Proposition 47 we have r(x) = r(x1) + r(x2)
so that r(x1) = r(x2) = 0. As a consequence, L(0,x;) # 0 and we have
L(0, x) = L(0, x1)L(0, x2) and it suffices to check (6.4.0.3) for each x;. We may
therefore assume that x is irreducible.

If x is the trivial character on G, then we know from the previous section
that Conjecture 3 is true. We therefore assume that y is non-trivial.

After simplifications, we are in the case where y is the character of a non-
trivial irreducible and faithful representation (p, V') of G. We have V¢ = 0 and
by Proposition 54 we have

r(x) = Z dime VP» =0
veEM>®

so that VP» = 0 for all w. This implies that G, = {1,7,} for all w. Moreover,
by considerations discussed in Section 5.4, the fact that D,, is of order 2 implies
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that k is totally real and K is totally complex. Since 7, is of order 2 and
VPw =0, 7, must act on V as —idy. The faithfulness of p then implies that
Tw = 7 for all w. Thus K is an imaginary quadratic extension of K{7. As a
consequence, T is complex conjugation and this implies that K () is totally real.

If 0 is an element of G, then Dy, = oD,o~ ! and

oro = OTwO 1= o(w) = T-

As a consequence, 7 lies in the center Z(G) of G. By Theorem 3.11.2, there
exists a 1-dimensional character ¢ : Z(G) — C* such that x|z ) = x(1)% and

X = nIndf x;
7

where the x; are 1-dimensional characters of subgroups H; that contain Z(G)
such that x;|z(q) = ¢ and n; € Z.
For all i, we have
x(7)
() = wlr) = X = -1,

x(1)
Let V; be a representation of H; over C with character x;. This is a 1-dimensional
complex vector-space. Since K is a subfield of K{™, it is totally real. Thus
the decomposition groups D,, of K/KHi are generated by 7 which acts as —1
so that V;”» =0 for all w. By Proposition 54 this implies that r(x;) = 0. As a
consequence, L(0, x;, K/K*) # 0 so that by Propositions 47 and 49, we have

L(0,x) = HL(o, Xi, K/ KM,

Since (Ind%x)® = Ind$x®, it suffices to prove (6.4.0.3) for each ;.

We are reduced to proving (6.4.0.3) in the case where y is 1-dimensional and
k is totally real. Using Proposition 48 we may replace K by K**(X) and assume
that x is injective and that K/k is abelian. The latter is because the kernel
of x contains the commutator subgroup [G : G], whence K**X) is a subfield
of KIG:Gl. Since K**(X) is Galois over k, its Galois group is a quotient of the
abelian group G/[G : G] and is therefore abelian.

We are finally in the following situation: K/k is a finite abelian extension of
number fields with Galois group G and x is a 1-dimensional injective character
of G. Let f denote the conductor of K/k. Let S denote the finite subset of M,
consisting of Mg and all finite prime divisors of p. By Theorem 2.4.2, the finite
places of S are exactly the ones that ramify in K/k. We have

L(s,x) = Ls(s,x) T[] (1= xp((0, K/R)N(p)=s | V)L

ramified p

But V1P #£ {0} if and only if x(I,) = 1. By injectivity of x, this implies that
I, is trivial which is to say that p is unramified in K/k. We conclude that
whenever p is ramified we have VP = {0}. As a consequence, we have

L(Sv X) = LS(57X)'
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Let o € Aut(C). By Proposition 28 we then have

L(S>X) = Z X(U)CS(S’O) and L(&Xa) = Z Xa(U)CS(S?U)'

ceG oeG

Thus (6.4.0.3) reduces to proving that (5(0,0)* = (5(0,0) for all & € Aut(C).
In other words, it reduces to proving that

(s(0,0) €Q, forall 0 € G.

This is Theorem 6.1.1 and thus Conjecture 3 is true in this case.

6.4.3 The Rank 1 Case

With notations as in Conjecture 3, we assume in this section that
TS(X; K/k) =1

The conjecture remains unproven in this case but we will define Stark units and
see how this leads to a refinement of the conjecture in the case where K/k is
abelian.

The Non-Abelian Stark Conjecture

Let K/k be a finite Galois extension of number fields with Galois group G. Let
S be a finite subset of M), containing Mp°. Let Sk denote the finite subset
of M consisting of the places of K that lie above the ones in S. Let x be a
character of G and suppose that the rank of the Artin L-function L(s, x, K/k)
at s = 0 is 1, that is, rs(x, K/k) = 1. Let V be a representation of G over C
with character x. As usual, for simplicity we will drop the K/k in the notations.
We begin with some simplifications and some observations.

Suppose that we can decompose x as x = x1 + x2. By Proposition 47, we
see that rs(x) = rs(x1) +rs(x2). Then one of these terms is 1, say rg(x1), and
the other one is 0. By Proposition 63 (i) we have

AS(Xaf) = AS(X1>f)AS(X2af)'

In order to prove Conjecture 3 it suffices therefore to prove it for y; and ys.
By the previous section, Conjecture 3 is true for xs. We therefore only need
to be concerned with x;. We conclude that without loss of generality we may
suppose that y is irreducible.

By Proposition 54 we have rs(x) = (X, Xxx)g- By Proposition 53 we have

Xxx € R(G,Q). Consequently, for all @ € Aut(C) we have x§, = xx.. It
follows that

rs(x") = (X" Xxx)e = (6 Xxw ) = rs(0)” = 1.
Therefore we have cg(x®) = L(0, x*) which is non-zero for all a.

Let E = Q(x). By Proposition 18 this is a finite abelian extension of Q.
We denote by I' the Galois group of F/Q. By Theorem 4.4.1, there exists an
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irreducible representation V' of G over E with character ¥’ such that x' = my,
where m is the Schur index of X’ over E. We have

<XI7XXK>G = st(X) =m>0

so that V'’ appears as a subrepresentation of the representation EXpg of G
over E. This implies that the left C[G]-module CV' := C ® g V' appears as a
subrepresentation of CXg. Since CV’ has character x’ = my, it is isomorphic
as a left C[G]-module to V®™. As a consequence, the irreducible character y
appears at least m times in the decomposition of xx. Explicitly, we have

m < (X, Xxx)e =rs(x) =1L

This implies that m = 1. In other words, x is realizable as an irreducible
character over E.

Define ¢ = trg/g o x. By Theorem 4.4.1, there exists an irreducible repre-
sentation W of G over Q with character ¢». We have

(W xxi)g =D r(x*) =T >0

ael’

so that W appears as a subrepresentation of the representation QX g of G over
Q. This implies that the left C[G]-module CW := C®q W appears as a subrep-
resentation of the representation CXg. Since CW has character trg gx, it is
isomorphic as a left C[G]-module to @, V*. Thus, all the irreducible char-
acter x“ appear at least once in the decomposition of xx,. Moreover, these
are all distinct since x* = x? implies that a~! fixes E and is therefore the
identity. Since (x*, xxx)o = 1 they appear exactly once. We conclude that
there is a unique subrepresentation of G over Q of QX that is isomorphic to
W. Denote this subrepresentation by Xy . Similarly, since QX and QUy
are (non-canonically) isomorphic as left Q[G]-modules, there is a unique sub-
representation of G over Q of QU that is isomorphic to W. We denote this
subrepresentation by Uyy.

Consider the element

ey = >Tgl) > x(o)o € CG).

ceG

By Proposition 24 it is a central element of C[G] which acts as the projection
on the x-component of the canonical decomposition of any representation of G
over C. In particular, it is a central idempotent element of C[G].

Definition 27. If a is a non-zero element of E, we define
m(a,x) = Z a“Ls(0,x%)exe € C[G].
acl

Note that this element is central since this is the case of the projections ey so
that left multiplication by 7 (a, x) is a C[G]-endomorphism of CX .

Remark 34. Suppose that 75(x) = 0. By Proposition 54 we have (x, Xx,)c =
0 and for all o € " we have (x*, Xx, ) = 0. Since xx, € R(G,Q) we have

<XQ7XXK>G = <Xa7XXK>G =0.
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As a consequence, the representation FX g contains no subrepresentation that
is isomorphic to (VV)®. It follows that m(a, x)EXg = {0} which implies that
m(a, x)QXx = {0}. Suppose that rg(x) > 1, then rg(x*) > 1 and thus
L’4(0,x*) = 0 so that m(a,x) = 0. Consequently, 7(a, x)QXx # {0} implies
that rg(x) = 1.

Proposition 66 (Tate). Let x be an irreducible character of G with rs(x) = 1.
Let V' be a representation of G with character x. If a is a non-zero element of
E, then the following statements are equivalent:

(i) m(a,x)QXx N Ak (QUk) # {0}
(it) m(a, x)QXk = Ax (Uw)
(iii) Conjecture 3 is true for x.

Proof. We start by proving the equivalence between (¢) and (i¢). The represen-
tation QX g has a canonical representation over Q given by, say

QXx = Xw & P Wi

None of the W, contains a subrepresentation that is isomorphic to W over Q.
Tensoring with C over Q gives a finer decomposition

CX%T:ZCARVG}GE)EE)MQT
i g

Here, C ®q W; = @j Wi;; is the canonical decomposition of C ®g W; over C.

Since 1) takes values in Q, we have ¥ = 1 which implies that ¢ = Y oaer X+ As
left C[G]-modules, we therefore have

Cxw =PVve=Pu)*.

ael acl
We conclude that
CxX =PHY)* o PP wi. (6.4.0.2)
ael’ 7 7

We have 1 = r5(x7) = (X7, Xxxx )¢ for any o € Aut(C). In particular, we have
(X“, xxx) =1 for all @« € T". This implies that the representation CX g has a
unique subrepresentation that is isomorphic to (VV)®. Thus, none of the W;;
contain a subrepresentation isomorphic to (V') for any «. Therefore the W;;
are annihilated by 7(a, x). Consequently, we have

m(a, x)QXk = m(a, x)Xw.

Recall that 7(a,x) is a central idempotent element of C[G] and therefore is a
left Q[G]-module endomorphism of Xy,. But Xy is a simple left Q[G]-module
and by Lemma 6, the action of 7(a, x) on X is either zero or an isomorphism.
Thus 7(a, x)Xw is either 0 or a left Q[G]-module isomorphic to W.

Consider the left Q[G]-module isomorphism )\I_(l : RXx — QUg. For the
same reason, A\ (m(a,x)Xw) is either zero or a left Q[G]-submodule of QU
which is isomorphic to W and must therefore be equal to Uy .

So if (i) holds, then A\i! (7 (a, x) Xw) is non-zero and thus equal to Uy, which
means that 7(a, x) Xw = Ax (Uw ) which is the statement of (i¢). On the other
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hand, if (¢) does not hold, then it is clear that 7(a, x)Xw = 0. We have proved
the equivalence between (i) and (i7).

Before proving the remaining equivalence, we make a few definitions. By left
semisimplicity of Q[G], there exist complementary left Q[G]-modules X’ and U’
such that QXx = Xy @& X’ and QUi = Uy ® U’. Since QX g = QUg and
Xw =2 W = Uy as left Q[G]-modules, X’ and U’ must be isomorphic as left
Q[G]-modules. Let f': X’ — U’ be such a left Q[G]-module isomorphism.

We have the C[G]-endomorphism 7 (a, x) of CXy and

Ak - (CUW — (CXW

is a left C[G]-isomorphism. We define a left C[G]-homomorphism f(a, x) from
CXg to CUgk as follows:

Mt om(a,x) on CX
fla,x) =4 ,( ) Y
1®f on CX'.

By Proposition 54, we have r5(x®) = dim¢ Homgg)((VY)*, CX k). Let
©: (Vv)a — CXK

be a non-zero left C[G]-homomorphism. Its image is a simple left C[G]-module
isomorphic to (V) by Lemma 6. By the decomposition (6.4.0.4), CX’ contains
no subrepresentation that is isomorphic to (VV)®*. Thus ¢ takes its values in
CXw. The C-vector space endomorphism of the space Homgq((VY)*, CX k)
that is induced by the left C[G]-endomorphism Ax o f(a, x) of CXx maps ¢ to
Ao f(a,x)op. Let x € (VV). Since the image of ¢ is in CXyy, by definition
of f(a,x), we see that

Ak o f(a, x) o p(x) = 7(a, x)(p()).

Since ¢ is a left C[G]-module homomorphism and 7(a, x) is an element of C[G],
we obtain

Ak o fa,x) o p(x) = p(r(a,x)x) = p(a®Ls(0,x*)x) = a®Ls(0,x*)p(x)

by definition of m(a,x). Thus Ax o f(a,x) acts on Homgg((VV)*, CXk) as
m(a,x) acts on (VV)*, that is, by left multiplication by a®Ls(0,x*). Since
Homg(q((VY)*, CXk) is of dimension 1, we see that

3s(x* Ak o f(a,x)) = a*Ls(0,x%), for all « € T. (6.4.0.3)

We now prove the remaining equivalence. Suppose that (i¢) holds. Then
Mg om(a, x)(CXw) = CUy so that f(a,x) is a left C[G]-module isomorphism
from CX g to CUg. In this case we have

5S(Xa7 Ao f(aa X)) = RS(XQ7 f(a7 X))
and (6.4.0.5) translates as

RS(X’ f(a’> X))

AS(Xaaf(G’?X)) = L{S(O Xa)

=a” = As(x, f(a,x))?, forala e’
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and Ag(x, f(a,x)) = a € Q(x). Therefore Conjecture 4 is true for y. Since
Conjecture 3 and Conjecture 4 are equivalent we have proved that (ii) implies

(iid).

Conversely, suppose that Conjecture 3 is true. By Corollary 32 this is equiv-
alent to Conjecture 5 being true in the case "E = C". Then

AS(Xa f((l, X)) = 6S(X7 .f(a” X))/L%(Ov X)

satisfies the following: for all «, 8 € Aut(C) we have

AR, Fla,0)%) = A7, fla,x)° = (@7)7 = a® = As(x*, f(a, X))

where we used (6.4.0.5) twice. As a consequence, (Ax o f(a,x)?)va and (A o
f(a,x))ve have the same determinant as endomorphisms of the 1-dimensional
space Homgyq)((VY)*, CXf). They must therefore be equal on CXy . Since
1 ® f' is defined over Q we have (1® f')? = 1® f’ by Remark 32. Therefore
fla,x) = f(a,x)? on CXf. This is true for all 3 € Aut(C) and therefore f(a, x)
must be defined over Q. It therefore maps QX to QUi and Xy to Uy,. In
particular 7(a, x)QXx C A(Uw). Moreover, m(a, x)Xw is non-zero since a and
L’5(0, x*) are non-zero. We must therefore have m(a, m)QXx = ANUw ). O

We now examine how Conjecture 3 implies the existence of certain special
units called Stark units. Let ¥ be a set of irreducible characters of G with the
following three properties:

o ]-G €\I/
o If y € U, then x® € U for all « € Aut(C)
o rs(x) =1forall xy € 0.

Let x1,...,Xs be elements of ¥ such that for all i, and for all & € Aut(C),
Xi # X§- Let (ay)yew be a family of elements in Q(x) with the property that
aye = ay for all @ € Aut(C). Note that the restriction afg(y) is an element of
I'y := Gal(Q(x)/Q) by Proposition 18. Consider the element

S S

Z a’XL{S’(OaX)e)Z = Z Z aX;;’L{S(QX?)e)Z? = ZW(O’XNXZ') € C[G]

XEW i=1 aely, i=1
Suppose that Conjecture 3 is true. By Proposition 66, it is equivalent to
T(ay;, Xi) QXK = Ak (Uw, ), foralli=1,...,s.

In particular, m(ay,, x:) Xk C Ax(QUk) and since \x (QUg) = QAx(Uk) we
obtain
3" ay s (0, X)ex Xk € QAk (Uk).- (6.4.0.4)
XEWY

Remark 35. Note that this even holds if ¥ contains characters with rg(x) # 1
since if rg(x) > 1 then L5(0,x) = 0 and if rg(x) = 0, then egQXx = 0 by
Remark 34.
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By Proposition 53 we have xx, = xvx — lg. Thus for all non-trivial irre-
ducible character x of G we have (X, xxx)c = (X Xvx ) and CXg and CYx
have the same y-component and therefore the effect of the projection e, is the
same on Xg as on Yx. In particular, since 1¢ € WU, this is true for all y € ¥
and we can replace Xg in (6.4.0.6) by Yk to obtain

3" 4y Ls(0, YexYi € QA (Ur). (6.4.0.5)
xew

An element of Qg (Uk) is of the form Y77 §+ ® Ak (€;) and since Ak is a
homomorphism and the tensor product is over Z, this is equal to

ibl 1® Ak ﬁe?j
i=1 " j=1

Therefore, any element of QAx (Uk) is of the form

Lo () =21

for some € € Uk and some integer m.

As a consequence of (6.4.0.7), given any place v € S and any place w € Sk
lying above v, there exists an integer m and a unit € of K such that

m Z a, L's(0, x)egw = Ak (€). (6.4.0.6)
XEWY

Remark 36. Note that this equation is note possible with only (6.4.0.6) since
w ¢ Xy . Hence the importance of excluding 14 form the set W. Note also that
this exclusion is only necessary when rg(1g) = 1.

Definition 28. A unit e that satisfies (6.4.0.8) for some w € Sk and some
integer m is called a Stark unit.

Remark 37. Once we fix the integer m, a Stark unit satisfying (6.4.0.8) is
uniquely determined up to a root of unity contained in K since the kernel of

AK IS pg.
Proposition 67. Let v € S and let w be a place of K that lies above v. If a
Stark unit exists for w, then there exists a Stark unit for w that belongs to KP».

Proof. Note, by looking at the definition of ey, that € is supported only at places
in Sk that divide v. Let o be an element of the decomposition group D,, of w
over v. Since G acts transitively on the places above v, we have

>\K(€) = Z 1Og |€|T(1U)T(w)

[r1€G/D,,

= Z 1Og |€U|Ur(w)7—(w)

[T]€G/Dw

= Y log|e%ryro (w)

[T]€G/ Dy,
= > log|e|rw)T(w)
[T]€G /Dy,
:AK(EU).
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1 1

Since €7 = €”¢ "¢, we must have that €”¢™" is a root of unity in K. Denote
this element by ((o) € ug. This defines a function ¢ : D,, — px. Note that
if o,7 € D,,, then we have

Clor) =e"Te t =ar(e)e !t = a(t(e)e Ha(e)e ™ = ¢(1)7¢(0).

This proves that ( is a crossed homomorphism and therefore defines a 1-cocycle
from D,, to pux. Denote by [(] the class of ¢ in the first cohomology group
HY(Dy, ). The class [¢] is zero if and only if it is a I-coboundary, that
is, if there exists & € ux such that ((o) = £°¢~1. If this is the case, then
€7¢71 = ¢! which implies that e£~! = (e¢71)7 for all ¢ € D, so that
e e KPvw.

By general theory of group cohomology (cf. Chapter IV of [CF]), if H is a
normal subgroup of D,,, then the composition map

H(Dy, pix) Ry HY(H, pr) Sy HI(Dy, pix)

is multiplication by [G : H|. Here, the subscript T denotes Tate cohomology
and ¢ is any integer. In particular, if we apply this with the trivial subgroup
H = {1}, then the above map is multiplication by |G| and H*(H, ux) = {0}.
Therefore H}(D,,, px) is annihilated by |G|. Taking ¢ = 1, we get that
HY(D,, px) is annihilated by |G| since H:(Dy, prc) = HY(Dy, px). Because
px is finite, it is clear that H'(D,,, pux) is annihilated by wx = |ux|. Thus
HY(Dy, jx) has exponent dividing n := ged(|G|,wx ). Taking m to be nm in
(6.4.0.8), ¢ = €™ satisfies the new equation and the associated 1-cocycle be-
comes (" whose class in H'(D,,, ux) is zero. Thus, multiplying the Stark unit
¢’ by an appropriate element of j1x, we may suppose that ¢ € KPw. O

Remark 38. By comparing coefficients in (6.4.0.8) and using the definition of
the projection e,, we can rewrite this equation as

ot m
log elou) =log|e” | = 77 > ayLs(0,)x(1) > x(o7), forall o € G.
XEY TED.,

and

€| =1, for all w' v

Conjecture 3 in the rank 1 case therefore implies that the values L'(0, x) for x €
U are related in a linear relationship with coefficients in Q(x) to the logarithm
of the absolute value of a Stark unit that belongs to KPw.

Example 6. Suppose that Conjecture 3 is true in the rank 1 case. Suppose
that K/k is a finite abelian extension, that |S| > 3 and that the place v of k
lying below w splits in K. The latter implies that the residual degree f,, ., of w
is 1 and therefore D,, = {1}. Let G denote the irreducible characters of G over
C which are all of dimension 1 by Corollary 29. Then rg(lg) =S| —1 > 2 so
that L'4(0,1¢) = 0. Therefore there is no need to exclude the trivial character
from ¥ by Remark 35. Taking ¥ to be G and ay, = 1forall x € 6’, the equation
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of Remark 38 becomes

log |€” | = @l Z o) Ls(0,x) > x(7)

XGG TEGY

=1al > X(0)Ls (0, )| Dulx ™ ([1])

If x € CA;, then we have

Z o) log [¢7],, = |G| > x(@)X (07 HLs(0,x) = > Ls(0.X) (x. X)g

e’ ocC v e@
X 'e@

We therefore obtain the formula
1
L5(0,x) = — > x(0) logle” | (6.4.0.7)
ceG
A Refined Conjecture in the Abelian Case

In the abelian case with some special conditions on S, we saw in Example 6
that Conjecture 3 implies the formula (6.4.0.9). Stark’s abelian conjecture is a
refinement of Conjecture 3 in the case of rank 1. It states that, under certain
conditions on the set of places S, equation (6.4.0.9) holds with m = —wg and
K(e'/*x) is an abelian extension of k. Before we can state this conjecture
precisely we first fix some notations.

Let K/k be a finite abelian extension of number fields with Galois group G.
Let G denote the group of irreducible characters of G over C. Note that these
are all of dimension 1 by Corollary 29. Let .S be a finite set of places of k that
satisfies the following three conditions:

e S contains all archimedean places of k as well as all finite places of k that
ramify in K,

e S contains at least one place that splits completely in K,

e |S|>2.

As usual, we let Sk denote the set of places of K lying above those in S.
Let v be a split prime in S and let w be any place in K above v. We define

U@ — {u € Uk,sx : |u|w/ = 1,Vw”(v} if |S| >3
- {ue Uksye U] g (wry = [t]w, Vo € G} if S = {v,v'} and w'|v’

Also, we define
UK/Ic = {u e Ukgs, : K(u'/“%)/k is abelian}.

The abelian rank one Stark conjecture, which we refer to as St(K/k, S,v),
can now be formulated:
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Conjecture 6 (St(K/k,S,v)). With notations as above, there exists a Stark
unit € € Uf(b/k NU®™ such that

log |67 | = —wr(5(0,0), Vo e G (6.4.0.8)
or, equivalently,
Ls(0,x) = —— Z o)logle”l,,  Vxed. (6.4.0.9)
JGG

Remark 39. To see that the first statement implies the second, we use the first
formula of Proposition 55 to compute that for all x € G we have

L5(0,x) = Y x(0)¢5(0,0) ———Z 7)10g [€7 |-

ceG UEG

For the other implication, we use the second formula of Proposition 55 to com-
pute that for all o € G we have

CS 0 U |G| Z LS 0 X - Zlog|6T|w |G| Z

xe@ xe@

_ log ‘€a|w
WK :

By Proposition 28 the latter is equal to
Remark 40. We make several comments concerning St(K/k, S, v):

e St(K/k,S,v) is independent of the place w above v. Indeed, if w is another
place above v, let 7 € G such that w = 7(w). Then, if St(K/k, S, v) is
true for w, we have

L5(0,) ——Z o) log ()74

UEG
and K ((e7)Y/«x) = K(e'/«x). If | S| > 3, then for all w’ { v, we have
€7 wr = lelr-1(wry =1

since 771 (w’) { v and e € U®W. If S = {v,0'}, then for all ¢ € G,
€7 |o(w) = l€lr—10(w) = |€|wr since e € U®). Therefore ™ € U?{b/k NnU®,
We can thus take €™ to be the desired Stark unit for w’ and St(K/k, S, v)
is true for w'.

e The valuations of € at places above v are given by (6.4.0.10) and the
valuations at places outside Sk are all 1. If |S| > 3, then € is a v-unit so
that the valuation of € at places not above v is 1. If S = {v, v}, then by
the product formula and the fact that e € U®)| we have

GZD/
el T Jelow) =1
oc€G /D,

so that the valuation of € at places above v’ is known. In conclusion, all
valuations of € are known and therefore St(K/k,S,v) specifies € up to a
root of unity.
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Proposition 68. Suppose that S contains only one place v that splits com-
pletely in K. Suppose that there exists an injective irreducible character x of G.
Suppose that there exists a Stark unit € such that St(K/k,S,v) is true. Then
K = k(e).

Proof. We clearly have k(e) C K. We need to show that k(e) is only fixed by
the identity in GG. By Corollary 30, we have

rs(x, K/k) = {v € §| x(Dw) = 1}.

But x(D,) = 1 implies by the injectivity of x that D,, = {1}. In other words,
v splits completely in K. By assumption S only contains one place that splits
completely and therefore we have rg(x) = 1 and L(0,x) # 0. Let o be a
generator of G. Let 7 € G such that €” = e. By (6.4.0.11) we have

Ls(0,x) = —*Z n)log |(€7)"]w

nEG

=LY xlogle
nEG

= Z 1) log len.
17€G

=x(1) 7 Ls(0,x).

Thus x(r) = 1 and by injectivity of xy we have 7 = 1. As a consequence,
k(e) = K. O

Corollary 34. Suppose that k is real and that there exists an irreducible in-
jective character x of G. Suppose that S contains only one place v that splits
completely in K and suppose that v is a real archimedean place. Suppose that
there exists a Stark unit € such that St(K/k,S,v) is true. Then

K = k(exp(-2¢5(0,1))).

Proof. Let w be a place above v and fix an embedding £k C K C K,, = R. We
may choose € to be positive. By (6.4.0.10) we have

loge = —2¢5(0,1).
By Proposition 68 we have K = k(e) = k(exp(—2¢5(0,1))). O

Remark 41. This corollary shows that in certain specific cases, Stark’s conjec-
ture enables one to construct an abelian extension of k£ by adjoining the value
at s = 0 of an analytic function. This gives reason to believe that Stark’s con-
jectures could provide an insight in Hilbert’s 12th problem which is concerned
with explicitly constructing a class field theory for number fields.

We will now prove that St(K/k,S,v) is actually independent of the choice
of a prime v that splits in K. In order to accomplish this, we will make use of
the following lemma which follows from class field theory.

Lemma 13. Suppose that K/k is a totally unramified finite abelian extension
and let S be a finite set of primes containing all infinite primes of K and such
that all elements of S split completely in K. Then [K : k] divides the ideal class
number hy, s.
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Proof. Let m be the modulus obtained by taking the product of all finite primes
in S. The primes of Oy s are in bijection with the primes of Oy that do not
belong to S. The prime ideals of O) that do not belong to .S are exactly those
that do not divide m. Since Oy, s is a Dedekind domain, the group of fractional
ideals I(Op s) has unique factorization into prime components. We therefore
get an obvious group isomorphism I (m) = Io, ;. The subgroup Py s of I(Ok,s)
consisting of the principal fractional ideals corresponds via this isomorphism to
a subgroup P’(m) of I;;(m). This subgroup consists of elements of the form a.(x)
where (z) € P(m) and a only has primes of S in its decomposition.

Clearly, we have the inclusion Py ;(m) C P’(m), that is, P'(m) is a congru-
ence subgroup for m. By Theorem 2.4.3, there exists a unique abelian extension
Hg of k such that P'(m) = ker(®p;, m). Thus the Artin map induces an
isomorphism

Py /km : Iu(m)/P'(m) = Gal(Hg/k).

In particular, Hg/k is an extension of degree hy g. The proof has been reduced
to showing that K is a subfield of Hg. By Corollary 7 this is equivalent to
proving that

Pri(m) Cker(@pg/pm) C ker(Pr/pm)- (6.4.0.10)

But K/k is totally unramified and therefore K/k has conductor the empty
modulus 1 and K is contained in the Hilbert class field Hj of k. By Corollary
7 the latter implies that

P, = ker(CIDHk/k.’l) - ker(@K/k.’l). (64011)

Moreover, ker(® g /p,m) = ker(® g, ) NIk (m). Since ker(® g /4,m) is a subgroup
of I(m), in order to prove (6.4.0.12), it suffices to prove that

P’(m) C ker(CDK/k’l).

Let a.(z) be an element of P'(m). By (6.4.0.13) we see that ®g 5 , (2Or) = 1.
All primes that divide a belong to S and these primes split in K. Thus their
Artin symbol in K/k is trivial which implies by multiplicativity of the Artin
symbol that (a, K/k) is also trivial. We conclude that P’(m) does indeed lie in
the kernel of ® gy ;. [

Proposition 69. The conjecture St(K/k, S, v) is true if S contains at least two
places which split in K. In particular, St(K/k, S,v) is independent of v and we
shall in the future write St(K/k,S).

Proof. If v is a place that splits and w lies above v, then D,, = {1}. If |S| > 3,
then rg(1g) = |S| —1 > 2 and by Corollary 30, rg(x) > 2 if x is of dimension
1. Thus, rs(x) > 2 for all x € G which implies that L's(0,x) = 0. Therefore
St(K/k,S,v) is true for the Stark unit e = 1.

Suppose now that S’ = {v,v'} where both v and v are split in K. In this
case, we have r5(1¢) = 1 and rg(x) = 2 for all non-trivial ¥ € G. In particular,
L’(0, x) = 0 for non-trivial x. Moreover, the rank of the S-unit group Uy g of k
is 1 and we pick 7 to be a fundamental unit such that |n|, > 1. By Proposition
46, we have Lg(s,1g) = (k,s, the Dedekind zeta function of k relative to S. By
the analytic class number formula at s = 0, Corollary 29, we have

_ hw,slognly

L5(0.16) = G 5(0) = ~ 2
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Since py is a subgroup of g, wy divides wg. Since S contains all primes that
ramify in K and no prime in S ramifies in K, we deduce that K/k is totally
unramified. We may therefore apply Lemma 13 which says that [K : k] divides
hi,s. Consequently

 wrhks

o WE [K : k]
is a positive integer.

Now set € = ™ € Uyg. For all 0 € G, €7 = € so that [€7]|y = |€|w
and € € UW. Also, e'/wx = (nl/wr)hns/IKH] g6 that K(e!/“x) is a subfield
of K(n'/“*). The latter is the compositum of the abelian extension K/k with
the abelian Kummer extension k(n'/“*)/k so it is abelian over k. Thus e €
U, NUW. It remain to check (6.4.0.11). We have

K/
[ ]

h
LI PN

L's(0,1g) = — log |e|, = —— Z La(o)log |€7],.

UEG

nly = —

For x € G non-trivial, we have

log |€l, log |e],
L 3 x(ologleTh =~ 30 (o) = L6y 1 16) = 0

w
K sea L

and Ls(0,x) = 0. O
From this result we get some easy corollaries.
Corollary 35. The conjecture St(k/k,S) is true.

Proof. All primes of k are split in k. Since |S] is required to have at least two
elements it contains at least two elements that split and the previous result
applies. O

Corollary 36. The conjecture St(K/k,S) is true if k contains at least two
complex archimedean places.

Proposition 70. If S’ contains S, then St(K/k,S) implies St(K/k,S’).

Proof. First, if S satisfies the three conditions imposed in the beginning of this
section, then S’ clearly also satisfies them. If S = S’ there is nothing to prove.

Suppose that S’ = S U {p}. Then p is necessarily a finite unramified prime
of k. Let v be an element of S that splits in K and suppose that there exists
a Stark unit e € U ks N Ué(vs that satisfies St(K/k,S). Let o, denote the
Frobenius element of/ any ‘B above p. This element is independent of 3 since
we are in the abelian case. Define

, €

€ = —.
€%

Suppose that [S| > 3. Then for any w’ { v we have |e[,s = [€],, () since
op(w') fvand e € UM, If § = {v,v'} and w'|v, then
|E(T|fT |o(w’) = ‘€|Jpa'*1(w/) = |€|w’

for all o € G since e € U™). Thus |(¢')7], = 1 and € € U™, Since (¢/)/«x ¢
K (/%K) we also have ¢ € UZs.
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We have
LS/(S, X) = (1 - X(JP)N(p)_S)LS(Sv X)

Since Lg(0, x) = 0, we obtain
5(0,x) = (1 = x(03))Ls(0,x)-

Using (6.4.0.11), we compute that

(0, = — 227 S () 10g ),

WK

oceG
-1
= Z )(log [€7 | — log |(€77 )7 |w)
JEG
=-— Z o) log (') |-
JEG
Thus St(K/k, S") is true.
The result for a general S’ trivially follows. O

One can prove the following result which describes how St(K/k, S) behaves
with respect to intermediate extensions. We will not prove this here because it
requires developing more theory.

Proposition 71. If K/K'/k is a tower of finite abelian extensions of number
fields, then St(K/k,S) implies St(K'/k,S).

Proof. See [Tal], § 3.5, p. 92. O

An Example with Cyclotomic Units

The aim of this section is to present an example where the existence of Stark
units is known. We begin with a brief introduction to cyclotomic units.

Let m be a positive integer. We will be working with the cyclotomic field
K = Q(¢) where ( is a primitive m-th root of unity. We treat several cases.

e Suppose that m = p is a prime. Define

XP—1
X -1

f(X)= =X+ +X+1€Z[X]

This is the minimal polynomial of ¢. The roots of f are precisely the ¢*
where ged(i,p) = 1. Thus we can write

fx) = ] x-¢. (6.4.0.12)
(i,p)=1

Consider the element m = 1 — (. If w is any primitive p-th root of unity
and (i,n) = 1, then we have

—w Tl twtle Ok =Z[] (6.4.0.13)
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IIlllparticular7 % € Ok. Let (j,p) = 1 such that ij =1 mod p. Then
¢¥ = (. Thus, by (6.4.0.15), we have

1-¢ _1-(¢Y
- = , Ok.
1-¢  1-¢ <K
We conclude that % is a unit in Ok for all ¢ such that (¢,p) = 1. This

1-¢°
1—(7

implies that for 7 and j prime to p,
prime ideal in Ok. Then

is a unit of Ok. Let q be any

1-¢ i .
O = ’Uq <]_—C]> = ’Uq(l — C ) —’Uq(l —Cj)

We conclude that all the 1 — ¢? share the same valuation at all primes of

Ok. By evaluating (6.4.0.14) at X = 1, we obtain p = [[; ,—,(1 — (")

and taking valuations we see that

Uq(p) =(- 1)Uq(7r)-

If g t p, then vg(7) = 0. If ¢ = p is a prime that divides p, then the left hand
side is the ramification index e, of p over p. But [K : Q] =p—1 =rfye,
where f, is the residual degree of p over p and r is the number of primes
above p. Since v, (m) cannot be zero, we must have e, > re,f, which
implies r = f = 1 so that p is totally ramified in K. In conclusion, 7 is a
p-unit of K.

Suppose that m= p” is a prime power. Consider the polynomial X?" — 1
and let Y = X?" " . Then

XP1=YP 1= -1)(Y" ' +.. . +YV +1).
Define the polynomial

X) = X7 -1 =yr? Y +1€eZ[X

This is the minimal polynomial of ¢ and therefore it factors as

fx)= J[ x-¢). (6.4.0.14)
(i,pm)=1
In the exact same way as before, one shows that % is a unit in Ok

and therefore all 1 — ¢? have the same valuations. Evaluating (6.4.0.16) at
X =1 and taking valuations we obtain

vg(p) = ¢(p")vq (7).

Just as before, we conclude that p is totally ramified in K and that 7 is a
p-unit of K.

e Suppose that n is not a prime power. In this case we claim that

n—1

[Ta-¢)=+1

=1
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which implies that all 1 — ¢* are units in O.

Let Sy denote the set of all primitive d-th roots of unity and consider the

polynomials
fa(X) = J[ (X —w) € Z[X].
wESy
Consider also the polynomial f(X) = );”:11 which has roots all non-trivial

n-th roots of unity. These are exactly the elements of Sy for d|n and d > 1.
We therefore have the decomposition

FX) =] fa(x).
d|

Evaluating at X = 1 gives n = Hd|n fa(1). We just saw in the previous
d>1
case that f,~(1) = p for any prime p and any positive integer r. Let

n = lenpvp(") be the prime factor decomposition of n. For each p, p”
with r =1,...,vp(n) appears in the above product and contribute with a
factor p. Thus the prime power divisors of n suffice to yield n. In other
words, if d is a composite divisor of n, then f4(1) = +1. In particular,

Fa(1) = £1 =115 (1 = ¢P).

We are now ready to construct the example. Let m be an integer greater or
equal to 3 which is either odd or divisible by 4. In particular, ¢(m) is even. Let
¢ be a primitive m-th root of unity. Let L = Q(¢) and let K = Q(¢)* be the
maximal totally real subfield of K. Take S to be the union {ve} U{p|m}. Note
that v splits in K, that |S| > 2 and that all primes that ramify in K belong
to S by (2.5.0.1). Recall from Example 2 that K is the mZ-ray class field of Q
whereas L is the mZvso-ray class field of Q.

Consider the automorphism o, of L which is the restriction to L of (¢ — ¢%).
Consider the partial zeta-function

(s(5,04) = Z |n|~° = Z [n|~%.

n>1 neZ
n=+a(m) n=zxa(m)

Consider Q(¢) as embedded in C by identifying ¢ with e and let
e=(1-¢1~¢1) =2—cos(2r/m) € Ok.

If |S| > 3, then m is not a prime power so by the above discussion, 1 — ¢ and
1 — ¢! are both units of O, whence € is a unit of O. Thus e € Uv=)  If
S = {vs0,p}, then m is a power of p and by the above discussion p is totally
ramified in K. Therefore € is automatically in U(¥>~). We have

€ =(1-¢"H(1 - =2-2cos(2wa/m).

One can compute (cf. [StIV]) that the derivative of the partial zeta function
Cs(s,04) at s =01is

€5(0,0,) = f% log(2 — 2 cos(2ma/m)) = f% log €. (6.4.0.15)
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Since wx = 2, this equation is exactly (6.4.0.10).

21

For any integer ¢, set (; = e & and let L, =Q(¢y). We have

€=2—Cm— Gt = —(Com — (2)? = [Ca(Com — D]

If m is odd, then 2m is composite and (o — Cr = Com (1 — (2;2) is a unit
of Or,,, by our above discussion. In particular, it is a unit of Oy, , as is (4.
Thus, in the case of an odd m, € is the square of a unit of Ly4,,. In particular,
K(\/€) C Ly, and K (y/€) is therefore abelian over Q.

If m is even, then by assumption m is divisible by 4. If m is composite then
by the above reasoning, € is the square of a unit in Ls,,. If m is a power of 2,
then € is the square of an S-unit of La,,. Either way, K(1/€) is a subfield of Lo,
and therefore abelian over Q.

We conclude that € € U# and consequently that € is a Stark unit for K so
that St(K/Q, S) is true.

Remark 42. This partially proves the abelian Stark conjecture in the case
k = Q. In general, when we explicitly know the class field theory of k, it is
possible to prove the conjecture. The class field theory is known in the case
k = Q and the case if k is quadratic imaginary. We have the following result
that we give without proof. A partial proof can be found in [Tal], § 3.9, p. 95.

Theorem 6.4.1. The conjecture St(K/k,S) is true for k = Q or if k is
quadratic imaginary.



Chapter 7

The Birch and
Swinnerton-Dyer Conjecture

In the 1960’s, Peter Swinnerton-Dyer used the EDSAC computer at the Univer-
sity of Cambridge to calculate the number of points modulo p on elliptic curves
with known rank. From these numerical results he was led with Bryan Birch
to their famous conjecture which they proposed in [BSD]. It says that the rank
of the Hasse-Weil L-function of an elliptic curve at s = 0 is the rank of the
Mordell-Weil group of the curve. A refined version of the conjecture also gives a
formula for the leading term in the Taylor expansion of this L-function around
s = 1 in terms of arithmetic invariants of the elliptic curve. The aim of this
chapter is to state this refined version of the conjecture. We follow the paper of
Gross [Gr2| and supplement it with the book of Silverman [Sil|.

7.1 The Riemann-Roch Theorem

By a curve defined over a field kK we mean a projective variety defined over k
of dimension 1. Let C/k be a smooth curve. We will always assume that k is
perfect field. We fix an algebraic closure k of k and let G denote the absolute
Galois group of k. We will call P a point of C' and write P € C if P € C(k).
We review some notations.

Let Div(C) denote the divisor group of C. This is the free abelian group on
the points of C. We note by DivO(C) the subgroup of degree zero divisors. The
Galois group G acts on points of C' by acting on their coordinates and therefore
naturally acts on Div(C). We let Divy(C') denote the subgroup of Div(C) fixed
by the action of G and we let Divy(C) denote the subgroup of Div’(C) fixed by
the action of G.

If f € k(C), then we define divf = 3 pcordp(f)(P). This is an element
of Div?(C) and divisors of the form divf are called principal divisors. Let P
denote the subgroup of principal divisors. We form the Picard group of C' to be
Pic(C) = Div(C)/P. We define Pic;(C) to be the subgroup of Pic(C) that is
fixed by G. We write Dy ~ D5 and say that Dy and Dy are linearly equivalent
if Dl = D2 in PIC(C)

Let D = Y pconp(P) € Div(C). We say that D is efficient and write
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D >0ifnp >0 for all P € C. We then write Dy > Dy if the divisor D1 — Do
is efficient. We define

L(D) = {f € K(C)* : divf > —D} U {0}.

This is a finite-dimensional k-vector space (cf. [Sil], I1.5.2) and we denote by
£(D) its dimension over k.

Let Q¢ denote the space of differential forms on C. This is a k(C)-vector
space of dimension 1 (cf. [Sil], I1.4.2). Let w € Q¢. Let P € C and let tp denote
a uniformizer of k(C) at P. Then there exists a unique g € k(C) such that
w = gdtp. We denote this element by w/dtp. One can check that ordp(w/dtp)
does not depend on the choice of tp. We define ordp(w) = ordp(w/dtp). and
associate to w the divisor

divw = Z ordp(w)(P).
PEE

The differential w is said to be holomorphic if divw > 0.

Let w,w’ be two non-zero differentials. Then there exists f € k(C)* such
that w" = fw. We have divw’ = divf 4 divw so that divw’ = divw in Pic(C).
The canonical divisor class on C' is the image of divw in Pic(C) for any non-zero
differential w. Any representative of this class is called a canonical divisor on C'
and is typically denoted by K¢.

Suppose that f € L(K¢). Then divfw > 0 so that fw is a holomorphic
differential. On the other hand, let w’ be a holomorphic differential. Then
w' = fw for some f € k(C) and f € L(K¢). This establishes an isomorphism
of k-vector spaces

L(K¢) 2 {w € Q¢ : w is holomorphic}.

Theorem 7.1.1 (Riemann-Roch). Let C/k be a smooth curve and let K¢ be a
canonical divisor on C. There exists a non-negative integer g, the genus of C,
such that for all D € Div(C) we have

D) —{¢(Ke—D)=degD —g+1.
Proof. See [Sil], I1.5.4. O

Corollary 37. Let C/k be a smooth curve and let Ko be a canonical divisor
on C. Then we have

(i) ((Ko) = g.
(i) deg Ko = 2g — 2.
(11i) If D € Div(C) and deg D > 2g — 2 then
{(D)=degD —g+1.
Proof. By Theorem 7.1.1 we have
0(0) — (K¢c) = deg0— g + 1.

But £(0) consists of the functions f € k(C) that have no poles. Since degdivf =
0, f has no zeros either so that f € k. Thus ¢(0) =1 and ¢{(K¢) = g.
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By Theorem 7.1.1 we have
UKe)—L(0)=degKec —g+1

so that deg K¢ = 2g — 2.
If D € Div(C) and deg D > 2g — 2 then by Theorem 7.1.1 we have

UD)—¥¢Kc—D)=degD —g+1.

By (ii) we have deg(K¢c — D) =2g9—2—degD < 0. Let f € L(K¢c — D). Then
0=degdivf > —deg(K¢c— D) >0

so that f =0 and ¢{(K¢c — D) = 0. O

Lemma 14. Let C/k be a non-singular curve of genus 1. If P,Q € C, then
(P) ~(Q) if and only if P = Q.

Proof. Suppose that there exists f € k(C)* such that div(f) = (P) —(Q). Then
div(f) + (Q) = (P) > 0 so that f € L((Q)). We have deg(Q) =1>2g—-2=0
so that by Corollary 37 (iii) we have £((Q)) = 1. But £((Q)) already contains
the constant functions and therefore f € k. In particular, div(f) = 0 and thus
P=0Q. 0

7.2 Elliptic Curves

An elliptic curve E defined over k is a non-singular curve over k of genus 1
together with a k-rational point O € E(K).

A very interesting fact about elliptic curves is that one can define an opera-
tion on E, making it into an algebraic group defined over k.

7.2.1 The Algebraic Group Law
We show how one can transfer the group law on Pic’(E) to E(k).

Theorem 7.2.1. For any D € Div'(E), there exists a unique point P € E(k)
such that D ~ (P)—(Og). This defines a map o : Div’(E) — E(k) by sending
D to the corresponding point P. This map induces a bijection of sets

o Pic’(E) = E(E).
For future reference, we denote the inverse of this map by k.

Proof. Let D be a divisor of degree 0. Then D + (Og) is a divisor of degree 1
and by Corollary 37 (ii¢) we have {(D+(Og)) = 1. Let f be a non-zero element
of L(D+(Og)). Then f is a basis of L(D+(Og)) and div(f) > —D—(Og). We
have deg(div(f)+ D+ (Og)) = 1 and all coefficients div(f)+ D+ (Og) are non-
negative. Therefore there must exist P € E such that div(f)+D+ (Og) = (P).
In other words, D ~ (P)—(Og). This proves the existence part. For uniqueness,
suppose that we also have D ~ (P’) — (Og). Then (P’) ~ (P) and by Lemma
14 we get P = P’.

The map o is surjective. Indeed, if P € E, then (P) — (Og) is an element
of Div?’(E) whose image by o is P. Moreover, if Di, Dy € Div’(E), then
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o(D1) = o(Ds) if and only if Dy ~ Ds. In fact, let P; = o(D;) for i = 1,2.
Then P, = P, implies that (P1) — (Og) = (P2) — (Og) from which it follows
that Dy ~ Ds. Conversely, D1 ~ Dy implies that (P;) — (Og) ~ (P2) — (OF)
which in turn implies (P;) ~ (P2). By Lemma (14), P, = P, and the proof is
complete. O

Definition 29. If P,Q € E, then we define their sum to be

P+Q:=o(k(P) +r(Q)) = o([(P) + (Q) — 2(Or))).

With this law E(k) is a group with zero element O and o is an isomorphism
of abelian groups.

Remark 43. If 7 € G and D € Div’(E) is such that D ~ (P) — (Og), then
D™ ~ (P7) — (Og) so that o([D7]) = P™ = ¢([D])". This shows that o is a left
G-module isomorphism. The restriction of o to Picg (F) is an injective group
homomorphism. Moreover, if [D] € Picy(E) and D ~ (P)— (Og), then D™ ~ D
and D™ ~ (P7) — (Og). By uniqueness, we obtain P = P7. This proves that
P € E(k) and the image of the restriction of o lies in E(k). If P € E(k), then
(P) — (Op) certainly belongs to Div{(F) and its image under o is P. This
proves surjectivity. Thus we get an isomorphism of abelian groups

o : Pic)(E) — E(k).

In particular, F(k) is a subgroup of E(k) with the above defined group law.

Proposition 72. Let E/k be an elliptic curve. Then we have the following
exact sequence:

11—k — k(B)" 2% DivO(E) — Pic®(E) — 0
Moreover, the sequence obtained by taking G-invariants
1— k" — k(E)* 2% Div(E) — Pic)(E) — 0

remains exact.

Proof. Let f € k(E)* and define a map f : E — P! by P ~ [f(P),1] is
f is regular at P and by P — [1,0] otherwise. This is a rational map and
since E and P! are both smooth curves it is a morphism of curves (cf. [Sil],
I1.2.1). If div(f) = 0 then f has no poles and therefore the above map cannot
be surjective. Consequently, it must be a constant map (cf. [Sil], I1.2.3) so that
f € k*. This proves exactness at k(F)*. Exactness elsewhere is clear.

For the second part, we start by proving exactness at k(E)*. If P(E) =
div(k(E)*) is the subgroup of Div’(E) of principal divisors, that is, the ker-
nel of Div’(E) — Pic’(E), then P.(E) = P(E) N Div{(E) is the kernel of
Div{(E) — Pic)(FE). Proving exactness amounts to proving that Py (FE) =
div(k(E)*). Note that we clearly have the inclusion div(k(E)*) C Pyx(F) since
div(f)” = div(f7) = div(f) for any 7 € G and any f € k(E)*. Now, if
f € Py(E), then for any 7 € G, we have div(f)” = div(f") = div(f). Thus
div(f7/f) = 0 and therefore these two functions differ by a constant ¢, € k*.
This gives a function ¢ : G — k*. If w € G, then

=T =G =S f
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so that c,r = ¢“c,. As a consequence, c¢ is a crossed homomorphism and
determines an element of the first cohomology group H'(G,k*). By Hilbert’s
Theorem 90, this cohomology group is trivial so c¢ is a 1-coboundary, that is,
there exists € k* such that ¢ = (7 + 27 /). Then (f/x)” = f/x for all T so
that f/x € k(E)*. Since div(f/z) = div(f), we see that div(f) € div(k(E)*).
This proves the inclusion Py (E) C div(k(E)*).

It is easily checked that the sequence

1— k" — k(B)* 2% Div0(E) — Pic)(E)
is exact.

It remains to show that Divi(E) — Pic}(F) is surjective. Let [D] be an
element of Pic)(E). By definition, for all 7 € G, we have [D7] = [D] in Pic{(E).
In other words, D™ ~ D. Let P = o([D]) € E(k), that is, the unique point
such that D ~ (P) — (Og). It follows that D™ ~ (P7) — (Og). But D™ ~ D
implies that (P) ~ (P7) and by Lemma 14 we have P = P7. This being true
for any 7, we have shown that P € E(k). But then (P) — (Og) € Divy(FE) and

[D] = [(P) — (Og)]. This proves surjectivity. O

7.2.2 The Geometric Group Law

Let E/k be an elliptic curve. Using the fact that the genus of E is 1 together
with Theorem 7.1.1, one can show (cf. [Sil], III.3.1) that E embeds as a non-
singular cubic curve in P? given by a Weierstrass equation

y2 + a1y + asy = x> + CLQJ?Q + a4x + ag

with coefficients in k. The point O is mapped to the unique intersection of the
Weierstrass curve with the line at infinity. This point has projective coordinates
[0,1,0].

The embedding E — P? is given by a morphism ® = [x,y, 1] where z,y €
k(E) are rational functions called Weierstrass coordinates for E. We have the
equality k(E) = k(z,y). The discriminant of the above Weierstrass equation
is a certain polynomial A = A(ay,...,as) in the coefficients of the equation.
Note that a Weierstrass equation defines a non-singular curve in P2 if and only
if A #0 (cf. [Sil] II1.1.4 (a)). Conversely, every non-singular curve in P? given
by a Weierstrass equation is an elliptic curve.

If K/k is any field extension then the chord and tangent process turns E(K)
into an abelian group with zero element Op. This geometric addition law is
determined by the following property:

P+Q+R=0g < P,Q,R are colinear.

Note that it is not immediate that this actually defines a group law (associativity
is not immediate). However, as we will see, this turns out to be true. One can
derive addition and inverse formulas that turn out to be rational functions in
the coefficients a; of the Weierstrass equation. One can then show that both
addition and taking inverse are morphisms of projective varieties defined over k
(cf. [Sil], II1.3.6).

Theorem 7.2.2. The geometric group law on E and the algebraic group law
on E coincide.
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Proof. Let P,Q € E(k). In this proof we use the symbol @ to denote the
geometric group law and the symbol + to denote the algebraic group law. We
want to prove that P & @ = P + (). This amounts to proving that

R(P® Q) = k(P) + £(Q)
where addition in the right hand side is the one of Pic’(E). Let
XY, Z)=aX +8Y +~4Z2 =0

be the equation of the line L in P? going through P,Q and let R be the third
point of intersection with E. Let

XY, Z) =X +B8Y +~4Z =0

be the equation of the line L’ in P? going through R and Og. By definition of
the geometric group law, the third point of intersection of L’ with E is P & Q.
Counting intersection multiplicities, we see that

div(f/Z) = (P) + (@) + (R) — 3(Og)
div(f'/2) = (R) + (P ® Q) — 2(Ok).

It follows that

div(f'/f) = (P& Q) = (Op)) = (P) + (Q) = 2(0p)) ~ 0
and therefore k(P @ Q) = k(P) + (Q). O

Remark 44. From this theorem it follows that the geometric group law is a
group law and in particular we get associativity. On the other hand, it shows
that the algebraic group law we defined is a morphism of varieties defined over
k. From now on we will obviously not distinguish between the algebraic and
geometric group laws and both will simply be denoted by the symbol +.

7.2.3 Torsion on Elliptic Curves

Having defined the operation of addition on the points of F we naturally define
the multiplication-by-m map [m] on E for any integer m inductively: if m > 1,
then [m + 1)(P) = [m]|(P) + P and if m < 0, then [m](P) = [-m](—P). Since
addition and taking inverse are morphisms, one verifies easily that [m] is a
morphism for all integer m. Since [m] obviously maps O to itself, [m] is an
isogeny for all m.

If E; and E5 are two elliptic curves, we denote by Hom(E7, E5) the additive
group of isogenies F; — FE5. If B = FE, we can also compose isogenies.
Thus if E is an elliptic curve, we let End(F) := Hom(F, E) be the ring of
isogenies ¥ — FE. This is called the endomorphism ring of F. If F; and Ey
are both defined over a field k, then we denote by Homy (E1, F2) and Endg(E)
respectively the group and ring of isogenies defined over k.

Since addition and taking inverse are both defined over k, we see that

[m] € Endg(FE)

for all m. There is more to be said about the multiplication-by-m isogeny:
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Proposition 73. Let E/k be an elliptic curve and assume that m is non-zero
in k, that is, m # 0 if char(k) = 0 and (m,p) =1 if char(k) = p > 0. Then [m]
is a finite separable endomorphism of degree m?.

Proof. Let w € Qg be an invariant differential of E. Then [0]*w = 0 and
[1]*w = w since [1] is the identity map. If m is an integer, then we have

[m+1]*w = [m]*w + [1]'w = [m]*w + w

(cf. [Si]], II1.5.2). Now by ascending and descending induction, we get [m]*w =
mw for all m € Z. In particular, since m is non-zero in k, [m]*w # 0. Therefore
we cannot have [m] = [0]. Thus [m] is non-constant, hence surjective. In other
words, [m] is a finite map. Moreover, [m|*w # 0 implies that [m] is separable
(cf. [Sil], IT.4.2).

o~ —~

Denote by [m] the dual isogeny of [m]. By convention, [0] = [0] and since
deg([1]) = 1, we have [1] = [1]. We have

[m +1] = [m] + [1] = [m] + [1].

o~

By ascending and descending induction, we obtain [m] = [m]. Let d = deg([m]).
Then e

[d] = [deg([m])] = [m] o [m] = [m?].
Thus [d — m?] = [0] is constant. This implies that d — m? = 0 since otherwise
[d —m?] is a finite map. O

Remark 45. It follows from this result that we have an injection of rings
Z — End(E).

This is usually an isomorphism, but if the endomorphism ring of F is bigger
than Z, then F is said to have complex multiplication.

Definition 30. For any integer m we define the m-torsion subgroup of F,
denoted by E[m], to be ker([m]). For any field extension K/k we denote by
E[m](K) the m-torsion points of E that are defined over K.

Remark 46. Since multiplication-by-m is an algebraic map, every m-torsion
point has coordinates that are algebraic over k. Therefore we have

We want to understand the structure of E[m]. In order to deal with the case
of positive characteristic, we introduce the Frobenius map on an elliptic curve.

Let k be a perfect field of characteristic p and let ¢ = p” for some r € N.
Let E/k be an elliptic curve given by the Weierstrass equation
E:y® 4+ a1zy + asy = 2° + axz® + asx + ag.
We define a new curve E(@) /k by raising the coefficients of the Weierstrass
equation for F to the ¢-th power, that is,
E9D y? 4 alzy + ady = 2® + ale? + alx + al.

Writing out the discriminant A(FE) of E and using the fact that the ¢-th power
map k —> k is a homomorphism, we see that A(E@) = A(E)?. Since F is
non-singular, we find that F(? is non-singular and therefore is an elliptic curve.
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Definition 31. The g-th power Frobenius map of F is the map
¢g: B — BW, (a,y) > (2%,y)
and (bq(OE) = OE(q) = Og.

This is a rational map and since both E and E(@ are non-singular, ¢ is a
morphism. The Frobenius morphism has the following properties:

Proposition 74. Let ¢4 be the g-th power Frobenius map of E.
(i) ¢4(k(EW)) = k(E)".
(i) ¢q is purely inseparable.

(ii) deg(dq) = q.
Proof. See [Sil] T1.2.11. O

Remark 47. Suppose that k = I, is a finite field with ¢ elements. Denote by v,
the g-th power map on F, so that ¢, (x,y) = (¢4(x),¥4(y)). The restriction of
14 to k is the identity so that E (@) = E. In particular, ¢4 is an endomorphism of
E, called the Frobenius endomorphism. Note that E(F,) consists of the points
of E(F,) that are fixed by Gal(F,/F,). By definition, we have

Gal(Fg/Fq) = {iinGal(Fq" /Fq) = {in (Vgle,n)-

It becomes clear that the points fixed by Gal(F,/F,) are exactly those fixed by
¢q- Stated more precisely, we have

ker(1 — ¢q) = E(Fq).

Proposition 75. Let E/F, be an elliptic curve define over the finite field of
cardinality q. Let ¢ : E — E denote the q-th power Frobenius isogeny. Then
the map 1 — ¢ is separable.

Proof. Let w be an invariant differential on E. Then
(1-¢)w=[1'w-¢'w=w

because by Proposition 74 (i7) the map ¢ is purely inseparable and this is true
if and only if ¢*w = 0 (cf. [Sil], I1.4.2). Therefore (1 — ¢)*w # 0 and 1 — ¢ is
separable. O

We are now almost ready to establish the structure of the m-torsion subgroup
of E. All we need is the following easy lemma.

Lemma 15. Let A be an abelian group of order m” and suppose that for all d
that divides m, the order of the d-torsion subgroup A[d] is d". Then we have an
isomorphism of groups

A2 (Z/mZ)".

Proof. By the structure theorem for finite abelian groups, there exist positive
integers di,...,d, such that A = C4, x ... x Oy, where Cy denotes the cyclic
group of order d. Moreover, we may suppose that dy|ds|...|d,. By comparing
orders, we see that m” = dj .. .d,. Furthermore, since the order of A[m] is m",
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we must have the equality A = A[m] and thus all elements of A are killed by
m. This implies that d,, divides m.

We have Aldi] = Cy4, x Cg, % ... x Cq, with ny < n chosen to be the
maximal index such that d; divides d; for all ¢ < n;. But we already have that
dy divides d; for all ¢ so that d; = d; for all i < ny. Comparing orders we see
that di = dy ...d,, = d}" so that ny =r. We conclude that A[d;] = C} .

Relabeling everything, we now have an isomorphism

A=Cy xCyy x...xCq,
with di|ds]| ... |dn|m and d; < da. Proceeding as before we write

A[dg] = Ct?iﬂl X Cd2 X ... X de
where no < n is maximal such that d; divides ds for all i < ny. As before, this
implies that d; = dy for all i = 2,...,ny. Thus, we have A[dy] = Cf X ngrl.
Comparing order, we get dj = djd5?~!. Since d; < dy, this is a contradiction
unless n = 1. This implies that di = m and finally A = C}, as desired. O

Proposition 76. Let E/k be an elliptic curve and m € Z a non-zero integer.
If m is non-zero in k, that is, m # 0 if char(k) = 0 and (m,p) =1 if char(k) =
p >0, then

E[m] 2 Z/mZ x Z/mZ.
Moreover, if char(k) = p > 0, then one of the following is true:
(i) E[p°] ={Og} foralle=1,2,...
(i) E[p¢) =Z/p°Z for alle =1,2,...

Proof. Suppose that m is non-zero in k. We have | ker([m])| = deg,([m]) (ctf.[Si]],
111.4.10). By definition, we have ker([m]) = E[m] = E[m](k). By Proposition
73, we know that [m] has degree m? and that [m] is separable so that deg,([m]) =
deg([m]). We conclude that |E[m]| = m?2. Note that for any d|m, d is also non-
zero in k and thus we also have |E[d]| = d? and E[d] is a subgroup of E[m)].
Applying Lemma 15 with A = E[m] and r = 2 yields the desired result.

Suppose that char(k) = p > 0 and let ¢ be the p-th power Frobenius mor-
phism. Then we have

|E[p¥]| = deg, ([p°]) = deg, (¢ 0 ¢)° = deg, ()¢ deg,(¢)°

(cf.[Sil], I11.4.10). By Proposition 74, ¢ is inseparable so that deg,(¢) = 1. It
follows that

|E[p°)| = deg,(6)".

-~

We have deg(¢) = deg(¢) = p by Proposition 74 (iii). There are now two cases.
If ¢ is inseparable, then deg (¢) = 1 so that E[p?] = {Og} for all e. Otherwise,

'~ —~

¢ is separable so that deg,(¢) = deg(¢) = p and |E[p°]| = p¢. By Lemma 15
applied with A = E[p¢], m = p°® and r = 1, we get F[p°®] 2 Z/p°Z for alle. [
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7.3 The Mordell-Weil Theorem

In this section we present and briefly sketch the proof of the Mordell-Weil The-
orem. We do not provide all details since this proof was the subject of the
previous paper [Lil| of the author. The statement of the theorem is the follow-
ing:

Theorem 7.3.1. Let k be a number field and let E/k be an elliptic curve. Then
E(k) is a finitely generated abelian group.

The proof relies on two fundamental results, one is the existence of the
Néron-Tate height on E/k and the other is known as the Weak Mordell-Weil
Theorem. The statements are as follows:

Theorem 7.3.2 (Height Theorem). Let E/k be an elliptic curve. There exists

an even function h : E(k) — R, known as the Néron-Tate (or canonical)
height, that has the following properties:

(i) For all P,Q € E(k), we have h(P + Q) + h(P — Q) = 2h(P) + 2h(Q).
(ii) For all P € E(k) and for all m € Z, ?L([m]P) = mQE(P).

(iii) For any P € E(k), we have E(P) > 0. Moreover, for any positive integer
M, the set {P € E(k) : h(P) < M} is finite.

Theorem 7.3.3 (Weak Mordell-Weil Theorem). For any integer m > 2, the
group E(k)/mE(k) is finite.

Together these two results give a proof of the Mordell-Weil Theorem.

Proof of Theorem 7.3.1. Let @1, ..., Q, be representatives of the quotient group
E(k)/mE(k) which is finite by Theorem 7.3.3. Let P be a point of E(k). Then
there exists P; in F(k) and an index i1 between 1 and r such that P = mP;+Q;, .
Similarly for Py, there exists P, in F(k) and an index i between 1 and r such
that P, = mPs + Q;,. Proceeding inductively, at the n'® stage we obtain
a element P, of E(k) and an index i, between 1 and r such that P,_; =
mP, + Q;,. We may then write P as a linear combination of the point P, and
the representatives @1, ..., Q,. If we can bound E(Pn) by a constant, taking n
large if necessary, we will be able to conclude that E(k) is finitely generated by
using property (iii) of Theorem 7.3.2. So our goal is to find a suitable bound.
We have
h(P) Y =20 ([m]Py) = m~2h(Pay — Qy,)
Y 2(2h(Py 1) + 2h(Q1,) — h(Po 1 + Q).
Using the fact that T takes non-negative values and setting M := 2 max; ?L(Qi),
we get N N
h(P,) <m™2(2h(P,_1) + M).

Proceeding inductively, after n stages we obtain the bound

h(P,) < <£Q>HE(P) + %2 (22) - (é)nﬁ(m +M1_mQ(”_322)n.
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Using the fact that m > 2, we get

and we can pick n large enough so that (%)nE(P) < 1. For such n we have

~ M
h(Pn) <1+

Every point in E(k) is thus a linear combination of points in the set

o~

{Q1,...,Q-}U{P € E(k) : h(P) <1+ M/2},

which is finite by property (¢ii) of Theorem 7.3.2. We conclude that E(k) is
finitely generated. O

7.3.1 The Néron-Tate Height

We briefly outline the construction of the above mentioned height without
dwelling too much on the details of the proofs. Everything here is done in
Chapter VIII of [Sil] or in Chapter 1 of [Lil| by the author of the present paper.
We start by defining a height in projective space.

Definition 32. Let k be a number field and let P = [zg,...,x,] € P"(k). We
define the height of P with respect to k to be

Hy(P) = max |2;ly.
veds, SIS

This seemingly infinite product is actually finite. The definition is indepen-
dent of the choice of homogeneous coordinates by the product formula. Since
we can always choose projective coordinates with at least one coordinate equal
to 1, one easily sees that Hy(P) > 1. Finally, it is not difficult to see that if
K/k is a finite extension, then Hy (P) = Hy(P)*F. Using this last fact, one
defines a height on projective space that is independent of the number field k.

Definition 33. Let P € P*(Q). We define the absolute height of P by choosing
a number field k such that P € P"(k) and setting

H(P) = Hy,(P)"/ =4,

For our purposes, it is more convenient to have a height that behaves addi-
tively, whence the following definition.

Definition 34. We define the logarithmic height to be the function h : P* — R
defined by h(P) = log H(P).

The next task is to define heights on an elliptic curve E/k where k a number
field. If f € k(E), then consider the map f : E — P! defined by

_ JUf(P),1] if fis regular at P,
fP) = {[17 0] otherwise.

This is a rational map and since both E and P' are smooth curves it is a
morphism of varieties.
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Definition 35. Let E/k be an elliptic curve over a number field and f € k(F).
We define the height on E relative to f to be the function

hy: E(k) — R, hy(P) = h(f(P)).

Proposition 77. Let E/k be an elliptic curve and let x,y be Weierstrass coor-
dinates for E which is given by the equation

E:y® + a1zy + asy = 2% + a2 + asx + ag

with a; € k. A function f € k(E) = k(z,y) is even if and only if f € k(x).

Proof. If P € E(k), then the inversion formula (cf. [Sil]) III.2.3 (a)) says that
—P is given in coordinates by (z(P), —y(P)—aix(P)—as). In particular, z is an

even function so that every function in k(z) is even. Conversely, let f € k(E).
Using the Weierstrass equation for E, one can write

fla,y) = g(x) + h(z)y
for some g, h € k(z). If furthermore f is even then we have
fleyy) = [z, —y =z —az) = g(z) + M)y = 9(x) = h(z)(y + a1z + a3)
= (2y + a1z + ag)h(z) =0.

This implies that either h(z) is identically zero or 2y+a;z+as is identically zero.
The latter implies that 2 = a; = az = 0 which implies A = 0. This contradicts
the non-singularity of E so the only possibility is h(z) = 0. Consequently, we
have f(z,y) = g(z) € k(z). O

Lemma 16. Let f,g € k(E) be even functions. Then
deg(g)hs = deg(f)hy + O(1).

Proof. Let z,y € k(E) be Weierstrass coordinates for E. Since f is even, we
have f € k(x) by Proposition 77. There exists therefore a rational function
7(X) € k(X) such that f =roxz. Since P! is a smooth curve, r is a morphism
of curves. Using ([Lil], Proposition 3.10) and taking logarithms we obtain

hy = deg(r)h, + O(1).
We have deg(f) = deg(x)deg(r). We have 2*(k(X,Y)) = k(z) and [k(z,y) :
kE(x)] = 2 by looking at the Weierstrass equation of E. Thus deg(z) = 2 so

that deg(f) = 2deg(r). We find that 2hy = deg(f)h, + O(1). By the same
reasoning, we also have 2h, = deg(g)h, + O(1). Finally,

2deg(g)hy — 2deg(f)hy = deg(f) deg(g)hs — deg(f) deg(g)hs + O(1) = O(1)
so that deg(g)hy = deg(f)hgy + O(1). O

Theorem 7.3.4. Let E/k be an elliptic curve and let f € k(E) be an even
function. For all P,Q € E(k) we have

hi(P+ Q)+ hf(P—Q) = 2hs(P) +2h;(Q) + O(1).
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Proof. See Theorem 3.13 of [Lil| for the case f = x. For a general f, by Lemma
16 we have 2hy = deg(f)hy + O(1). Thus multiplying the desired relation for
by deg(f)/2 gives the general result. O

Corollary 38. Let E/k be an elliptic curve over a number field and f € k(E)
an even function.

(i) For any point Q € E(k) we have
hg(P+ Q) < 2hs(P) + O(1)
for all P € E(k), where the constant depends on E, f and Q.
(i) Let m be any integer. Then for all P € E(k) we have
hy([mIP) = m?hy(P) + O(1)
where the constant depends on E, f and m.
(iii) For any integer M, the set {P € E(k) : hy(P) < M} is finite.

Proof. To prove (i), we use the fact that the height on E is always non-negative
and Theorem 7.3.4 in order to obtain

hy(P+Q) < hy(P+ Q)+ hy(P — Q) =2hs(P) +2hs(Q) + O(1).
Bringing 2h(Q) into the big O yields the desired result.

To prove (i), note that since f is supposed even we only need to prove this
for m non-negative. The cases m = 0 and m = 1 are trivial and involve no
constants. We proceed by induction. For m greater than 2, suppose that the
result is true for n less than m. Using Theorem 7.3.4 with P and [m — 1] P, we
get

hy([m]P) = hy([m — 1]P + P)
= —hy([m — 1JP — P) + 2hs([m — 1]P) + 2h¢(P) 4+ O(1)
= (—(m—2)*+2(m —1)2 + 2)h;(P) + O(1)
= mth(P) + 0(1)

and this completes the proof of (7).
By Proposition 3.12 of [Lil] we have that the set
{P € E(k): hy(P) < M}
is finite for any M. By Lemma 16 there exists a constant C' such that
12y — deg(f)ha| < C.

Now, hy(P) < M implies h,(P) < (C+2M)/deg(f). We thus have an inclusion
of sets

(P eE(k): hy(P) <M} C{PeE(k): hy(P) < (C+2M)/deg(f)}

and the latter is finite. O
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Theorem 7.3.5 (Tate). Let E/k be an elliptic curve, let f € k(E) be a non-
constant even function and let P € E(k). Then the limit

1
deg(f) 1\}511004 hy([2Y1P)

exists and is independent of f.

Proof. By Corollary 38, there exists a constant C' such that for all Q € FE(k),
we have

|hs([21Q) — 4hp(Q)| < C.
Let N > M > 0. Then we have

N-1
(4N Ry (2V]P) = 47 Mhp(2Y]P) = | ) 47T hy (127 P) — 47 Ry ([27)P))
vt
< 3 4T hg(120([27)P)) — 4hg((27]P)]
nfxf_l
<Cc > a4l
n=M

We compute that

Z4n1 2471 24 ”:, 47N717(1747M71))S47M'

Therefore we have
14" Nh(2V1P) — 4" Mhp(2M]P)| < C47M. (7.3.5.1)

It follows that the sequence {4~ Vh;([2V]P)}x is Cauchy and thus converges.
If g € k(E) is another non-constant even function, then from Lemma 16 we
know that deg(f)hy = deg(g)h; + O(1). Whence

47 Nh(2N1P) 47 Nhy (2P ~
h(RYP) 4 Vhg(2MP) e
deg(f) deg(g)
Consequently, the limit does not depend on f. O

Definition 36. Let E/k be an elliptic curve over a number field. The Néron-
Tate height on E is the function h : E(k) — R defined by

~

h(P) = lim 4 Nh([2Y]P)

deg(f) N
where f € k(E) is any non-constant even function.

Proof of Theorem 7.3.2. Using Theorem 7.3.4, for any N we have
hy(12Y](P + Q) + hy (12V](P = Q) = 2h ([2V]P) + 2h([27]Q) + O(1).

Dividing by 4" deg(f) and taking limits as N — oo, we obtain (4).
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Using (7) with Og we obtain
h(P) + h(—P) = 2h(Og) + 2h(P).

Since f(Og) = [1,0] and H([1,0]) = 1 we see that h(Og) = 0 and thus h(P) =
h(—P). This proves that h is an even function.
Using Corollary 38 (i), we see that

hy([m] o [2V]P) = m*hg (2] P) + O(1).
Dividing by 4" deg(f) and taking limits as N — oo, we obtain (ii).
If P € E(k) and h(P) < M, then for N large enough we must have
h.(2V]P) < 4¥C. But only finitely many points satisfy this condition by
Corollary 38 (#i7). This proves (ii7). O

We continue by proving some interesting facts concerning the canonical
height.

Proposition 78. Let f € k(E) be an even function. Then
deg(f)h = hy + O(1)
where O(1) depends on E and f.

Proof. By (7.3.5.1) there exists a constant C' depending on f such that for
N > M > 0 we have

47 Ry (2V]P) — 4 Mg (2M]P)] < C47M.
In particular, taking M = 0 yields
47y ([2V]P) — hy(P)] < C.
Taking the limit as N — oo finally yields
| deg())A(P) = hy(P)| < C.
O

Definition 37. Let E/k be an elliptic curve. We define the canonical height
pairing on E to be the pairing

() : E(k)x E(k) —R

defined by (P,Q) = h(P + Q) — P — Q.

Proposition 79. The canonical height his a quadratic form on E, that is, it
is an even function and the canonical height pairing is biadditive. Moreover,

(P,P) >0 for all P € E(k) and

(P, Py =0 if and only if P is a torsion point.
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Proof. Let P € E(k). Using Theorem 7.3.2 (i) with O yields E(P) = ﬁ(—P)
which shows that h is an even function. Therefore in order to prove biadditivity,
it suffices by symmetry to prove that

(P+R,Q)=(PQ)+ (RQ).

Using 7.3.2 (4) multiple times, one easily proves this.

Using 7.3.2 (i) we see that (P, P) = 2h(P). Since hs([2N]P) > 0 for all N
and all P we sec that also h(P) > 0.

Suppose that P is a torsion point on E. Then [2V]P takes on finitely many
values as N varies. As a consequence, we have

h(P)= lim 4 Nns([2V]P) = 0.

N—o00

Conversely, suppose that (P, P) = 0, that is, E(P) = 0. Let K/k be a finite
extension such that P € E(K). By Theorem 7.3.2 (i) we then have

o~

h([m])P) = m*h(P) =0

for all m. By Proposition 78 there is a constant C' such that for all m we have
hy([m]P) = | deg(f)h([m]P) — hs([m]P)| < C.

Therefore we have an inclusion of sets
(P s meN} € {Q € B(K) : hy(Q) < C}

and the latter is finite by Corollary 38 (i#i). Therefore P must have finite
order. O

Remark 48. As a consequence, his a positive definite quadratic form on
E(k)/Etors(K). An even more important consequence is that the existence
of the Néron-Tate height is enough to show that Fi.s(k) is a finite group.

We end our discussion of heights by showing that the canonical height is
unique.

Proposition 80. If?z\’ : B(k) — R is a function for which there erists an even
function f € k(E) and an integer m > 2 such that

~

deg(f)h' = hy+O(1) and n' o [m] = m?n/,
then h' = h.

Proof. Repeated applications of the second condition yields W o [mN] = m2N W
for all N € N. The first condition combined with Proposition 78 gives

B —h=0(1).

For any P € E(k) we have
1'(P) = m N (ImN]P) = m™2N (h[mN]P 4+ O(1)) = h(P) + O(m~2N).

This holds for all N € N and taking the limit as N — oo gives the desired
equality h'(P) = h(P). O



7.3. THE MORDELL-WEIL THEOREM 171

Remark 49. We point out that the Néron-Tate height pairing was discovered
independently by Tate and Néron. What we saw above was the formulation
due to Tate. However, this definition is very difficult to work with in practice.
Néron developed a theory of local height pairings. For each v € M}, he defined
a pairing (-,-), on certain divisors of F rational over k, and obtained the global
pairing by adding together the local pairings. The reader who is interested in
Néron’s local height theory is referred to the article of Gross [Gr3]. The reason
that we make this remark is that all computations that are done for the global
height pairing are in practice done for each local pairing.

7.3.2 The Weak Mordell-Weil Theorem

Let m > 2 be an integer. Let k be a number field and let k denote a fixed
algebraic closure. We will use the notation H?(k, A) to mean H?(Gal(k/k), A)
for any Gal(k/k)-module A.

We have the following short exact sequence of Gal(k/k)-modules:

O—>E[m]—>EM>E—>O.

When we write £ or E[n] here we mean the points over k. Taking the long
exact sequence of cohomology we obtain an exact sequence

0 —s E[m(k) — E(k) ™ B(k) =5 H(k, E[m])
S HEE) M ke —
From this sequence we deduce the following short exact sequence
0 — E(k)/mE(k) - H'(k, E[m]) — H"(k, E)[m] —> 0.
Let v € My, and denote by k, the completion. Let k, denote a fixed algebraic

closure of k,. Fix an extension of v to k which serves to fix an embedding
k — k,. We have a restriction homomorphism

o : Gal(ky/ky) — Gal(k/k).
Using the same argument as above, we also have an exact sequence
0 — E(ky)/mE(ky) —= H(ky, E[m]) — H"(ky, E)[m] — 0.

When we write E of E[m] here we mean the points over k,. We get the following
commutative diagram with exact rows:

0 —— BE(k)/mE(k) —>— H'(k, E[m]) — H'(k, E)[m] — 0

0 —— BE(ky)/mEB(ky) ——~ H'(ky, Elm]) —— H(ky, E)[m] — 0.
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Definition 38. We define the m-Selmer group of E/k to be

Sel,, (k, E) = ker (Hl(k:,E[m]) — |] Hl(kv,E)>

vE My,

and the Tate-Shafarevitch group of E/k to be

II(k, E) = ker (Hl(k,E) — ] Hl(kU,E)>.

vE My

From the above diagram, one sees that the image of E(k)/mE(k) via the
connecting homomorphism ¢ lies in the m-Selmer group. Also, the image of the
m-Selmer group lies in the [m]-torsion subgroup of II(k, E). It is easy now to
check that the following sequence is exact:

0 — E(k)/mE(k) - Sel,n (k, E) —s I (k, E)[m] —> 0.

One can prove that the m-Selmer group is always finite. As a consequence,
E(k)/mE(k) and II(k, E)[m] are both finite. A full proof of Theorem 7.3.3 is
the subject of Chapter 4 of [Lil] and uses the classical results of algebraic number
theory, namely finiteness of the ideal class group and the S-unit theorem. It
is conjectured that the Tate-Shafarevitch group is finite and a formula for the
hypothetical order |ILI(k, F)| appears in the conjecture of Birch and Swinnerton-
Dyer.

7.3.3 The Regulator of an Elliptic Curve

Let E/k be an elliptic curve defined over the number field k. Let n be the
rank of the Mordell-Weil group E(k) so that E(k) & FEios(k) x Z™. The free
abelian group E(k)/Eios(k) is a lattice in the real vector space E(k) ®z R.
From Remark 48 the Néron-Tate height his a positive definite quadratic form
on E(k)/FEiors(k). We want h to extend to a positive definite quadratic form on
the vector space F(k) ®z R. For this, we need the following lemma:

Lemma 17. Let V be a real vector space of dimension n and let L C V be a
lattice. Let q : V — R be a quadratic form and suppose we have the following
properties:

(i) For all P € L, we have q(P) = 0 if and only if P = 0.
(ii) For every constant C, the set {P € L : q(P) < C} is finite.
Then q is positive definite on V.

Proof. Corresponding to the Sylvester matrix decomposition, we may pick a
basis for V such that ¢ has signature (s,t). In other words, for every x =

(z1,...,2n) € V expressed in this basis, we have
s t
glx) =) 27— Y ai.
i=1 i=s+1

Of course, s+t < n. We use this basis to identify V' with R™. Consider the set

S t
B(e,é):{x:(:ﬂl,...,xn)e‘/:me<eand Zx?<5}.
i=1

1=s+1
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This is a measurable convex subset of R™ which is symmetric around the origin.
Define A = inf{q(P) : P € L, P # 0}. By (¢) and (i¢) we have A > 0.

Suppose that ¢ is not positive definite on V. Then s < n and ¢t > 0. By
increasing §, we can therefore increase the volume of B(A/2,§) in order to obtain
w(B(A/2,0)) > 2"v(L). For such a choice of d, by Proposition 3, there exists a
non-zero lattice point P in B(A/2,d). But

s t
g(P)=> ai— > a2 <
i=1

i=s+1

| >

which contradicts the definition of \. We conclude that ¢ is indeed positive
definite on V. [

Corollary 39. Let E/k be an elliptic curve. The Néron-Tate height hon E
extends to a positive definite quadratic form on the finite-dimensional real vector
space E(k) @z R.

Proof. We extend h to E(k) ®z R by Tl(P ®x) = xQE(P). By the Mordell-
Weil Theorem, E(k)/Eiors(k) is a lattice in E(k) ®z R. Condition (i) of the
previous lemma holds because of Proposition 79 and condition (¢7) holds because
of Theorem 7.3.2 (iii). O

Associated to E/k we have the following quantities: E(k) ®z R a finite
dimensional real vector space, ha positive definite quadratic form on E(k) @z R
and a lattice E(k)/Eiors(k). In such a situation, an important invariant is
the volume of the given lattice with respect to the quadratic form in question.
We have seen this situation arise already when defining quantities attached to
number fields. By Proposition 2 the discriminant dj is a scaling of the volume
of the lattice Oy, in the finite-dimensional real vector space k ®g R with respect
to the inner product of kg. In defining the regulator of k, one considers the
lattice A(Uy) in the finite-dimensional real vector space RX}, with respect to
the euclidean inner product and take Ry, to be a scaling of the volume of A(Uy).
This leads to the following definition:

Definition 39. Let E/k be an elliptic curve. Let Py, ..., P, be a Z-basis of the
lattice E(k)/FEtors(k). We define the regulator of E to be the positive quantity

R(E/k) = det((Pi, P}))/| Brors (k).

As when defining the regulator of k or the discriminant of k, this definition
does not depend on the choice of a basis.

Proposition 81. Let E/k be an elliptic curve. Let Q1,...,Qn be a basis of a
free subgroup A of E(k) with finite index I. Then we have

R(E/k) = det((Q:,Q;))/I*.

Proof. The subgroup A is free and thus contains no torsion. It is therefore a sub-
group of the free group E(k)/FEiors(k). Therefore there exists a basis Py, ..., P,
of E(k)/FEiors(k) and non-zero integers ay, ..., a, such that a; Py,...,a,P, is
a basis of A (cf. [Sam]|, § 1.5, Theorem 1). It follows that the index of A in
E(k)/Etors(k) is given by a1...a, and I = aj ...an|FEiors(k)]. Moreover, we
have

(a;P;,a;P;) = a;a; (P;, P;) = Diag(as,...,an) (P;, Pj) Diag(aq, . .., an).
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As a consequence, we have
det((a; Py, a;P;)) = I* det((Pi, P;)) /| Biors (k) * = I*R(E/k).

Since det({Q;,Q;))/I? is independent of the choice of basis we have proved the
desired formula. O

Remark 50. In practice this formula is less rigid than the definition of the
regulator and therefore often easier to use for computations.

7.4 The L-Function of an Elliptic Curve

Let E/k be an elliptic curve defined over the number field k. In this section we
define the Hasse-Weil L-function L(s, E/k) associated to E. Before doing that,
we need a little more theory of elliptic curves.

7.4.1 More on Elliptic Curves

We introduce the f-adic Weil pairing on the Tate module and then give some
point counting results concerning elliptic curves over finite fields.

The Tate Module and the Weil Pairing

Let E/k is an elliptic curve over a perfect field and let £ € Z be a prime. The
{-adic Tate module of E is the group

T,(E) = lim E[¢"]
where the inverse limit is taken with respect to the natural maps
(0] : (" — E[™).

Since each group E[¢"] is a Z/{"Z-module, Ty(E) naturally acquires the struc-
ture of a Zyp-module. If ¢ is non-zero in k, then by Proposition 76, we have a
group isomorphism

TZ(E) =7y X Zy.

From now on we shall use ¢ to denote a prime that is non-zero in k and we write
p for the characteristic of k (which may be zero). Also, since the multiplication-
by-integer maps are defined over k, the Galois group Gal(k/k) commutes with
multiplication and therefore acts on E[¢"]. This gives an action of Gal(k/k) on
To(E).

Let v € End(E). Since % is an isogeny we have ¢¥(P + Q) = ¢(P) + ¢(Q)
for all P,Q € E (cf. [Sil], II1.4.8). In particular, ) maps E[("] to E[¢"] and the
following diagram commutes:

B[] Y Bl t]

) e

B[] —Y+ B,
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As a consequence, we get a well-defined group homomorphism which commutes
with the action of Zy:

Yo : Ty(E) — Ty(E), P ((Pn))ne

n=1-*
This construction gives a ring homomorphism
End(E) — Endg, (Ty(E)), v+ e

This homomorphism is injective since 1, = 0 implies that E[¢"] C ker(y) for
all n. But any non-zero isogeny is a finite map and in particular the kernel is
finite. This forces ¢ = 0. Choosing a basis for T;(FE) as a free Zy-module of
rank two, we get an injective homomorphism of rings End(FE) — Ma(Zy).

For any integer m prime to p, there is a pairing, called the Weil pairing on
E,
em : E[m] X E[m| — .

One can show that this is a bilinear, alternating, non-degenerate and Gal(k/k)
invariant pairing (cf. [Sil], II1.8.1). Moreover, if ¢ : E; — FEs is an isogeny,
then 1 and its dual isogeny 12 : By — FE; are adjoint with respect to this
pairing (cf. [Sil], II1.8.2). The definition of e,, relies on the following fact:

Proposition 82. Let E/k be an elliptic curve and let D = np(P) € Div(E).
Then D is a principal divisor if and only if

deg(D) =0 and Z[np]P = Og.

Proof. Since principal divisors have degree zero we must have D € DiVO(E).
Next, we have

Dn0 < o(D)=0 < U(an((P)—(oE))) —0

— o (Z ’IZPH(P)) =0
— Z[TLP]PZOE

where in the second equivalence we used the fact that deg(D) = 0 and in the
last equivalence we used Definition 29. O

The pairing is constructed as follows: if T' € F [m], then by Proposition 82
we can pick f € k(FE) such that div(f) = m(T) — m(Og). Next, consider the
divisor

(1) = [m]*(Op)= >, (P)= Y (R)= > (I'+R) (R

Pe[m]-1E(k) ReE[m)] ReE[m)]

where 7" € E(k) is any point such that [m]T’ = T. This is a divisor of degree
zero and

> T'+R-R=[#Em|T = [m’|T" = [m|T =0
ReE[m)]

since T' € E[m]. By Proposition 82 there exists g € k(E) such that
div(g) = [m]*(T) — [m]"(Og).
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We have
div(f o [m]) = div([m]"f) = [m]*div(f) = m([m]"(T) — [m]"(OF)) = div(g™).

Therefore fo[m] and g™ differ by a constant ¢ € k so without loss of generality
we may suppose that

folml=g™
Now, let S € E[m]. Then for any point X € E we have

g(X +8)™ = f(Im]X +[m]S) = f([m]X) = g(X)™
so that g(X + 5)/g(X) € piy. Consider the morphism
E — P, X — g(X +9)/9(X).

Since iy, is finite, this map cannot be surjective and must therefore be constant.
We conclude that the value of g(X +.5)/g(X) does not depend on the choice of
X. We define
9X+9)

9(X)

where X € E and this is the e,,-Weil pairing.

em(S,T) =

Proposition 83. There exists a bilinear, alternating, non-degenerate and Ga-
lois tnvariant pairing

e: Tg(E) X Tz(E) — Tg(ﬂ)

called the {-adic Weil paring on the Tate module. Moreover, if 9 : By — Es is
an 1sogeny between elliptic curves and z/J FEy — Ey its dual, then ¥y and 1/14
are adjoint with respect to the above pairing.

Remark 51. Here T;(;1) denotes the f-adic Tate module of k*. Tt is the inverse
limit
Ty(p) = lim fupn
—
taken with respect to the natural maps [¢] : ppn+1 — fign.
Proof. In order to define the pairing e, one needs to check that the following
diagram commutes:

€on+1

E[£n+1] X E[£n+1] —_— ﬂ€7l+1

[fx/f]l lm

E[0"] x E[¢"] igm

for all n > 1. This amounts to proving that
1 (S.T)! = eon (145, [(T)

for all S,T € E[¢""1]. This can achieved by using the properties of the Weil
pairing (cf. [Sil], II1.8.1). The fact that these diagrams commute give a well-
defined pairing

e : Ty(E) x Ty(E) — Ti(p)

by setting e(S,T) = (egn (Sn, Tn))22,. One easily verifies that all the properties
of e,, hold for e. O
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Recall that we have an injective homomorphism of rings
End(F) — Endg, (Ty(E)) =& M2 (Z,)

upon choosing a Zg-basis for Ty(E). Therefore, if ¢ : E — E is an isogeny,
then we can compute det(1¢) and tr(t)y). These are both elements of Z,; and do
not depend on the choice of basis. Amazingly, as this next result shows, these
quantities do not depend on the prime /.

Proposition 84. Let ¢ € End(E) and let vy : To(E) — To(E) be the induced
map on the Tate module of E. Then

det(1p¢) = deg(v)) and tr(ve) = 1+ deg(yp) — deg(1 — ).
In particular, det(vy) and tr(yy) are in Z and do not depend on £.

Proof. Choose a basis {v1,v2} of Ty(F) as a Zg-module and write
Ye(v1) = avy + cvy and Ye(v2) = buy + dvy

where a, b, c,d € Zg. The matrix of 1, relative to this basis is (¢ %). Using the
properties of the ¢-adic Weil pairing, we have

e(v1,v2) %) = e([deg(¥)]v1, v2) = (¥ 0 e(v1),v2)
= e(1ev1, Yrv2) = e(avy + cva, buy + dvo).

The first equality uses bilinearity of e while the third one uses the fact that 1,
and 1, are adjoint with respect to e. Using bilinearity and the fact that e is
alternating, we see that

6(’01, UQ)deg(w) — 6(’01, ,UQ)adfbc _ e(vl’v2)det(w5).

We have shown that e(vy,vy)de8(¥)=det(¥e) — 1 By non-degeneracy of e, the
latter implies deg(v)) = det(t)¢). Finally, for any 2 x 2 matrix A one has the
formula

tr(A) =1+ det(A) — det(1 — A)

and the trace formula follows. O

Elliptic curves over finite fields

In order to define the local L-factors of elliptic curves we need a few results
concerning elliptic curves defined over finite fields.

Theorem 7.4.1 (Hasse). Let E/F, be an elliptic curve defined over the finite
field ¥y of cardinality q. Then

[#EF,) —q— 1] <2V

Proof. Choose a Weierstrass equation for E and let ¢ : E — E denote the
g-th power Frobenius isogeny. By Remark 47 we have #E(F,) = ker(1 — ¢). By
Proposition 75, the map 1 — ¢ is separable and therefore #E(F,) = deg(1 — ¢)
(cf. [Sil], II1.4.10 (c)). The degree map is a positive definite quadratic form on
End(E) (cf. [Sil], 111.6.3). By the Cauchy-Schwarz inequality, for any «, 5 €
End(E) we have

|deg(a + ) — deg(ar) — deg(B)| < 24/deg(a) deg(B).
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Applying this inequality with o« = 1 and 8 = —¢, and using the fact that
deg(1) =1 and deg(¢) = ¢ by Proposition 74 (4ii), we obtain

[#E(Fg) —q—1] <2/q.

O

Proposition 85. Let E/F, be an elliptic curve and denote by ¢ : E — E
the g-th power Frobenius isogeny. We define a = q+ 1 — #E(F,;). Consider
the polynomial T? — aT + q € Z[T)]. The roots o and B of this polynomial are
complex conjugates and satisfy || = |8] = \/q. Moreover, ¢* —a¢ +q =0 in
End(E) and we have the following formula: for alln > 1,

#EFgn) = (¢" +1) — (" + ")

Proof. Consider the homomorphism ¢, : Ty(E) — T;(E). By Proposition 84
we have

det(¢¢) = deg(¢) = q

tr(¢g) = 1+ deg(¢) — deg(l — ¢) = 1+ ¢ — #E(F,) = a.
Therefore, taking the characteristic polynomial of ¢, we get

det(T — ¢¢) = T? — tr(¢)T + det(¢¢) = T% — aT + q.

Computing the discriminant of this polynomial, we get a? — 4¢ which is non-
positive by Theorem 7.4.1. As a consequence, o and [ are either equal or
complex conjugates. In either case, by comparing coefficients, we have a8 = ¢
so that |a| = [8| = \/g. This proves the first part.

By the Hamilton-Cayley Theorem, ¢, is annihilated by its characteristic
polynomial so that by Proposition 84 we have

deg(¢® — ag + q) = det(¢? — agy + q) = det(0) =0

which implies ¢? — a¢ + ¢ = 0.
Finally, let n > 1. Putting ¢, in normal Jordan form, we see that

det(T' — ¢7) = (T — " )(T' = ).
By Remark 47 we have #E(Fn) = deg(1 — ¢™). Using Proposition 84 we have
#E(Fgn) = deg(1—¢") = det(1 - ¢f) = det(¢}) +1—tr(¢y) =q+1-a" ="

as desired. O

7.4.2 The L-function

We define the Hasse-Weil L-function of an elliptic curve in two steps. Then we
state the conjectural functional equation of the completed L-function.
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The Incomplete L-Function

Let k be a number field and let E/k be an elliptic curve. Let S be the set
of places containing M ° and all finite places of bad reduction of £. For a
place v € S, we let A, be the associated ring of integers and m, be a choice
of uniformizer. We denote by F, = A,/m,A, the corresponding residue field
which is finite of cardinality denoted by ¢,. The fact that v does not belong to
S means that there is a model for E with coefficients in A4, and v(A) = 0 so
that the reduced curve F,, /F, is an elliptic curve. We define

ay =1+q, — #E(Fv)

and consider the characteristic polynomial of the g,~th power Frobenius isogeny
@q, of Ey:

hy(t) = det(1 — ¢y, t) = 1 — apt + gut* = (1 — ayt)(1 — ayt).

The elements o, and @, are roots of the polynomial ¢2—at+q and by Proposition
85 they are complex conjugates and |a,| = |@y| = /q». The polynomial h,(t)
is the reciprocal of the formal local L-factor of E,:

L(E,/Fy,t) = ho() 7.
We substitute ¢ by g, ® to get the local L-factor
Ly(E/k,s) = L(E,/Fo,q,°) = (1 —avg,® +a,">) 7"
Remark 52. Note that we have

Lo(B/k1) = (1 —aygy ' + ;) "t = —2

#E,(F,)
Definition 40. We define the incomplete L-function of E to be

Ls(E/k,s) = [ Lo(E/k, ).

vgS

Proposition 86. Let E/k be an elliptic curve. The incomplete L-function
Lg(E/k,s) converges absolutely in the half-plane Rs > 3/2.

Proof. We will achieve this by comparison with the Dedekind zeta-function of
k. For any v € S we have the following estimate

11— gy | > |1 = |ow|gy ™| =1 — qll)/z—m‘_
It follows that
Lo(E/k,5)| = |(1 = awgs®)(1 = Gpq )" < |1 — gz =1/2)|2
so that
ILs(E/k, )| <[] = a0 P22 = [Gros(Rs — 1/2) .

Since (i s(s) converges absolutely in the half-plane Rs > 1 we conclude that
Ls(E/k, s) converges absolutely in the half-plane $s > 3/2. O
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The Completed L-Function

The general theory of L-functions suggest that they should admit a meromorphic
continuation to the whole C and satisfy a functional equation. Before this is
possible in the case of elliptic curves, we need to complete the L-function by
adding in local factors at the primes of bad reduction and at the infinite places.
Recall that S is the set of infinite places and finite places of bad reduction. For
finite v € S we define the local L-factor as follows:

1 if E has additive reduction at v
L,(E/k,s) =13 (1—¢q;*)~t if E has split multiplicative reduction at v
(1+g¢,*)~! if E has non-split multiplicative reduction at v.

Proposition 87. Let v be a place of bad reduction of E. We have

() = {Fj if E has additive reduction at v

F*  if E has split multiplicative reduction at v.

If E has non-split multiplicative reduction at v, let oy and ag denote the slopes
of the tangent lines at the singular point of E,/F,. Let L = F,(a1,a2). Then

EMS(F,) 2 {a € L* : Ny, (a)=1}.
Proof. See [Sil], I11.2.5 and Ex. 3.5. O

Proposition 88. Let v be a finite place of k. Then

Ly(E/k1) = — T

(B #Ey(Fy)

Proof. If v is a place of good reduction then this is Remark 52. If v is a place
of additive reduction, then L,(E/k,1) = 1 and #E"(F,) = #F+ = ¢, so the
formula is correct. If the reduction at v is split multiplicative, then L, (E/k,1) =
@/ (qw — 1) and #E"(F,) = #F* = g, — 1 so the formula is correct. Finally,
if the reduction at v is non-split multiplicative, then L,(E/k,1) = q,/(q, + 1).
We have

#E™(F,) = |{ae L*: ot =1} = ¢, + 1

since there are at most g, + 1 distinct ¢, 4+ 1-th roots of unity and L contains
them all. This proves the formula in this case. O

Definition 41. The Hasse-Weil L-function of E/k is

L(E/k,s) =[] Lo(s, E/k).

vtoo
Definition 42. The completed L-function of E/k is
A(E/k,s) = ((2m)~°T(s))FU L(s, B/k).

Before discussing the conjectured functional equation of A we define the two
following quantities which measure bad reduction. These two quantities also
appear in the statement of the Birch and Swinnerton-Dyer Conjecture.
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Definition 43. The minimal discriminant for F/k, denoted by D(E/k), is the
integral ideal of k defined by

D(E/K) = [] oy

vtoo

where p, denotes the prime ideal of k associated to the finite place v and A,
denotes the discriminant of a minimal Weierstrass model of E for v.

Remark 53. Notice that if v is a prime of good reduction, then v(A,) =
0. Since there are only finitely many primes of bad reduction, the product
defining the minimal discriminant is finite and contains only information about
the primes of bad reduction. Note that a Weierstrass model for E/k is a global
minimal Weierstrass model if and only if D(E/k) is principal generated by the
discriminant A.

Definition 44. The conductor of F/k, denoted by N(E/k), is the integral ideal
of k defined by

N(E/k) =[] ol

vtoo
where
0 if F has good reduction at v
fo=+1 if £ has multiplicative reduction at v

2+ 6, if F has additive reduction at v,

where §,, is a non-negative integer. We do not give its definition but only mention
that it is zero whenever the characteristic of IF,, is not 2 or 3.

Conjecture 7. Let k be a number field and E/k and elliptic curve. The holo-
morphic function A(E/k, s) on the right half-plane Rs > 3/2 admits an analytic
continuation to the entire complex plane and satisfies the functional equation

AE/k,s) = A" *AN(E/k,2 — s)
where A= N(N(E/k))dz.

Remark 54. This conjecture has been proved in the case k = Q as a conse-
quence of the Theorem of Wiles, Breuil, Conrad and Taylor otherwise known
as the Modularity Theorem. It is generally not known to hold. The Birch and
Swinnerton-Dyer Conjecture is a conjecture on the order of the L-function of
E/E at the reflexion point s = 1 of the presumed functional equation.

7.4.3 Artin Formalism for L-Functions of Elliptic Curves

Let k be a number field, E/k and elliptic curve and ¢ € Z a prime. Since
addition on E is defined over k the action of Gal(k/k) on E commutes with
addition and therefore the Galois group acts on E[¢"] for all n. Consequently,
the Galois group acts on the Tate module T;(E). Upon choosing a basis for the
2-dimensional Q-vector space Vy(E) = Ty(E) ®z, Qq, this action gives an f-adic
Galois representation

PE Gal(/%/k) — GLQ(Q,@).
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Let v be a ﬁinite place of k and choose an extension of v to k so that we have
an embedding k — k, and therefore a restriction map

ry : Gal(k, /k,) — Gal(k/k).
We then have a representation
PEL: Gal(ky/ky) — GL2(Qp).
Denote by I, the inertia group of v which is defined by the exact sequence
1 — I, — Gal(k,/k,) — Gal(F,/F,) — 1.

Let ¢, denote a representative in Gal(k,/k,) of the Frobenius element in the
quotient group Gal(k,/k,)/I, = Gal(k?"/k,). The action of ¢, on V;(E) de-
pends on the choice of representative and to eliminate this dependency, we
restrict our attention to the subrepresentation Vy(FE)%v.

Proposition 89. Let E/k be an elliptic curve and let v be a finite place of k.
Suppose that E/k has good reduction at v. If m > 1 is an integer coprime to
the characteristic of Fy,, then E[m] is unramified at v meaning that the inertia
group I, acts trivially on E[m]. As a consequence, if £ € Z is a prime not equal
to the characteristic of B, then Ty(F) is unramified at v.

Proof. Let E/k, be given by a minimal Weierstrass equation for v with discrim-
inant A. Let K'/k, be a finite extension such that E[m] C E(K') and let w be
the extension of v to L. Denote by A,, the ring of integers of w and by F,, the
corresponding residual field. By our assumption that F/k has good reduction
at v, we have v(A) = 0. Since w(-) = ev(:) where the non-zero integer e is
the ramification index of K'/k,, we see that w(A) = 0 and consequently the
Weierstrass equation for F is minimal for w and E has good reduction at w.
By the theory of formal groups of elliptic curves (cf. [Sil], Chapter IV), one
can show (cf. [Lil], Proposition 4.37) that the reduction map gives an injective
homomorphism

E[m] < Ey(Fy). (7.4.1.1)

Let P € E[m| and let o € I,. We need to prove that P7 = P. By definition of
the inertia group, I, acts trivially on F,, and therefore on E,,(F,, ). Therefore,

Po—P=P"-P=0g .

By (7.4.1.1), this implies that P = P.

Let £ be a prime not equal to the characteristic of F,,. Then for all n, E[¢"]
is unramified at v and since Ty(F) is the inverse limit of these groups the same
is true for Ty(E). O

Let v be a good prime of k and choose ¢ such that v { £. By Propo-
sition 89, Vy(E)!* = V4(E) so that pg(¢y) is a 2-by-2 matrix with coeffi-
cients in Q. The reduction map E(k) —> EU(FU) is a homomorphism of
groups (cf. [Lil], Appendix A). We therefore get a homomorphism of Gal(k/k)-
modules E[¢"] — E,["] where Gal(F,/F,) is viewed as a Gal(k/k)-module.
By (7.4.1.1) this map is injective and by comparing cardinalities we see that

it is an isomorphism. It induces a reduction map T,(E) — T;(E,) which is
an isomomorphism of Gal(k/k)-modules. Let o € Gal(k,/k,) and denote by &
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image of ¢ in Gal(F,/F,). The action of ¢, on E, is the same as the one of the
¢v-th power Frobenius isogeny ¢ so that pg ¢(¢,) = ¢¢ and by Proposition 84,
the characteristic polynomial of pg ¢(¢,) is given by

Py(X) = det(1 — ppo(¢) X|Ve(E)) =1 — ap X + ¢, X? € Z[X]

so that the local factor L,(E/k, s) is equal to P,(g,*)~!. Let S denote the finite
set of places consisting of the archimedean ones, and all places of bad reduction.
Choose ¢ a prime that is divisible by a place in S. Then we have shown that

Ls(E/k,s) = [] det(1 — pp.e(60)a; | Ve(E)) ™.
vEZS

We point out the similarities in the construction of the incomplete L-function
of an elliptic curve and the construction of Artin L-functions. Let K/k is a
finite Galois extension with Galois group G and let S denotes the set of places
containing the archimedean ones and all finite primes of k that ramify in K (the
"bad" primes). Let (p, V') be a finite-dimensional complex representation of G.
For any v ¢ S, we consider the characteristic polynomial of a Frobenius element
Pw

go(t) = det(1 — p(dw)?).

Here w is any choice of a prime above v and the characteristic polynomial does

not depend on this choice. Define the formal local Artin L-factor to be the
reciprocal of this polynomial:

L(t,V,K/k,v) = g,(t)" 1.

The the local Artin L-factor is defined by substituting ¢ with N(v)~* = ¢, *:

Ly(s,V,K/k) = L(q, ", V, K/k,v).

Finally, the incomplete Artin L-function is

Ls(s,V,K/k) = [ det(1 = p(¢u)g,* | V).
vgS

We mention without proof that the analogy works all the way and one can
prove the following:

Proposition 90. Let E/k be an elliptic curve over a number field. Then we
have the formula

L(s,E/k) = H det(1 — pE,Z((ﬁv)q;S‘Vz(E)I’”)*l

vtoo
where ¢, denotes a representative of the Frobenius element in Gal(k, /k,)/I,.

As a consequence, the L-function attached to an elliptic curve is similar in
construction to an Artin L-function, the difference being that the representation
in question is over Q; and not C and that the represented group is infinite.
Nevertheless, it is not suprising that the L-function of an elliptic curve shares
properties similar to the ones of the Artin L-functions. This is illustrated in the
following result that we mention without proof.
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Proposition 91. Let E/Q be an elliptic curve defined over Q and let k be a
finite Galois extension of Q. Let pg, denote the £-adic Galois representation
Gal(Q/Q) — GL(V,(E)) and let pr, denote its restriction to the subgroup
Gal(Q/k). Choosing an embedding Q, — C we can view these representations
as finite-dimensional complex representations. Let n; : Gal(k/Q) — GL(W;)
be the irreducible finite-dimensional complex representations of Gal(k/Q) and
denote again by n; their inflation to Gal(Q/Q). Then we have the following
Artin-type decomposition:

L(E/k,s) =[] L(s, p.e @ m;) ™)

where where L(s, pg, ®1;) denotes the Euler product

[T det(t = pre @ mi(dp)p™* | (Ve(E) @ W) ')~

7.5 The Global Period of an Elliptic Curve

The purpose of this section is to define the global period of an elliptic curve
defined over a number field k. This requires the notion of a measure on the
adeles of k and of a measure on E(k,) for any place v of k. Our references here
are [CF], Chapter X as well as [Wel], Chapter I and II.

7.5.1 Adeles

Let k& be a number field and denote as usual by Mj the set of non-equivalent
normalized absolute values on k. For any place v € M} we denote by k, the
completion of k at v. If v is a finite place, that is, a non-archimedean absolute
value, then k, is complete with finite residue field and therefore locally compact
in the v-adic topology and the closed unit ball O,, that is, the ring of integers,
is compact in this topology. Let S be any finite subset of M} that contains the
archimedean places and consider the subset of [, . ,, Fo defined by

AS:HkaHOU.

vES vgS

This set comes naturally with the product topology and is locally compact with
respect to this topology. As a set we define the adeles of k as

Ap = JAs
S

where the union is over all finite subsets of M} that contain the archimedean
places. We give the set Ay the final topology associated to this inductive limit,
that is, we define a subset U C Ay to be open if and only if U N Ag is open in
Ag for all S with respect to the product topology. We call Ay, together with this
topology the adeles of k. The Ag are open in A and each Ag is locally compact
whence Ay is locally compact with respect to its topology. Moreover, Ay is a
ring for the operations of addition and multiplication defined componentwise.
Hence Ay, is a locally compact topological ring.
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An element a € Ay is an infinite vector (a,), in HveMk k, such that for
all v, except for a finite number, we have a, € O,. A basis of open sets for
Ay consists of products HveMk U, where U, is open in k, and for all but a
finite number of v we have U, = O,. Alternatively, one could have defined Ay
to be the restricted topological product of the k, with respect to the O, (cf.
[CF], Chapter II). Since k embeds in all its completions, k embeds diagonally
in Ag. The image of the embedding consists of the principal adeles and we will
naturally identify k with this image. On can prove that k is discrete in A; and
that the quotient Ay /k is compact in the quotient topology. Furthermore, one
has the Strong Approximation Theorem. See [CF] for these results.

Each k' is a locally compact group and therefore has a left-invariant Haar
measure which is unique up to scalar multiplication. Let dz, denote the choice
of a Haar measure for k" subject to the following normalization:

e If v is areal archimedean, then k, = R and we take dz,, = dz the Lebesgue
measure.

e If v is complex archimedean, then k, = C and we take dx, to be the
Lebesgue product measure on R x iR.

e If v is non-archimedean, we normalize the measure dz, by setting

/ dx = 1.
1)

v

We define a measure da on A to be the one for which a basis of measurable
sets is the H%Mk M, where M, C k, has finite dz,-measure and M, = O, for

almost all v and where
dz = / dx,.
/]'[MU H M,

Note that this product is convergent thanks to our normalizations of dz, for v
non-archimedean. The restriction of dz to Ag is the standard product measure.
We will often denote the measure dz by &), ¢, dv,. It is not difficult to check
that this measure on Ay is invariant under additive translation by elements of
k. We therefore get an induces measure dz on the compact quotient Ay /k.

Proposition 92. We the above notations, we have
L = / dz = 2_T2\dk|1/2.

Proof. Let S be the finite subset of M}, consisting of the archimedean places of
k. Let r; be the number of real archimedean places and let o be the number
of complex archimedean places. Note that ks := [],cq ks = R™ x C™ is the
Minkowski space of k. As an R-alegebra it is isomorphic to R”™ where n = [k : Q).
The field & diagonally embeds in ks via the map o : (o1,...,0p 4r,) Where
o; : k — C are the corresponding real or complex embeddings. Moreover,
0 :k®gR — kg is an isomorphism of R-algebras. Note that O, = Ag Nk sits
as a lattice in kg. Let O'(S) denote the projection of Oy onto ks. Note that
O'(S) = 0(Of). Consider the map

AS — Ak —» Ak/k
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Let x € Ag. Then for all but finitely many v ¢ S we have z,, € O,. Let v € S.
Then by the strong approximation theorem, for all € > 0 there exists g € k such
that |2, — Bl, < € for all w # v. In particular, z — 5 € O, for all w & S so
that © — 8 € Ag. This proves that the above map is surjective. The kernel of
this map is Ok so that we have an isomorphism Ag/Of = Ay /k. Let F denote
a fundamental domain for the lattice 0(Ok) in ks. Then ' = F x [] ;. Oy is
a measurable set for the measure dz of representatives of the quotient Ag/Oy
so that

uk:/ dx:/ dx—/ dev—ka)—Q 702|dk|1/2
Ags /O

'UGS

by Proposition 2. O

7.5.2 Measure on E(k,)

Let k be a number field and let v be a finite place of k. Let E/k, be an elliptic
curve. Suppose that F is given by a minimal Weierstrass model

E-: y2 +a1zy +azy = x3+a2x2 + a4z + ag.

Let w, denote the invariant differential

g

w = .

Y 2yt a1z +as E

This differential is unique up to a unit of O,. One can associate to such a
differential a left Haar measure |w,| on E(k,). We do not define this measure

here and refer the reader to [Wel|. However, we will show how one may compute
the integral
[ e
E(ky)

Denote by E, /T, the reduced curve obtained by reducing the coefficients of
the above Weierstrass equation modulo 7, O,. This curve may be singular and
we denote by E{}S the smooth part of E,. Note that if E has good reduction
at v, then E’[}S = E, is an elliptic curve. In either case, one can check that the
chord-and-tangent process still works on E{}s and thus that E’Z}s is an algebraic
group. Denote by p the reduction map E(k,) — E, (F,) and define Ey(k,) =
p~YEM(F,)) and E;(k,) = p~ (O 5,)- There is an exact sequence of abelian
groups

under certain conditions on v.

0 — Ei(ky) — Eo(ky) 25 E"(F,) — 0
(cf. [Sil], VIL.2.1). Moreover, one can prove that Fy(k,) is a subgroup of finite
index in E(k,) (cf. [Sil], VIL.6.2).
We have
Br(ky) = {(5,9) € B(k) | o(z) < 0 and u(y) < 0} U {Op}

v(x)
and if (z,y) € E1(ky), then 2v(y) = 3v(x) (cf. [Lil], Proposition 4.32). Thus
for some m > 1 we have 2v(y) = 3v(z) = —6m which implies that v(z) = —2m
and v(y) = —3m. For each m > 1 we let

E.(ky) = {(z,y) € E(k,) | v(z) < —2m and v(y) < —3m} U{Og}.
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Let z = —z/y. Then z is a uniformizing parameter at O and we can get
expansions
o 2(2) =22 —a127t —ay —azz — (ag +ajaz)z® — ...

e y(z)= -2 +a1z 2 +az"t +az+ (as + araz)z + . ..
o w, = (1+aiz+(a? +a)z? + (a3 + 2a1a2 + a3)2z® +...)dz = P(2)dz

with coefficients in O, and we can define a formal group law
F(Z1,22) =21 +20+... € OU[[Z1,ZQ]]

by 2(P + Q) = F(z(P),2(Q)) (cf. [Sil], IV.1). The completeness of O, ensures
that these expansions converge for z € 7,0, and we denote by E (myO,) the set
m,O, with the group structure given by the formal law F. This is an abstract
group and one can prove that

Y B(my0y) — Ei(ky), 2+ (2(2),y(2))

is an isomorphism of groups (cf. [Sil|], VII.2.2) under which the subgroups
E(n"O,) correspond to the subgroups E,,(k,) for all m > 1.

For any n > 1, we claim that we have an isomorphism

E(@r0,)/E(x0,) 2 "0, /7o,
induced by the identity map. As sets, these two groups are equal and we there-
fore only need to prove that it is a homomorphism of group. Let 21, 20 € 7/ O,,.
Then

21 BF 2o = F(21,22) = 21 + 22 + (higher order terms)

=2 + 22 mod wf”

n+1
v

=2z1+2, modm

and therefore it is a homomorphism.
On the other hand, we have an isomorphism

Ou/m, 0y == 1y O [ 1O,
defined by a — 7]'a. We conclude that the quotient groups
B(m 00)/ B(x"T10y)
are isomorphic to F} for all n > 1. We therefore have a filtration
E(ky) D Eo(ky) D Er(ky) C Ea(ky) D ...

with
E(ky)/Eo(ky) finite,
EO(kv)/El(kv) = Ev(Fv)
En(ky)/Emi1(ky) 2 FF  forallm > 1.

Giving E(k,) the filtration topology makes it into a topological group.
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Theorem 7.5.1 (Tate). Let E be an elliptic curve over k, where v is a finite
place of k and choose a minimal Weierstrass model for E. Let w, be an invariant
differential, defined over O,, which does not vanish modulo 7,0, and let dx,
be the Haar measure on k™ which gives O, volume 1. Then

[ o= ) Bt
Bk L,(E/k,1)

Proof. Assume that F is given by the minimal Weierstrass model
E:y? + a1zy + asy = 23 + a2 + asx + ag

and take w, to be the invariant differential

dx

— € Qp.
2y + a1z + as B

Let logyz denote the formal logarithm associated to E(m(’)ﬂ)7 that is, the
formal power series

logs(z) = /P(z)dz € ky[[2]].
(cf. [Sil], IV.6). The logarithm induces a homomorphism of groups
log s : E(m,0,) — kF
and for an integer m that is large enough, it induces an isomorphism
logs : E(nm0,) = 70,
(cf. [Sil], TV.6.4).

The above tells us that E(k,) contains a finite index subgroup E,, (k,) which

is isomorphic via logz to 7,*O, for some m > 1. The group =0, comes

equipped with the v-adic topology and is compact with respect to this topology.
The map log, is an isomorphism of topological groups, that is, an isomorphism
of groups and a homeomorphism.
Pull-back dz,, to E(r,0,) via log ;- This gives
logh (day)(2) = dlogp(2) = |P(2)]ydz.

Note that P(z) = 14+0(z) so that if z € 7,0, then by the ultrametric property
of the valuation v we have |P(z)|, = 1.

We can now compute that

/ |wy| = / |P(2)],dz = / dz, =q, ™.
Ep (ky) E(rm0O,) T O,

‘We then have )
[oowl=at [ =
Eq (ko) Ep (ky) Qv
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Using the fact that E(k,) is the disjoint union of #E"(F,) copies of Ej (k)
together with the translation-invariance of our measure, we see that

[ el = PR g
Eo (ko) q

v

where in the last equality we used Proposition 88. Using now that Fy(k,) is
a subgroup of finite index in F(k,) together with the translation-invariance of

our measure we get
[ o= [l
E(k, L,(E/k,1)

7.5.3 The Global Period

Let k be a number field and let E/k be an elliptic curve. Let w be an invariant
differential on E/k. It gives an invariant differential w, on E/k, for all v. Let
dxr = ®,dz, denote a measure on A subject to the normalization

/ dzr = 1.

This can by achieved, by letting dz, denote the normalized Haar measures on k"
for all finite places and by taking the standard measures dz, for v archimedean
introduced in Section 7.6.1 and rescale them by real number ¢, such that

I co=27ldel7'?
’UEMI?C
by Proposition 92.
Definition 45. The global period of E/k is

P(E/K) = P) = ]| (Lvuz/k,l) /E . )m) 11 /E ol
v v]oo v

vtoo

Remark 55. The above product is well-defined. In fact, for almost all prime v,
the differential w, satisfies the conditions of Theorem 7.5.1 in that w, is defined
over O, and does not vanish module 7,O,. For those v we have

L,(E/k, 1)/ lwo| = [E(ky) : Eo(ky)]

E(ky)

For all but finitely many v we have E(k,) = Ey(k,) so that only finitely many
terms in the above product are not 1.

Proposition 93. The global period is independent of the choice of a differential
w on E/k.

Proof. If w' is another differential on E/k, then there exists aw € k* such that

w’' = aw. But then
P(’) = P@) [[ lak
vE My,

which is P(w) by the product formula. O
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7.6 Statement of the Conjecture

We now have all ingredients in hand to state the conjecture of Birch and
Swinnerton-Dyer.

Conjecture 8 (BSD). Let E/k be an elliptic curve over a number field and
assume that L(E/k,s) has a meromorphic continuation to a neighborhood of
the point s = 1.

(1) If n is the rank of the finitely generated abelian group E(k), then

ords—1 (L(E/k, s)) = n.

(2) Let c(E/k) = P(E/k) - R(E/k) - #1II(k, E). Then

L(E/k,s) ~c(E/k)(s—1)", ass — 1.
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