Algebraic cycles and Diophantine geometry

Generalised Heegner cycles, quadratic Chabauty & diagonal cycles

David Ter-Borch Gram Lilienfeldt

Doctoral Oral Defence · May 20, 2021

Department of Mathematics and Statistics

Let C denote a smooth projective curve over a number field K.

Diophantine geometry: the study of the set C(K) using geometry.

Question: How big is C(K) and can it be determined explicitly?

The size of C(K) is dictated by the genus $g := \dim H^0(C, \Omega^1_C)$.

g	# C(K)	Туре	Proof	
0	infinite	projective line	Hilbert-Hurwitz (1890)	
1	finite or infinite	elliptic curve	Mordell-Weil (1929)	
			Faltings (1983)	
≥ 2	finite	higher genus	Vojta (1991)	
			Lawrence-Venkatesh (2020)	

Questions in higher genus

Question: How to explicitly determine the finite set C(K)?

Problem: The proofs of Mordell's conjecture are not effective.

Let J be the Jacobian of C, $r = \operatorname{rank}_{\mathbb{Z}} J(K)$, $\rho = \operatorname{Picard}$ number of J.

\mathbb{Q}	Method	Rank condition	Authors
	СС	r < g	Chabauty, Coleman
	QC	$r < g + \rho - 1$	Kim, BD, BDMTV
	GQC	$r < g + \rho - 1$	Edixhoven-Lido

Let $\delta = \operatorname{rank}_{\mathbb{Z}} \mathcal{O}_{K}^{\times}$ and $d = [K : \mathbb{Q}].$

Κ	Method	Rank condition	Authors
	RoSC	$r \leq (g-1)d$	Siksek
	RoSQC	$r+\delta(ho-1)\leq (g+ ho-2)d$	Dogra, BBBM

Theorem (Čoupek–L.–Xiao–Yao (2020)) Generalisation of GQC to K under $r + \delta(\rho - 1) \leq (g + \rho - 2)d$. Let E be an elliptic curve over a number field K.

AlgebraAnalysis $E(K) = E(K)_{tors} \oplus \mathbb{Z}^{r_{alg}(E/K)}$ $\prod_{N_{K/\mathbb{Q}}(q) \leq X} \frac{\#E(\mathbb{F}_q)}{N_{K/\mathbb{Q}}(q)} \stackrel{?}{\sim} \log(X)^{r_{alg}(E/K)}$

Birch and Swinnerton-Dyer Conjecture (1960's)

$$r_{alg}(E/K) = \operatorname{ord}_{s=1} L(E/K, s) =: r_{an}(E/K).$$

Theorem (Gross-Zagier-Kolyvagin (1980's))

$$r_{an}(E/\mathbb{Q}) \in \{0,1\} \implies r_{an}(E/\mathbb{Q}) = r_{alg}(E/\mathbb{Q}).$$

S. Zhang (2001): Generalisation to K totally real.

Status: Open for general number fields and higher rank.

The Gross-Zagier-Kolyvagin strategy over \mathbb{Q}

Algebraic cycles and Chow-Heegner points

Bertolini-Darmon-Prasanna (2013) introduced a collection of generalised Heegner cycles on varieties $X_r := W_r \times A^r$:

$$\{\Delta_{\varphi} \in \mathsf{CH}^{r+1}(X_r)_0(\bar{\mathbb{Q}}), \quad \varphi : A \longrightarrow A'\}.$$

Functoriality of complex Abel-Jacobi maps:

$$CH^{r+1}(X_r)_0(\mathbb{C}) \xrightarrow{AJ_{X_r}} J^{r+1}(X_r)$$

$$\downarrow^{(\Phi^*_{dR})^{\vee}} \qquad \Phi^*_{dR}(\omega_A) = c_r \cdot \omega_{\theta_A} \wedge \eta^r_A.$$

$$A(\mathbb{C}) \xrightarrow{AJ_A} Jac(A)(\mathbb{C})$$

Upshot: We can obtain information about Chow-Heegner points by computing $AJ_{X_r}(\Delta_{\varphi})$.

Theorem (Bertolini-Darmon-L.-Prasanna (2019))

Let $\varphi : A \longrightarrow \mathbb{C}/\langle 1, \tau \rangle$ be an isogeny of degree $d_{\varphi} = \deg(\varphi)$. For all $f \in S_{r+2}(\Gamma_1(N))$ and $0 \le j \le r$,

$$\mathsf{AJ}_{X_r}(\Delta_{\varphi})(\omega_f \wedge \omega_A^j \eta_A^{r-j}) = \frac{(-d_{\varphi})^j (2\pi i)^{j+1}}{(\tau - \overline{\tau})^{r-j}} \int_{i\infty}^{\tau} (z - \tau)^j (z - \overline{\tau})^{r-j} f(z) dz.$$

Application: Used by Bertolini-Darmon-Prasanna to provide computational evidence for the rationality of Chow-Heegner points.

Theorem (Bertolini-Darmon-L.-Prasanna (2019))

The collection of generalised Heegner cycles generates a subgroup of infinite rank in the group of codimension r + 1 null-homologous cycles in X_r over K^{ab} modulo both rational and algebraic ($r \ge 2$) equivalence. In particular,

 $\dim_{\mathbb{Q}} \mathrm{CH}^{r+1}(X_r)_0(K^{ab}) \otimes \mathbb{Q} = \infty.$

Diagonal cycles over \mathbb{Q}

Consider the modular curve $X_0(p)$. Let $F = f_1 \otimes f_2 \otimes f_3 \in S_2(\Gamma_0(p))^{\otimes 3}$.

Beilinson-Bloch Conjecture (1980's)

 $\operatorname{ord}_{s=2} L(F/K, s) = \dim_{K_F} (t_F)_* (\operatorname{CH}^2(X_0(p)^3)_0(K) \otimes K_F).$

When $K = \mathbb{Q}$ and W(F) = -1:

Gross-Kudla Conjecture (1992), Yuan-Zhang-Zhang (20??)

$$L'(F/\mathbb{Q},2) = \Omega_F \cdot \langle (t_F)_*(\Delta_{\mathsf{GKS}}), (t_F)_*(\Delta_{\mathsf{GKS}}) \rangle^{BB}$$

When $K = \mathbb{Q}$ and W(F) = +1:

Theorem (L. (2021))

The Abel-Jacobi image $AJ_{X_0(p)^3}((t_F)_*(\Delta_{GKS}(e)))$ is torsion in $J^2(X_0(p)^3/\mathbb{C})$ for any base point $e \in X_0(p)(\mathbb{Q})$.

Diagonal cycles over $\mathbb{Q}(\sqrt{\chi(-1)p})$

Let χ = Legendre symbol at p, $K = \mathbb{Q}(\sqrt{\chi(-1)p})$, $\operatorname{Gal}(K/\mathbb{Q}) = \{1, \tau\}$.

Construction: There exist maps $\varphi_{\pm}: X(p) \longrightarrow X_0(p)^3$ such that

$$\Xi:=arphi_+(X(p))-arphi_-(X(p))\in \mathsf{CH}^2(X_0(p)^3)_0(\mathcal{K})^{ au=-1}$$

Theorem (L. (2021))

The global root number of $L(F \otimes \chi, s)$ is -1.

BB Conjecture $\implies \dim_{\mathcal{K}_F}(t_F)_*(\operatorname{CH}^2(X_0(p)^3)_0(\mathcal{K})^{\tau=-1}\otimes \mathcal{K}_F) \geq 1.$

Conjecture (L. (2021))

 $(t_F)_*(\Xi) \neq 0 \quad \iff \quad \operatorname{ord}_{s=2} L(F \otimes \chi, s) = 1.$

When $f = f_3$ has rational coefficients, and $g = f_2 = f_3$, we can define a modular parametrisation

$$\Pi_{g,f,*}: \mathrm{CH}^2(X_0(p)^3)_0(K) \longrightarrow E_f(K).$$

Theorem (Darmon-Rotger-Sols (2012))

If W(f) = -1, $W(Sym^2(g) \otimes f) = +1$, then $\Pi_{g,f,*}(\Delta_{GKS}) \in E_f(\mathbb{Q})$ has infinite order iff $L'(f, 1) \neq 0$, $L(Sym^2(g^{\sigma}) \otimes f, 2) \neq 0$ for all $\sigma : K_g \hookrightarrow \mathbb{C}$.

Theorem (L. (2021))

If W(f) = +1, then $\Pi_{g,f,*}(\Delta_{\mathsf{GKS}}(e)) \in E_f(\mathbb{Q})$ is torsion for all $e \in X_0(p)(\mathbb{Q})$.

Diagonal Chow-Heegner points over $\mathbb{Q}(\sqrt{\chi(-1)\rho})$

Recall the cycle $\Xi = \varphi_+(X(p)) - \varphi_-(X(p)) \in \operatorname{CH}^2(X_0(p)^3)(K)^{\tau=-1}.$

When
$$p\equiv 3 \pmod{4}$$
, $K=\mathbb{Q}(\sqrt{-p})$ and $W(E_f^\chi)=+1.$

Theorem (L. (2021)) If $p \equiv 3 \pmod{4}$, then $\prod_{g,f,*}(\Xi) \in E_f(\mathbb{Q}(\sqrt{-p}))^{\tau=-1}$ is torsion.

When $p \equiv 1 \pmod{4}$, $K = \mathbb{Q}(\sqrt{p})$ and $W(E_f^{\chi}) = -1$.

Conjecture (L. (2021))

When $p \equiv 1 \pmod{4}$, $\Pi_{g,f,*}(\Xi) \in E_f(\mathbb{Q}(\sqrt{p}))^{\tau=-1}$ has infinite order iff $L'(f \otimes \chi, 1) \neq 0$, $L(\operatorname{Sym}^2(g^{\sigma}) \otimes f \otimes \chi, 2) \neq 0$ for all $\sigma : K_g \hookrightarrow \mathbb{C}$.

Future work: Address these conjectures using Abel-Jacobi maps.

Thank you for your attention!

Theorem (Čoupek–L.–Xiao–Yao (2020))

Let C be a smooth, proper, geometrically connected curve of genus $g \ge 2$ defined over K, and satisfying the condition

$$r+\delta(
ho-1)\leq (g+
ho-2)d.$$

Let $R := \mathbb{Z}_p \langle z_1, ..., z_{r+\delta(\rho-1)} \rangle$ be the p-adically completed polynomial algebra over \mathbb{Z}_p . There exists an ideal I of R, which is explicitly computable modulo p, such that if $\overline{A} := (R/I) \otimes \mathbb{F}_p$ is a finite dimensional \mathbb{F}_p -vector space, then the set of rational points C(K) is finite and

 $|C(K)| \leq \dim_{\mathbb{F}_p} \overline{A}.$