Algebraic cycles and Diophantine geometry

Generalised Heegner cycles, quadratic Chabauty \& diagonal cycles

David Ter-Borch Gram Lilienfeldt
Doctoral Oral Defence • May 20, 2021
Department of Mathematics and Statistics

Diophantine Geometry

Let C denote a smooth projective curve over a number field K.
Diophantine geometry: the study of the set $C(K)$ using geometry.
Question: How big is $C(K)$ and can it be determined explicitly?
The size of $C(K)$ is dictated by the genus $g:=\operatorname{dim} H^{0}\left(C, \Omega_{C}^{1}\right)$.

\mathbf{g}	$\# \mathbf{C}(\mathbf{K})$	Type	Proof
0	infinite	projective line	Hilbert-Hurwitz (1890)
1	finite or infinite	elliptic curve	Mordell-Weil (1929)
			Faltings (1983)
≥ 2	finite	higher genus	Vojta (1991)
			Lawrence-Venkatesh (2020)

Questions in higher genus

Question: How to explicitly determine the finite set $C(K)$?
Problem: The proofs of Mordell's conjecture are not effective.
Let J be the Jacobian of $C, r=\operatorname{rank}_{\mathbb{Z}} J(K), \rho=$ Picard number of J.

\mathbb{Q}	Method	Rank condition	Authors
	CC	$r<g$	Chabauty, Coleman
	QC	$r<g+\rho-1$	Kim, BD, BDMTV
	GQC	$r<g+\rho-1$	Edixhoven-Lido

Let $\delta=\operatorname{rank}_{\mathbb{Z}} \mathcal{O}_{K}^{\times}$and $d=[K: \mathbb{Q}]$.

K	Method	Rank condition	Authors
	RoSC	$r \leq(g-1) d$	Siksek
	RoSQC	$r+\delta(\rho-1) \leq(g+\rho-2) d$	Dogra, BBBM

Theorem (Čoupek-L.-Xiao-Yao (2020))
Generalisation of GQC to K under $r+\delta(\rho-1) \leq(g+\rho-2) d$.

Questions in genus 1

Let E be an elliptic curve over a number field K.

$$
\begin{aligned}
& \text { Algebra } \\
& E(K)=E(K)_{\text {tors }} \oplus \mathbb{Z}^{r_{\text {Ig }}(E / K)} \\
& \text { Analysis } \\
& \prod_{N_{K / \mathbb{Q}}(\mathrm{q}) \leq X} \frac{\# E\left(\mathbb{F}_{\mathrm{q}}\right)}{N_{K / \mathrm{Q}}(\mathrm{q})} \stackrel{?}{\sim} \log (X)^{\mathrm{r}_{\mathrm{Ig}}(E / K)}
\end{aligned}
$$

Birch and Swinnerton-Dyer Conjecture (1960's)

$$
r_{\mathrm{alg}}(E / K)=\operatorname{ord}_{s=1} L(E / K, s)=: r_{\mathrm{an}}(E / K) .
$$

Theorem (Gross-Zagier-Kolyvagin (1980's))

$$
r_{\mathrm{an}}(E / \mathbb{Q}) \in\{0,1\} \Longrightarrow r_{\mathrm{an}}(E / \mathbb{Q})=r_{\mathrm{alg}}(E / \mathbb{Q}) .
$$

S. Zhang (2001): Generalisation to K totally real.

Status: Open for general number fields and higher rank.

The Gross-Zagier-Kolyvagin strategy over \mathbb{Q}

Algebraic cycles and Chow-Heegner points

Generalised Heegner cycles

Bertolini-Darmon-Prasanna (2013) introduced a collection of generalised Heegner cycles on varieties $X_{r}:=W_{r} \times A^{r}$:

$$
\left\{\Delta_{\varphi} \in \mathrm{CH}^{r+1}\left(X_{r}\right)_{0}(\overline{\mathbb{Q}}), \quad \varphi: A \longrightarrow A^{\prime}\right\} .
$$

Functoriality of complex Abel-Jacobi maps:

$$
\begin{aligned}
& \mathrm{CH}^{r+1}\left(X_{r}\right)_{0}(\mathbb{C}) \xrightarrow{\mathrm{AJ} X_{X_{r}}} J^{r+1}\left(X_{r}\right) \\
& \quad \underset{r}{\Pi_{*}^{r}} \begin{array}{l}
\text { (} \left.\Phi_{\mathrm{dR}}^{*}\right)^{\vee} \\
\quad A(\mathbb{C}) \xrightarrow{\mathrm{AJ}_{A}} \xrightarrow{ } \mathrm{Jac}(A)(\mathbb{C})
\end{array} \Phi_{\mathrm{dR}}^{*}\left(\omega_{A}\right)=c_{r} \cdot \omega_{\theta_{A}} \wedge \eta_{A}^{r} .
\end{aligned}
$$

Upshot: We can obtain information about Chow-Heegner points by computing $\mathrm{AJ}_{X_{r}}\left(\Delta_{\varphi}\right)$.

Theorem (Bertolini-Darmon-L.-Prasanna (2019))

Let $\varphi: A \longrightarrow \mathbb{C} /\langle 1, \tau\rangle$ be an isogeny of degree $d_{\varphi}=\operatorname{deg}(\varphi)$.
For all $f \in S_{r+2}\left(\Gamma_{1}(N)\right)$ and $0 \leq j \leq r$,

$$
\mathrm{AJ}_{X_{r}}\left(\Delta_{\varphi}\right)\left(\omega_{f} \wedge \omega_{A}^{j} \eta_{A}^{r-j}\right)=\frac{\left(-d_{\varphi}\right)^{j}(2 \pi i)^{j+1}}{(\tau-\bar{\tau})^{r-j}} \int_{i \infty}^{\tau}(z-\tau)^{j}(z-\bar{\tau})^{r-j} f(z) d z .
$$

Application: Used by Bertolini-Darmon-Prasanna to provide computational evidence for the rationality of Chow-Heegner points.

Theorem (Bertolini-Darmon-L.-Prasanna (2019))

The collection of generalised Heegner cycles generates a subgroup of infinite rank in the group of codimension $r+1$ null-homologous cycles in X_{r} over $K^{a b}$ modulo both rational and algebraic ($r \geq 2$) equivalence. In particular,

$$
\operatorname{dim}_{\mathbb{Q}} C H^{r+1}\left(X_{r}\right)_{0}\left(K^{a b}\right) \otimes \mathbb{Q}=\infty .
$$

Diagonal cycles over \mathbb{Q}

Consider the modular curve $X_{0}(p)$. Let $F=f_{1} \otimes f_{2} \otimes f_{3} \in S_{2}\left(\Gamma_{0}(p)\right)^{\otimes 3}$.

Beilinson-Bloch Conjecture (1980's)

$$
\operatorname{ord}_{s=2} L(F / K, s)=\operatorname{dim}_{K_{F}}\left(t_{F}\right)_{*}\left(\mathrm{CH}^{2}\left(X_{0}(p)^{3}\right)_{0}(K) \otimes K_{F}\right) .
$$

When $K=\mathbb{Q}$ and $W(F)=-1$:

Gross-Kudla Conjecture (1992), Yuan-Zhang-Zhang (20??)

$$
L^{\prime}(F / \mathbb{Q}, 2)=\Omega_{F} \cdot\left\langle\left(t_{F}\right)_{*}\left(\Delta_{\mathrm{GKS}}\right),\left(t_{F}\right)_{*}\left(\Delta_{\mathrm{GKS}}\right)\right\rangle^{B B} .
$$

When $K=\mathbb{Q}$ and $W(F)=+1$:
Theorem (L. (2021))
The Abel-Jacobi image $\mathrm{AJ}_{X_{0}(p)^{3}}\left(\left(t_{F}\right)_{*}\left(\Delta_{\mathrm{GKS}}(e)\right)\right)$ is torsion in $J^{2}\left(X_{0}(p)^{3} / \mathbb{C}\right)$ for any base point $e \in X_{0}(p)(\mathbb{Q})$.

Diagonal cycles over $\mathbb{Q}(\sqrt{\chi(-1) p})$

Let $\chi=$ Legendre symbol at $p, K=\mathbb{Q}(\sqrt{\chi(-1) p}), \operatorname{Gal}(K / \mathbb{Q})=\{1, \tau\}$.
Construction: There exist maps $\varphi_{ \pm}: X(p) \longrightarrow X_{0}(p)^{3}$ such that

$$
\equiv:=\varphi_{+}(X(p))-\varphi_{-}(X(p)) \in \mathrm{CH}^{2}\left(X_{0}(p)^{3}\right)_{0}(K)^{\tau=-1} .
$$

Theorem (L. (2021))

The global root number of $L(F \otimes \chi, s)$ is -1 .

BB Conjecture $\Longrightarrow \operatorname{dim}_{K_{F}}\left(t_{F}\right)_{*}\left(\mathrm{CH}^{2}\left(X_{0}(p)^{3}\right)_{0}(K)^{\tau=-1} \otimes K_{F}\right) \geq 1$.
Conjecture (L. (2021))

$$
\left(t_{F}\right)_{*}(\equiv) \neq 0 \quad \Longleftrightarrow \quad \operatorname{ord}_{s=2} L(F \otimes \chi, s)=1 .
$$

Diagonal Chow-Heegner points over \mathbb{Q}

When $f=f_{3}$ has rational coefficients, and $g=f_{2}=f_{3}$, we can define a modular parametrisation

$$
\Pi_{g, f, *}: \mathrm{CH}^{2}\left(X_{0}(p)^{3}\right)_{0}(K) \longrightarrow E_{f}(K) .
$$

Theorem (Darmon-Rotger-Sols (2012))

If $W(f)=-1, W\left(\operatorname{Sym}^{2}(g) \otimes f\right)=+1$, then $\Pi_{g, f, *}\left(\Delta_{G K S}\right) \in E_{f}(\mathbb{Q})$ has infinite order iff $L^{\prime}(f, 1) \neq 0, L\left(\operatorname{Sym}^{2}\left(g^{\sigma}\right) \otimes f, 2\right) \neq 0$ for all $\sigma: K_{g} \hookrightarrow \mathbb{C}$.

Theorem (L. (2021))
If $W(f)=+1$, then $\Pi_{g, f, *}\left(\Delta_{G K S}(e)\right) \in E_{f}(\mathbb{Q})$ is torsion for all $e \in X_{0}(p)(\mathbb{Q})$.

Diagonal Chow-Heegner points over $\mathbb{Q}(\sqrt{\chi(-1) p})$

Recall the cycle $\equiv=\varphi_{+}(X(p))-\varphi_{-}(X(p)) \in \mathrm{CH}^{2}\left(X_{0}(p)^{3}\right)(K)^{\tau=-1}$.
When $p \equiv 3(\bmod 4), K=\mathbb{Q}(\sqrt{-p})$ and $W\left(E_{f}^{\chi}\right)=+1$.
Theorem (L. (2021))
If $p \equiv 3(\bmod 4)$, then $\Pi_{g, f, *}(\equiv) \in E_{f}(\mathbb{Q}(\sqrt{-p}))^{\tau=-1}$ is torsion.

When $p \equiv 1(\bmod 4), K=\mathbb{Q}(\sqrt{p})$ and $W\left(E_{f}^{\chi}\right)=-1$.

Conjecture (L. (2021))

When $p \equiv 1(\bmod 4), \Pi_{g, f, *}(\bar{\Xi}) \in E_{f}(\mathbb{Q}(\sqrt{p}))^{\tau=-1}$ has infinite order iff $L^{\prime}(f \otimes \chi, 1) \neq 0, L\left(\operatorname{Sym}^{2}\left(g^{\sigma}\right) \otimes f \otimes \chi, 2\right) \neq 0$ for all $\sigma: K_{g} \hookrightarrow \mathbb{C}$.

Future work: Address these conjectures using Abel-Jacobi maps.

Thank you for your attention!

Appendix

Theorem (Čoupek-L.-Xiao-Yao (2020))

Let C be a smooth, proper, geometrically connected curve of genus $g \geq 2$ defined over K, and satisfying the condition

$$
r+\delta(\rho-1) \leq(g+\rho-2) d
$$

Let $R:=\mathbb{Z}_{p}\left\langle z_{1}, \ldots, z_{r+\delta(\rho-1)}\right\rangle$ be the p-adically completed polynomial algebra over \mathbb{Z}_{p}. There exists an ideal I of R, which is explicitly computable modulo p, such that if $\bar{A}:=(R / I) \otimes \mathbb{F}_{p}$ is a finite dimensional \mathbb{F}_{p}-vector space, then the set of rational points $C(K)$ is finite and

$$
|C(K)| \leq \operatorname{dim}_{\mathbb{F}_{p}} \bar{A} .
$$

