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1 Introduction

In this thesis, we give a proof of the Schinzel-Zassenhaus conjecture by com-
bining the recent strategy of Dimitrov [4] with a transfinite diameter bound
due to Habegger [9]. While the result obtained in this way is weaker than
the one of Dimitrov, our proof is self-contained and only relies on elementary
methods.

1.1 Main result

Let α be a non-zero algebraic integer, not a root of unity and let α1 =
α, α2, . . . , αd denote the conjugates of α. In 1965, Schinzel and Zassenhaus
[20] conjectured that

α := max
1≤i≤d

|αi| > 1 +
c

d
(1.1)

for some absolute constant c > 0. In simple words this says that every non-
cyclotomic monic polynomial with integer coefficients should have at least
one root that is outside the unit circle by a distance equal to a constant
number divided by the degree of the polynomial.

1 1 + c
d

Figure 1: Every non-cyclotomic monic polynomial of degree d with integer
coefficients should have at least one root that is outside the outer circle.

Any non-zero complex number z can be written in polar form z = reiθ ,
where r > 0 is the modulus and θ ∈ R is called the argument of z, denoted
by arg (z) (defined uniquely up to addition of an integer multiple of 2π). The
main result of this thesis is the following bound:
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Theorem 1.1. Let α be a non-zero algebraic integer of degree d, not a root
of unity, whose conjugates have d′ different arguments between them. Then

α ≥ e0.39/8d
′
.

As an immediate consequence, we deduce the following:

Corollary 1.2. The Schinzel-Zassenhaus conjecture (1.3) holds with c =
0.39
8
.

Proof. From d′ ≤ d, we have α ≥ e0.39/8d. We now want to show that

e0.39/8d ≥ 1 + 0.39
8d

= 1 + log e0.39/(8d). Using that a ≥ 1 + log a for a ≥ 1, we
get the result.

A non-zero algebraic integer α is called reciprocal if α−1 is a conjugate of
α.

Corollary 1.3. If α is a reciprocal algebraic integer of degree d > 1 with
d′′ > 0 conjugates not on the unit circle, then

α ≥ e0.39/(8d−4d′′).

In particular, if d′′ = d, then α ≥ e0.39/4d.

Proof. First note that the complex conjugate of an algebraic integer is one
of its conjugates and that because α is a reciprocal algebraic integer then by
definition α−1 is also a conjugate of α.
Let α = a + ib. Its inverse is α−1 = 1

a+ib
= a−ib

a2+b2
and its complex conjugate

is α = a− ib. So we have that

arg(α−1) = arg

(
1

a2 + b2

)
+ arg(a− ib) = 0 + arg(α) = arg(α)

When α is on the unit circle we have that α = α−1 and thus when counting
the different arguments we count one for each of the conjugates. But when
we count the different arguments of the conjugates that are not on the unit
circle then α ̸= α−1 so for every one of these d′′ conjugates there is another
one with the same argument. Therefore the conjugates of α have at most
d− 1

2
d′′ different arguments.
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1.2 History of the problem

In 1857, Kronecker [12] proved that if α is a non-zero algebraic integer then

α = 1 ⇐⇒ M(a) = 1 ⇐⇒ α is a root of unity,

where M(α) :=
∏d

k=1max{1, |αk|} is the Mahler measure of an algebraic
integer α with conjugates α1, . . . , αd.

Suppose now that α is not a root of unity. In 1933, Lehmer [14] asked if
it is true that

M(α) ≥ 1 + C, (1.2)

where C > 0 is an absolute constant. Inequality (1.2) is known as Lehmer’s
conjecture. In 1965, Schinzel and Zassenhaus [20] proved that if α is a non-
zero algebraic integer, not a root of unity, and if 2s of its conjugates are
complex, then

α > 1 + 4−s−2.

They further stated the following: ‘...we cannot disprove the inequality

max
1≤i≤d

|αi| > 1 +
c

d
, (1.3)

for some absolute constant c > 0’. This statement is known as the Schinzel-
Zassenhaus conjecture.

Note that Lehmer’s conjecture (1.2) is stronger than the Schinzel-Zassenhaus
conjecture (1.3). To show this, suppose that α satisfies M(α) ≥ C > 1.

Note that α ≤ 1 + logC
d

implies M(α) <
(
1 + logC

d

)d
< C. Thus, the

Schinzel–Zassenhaus conjecture holds with c = log(C). Consequently, re-
sults in the direction of Lehmer’s conjecture give corresponding results for
the Schinzel–Zassenhaus conjecture.

For α a non-reciprocal algebraic integer, Smyth [21] showed in 1971 that

M(α) ≥ θ,

where θ = 1.324 . . . denotes the real zero of the polynomial z3 − z − 1 and
that this θ is optimal. Hence,

α ≥ M(α)1/d > 1 +
log θ

d
.
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In 1978, Dobrowolski [5] proved that if a non-zero algebraic integer α of
degree d satisfies

α ≤ 1 +
1

4ed2
, (1.4)

then α is a root of unity. The proof is short so we include it here.

Proof. Let sk = αk
1 + · · ·+ αk

d where α = α1, . . . , αd are the conjugates of α.
Let p be a prime between 2ed and 4ed. Recall that e = limn→∞

(
1 + 1

n

)n
. If

(1.4) holds, then for k ≤ d we have

|sk| ≤ d
(
1 +

1

4ed2

)d
< d
(
1 +

1

d

)d
< de

and

|skp| ≤ d
(
1 +

1

4ed2

)4ed2
< de.

Hence
|skp − sk| ≤ 2ed < p.

By Theorem A.15, skp ≡ sk (mod p), so that skp = sk for k = 1, . . . d. Since
these values determine the coefficients of the minimal polynomials of α and
αp, using Theorem A.14 we see that they have the same minimal polynomial.
Hence, αp is a zero of the minimal polynomial of α. Thus, α is conjugate to
αp and also to αpm for all m. This holds because if L = Q(α1, . . . , αd), then
for every 1 ≤ i, j ≤ d there is a σ in the Galois group such that σ(αi) = αj.
Thus there is a σ such that σ(α) = αp, σ(αp) = α2p and so on. So two of
these must be equal and therefore α must be a root of unity.

In 1979, Dobrowolski [6] proved that for any ϵ > 0 there exist effective
constants d1(ϵ) and d2(ϵ) such that, for d > d1(ϵ)

M(α) > 1 + (1− ϵ)

(
log log d

log d

)3

, (1.5)

and, for d > d2(ϵ)

α > 1 +
2− ϵ

d

(
log log d

log d

)3

. (1.6)

Later, in 1982, Cantor and Straus [2] replaced the constant 1− ϵ by 2− ϵ in
(1.5) and 2− ϵ by 4− ϵ in (1.6) respectively. In 1993, Dubickas [7] calulated
the best such c′ − ϵ in (1.6) with c′ = 64/π2.
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In 2019 Dimitrov [4] obtained the bound

α ≥ 21/4d,

which implies the Schinzel-Zassenhaus conjecture (1.3) with c = 1
4
log 2. In

his proof, Dimitrov crucially used a bound on the transfinite diameter of a
compact subset of C known as a hedgehog.

1.3 Strategy of the proof

In this thesis, we reproduce Dimitrov’s proof of the Schinzel-Zassenhaus con-
jecture using a slightly weaker transfinite diameter bound due to Habegger
[9], whose proof has the virtue of relying only on elementary methods. As a
consequence, Theorem 1.1 is slightly weaker than the result of Dimitrov [4].
We will now outline the strategy of proof of Theorem 1.1.

Let α be a non-zero algebraic integer of degree d having minimal polyno-
mial P (x) =

∏d
i=1(x−αi). Define the polynomial Pm(x) :=

∏d
i=1(x−αm

i ) ∈
Z[x] to be the polynomial whose zeros are themth powers of the conjugates of
α. We introduce a bit of terminology. The reciprocal of a polynomial Q(x) ∈
C[x] is by definition the polynomial Q∗(x) := xdeg(Q)Q(1/x) ∈ C[x]. Given
complex numbers a1, . . . , an, the associated “hedgehog” K = K(a1, . . . , an)
is the compact subset of C formed by taking the union of the line segments
joining 0 to aj for j ∈ {1, . . . , n}.

1 + 2i

1− 2i

3

−2− i

−2 + i

Figure 2: Example of the hedgehog K(a1, . . . , an) where the ai are the roots
of the polynomial x5 − 5x4 − 4x2 + 51x+ 45.

Consider the polynomial P2(z) where P (z) is the minimal polynomial of
α. In the case where P2(z) is reducible, Theorem 1.1 follows by induction
on the degree d. We use that since P2(z) is reducible, with α2 one of its
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zeros, the degree of α2 is less than that of α and we can therefore apply the
induction hypothesis to α2.

In the case where P2 is irreducible consider the series

F

(
1

z

)
:=

√
P ∗
2

(
1

z

)
P ∗
4

(
1

z

)
∈ C

[[
1

z

]]
.

The rationality of this series is intimately related to the polynomial P (z)
being cyclotomic. More precisely, if F (1/z) is rational, then P2(z) = P4(z),
which implies that P (z) is cyclotomic (Lemma 5.5).

The rationality of the series is also related to the transfinite diameter
of the hedgehog K(α2

1, . . . , α
2
d, α

4
1, . . . , α

4
d). More precisely, the coefficients of

F (1/z), which a priori belong to C, can be shown to be integral (Lemma 5.4).
Also, there exists criteria for the rationality of integral power series in terms
of transfinite diameters of compact subsets of C (Theorem 5.2). In the case of
F (1/z), if the transfinite diameter of the hedgehog K(α2

1, . . . , α
2
d, α

4
1, . . . , α

4
d)

is less than 1, then F (1/z) is rational and, by Habegger’s result (Theorem

4.4), this transfinite diameter is less than 1 when α < e0.39/(8d). Therefore

assuming α < e0.39/(8d) yields a contradiction because α is not a root of
unity, and Theorem 1.1 follows.

1.4 Outline of thesis

In Section 2, we introduce the transfinite diameter of a compact set. We
prove some of its basic properties and compute the transfinite diameter in
two illustrative examples: the unit circle and the unit segment. Section 3 is
dedicated to bounding a number of values that will be key in bounding the
transfinite diameter of the hedgehog in Section 4. In Section 5, , we give the
rationality criterion for integral series and finish with the proof of Theorem
1.1. The Appendix A contains miscellaneous results used throughout the
thesis.
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2 Transfinite diameter

In this section we will define what is the transfinite diameter and prove some
useful properties. This section is based on chapter 10 of [16].

2.1 Definition and properties

Definition 2.1 (Transfinite diameter). Let E be a compact subset of the
complex plane C, symmetric about the real axis. For a given integer n we
define Gn as

Gn = Gn(E) = max
z1,...,zn∈E

( ∏
1≤j<k≤n

|zj − zk|

)2/n(n−1)

. (2.1)

Then the transfinite diameter τ(E) of E is defined as

lim
n→∞

Gn.

We will show later in Proposition 2.6 that the limit exists.

The transfinte diameter is a way of quantifying the size of compact sets
and was introduced by M. Fekete [8]. It appears in analysis and potential
theory, where it is also known as the logarithmic capacity, the exterior map-
ping radius, or the Chebyshev constant of E. The transfinite diameter has
numerous applications in number theory. One noteworthy such application
is the following. Let E be a compact subset of the complex plane, symmetric
about the real axis, and of transfinite diameter less than 1. Then E contains
only finitely many conjugate sets of algebraic integers [16].

Some basic properties of the transfinite diameter are:

• for λ, µ ∈ C, τ(λE + µ) = |λ|τ(E).

• τ(E ′) ≤ τ(E) for any compact subset E ′ of E.

Now we give some more definitions and some less obvious properties of
the transfinite diameter.
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Definition 2.2 (Chebychev polynomials). For n ∈ Z≥0 let Tn(z) ∈ C[z] be
monic polynomial of degree n chosen so that its maximum modulus on E

mn := max
z∈E

|Tn(z)|

is as small as possible. The polynomials Tn(z) are called the Chebychev
polynomials of E.

Chebyshev polynomials originated from a problem in classical mechanics,
and due to their properties they have various uses in number theory.

For the rest of this section let E be a compact subset of C and let Gn be
as in (2.1).

Definition 2.3. For z1, . . . , zn ∈ E, define

V (z1, . . . , zn) =
n∏

j,k=1
j<k

(zj − zk) (2.2)

and let Vn be the maximum of |V (z1, . . . , zn)| as z1, . . . , zn range over E.
Because E is compact, this maximum exists.

Proposition 2.4. The sequence {Gn} is monotonically decreasing.

Proof. We have

Gn = V
2

n(n−1)
n .

Choose n+1 new points z1, . . . , zn, zn+1 ∈ E such that |V (z1, . . . , zn, zn+1)| =
Vn+1. Then, since

V (z1, . . . , zn, zn+1) = (z1 − z2)(z1 − z3) · · · (z1 − zn+1)V (z2, . . . , zn, zn+1),

and |V (z2, . . . , zn, zn+1)| ≤ Vn we have

Vn+1 ≤ |z1 − z2| · |z1 − z3| · · · |z1 − zn+1|Vn.

Similarly, doing the same for all sets of n of these n+ 1 points, we have

Vn+1 ≤ |z2 − z1| · |z2 − z3| · · · |z2 − zn+1|Vn

...
...

...
...

...

Vn+1 ≤ |zn+1 − z1| · |zn+1 − z2| · · · |zn+1 − zn|Vn.
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Multiplying all these inequalities we obtain

V n+1
n+1 ≤ V 2

n+1V
n+1
n .

Hence V n−1
n+1 ≤ V n+1

n , giving

Gn+1 = V
2(n−1)

(n−1)(n+1)n

n+1 ≤ V
2(n+1)

(n−1)(n+1)n
n = V

2
(n−1)n
n = Gn.

Lemma 2.5. Let {an}n≥1 be a sequence of positive numbers with finite limit

a > 0. Then the sequence (a11a
2
2 · · · ann)

2
n)(n+1) converges to a as n → ∞.

Proof. Without loss of generality because of the 2 in the exponent we can
assume that ai > 1 for all i ≥ 1. Now let ci = log(ai) > 0 and c = log(a).
We want to prove that if ci → c then 1

n(n+1)

∑n
i=1 i · ci → c as n → ∞ .

Let ϵ > 0 and let N be such that |cn − c| < ϵ for every n ≥ N .
We have, for n > N∣∣∣∣∣
(

2

n(n+ 1)

n∑
i=1

ici

)
− c

∣∣∣∣∣ =
∣∣∣∣∣ 2

n(n+ 1)

n∑
i=1

ici −
2

n(n+ 1)

n∑
i=1

ic

∣∣∣∣∣
=

∣∣∣∣∣ 2

n(n+ 1)

n∑
i=1

i(ci − c)

∣∣∣∣∣
≤

∣∣∣∣∣ 2

n(n+ 1)

N∑
i=1

i(ci − c)

∣∣∣∣∣+
∣∣∣∣∣ 2

n(n+ 1)

n∑
i=N+1

i(ci − c)

∣∣∣∣∣
≤ 2

n(n+ 1)
C +

2

n(n+ 1)

(
n∑

i=N+1

i

)
ϵ ( C a constant)

<
C

n(n+ 1)
+ ϵ < 2ϵ,

provided we choose N sufficiently large such that C
n(n+1)

< C
N(N+1)

< ϵ.

Proposition 2.6. Let mn be as in Definition 2.2. Then mn
1/n converges as

n → ∞, and the limit is the transfinite diameter τ(E).
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Proof. We first remark that the sequence τn := m
1/n
n is bounded since for the

polynomial (z − z0)
n with z0 ∈ E we have

τn = m1/n
n ≤ (max

z∈E
|z − z0|n)1/n = max

z∈E
|z − z0| ≤ max

z,z0∈E
|z − z0| = D,

where D is the (standard) diameter of E.
Next we show that the sequence converges. Define a := lim infn→∞ τn and
b := lim supn→∞ τn. We have a ≤ b and want to show that b ≤ a. Let ϵ

2
> 0

and choose n such that τn < a+ ϵ
2
. Then because τn < a+ ϵ

2
we have

τn = m1/n
n < a+

ϵ

2

max
z∈E

|Tn(z)|1/n < a+
ϵ

2

|Tn(z)| <
(
a+

ϵ

2

)n
, for all z ∈ E.

If k and l are positive integers and z0 ∈ E is fixed, then for all z ∈ E

|(z − z0)
lTn(z)

k| ≤ Dl
(
a+

ϵ

2

)nk
.

Hence

τnk+l = max
z∈E

|Tnk+l(z)|1/(nk+l)

≤ max
z∈E

|(z − z0)
lTnk(z)|1/(nk+l)

≤ max
z∈E

|(z − z0)
l|1/(nk+l) ·max

z∈E
|Tnk(z)|1/(nk+l)

≤ D
l

nk+l

(
a+

ϵ

2

) nk
nk+l

.

Now choosing a subsequence τnν → b as nν → ∞ and putting nν = nkν + lν ,
where 0 < lν ≤ n, we see that for nν ≫ 0 such that τ > b− ϵ

2
or b < tnν +

ϵ
2

b ≤ τnkν+lν +
ϵ

2

≤ D
l

nk+l

(
a+

ϵ

2

) nk
nk+l

+
ϵ

2

≤ D
l

nk+l

(
a+

ϵ

2

) nk
nk+l

+
ϵ

2

≤ D0
(
a+

ϵ

2

)
+

ϵ

2
as kν → ∞

= (a+ ϵ).
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Since ϵ can be arbitrarily small, we have b ≤ a, as was our aim. Hence a = b,
so that the sequence {τν} converges.

We must now show that in fact {τν} converges to τ(E). This is clearly true
if E is finite because for n > |E| there will be terms of the form |zi − zi| = 0
for zi ∈ E in the product

∏
1≤j<k≤n |zj − zk| and τ(E) will be equal to 0. So

we assume that E is infinite, and Vn is never 0. We claim that

mn ≤ Vn+1

Vn

≤ (n+ 1)mn. (2.3)

To prove these inequalities, note that

mn ≤ max
z∈E

|(z − z1) · · · (z − zn)| =
maxz∈E |V (z, z1, . . . , zn)|

V (z1, . . . , zn)
≤ Vn+1

Vn

when z1, . . . , zn ∈ E are chosen so that |V (z1, . . . , zn)| = Vn. This proves the
first inequality of (2.3). For the second inequality, we note that V (z1, . . . zn+1)
is the determinantant of a Vandermonde matrix defined in Proposition A.3,

V (z1, . . . zn+1) =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
z1 z2 · · · zn+1
...

...
...

...
zn1 zn2 . . . znn+1

∣∣∣∣∣∣∣∣∣
and then add suitable multiples of the first n rows to the bottom row to
obtain

V (z1, . . . zn+1) =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
z1 z2 · · · zn+1
...

...
...

...
Tn(z1) Tn(z2) . . . Tn(zn+1)

∣∣∣∣∣∣∣∣∣ .
On expanding this determinant by its bottom row, we have that

|V (z1, . . . zn+1)| ≤ |Tn(z1)| · |V (z2, . . . zn+1)|+ |Tn(z2)| · |V (z1, z3, . . . zn+1)|
+ · · ·+ |Tn(zn+1)| · |V (z1, . . . zn)|.

Now, choosing z1. . . . , zn+1 so that V (z1, . . . zn+1) = Vn+1, we obtain the
bound Vn+1 ≤ (n + 1)mnVn, giving the second inequality of (2.3). Thus, we
have

τnn ≤ Vn+1

Vn

≤ (n+ 1)τnn .
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Multiplying these inequalities for n = 2 up to n′, and then replacing n′ by n,
we obtain

(τ 22 · · · τnn ) ≤
V3 · V4 · · ·Vn+1

V2 · V3 · · ·Vn

≤ ((n+ 1)!)(τ 22 · · · τnn ).

We now multiply by V2

(τ 22 · · · τnn ) · V2 ≤ Vn+1 ≤ ((n+ 1)!)(τ 22 · · · τnn ) · V2,

and take the 2
n(n−1)

’th power and recall that Gn = V
2

n(n−1)
n to obtain

(τ 22 · · · τnn )
2

n(n+1) · V
2

n(n+1)

2 ≤ Gn+1 ≤ ((n+ 1)!)
2

n(n+1) (τ 22 · · · τnn )
2

n(n+1) · V
2

n(n+1)

2 .

Observe that both V
2

n(n+1)

2 and ((n+ 1)!)
2

n(n+1) tend to 1 as n → ∞.
Now the inequality becomes

lim
n→∞

(τ 22 · · · τnn )
2

n(n+1) ≤ τ ≤ lim
n→∞

(τ 22 · · · τnn )
2

n(n+1)

and thus limn→∞(τ 22 · · · τnn )
2

n(n+1) = τ . From Lemma 2.5 we know that if

limn→∞ τn exists then it is equal to the limn→∞(τ 22 · · · τnn )
2

n(n+1) . Therefore

limn→∞ τn = limn→∞m
1/n
n = τ .

Proposition 2.7. For any monic polynomial h(z) of degree d, the transfinite

diameter of h−1(E) is τ(E)1/d.

Proof. Let Tn(z) and T ∗
n(z) denote the n-th Chebyshev polynomial for E and

E∗ := h−1(E), respectively, and put

m∗
n := max

z∈E∗
|T ∗

n(z)|.

Then

m∗
dn = max

z∈E∗
|T ∗

dn(z)| ≤ max
z∈E∗

|Tn(h(z))| = max
z∈E

|Tn(z)| = mn.

The second equality holds because the sets h(E∗) = h (h−1(E)) and E are
equal by surjectivity of h. This gives

(m∗
dn)

1/dn ≤ (m1/n
n )1/d
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which, on letting n → ∞, shows that τ(E∗) ≤ τ(E)1/d.
We must now prove this inequality in the other direction. For an arbitrary

fixed w0 ∈ E, we define z1, . . . , zd by h(z) − w0 =
∏d

j=1(z − zj) and define
z∗1 , . . . , z

∗
n in E∗ by T ∗(z) :=

∏n
k=1(z − z∗k). Then from the identity∣∣∣∣∣

d∏
j=1

n∏
k=1

(zj − z∗k)

∣∣∣∣∣ =
∣∣∣∣∣

n∏
k=1

d∏
j=1

(z∗k − zj)

∣∣∣∣∣
we have ∣∣∣∣∣

d∏
j=1

T ∗
n(zj)

∣∣∣∣∣ =
∣∣∣∣∣

n∏
k=1

(h(z∗k)− w0)

∣∣∣∣∣ = |qn(w0)|,

where

qn(w) =
n∏

k=1

(w − h(z∗k)).

Since h(z∗k) ∈ E, we can deduce that

mn ≤ max
w∈E

|qn(w)| ≤
(
max
z∈E∗

|T ∗
n(z)|

)d
= (m∗

n)
d,

showing that (
m1/n

n

)1/d ≤ (m∗
n)

1/n,

and therefore that τ(E)1/d ≤ τ(E∗).

Proposition 2.8. Define Eϵ, the ϵ-thickening of E, to be the set of all z ∈ C
distant at most ϵ from some element of E. Then the limit limϵ↘0 τ(Eϵ) exists
and equals τ(E).

Proof. We know that τ(E) ≤ τ(Eϵ). Given δ > 0, we will show that τ(Eϵ) ≤
τ(E) + 2δ for all small enough ϵ > 0. Put ν = n(n− 1)/2 and suppose that

Gn(Eϵ) =

∣∣∣∣∣
n∏

j,k=1
j<k

(z∗j − z∗k)

∣∣∣∣∣
1/ν

,

14



where z∗j = zj + µjϵ ∈ Eϵ, with zj ∈ E and |µj| ≤ 1. Then

Gn(Eϵ)
ν =

∣∣∣∣∣
n∏

j,k=1
j<k

(zj − zk + (µj − µk)ϵ)

∣∣∣∣∣
≤

n∏
j,k=1
j<k

(|zj − zk|+ 2ϵ)

=
n∏

j,k=1
j<k

|zj − zk|+
n∏

j,k=1
j<k

(|zj − zk|+ 2ϵ)−
n∏

j,k=1
j<k

|zj − zk|

≤
n∏

j,k=1
j<k

|zj − zk|+ (D + 2ϵ)ν −Dν ,

where we recall thatD is the diameter of E. For the last line, we used Lemma
2.10. So since the sequence Gn(Eϵ) is monotonically decreasing, we have

τ(Eϵ) ≤ (Gν
n + (D + 2ϵ)ν −Dν)1/n.

Upon choosing n sufficiently large so that Gn ≤ τ(E) + δ, we then have

τ(Eϵ) ≤ ((τ(E) + δ)ν + (D + 2ϵ)ν −Dν)1/ν

≤ (τ(E) + δ)

(
1 +

(D + 2ϵ)ν −Dν

δν

)1/ν

,

using τ(E) + δ ≥ δ. Then we can choose ϵ > 0 small enough so that(
1 +

(D + 2ϵ)ν −Dν

δν

)1/ν

≤ 1 +
δ

τ(E) + δ
,

giving τ(Eϵ) ≤ τ(E) + 2δ, as we wanted.

Proposition 2.9. The boundary ∂E of E has the same transfinite diameter
as E.

Proof. As earlier, let Vn(E) be the maximum of |V (z1, . . . , zn)| as z1, . . . zn
range over E. For any particular zj, the maximum occurs for zj on the
boundary of E, by the maximum principle. Hence Vn(E) = Vn(∂E), and
so τ(E) = τ(∂E).
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Lemma 2.10. Let δ and a1, . . . , an be positive numbers with A := maxnj=1 aj.
Then

n∏
j=1

(aj + δ)−
n∏

j=1

aj ≤ (A+ δ)n − An.

Proof. We have

n∏
j=1

(aj + δ) =
∑

B⊂{1,2,...,n}

δn−|B|
∏
b∈B

ab

=
∑

B⊊{1,2,...,n}

δn−|B|
∏
b∈B

ab + a1a2 · · · an

≤
∑

B⊊{1,2,...,n}

δn−|B|
∏
b∈B

A+ a1a2 · · · an

=
∑

B⊊{1,2,...,n}

δn−|B| · A|B| + a1a2 · · · an.

Now because for every k ∈ {1, 2, . . . , n} there are
(
n
k

)
subsets of {1, 2, . . . , n}

with k elements we have that

n∏
j=1

(aj + δ) ≤
(
n

0

)
δn +

(
n

1

)
δn+1A1 + · · ·+

(
n

n− 1

)
δ1An−1 + a1a2 · · · an.

Hence

n∏
j=1

(aj + δ)−
n∏

j=1

aj ≤
(
n

0

)
δn + · · ·+

(
n

n− 1

)
δ1An−1 + a1a2 · · · an −

n∏
j=1

aj

=

((
n

0

)
δn + · · ·+

(
n

n− 1

)
δ1An−1 + An

)
− An

= (A+ δ)n − An.

2.2 Example: the unit circle

Now, for a practical example we will compute the transfinite diameter of the
unit circle. We will try two different methods, first we will compute it using
Definition 2.1 and then using Proposition 2.6.
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Proposition 2.11. Let E be the unit circle in C. Then τ(E) = 1.

Proof. We use Euler’s formula

eiθ = cos(θ) + i sin(θ).

The point eiθ is the point on the unit circle that is rotated θ radians from
standard position. The distance between two points zk and zj on the unit
circle with arg(zk) = θk and arg(zj) = θj is given by:

|zk − zj| = |eiθk − eiθj |.

We claim that the products of the distances between n points is maximized
when the points are equally spaced around the unit circle, in the shape of a
regular n-gon.

Consider n points on the unit circle represented as zk = eiθk for k =
0, 1, . . . , n − 1. We want to maximize the product of distances between all
pairs of these points

pn(θ0, θ1, . . . , θn−1) :=
∏

0≤k<j≤n−1

∣∣eiθk − eiθj
∣∣

The distance is∣∣eiθk − eiθj
∣∣ = |(cos(θk) + i sin(θk))− (cos(θj) + i sin(θj))|
= |cos(θk)− cos(θj) + i(sin(θk)− sin(θj))|

The modulus of a complex number a+ ib is equal to
√
a2 + b2, thus

|eiθk − eiθj | =
√

(cos(θk)− cos(θj))2 + (sin(θk)− sin(θj))2

=
(
cos2(θk)− 2 cos(θk) cos(θj) + cos2(θj)

+ sin2(θk)− 2 sin(θk) sin(θj) + sin2(θj)
)1/2

=
√

1− 2 cos(θk) cos(θj) + 1− 2 sin(θk) sin(θj)

=
√

2− 2(cos(θk) cos(θj) + sin(θk) sin(θj)).

Since cos(θk − θj) = cos(θk) cos(θj) + sin(θk) sin(θj), we get

|eiθk − eiθj | =
√

2− 2 cos(θk − θj).

17



Using the double-angle identity for cosine 1 − cos(x) = 2 sin2
(
x
2

)
for

x = θk − θj, we get

2− 2 cos(θk − θj) = 2 · 2 sin2

(
θk − θj

2

)
= 4 sin2

(
θk − θj

2

)
.

Therefore, ∣∣eiθk − eiθj
∣∣ = 2 sin

(
θk − θj

2

)
.

Thus, the product to maximize becomes

pn(θ0, θ1, . . . , θn−1) =
∏

0≤k<j≤n−1

2 sin

(
θk − θj

2

)
.

Since 2(
n
2) is a constant factor, we can focus on maximizing

q(θ0, θ1, . . . , θn−1) =
∏

0≤k<j≤n−1

sin

(
θk − θj

2

)
.

We need to find the critical points of q. To do this, we take the natural
logarithm to convert the product into a sum

log q(θ0, θ1, . . . , θn−1) =
∑

0≤k<j≤n−1

log

(
sin

(
θk − θj

2

))
.

Let f(θ0, θ1, . . . , θn−1) = log q(θ0, θ1, . . . , θn−1). Then we need to find the
critical points of f . The partial derivative of f with respect to θm is

∂f

∂θm
=
∑
k ̸=m

∂

∂θm
log

(
sin

(
θm − θk

2

))
.

Using the chain rule, we get

∂

∂θm
log

(
sin

(
θm − θk

2

))
=

1

sin
(
θm−θk

2

) · cos ( θm−θk
2

)
2

=
1

2
cot

(
θm − θk

2

)
.

So

∂f

∂θm
=

1

2

∑
k ̸=m

cot

(
θm − θk

2

)
.
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To solve the equation ∑
k ̸=m

cot

(
θm − θk

2

)
= 0 (2.4)

we need to determine the values of θk such that this condition holds for all
m.

Consider n points equally spaced on the unit circle. The angles θk for
these points can be written as

θk =
2πk

n
for k = 0, 1, 2, . . . , n− 1.

These points are separated by an equal angle of 2π
n
. Substitute θk =

2πk
n

into
the sum (2.4)

∑
k ̸=m

cot

(
2πm
n

− 2πk
n

2

)
=
∑
k ̸=m

cot

(
π(m− k)

n

)
.

We need to show that: ∑
k ̸=m

cot

(
π(m− k)

n

)
= 0.

We observe that set of angles θk = 2πk
n

is symmetric. Also note that the
cotangent function, cot(x), is odd and periodic with period π

cot(x+ π) = cot(x) and cot(−x) = − cot(x).

Thus the sum of cotangents over equally spaced points will involve terms
that are symmetric about m. For each k ̸= m, there exists a k′ ̸= m such

that cot
(

π(m−k)
n

)
is paired with cot

(
π(m−k′)

n

)
. These pairs of cotangents

have equal absolute values but opposite signs. Therefore the sum adds up to
zero and this proves our claim.

We consider these points that maximize the function pn as if they were in
the complex plane. Let z1 = 1 = ei·0. According to our previous calculation,
the next point in our collection will be rotated 2π

n
radians from 1. Thus

the second point is ei
2π
n . Continuing in this manner, the other points that

are equally spaced around the unit circle are the other complex nth roots of
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unity, and every nth root of unity will be in our collection. So, every point
in our collection is a root of the equation

xn − 1 = 0.

Thus,

xn − 1 = (x− 1)(x− ei
2π
n )(x− ei

4π
n ) · · · (x− ei

(2n−2)π
n )

However, we also have

xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x+ 1).

and dividing out the (x− 1) term yields

(x− ei
2π
n )(x− ei

4π
n ) · · · (x− ei

2n−2π
n ) = (xn−1 + xn−2 + · · ·+ x+ 1)

Substituting 1 for x in each polynomial gives:

(1 + 1 + · · ·+ 1) = n = (1− ei
2π
n )(1− ei

4π
n ) · · · (1− ei

(2n−2)π
n )

This implies that

n = |(1− ei
2π
n )(1− ei

4π
n ) · · · (1− ei

(2n−2)π
n |

= |(1− ei
2π
n )||(1− ei

4π
n )| · · · |(1− ei

(2n−2)π
n |

We denote this product of the distances from z1 = 1 to each other point by
C(z1). By the symmetry of the points, the C(zk) = C(zj) for 1 ≤ k, j ≤ n.
Thus we have

n−1∏
j=0

C(ei
2jπ
n ) = nn.

Given any two points zj and zk, the distance between them appears twice in
the preceding product, once in C(zj) and once in C(zk). Thus we have

p2n = nn

pn = n
n
2

p
2

n(n−1)
n = Gn = n

1
n−1

and so because e
log(n)
n−1 → 1 as n → ∞, we obtain

τ(E) = lim
n→∞

Gn = 1.
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Now we give an alternative proof using Chebyshev polynomials. Before
we begin we recall that for E a compact set in the complex plane C , the
uniform (sup) norm on E is defined as

||f ||E = sup
z∈E

|f(z)|.

Note that for Tn(z) the nth Chebyshev polynomial we have ||Tn||E = mn (see
Definition 2.2).

Proof. (second proof of Proposition 2.11) Let E = D(0, 1) = {z ∈ C : |z| ≤
1} be the closed disk with centre at 0 and radius 1. We consider some monic
polynomial p(z) = zn + an−1z

n−1 + · · · + a0 ∈ C[z]. By Proposition 2.9, the
transfinite diameter of the closed disk is the same as the transfinite diameter
of the unit circle. Observe that

||p||2E ≥ ||p||2L2 =
1

2π

∫ 2π

0

|p(eit)|2dt

= 1 + |an−1|2 + · · ·+ |a0|2 ≥ 1,

where the second equality comes from Parseval’s identity and the fact that
the Fourier coefficients of p(eit) are the coefficients of the polynomial p. So
||p||E ≥ 1 for any monic polynomial. Now observe that ||zn||E = 1 Therefore
for the Chebyshev polynomial must satisfy 1 ≤ ||Tn(z)||K = mn ≤ 1. So
mn = 1 and τn = 1 and thus τ = 1.

2.3 Example: the unit segment

Consider the line segment E = {x + 0 · i | x ∈ [0, 1]}. For simplicity we
consider it as a subset of the real numbers, E = [0, 1] ∈ R. Unlike in the
case of the unit circle the obvious choice of equally distanced points does not
give the actual values for Gn(E), i.e.,

∏
1≤j<k≤n |zj − zk| is not maximized

for zk = k−1
n
, but they give us the bound e−3/2 ≈ 0.22313 ≤ τ(E). In

fact as we will prove later τ(E) = 1
4
. First we will analyse what happens

when we consider the equally distanced points and then we will compute the
transfinite diameter using the equivalent definition by Proposition 2.6.

Just like in the unit circle we consider the points that are equally spaced
along the segment. Set p(z1, . . . , zn) :=

∏
1≤j<k≤n |zj − zk| and consider the

n+1 points {0, 1
n
, 2
n
, . . . .n

n
}. We will consider the limit of this value as n goes
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to infinity to give a lower bound for τ([0, 1]), since the points are not actually
the optimal points. The product p

(
0, 1

n
, 2
n
, . . . , n−1

n
, 1
)
contains n(n + 1)/2

terms and each of these terms will be a fraction with denominator n. The
numerators of these fractions will contain n values of 1, n − 1 values of 2,
etc., up to 1 value of n. Thus, we have

p

(
0,

1

n
,
2

n
, . . . ,

n− 1

n
, 1

)
=

n!(n− 1)!(n− 2)! · · · 2!1!
n

n(n+1)
2

.

From [3] we have that

lim
n→∞

p

(
0,

1

n
,
2

n
, . . . ,

n− 1

n
, 1

) 2
(n+1)n

= e−3/2 ≈ 0.22313.

Therefore p
(
0, 1

n
, 2
n
, . . . , n−1

n
, 1
) 2

(n+1)n ≤ Gn+1(E), we take the limit as n goes
to infinity of both sides to get

e−3/2 ≈ 0.22313 ≤ τ(E).

Before we continue note that we can assume that the Chebychev polyno-
mials of the closed interval [−2, 2] have real coefficients. To see this let p(x)
be any monic polynomial with complex coefficients and let x ∈ [−2, 2]. Then
since x is real we have |p(x)| = |p(x)| = |p(x)|. Now consider the polynomial

r(x) := p(x)+p(x)
2

and note that it is monic and has real coefficients. Then we
have

|r(x)| = |p(x) + p(x)|
2

≤ |p(x)|+ |p(x)|
2

= |p(x)|.

Proposition 2.12. Let E be the line segment E = {x+0·i | x ∈ [−2, 2]} ∈ C.
Then τ(E) = 1.

Proof. As above we consider E as a subset of the real numbers, E = [−2, 2] ∈
R. Consider some monic polynomial p(z) = zn + an−1z

n−1 + · · ·+ a0 ∈ R[z].
We parametrise by z = 2 cos t and set

q(t) := p(2 cos t) = (2 cos t)n + an−1(cos t)
n−1 + · · ·+ a0, t ∈ [0, 2π].

We observe that

||p||E = max
t∈[0,2π]

|p(2 cos t)| = max
t∈[0,2π]

|q(t)|
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and also using trigonometric identities for trigonometric powers we observe
that q(t) = 2 cos(nt) + “some polynomial in cos(jt) with j ≤ n− 1”. Now
similarly to the case of the unit circle we use Parseval’s identity and obtain

||q(t)||2K ≥ ||q(t)||2L2 =
1

2π

∫ 2π

0

|q(t)|2dt

= 4 + “sum of positive real numbers” ≥ 4.

For a complex number z = eit now consider the Dickson polynomials [15]

Dn(z + z−1) = zn + z−n = eint + e−int = 2 cos(nt).

We have that ||Dn||E = 2. Thus mn = 2 and τn = 21/n, so τE = 1 .

By the scaling property of the transfinite diameter we obtain the follow-
ing.

Corollary 2.13. Let E be the line segment E = {x + 0 · i | x ∈ [0, 1]} ∈ C.
Then τ(E) = 1/4.

1

ζ
ζ2

ζ3

ζ4

Figure 3: The regular 5-hedgehog H5 := H(1, ζ, . . . , ζ4), ζ = e2πi/5.

Corollary 2.14. Let Hn := H(1, ζn, . . . , ζ
n−1
n ), ζn = e2πi/n be the regular

n-hedgehog. Then τ(Hn) = 4−1/n.

Proof. We have that Hn = f−1[0, 1] where f(x) = xn. Hence by Proposition
2.7 τ(Hn) = 4−1/n.
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3 Bounds on determinants

Let N and m be integers with N ≥ m + 1 and m ≥ 0. For independent
variables X0, . . . , Xm we define

AN =


1 1 · · · 1
X0 X1 · · · Xm

X2
0 X2

1 · · · X2
m

...
...

...
...

XN−1
0 XN−1

1 · · · XN−1
m

 ∈ MatN,m+1(Z[X0, . . . , Xm]). (3.1)

Note that for N = m+ 1 we recover a Vandermonde matrix.
The goal of this section is to bound the quantities

X =
1

2
log detAN(z0, . . . , zm)

⊤AN(z0, . . . , zm)),

where z0, . . . , zm ∈ C. The obtained bounds (Proposition 3.4) are key ingre-
dients for bounding transfinite diameters of hedgehogs in the next section.

3.1 Statement of result

Definition 3.1. For a real number t, we define log+ t = logmax{1, t}.

Definition 3.2. Let m ∈ Z, the Barnes G-function is defined as

G(m+ 2) =


0 m ≤ −2
1 m = −1, 0
1!2! · · ·m! m ≥ 1

Definition 3.3. Let N and m be integers with N ≥ m + 1 and m ≥ −1.
We define

γN,m =
G(m+ 2)2

G(2m+ 3)

m∏
j=1

(N2 − j2)m+1−j > 0.

Proposition 3.4. Let N ≥ 2 and m ≥ 0 be integers with N ≥ m+1 and let
z0, . . . , zm ∈ C be pairwise distinct. Set

X =
1

2
log
(
detAN(z0, . . . , zm)

⊤AN(z0, . . . , zm)
)
.
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(i) We have

X ≤ 1

2
log γN,m +

m+ 1

2
logN +

∑
0≤i,j≤m

log |zj − zi|

+ (N − (m+ 1))
m∑
j=0

log+ |zj|.

(ii) We have

X ≤ m+ 1

2
logN + (N − 1)

m∑
j=0

log+ |zj|.

(iii) If max{|z0|, . . . , |zm|} ≤ 1, then we have

X ≤ (m+ 1) logN +
m(m+ 1)

2
logmax{|z0|, . . . , |zm|}, (3.2)

the right-hand side is taken to be logN in the case m = 0.

Corollary 3.5. With the same notations as above, we have

X ≤ min

{
0,

1

2
log γN,m +

∑
0≤i,j≤m

log |zj − zi| −m
m∑
j=0

log+ |zj|
}

+
m+ 1

2
logN + (N + 1))

m∑
j=0

log+ |zj|.

3.2 Preliminary results

Proposition 3.6. Let z0, . . . , zm ∈ C be pairwise distinct, then

det
(
AN(z0, . . . , zm)

⊤AN(z0, . . . , zm)
)
̸= 0.

Proof. The vectors (1, zi, z
2
i , . . . , z

N−1
i ) for 0 ≤ i ≤ m are the columns of the

matrix AN(z0, . . . , zm) thus the matrix AN(z0, . . . , zm)
⊤AN(z0, . . . , zm) is a

Gram matrix. The determinant of the Gram matrix is non-zero if and only if
the vectors (1, zi, z

2
i , . . . , z

N−1
i ), 0 ≤ i ≤ m are linearly independent. To show

that these vectors are linearly independent we first choose complex numbers
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zi for m + 1 ≤ N − 1 such that the numbers z0, z1, . . . , zN−1 are pairwise
distinct. Now consider the matrix

1 1 · · · 1
z0 z1 · · · zN−1

z20 z21 · · · z2N−1
...

...
. . .

...
zN−1
0 zN−1

1 · · · zN−1
N−1

 .

The determinant of this matrix is
∏

0≤i<j≤N−1(zj−zi) by Proposition A.3 and

it is non-zero since the zi are distinct. Thus the vectors (1, zi, z
2
i , . . . , z

N−1
i )

for 0 ≤ i ≤ N − 1 are linearly independent and therefore the vectors
(1, zi, z

2
i , . . . , z

N−1
i ) for 0 ≤ i ≤ m are linearly independent.

Before we prove the Proposition 3.4 we need a few definitions and a few
lemmas.

Definition 3.7. Let m ∈ N and let I = (α0, . . . , αm) be an (m+ 1)-tuple of
non-negative and strictly increasing integers. We define

AI =


Xα0

0 Xα0
1 · · · Xα0

m

Xα1
0 Xα1

1 · · · Xα1
m

...
...

...
...

Xαm
0 Xαm

1 · · · Xαm
m

 . (3.3)

Definition 3.8. Given j ∈ N0 and k ∈ Z the complete homogeneous sym-
metric polynomial of degree k in j variables is

hk(X0, . . . , Xj) =
∑

a0,...,aj∈N0

a0+···+aj=k

Xa0
0 · · ·Xaj

j ∈ Z[X0, . . . , Xj].

Observe that hk = 0 if k < 0.

Lemma 3.9 (Jacobi-Trudi identity). Given I = (α0, . . . , αm) be as above ,
we define

SI = det


hα0(X0) hα0−1(X0, X1) · · · hα0−m(X0, . . . , Xm)
hα1(X0) hα1−1(X0, X1) · · · hα1−m(X0, . . . , Xm)

...
...

. . .
...

hαm(X0) hαm−1(X0, X1) . . . hαm−m(X0, . . . , Xm)

 , (3.4)
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Then
detAI = SI

∏
0≤i,j≤m

(Xj −Xi). (3.5)

Proof. We claim that detAI equals
∏k−1

i=0

∏m
j=i+1(Xj −Xi) times

det


hα0(X0) · · · hα0−k(X0, . . . , Xk−1, Xk) · · · hα0−k(X0, . . . , Xk−1, Xm)
hα1(X0) · · · hα1−k(X0, . . . , Xk−1, Xk) · · · hα1−k(X0, . . . , Xk−1, Xm)

...
. . .

...
. . .

...
hαm(X0) . . . hαm−k(X0, . . . , Xk−1, Xk) · · · hαm−k(X0, . . . , Xk−1, Xm)

 .

(3.6)
The lemma then follows by taking k = m. We proceed by induction.

The claim holds true for k = 0 as

AI =


Xα0

0 Xα0
1 · · · Xα0

m

Xα1
0 Xα1

1 · · · Xα1
m

...
...

. . .
...

Xαm
0 Xαm

1 · · · Xαm
m

 .

We assume that the claim holds for k ∈ {0, . . . ,m − 1}. The matrix in
(3.6) has the form (c0, . . . , cm) where c0, . . . cm are column vectors of length
m + 1 with entries in Z[X0, . . . , Xm]. The determinant is alternating, so let
us subtract the (k + 1)-st column ck from the (k + 2)-nd column ck+1, and
then subtract the (k+1)-th column ck from the (k+3)- rd column ck+2, etc.
until we have exhausted all columns. The induction hypothesis gives

detAI = det(c0, . . . , ck, ck+1, ck+1−ck, ck+2−ck, . . . , cm−ck)
k−1∏
i=0

m∏
j=i+1

(Xj−Xi).

(3.7)
Indeed for j ∈ {1, . . .m− k}

ck+j − ck =


hα0−k(X0, . . . , Xk−1, Xk+j)− hα0−k(X0, . . . , Xk)
hα1−k(X0, . . . , Xk−1, Xk+j)− hα1−k(X0, . . . , Xk)

...
hαm−k(X0, . . . , Xk−1, Xk+j)− hαm−k(X0, . . . , Xk)


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with

hαi−k(X0, . . . , Xk−1, Xk+1)− hαi−k(X0, . . . , Xk)

=
∑

a0,...,ak=αi−k

Xa0
0 · · ·Xak−1

k−1 (Xak
k+j −Xak

k )

= (Xk+j −Xk)
∑

a0,...,ak=αi−k

ak−1∑
a=0

Xa0
0 · · ·Xak−1

k−1 Xak−1−a
k Xa

k+j

= (Xk+j −Xk)hαi−k−1(X0, . . . , Xk, Xk+j).

So we can factor out Xk+j −Xk from each respective column. We insert this
into (3.7) and find that detAI equals

det


hα0−(k+1)(X0, . . . , Xk, Xk+1) . . . hα0−(k+1)(X0, . . . , Xk, Xm)

c0 · · · ck hα1−(k+1)(X0, . . . , Xk, Xk+1) . . . hα1−(k+1)(X0, . . . , Xk, Xm)
...

. . .
...

hαm−(k+1)(X0, . . . , Xk, Xk+1) . . . hαm−(k+1)(X0, . . . , Xk, Xm)


·

(
k−1∏
i=0

m∏
j=i+1

(Xj −Xi)

)
m−k∏
j=1

(Xk+j −Xk).

Observing that(
k−1∏
i=0

m∏
j=i+1

(Xj −Xi)

)
m−k∏
j=1

(Xk+j −Xk) =
k∏

i=0

m∏
j=i+1

(Xj −Xi)

finishes the proof.

Lemma 3.10. Let I and SI be as above. The coefficients of SI are non-
negative integers.

Proof. From the Lemma 3.9 we have that

SI =
detAI∏

0≤i,j≤m(Xj −Xi)
=

detAI

detV (X0, . . . , Xm)

where V (X0, . . . , Xm) is a Vandermonde matrix. Thus by Proposition A.9
we have that

SI = sλ(x1, x2, . . . , xn) =
∑
T

xw(T ),

where the sum runs over all tableaux of shape λ. The coefficients of
∑

T xw(T )

are non negative, finishing the proof.
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Lemma 3.11. Let D ∈ Matm+1(C[T ]) and t ∈ C such that the rank of
D(t) ∈ Matm+1(C) is at most r. Then detD ∈ C[T ] has a zero of order at
least m+ 1− r at t.

Proof. As C[T ] is a principal ideal domain we can put D into Smith normal
form. In other words, there are matrices U, V ∈ GLm+1(C[T ]) such that
UDV is diagonal with diagonal entries f0, . . . , fm ∈ C[T ] . Note that detU
and detV are non-zero constants. Therefore, the order of vanishing of detD
at t equals the order of vanishing of f0, . . . , fm at t. The lemma follows, as
by hypothesis at most r among f0(t), . . . , fm(t) are non-zero.

Lemma 3.12. Suppose N ≥ 2 and m ≥ 0 are integers with N ≥ m + 1.
Then

detAN(X0, . . . , Xm)
⊤AN(Y0, . . . , Ym) = B

∏
0≤i<j≤m

(Xj −Xi)(Yj − Yi) (3.8)

where B ∈ Z[X0, . . . , Xm, Y0, . . . , Ym] has non-negative coefficients with

B( 1, . . . , 1︸ ︷︷ ︸
2m+ 2 times

) = γN,mN
m+1. (3.9)

Moreover, max0≤j≤m{degXj
B, degYj

B} ≤ N − (m+ 1).
Note that for N = m+ 1 we are in the Vandermonde case and (3.9) implies

γN,N−1 = N−N . (3.10)

Proof. By the Cauchy-Binet Formula (Theorem A.2), the left-hand side of
(3.8) equal ∑

I

detAI(X0, . . . , Xm)
⊤AI(Y0, . . . , Ym)

where here and below the sum ranges over all (m+1)-tuples I = (α0, . . . αm)
of integers satisfying 0 ≤ α0 < · · · < αm ≤ N − 1. Now Lemma 3.9 implies
(3.8) with

B =
∑
I

SI(X0, . . . Xm)SI(Y0, . . . Ym)

and with SI as in (3.4). Thus B ∈ Z[X0, . . . , Xm, Y0, . . . , Ym]. Moreover,
each SI has non-negative coefficients by Lemma 3.10 and thus the same holds
for B.
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The degree of detAN(X0, . . . , Xm)
⊤AN(Y0, . . . , Ym) with respect to Xj is

at most N−1. The degree of the Vandermonde determinant
∏

0≤i<j≤m(Xj−
Xi) with respect to Xj is m. So (3.8) implies degXj

B ≤ N − (m + 1) and
the same bound holds for degYi

B.
It remains to justify the value of B at (1, . . . , 1). Here and below I is as

before. Observe that

SI =


hα0(1) hα0−1(1, 1) · · · ha0−m(1, . . . , 1)
hα1(1) hα1−1(1, 1) · · · ha1−m(1, . . . , 1)

...
...

. . .
...

hαm(1) hαm−1(1, 1) · · · ham−m(1, . . . , 1)

 .

Also observe that hai−j( 1, . . . , 1︸ ︷︷ ︸
j + 1 times

) is equal to the number of ways one can

partition αi − j in j + 1 parts and

(αj − j + j + 1− 1)!

(j + 1− 1)!(αj − j)!
=

αi!

j!(αi − j)!
=

(
αi

j

)
,

thus hai−j( 1, . . . , 1︸ ︷︷ ︸
j + 1 times

) =
(
αj

j

)
. So

B(1, . . . , 1) =
∑
I

b2I

where

b(α0,...,αm) = det


(
α0

0

) (
α0

1

)
· · ·

(
α0

m

)(
α1

0

) (
α1

1

)
· · ·

(
α1

m

)
...

...
. . .

...(
αm

0

) (
αm

1

)
· · ·

(
αm

m

)
 .

Observe that

b(α0,...,αm) =
1

1!2! · · ·m!
det


1 α0 α0(α0 − 1) · · · α0(α0 − 1) · · · (α0 −m+ 1)
1 α1 α1(α1 − 1) · · · α1(α1 − 1) · · · (α1 −m+ 1)
...

...
...

. . .
...

1 αm αm(αm − 1) · · · αm(αm − 1) · · · (αm −m+ 1)


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An entry in the (j + 1)-st column of the above matrix is of the form αj
i +

(polynomial in αi of degree < j). So by Proposition A.4

b(α0,...,αm) =
1

G(m+ 2)
det


α0
0 α1

0 · · · αm
0

α0
1 α1

1 · · · αm
1

...
...

. . .
...

α0
m α1

m · · · αm
m

 ,

where G is the Barnes G-function from Definition 3.2 and where we use the
convention 00 = 1. Thus by the Cauchy-Binet Formula (Theorem A.2)

B(1, . . . , 1) =
∑
I

b2I =
detC⊤C

G(m+ 2)2
(3.11)

with

C =


1 0 · · · 0
1 1 · · · 1
1 2 · · · 2m

...
...

. . .
...

1 N − 1 · · · (N − 1)m

 ,

where

C⊤C =

(N−1∑
k=0

ki+j

)
0≤i,j≤m

=


∑N−1

k=0 k0+0
∑N−1

k=0 k0+1 · · ·
∑N−1

k=0 k0+m∑N−1
k=0 k1+0

∑N−1
k=0 k1+1 · · ·

∑N−1
k=0 k1+m

...
...

. . .
...∑N−1

k=0 km+0
∑N−1

k=0 km+1 · · ·
∑N−1

k=0 km+m

 .

Note that the top-left entry is N.
We now prove that

detC⊤C = γN,mN
m+1G(m+ 2)2. (3.12)

This equation together with (3.11) implies (3.9) and completes the proof.
Let i ≥ 0 be an integer and let Bi = T i + · · · ∈ Q[T ] denote the i-th

Bernoulli polynomial with constant term Bi(0). Recall Faulhaber’s Formula
(Proposition A.13):

N−1∑
k=0

ki = si(N) where si =
(Bi+1(T )−Bi+1(0))

i+ 1
∈ Q[T ].

31



We define

D =

(
Bi+j+1(T )−Bi+j+1(0)

i+ j + 1

)
0≤i,j≤m

=


s0 s1 · · · sm
s1 s2 · · · sm+1
...

...
. . .

...
sm sm+1 · · · s2m


with D ∈ Matm+1(Q[T ]) and find C⊤C = D(N). The determinant is
detD =

∑
σ sign(σ)s0+σ(0)s1+σ(1)···sm+σ(m)

where σ ranges over all permuta-
tions of {0, 1, . . . ,m}. As deg si+σ(i) = i+ σ(i) + 1 we find that deg detD ≤
(m+ 1)2. Because for any of the σ’s

deg(s0+σ(0)s1+σ(1)···sm+σ(m)
)

= s0 + σ(0) + 1 + s1 + σ(1) + 1 + · · ·+ sm + σ(m) + 1

= 2 · (0 + 1 + · · ·+m) + (m+ 1)

= m2 + 2m+ 1

= (m+ 1)2.

We also observe that si(0) = 0 and thus T | si for all i ≥ 0. Therefore,
Tm+1 | detD . Let r ≥ 1 be an integer. Then

D(r) =

( r−1∑
k=0

ki+j

)
0≤i,j≤m

is the product of an (m+1)×r matrix and its transpose. So its rank is at most
r and by Lemma 3.11 we have (T − r)m+1−r | detD for all r ∈ {1, . . . ,m}.
Next we use the known identity Bi(T ) = (−1)iBi(1 − T ) for all i ≥ 0 and
Bi(0) = 0 for all odd i ≥ 3 to see that si(1−T ) = (−1)i+1si(T ) for all i ≥ 1.
For all r ∈ {2, . . . ,m+ 1} we see that

−si+j(1− r) = (−1)i+jsi+j(r) =
r−1∑
k=0

(−k)i+j,

except when i+ j = 0 where −s0(1−r) = r−1. Combining these cases gives

−D(1− r) =

(
r−1∑
k=1

(−k)i+j

)
0≤i,j≤m

.
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Note the sums are now of length r − 1. So −D(1 − r) is a product of an
(m + 1) × (r − 1) matrix with its transpose. Hence the rank of D(1 − r) is
at most r − 1. As above we conclude (T + r − 1)m−r+2 | detD, this time for
all r ∈ {2, . . . ,m+ 1}. This also holds for r = 1 as we saw above.

We have proved that

detD = λ

m∏
r=1

(T − r)m+1−r

m+1∏
r−1

(T + r − 1)m+2−r

with λ ∈ Q[T ]. Comparing degrees using deg detD ≤ (m + 1)2 we see that

λ ∈ Q. We determine λ as follows. We have si =
T i+j+1

i+j+1
+(lower order terms in T )

and

T−(m+1)2 detD =
∑
σ

sign(σ)(T−(0+σ(0)+1)s0+σ(0)) · · · (T−(m+σ(m)+1)sm+σ(m)).

Each term in this sum is sign(σ)
i+j+1

+ ( terms of order < 0 in T ). We conclude

that λ is the determinant of the (m+1)×(m+1) Hilbert matrix
(

1
i+j+1

)
0≤i,j≤m

.

This determinant has been computed in [10] and is equal to λ = G(m +
2)4/G(2m+ 3). This yields

detC⊤C = detD(N) =
G(m+ 2)

G(2m+ 3)

m∏
r=1

(N − r)m+1−r

m+1∏
r=1

(N + r − 1)m+2−r.

Finally, using the definition of γN,m (Definition 3.3) and (3.12) the lemma
follows.

3.3 Proof of Proposition 3.4

Proof. For part (i) observe that B(1, . . . , 1) is equal to the sum of the co-
efficients in B(z0, . . . , zm, z0, . . . zm) and that each term can be bounded by∏m

j=0 max{1, |zj|}
degzj B

. Also note that |zj| = |zj| , so using Lemma 3.12 we
have 2 ·max0≤j≤m{degzj B, degzj B} ≤ 2(N − (m+ 1)). The above observa-
tions and the triangle inequality yield

|B(z0, . . . , zm, z0, . . . zm)| ≤ B(1, . . . , 1)
m∏
j=0

max{1, |zj|}2(N−(m+1)).
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So we find

|2X| = |21
2
logAn(z0, . . . , zm)

⊤AN(z0, . . . zm)|

= | logB(z0, . . . , zm, z0, . . . zm)|+

∣∣∣∣∣log ∏
0≤i<j≤m

(zj − zi)(zj − zi)

∣∣∣∣∣
≤ logB(1, . . . , 1)

m∏
j=0

max{1, |zj|}2(N−(m+1)) +

∣∣∣∣∣log ∏
0≤i<j≤m

(zj − zi)(zj − zi)

∣∣∣∣∣
≤ log γN,mN

m+1 + log
m∏
j=0

max{1, |zj|}2(N−(m+1)) + log
∏

0≤i<j≤m

|zj − zi||zj − zi|

= log γN,mN
m+1 + 2(M − (m+ 1))

m∑
j=0

log+ |zj|+
∑

0≤i<j≤m

log |zj − zi|2

= log γN,mN
m+1 + 2

∑
0≤i<j≤m

log |zj − zi|+ 2(M − (m+ 1))
m∑
j=0

log+ |zj|

and dividing by 2 yields part (i).
For part (ii) we use Hadamard’s Inequality (Theorem A.1). Choose N −

(m + 1) vectors in CN that are pairwise orthonormal and orthogonal to
the columns of AN(z0, . . . , zm) with respect to the standard Hermitian inner
product on CN . Denote by A′

N(z0, . . . , zm) = (a′i,j) theN×N matrix obtained
by adding these columns to AN(z0, . . . , zm). Then we apply Hadamard’s
Inequality to find

|detA′
N(z0, . . . , zm)| ≤

N−1∏
j=0

(
N−1∑
i=0

|a′i,j|2
)1/2

=
m∏
j=0

(
N−1∑
i=0

|a′i,j|2
)1/2

· 1 · 1 · · · 1

=
m∏
j=0

(1 + |zj|2 + · · ·+ |zj|2(N−1))1/2.
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Similarly,

| detA′
N(z0, . . . , zm)

⊤| = | detA′
N(z0, . . . , zm)|

≤
N−1∏
j=0

(
N−1∑
i=0

∣∣a′i,j∣∣2
)1/2

=
m∏
j=0

(
N−1∑
i=0

∣∣a′i,j∣∣2
)1/2

· 1 · 1 · · · 1

=
m∏
j=0

(1 + |zj|2 + · · ·+ |zj|2(N−1))1/2

=
m∏
j=0

(1 + |zj|2 + · · ·+ |zj|2(N−1))1/2.

Now observe that because the matrix A′
N(z0, . . . , zm)

⊤ · A′
N(z0, . . . , zm) is of

the form

(
AN(z0, . . . , zm)

⊤AN(z0, . . . , zm) 0
0 IN−m+1

)
, we have that

detAN(z0, . . . , zm)
⊤AN(z0, . . . , zm) = detA′

N(z0, . . . , zm)
⊤A′

N(z0, . . . , zm).

So we can bound X by

X =
1

2
log
(
detAN(z0, . . . , zm)

⊤AN(z0, . . . , zm)
)

=
1

2
log
(
detA′

N(z0, . . . , zm)
⊤A′

N(z0, . . . , zm)
)

=
1

2
log
(
detA′

N(z0, . . . , zm)
⊤ · detA′

N(z0, . . . , zm)
)

≤ 1

2
log

m∏
j=0

(1 + |zj|2 + · · ·+ |zj|2(N−1))

= log
m∏
j=0

(1 + |zj|2 + · · ·+ |zj|2(N−1))1/2.
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Now,

X ≤ log
m∏
j=0

(1 + |zj|2 + · · ·+ |zj|2(N−1))1/2

=
m∑
j=0

log(1 + |zj|2 + · · ·+ |zj|2(N−1))1/2

=
1

2

m∑
j=0

log(1 + |zj|2 + · · ·+ |zj|2(N−1))

≤ 1

2

m∑
j=0

log
(
1 + max{1, |zj|}2 + · · ·+max{|1, zj|}2(N−1)

)
≤ 1

2

m∑
j=0

log
(
12(N−1) +max{1, |zj|}2(N−1) + · · ·+max{1, |zj|}2(N−1)

)
≤ 1

2

m∑
j=0

log
(
N max{1, |zj|}2(N−1)

)
=

1

2

m∑
j=0

logN +
1

2

m∑
j=0

2(N − 1) log+(zj)

=
m+ 1

2
logN +

m∑
j=0

(N − 1) log+(zj).

Therefore we have

X ≤ log
m∏
j=0

(1+|zj|2+· · ·+|zj|2(N−1))1/2 ≤ m+ 1

2
logN+

m∑
j=0

(N−1) log+ |zj|,

as desired.
For part (iii) we recall that e2X =

∑
I | detAI(z0, . . . , zm)|2 by the Cauchy-

Binet Formula (Theorem A.2), where I runs over tuples (α0, . . . , αm) of in-
tegers with 0 ≤ α0 < α1 < · · · < αm ≤ N − 1. As there are

(
N

m+1

)
possible I,
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we get

e2X = e2
1
2 log detAN(z0, . . . , zm)

⊤AN(z0, . . . , zm)

= detAN(z0, . . . , zm)
⊤AN(z0, . . . , zm)

=
∑
I

detAI(z0, . . . , zm)
⊤AI(z0, . . . , zm)

≤
∑
I

| detAI(z0, . . . , zm)|2

≤
(

N

m+ 1

)
max

I
| detAI(z0, . . . , zm)|2.

Moreover,

| detAI(z0, . . . , zm)| ≤ (m+ 1)!max
σ

|z0|ασ(0) · · · |zm|ασ(m)

≤ (m+ 1)!max
σ

{
(max{|z0|, . . . , |zm|})ασ(0)+···+ασ(m)

}
,

where σ runs over all permutations of {0, . . . ,m}. We observe that

α0 + · · ·+ ασ(m) = α0 + · · ·+ αm ≥ 0 + 1 + · · ·+m =
m(m+ 1)

2
.

By the hypothesis of (iii) we have |zj| ≤ 1 for all j, thus

max{|z0, . . . , zm|}ασ(0)+···+ασ(m) ≤ max{|z0, . . . , zm|}m(m+1)/2.

Since
(

N
m+1

)1/2
(m+ 1)! ≤

(
N

m+1

)
(m+ 1)! ≤ Nm+1, we conclude that

eX ≤
(

N

m+ 1

)1/2

(m+ 1)!max{|z0|, . . . , |zm|}
m(m+1)

2

≤ Nm+1max{|z0|, . . . , |zm|}
m(m+1)

2 ,

and thus

log eX = X ≤ logNm+1 + logmax{|z0|, . . . , |zm|}
m(m+1)

2

= (m+ 1) logN +
m(m+ 1)

2
logmax{|z0, . . . , zm|},

as desired.
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3.4 Asymptotic upper bound for γN,m

We start by defining

χ(x) = −x log x− x log 4 +
1 + x2

2x
log(1− x2) + log

1 + x

1− x
, (3.13)

for x ∈ (0, 1).
In this subsection we will give the following asymptotic upper bound for

γN,m.

Lemma 3.13. Let N ≥ 2 and m ≥ 0 be integers with N ≥ m + 1. Set
p = m+1

N
, then

1

2
log γN,m ≤ pχ(p)

N(N − 1)

2
+O((m+ 1) logN). (3.14)

The function χ extends to a continuous function on [0, 1] with χ(0) =
χ(1) = 0. For x ∈ (0, 1) we have

χ′′(x) =
log(1− x2)

x3
< 0. (3.15)

So χ is concave on [0, 1] and in particular it takes non-negative values. More-

over, using that the Taylor series of x 7→ log(1−x2) equals to −
∑∞

k=1
x2k

k
we

find

χ′′(x) = −
∞∑
k=1

x2k−3

k

on (0, 1). Now using that χ(0) = 0 and that limx→0 =
χ(x)+x log(x)

x
= 3

2
−log(4)

we obtain

χ(x) = −x log x+
(3
2
− log 4

)
x−

∞∑
k=2

x2k−1

k(2k − 2)(2k − 1)
(3.16)

38



on (0, 1), where we used the following

1 + x2

2x
log(1 + x2) + log

(
1 + x

1− x

)
=

1 + x2

2x

∞∑
n=1

(−1)n−1

n
((−x)2)n +

∞∑
n=1

(−1)n−1

n
xn −

∞∑
n=1

(−1)n−1

n
(−x)n

=
1 + x2

2x

∞∑
n=1

(−1)n−1

n
x2n + 2

∞∑
m=0

1

2m+ 1
x2m+1 (n = 2m+ 1)

= −1 + x2

2x

∞∑
n=1

x2n

n
+ 2

∞∑
n=0

1

2n+ 1
x2n+1

= − 1

2x

∞∑
n=1

x2n

n
− 1

2
x

∞∑
n=1

x2n

n
+ 2

∞∑
n=0

1

2n+ 1
x2n+1

= −1

2

∞∑
n=1

x2n−1

n
− 1

2

∞∑
n=1

x2n+1

n
+ 2

∞∑
n=0

1

2n+ 1
x2n+1

= −1

2

∞∑
n=0

x2n+1

n
− 1

2

∞∑
n=1

x2n+1

n
+ 2

∞∑
n=0

1

2n+ 1
x2n+1

=
3

2
x+

∞∑
n=1

(
− 1

2n+ 2
− 1

2n
+

2

2n+ 1

)
x2n+1

=
3

2
+

∞∑
n=1

−2n(2n+ 1)− (2n+ 1)(2n+ 2) + 2 · 2n(2n+ 1)

2n(2n+ 1)(2n+ 2)
x2n+1

=
3

2
+

∞∑
n=1

x2n+1

2n(2n+ 1)(n+ 1)

=
3

2
+

∞∑
n=1

x2k−1

(2k − 2)k(2k − 1)
(n = k − 1).

We now prove some properties of the Barnes G-function of Definition 3.2.

Lemma 3.14. Let m ≥ 1 be an integer, then

logG(m+ 1) =
1

2
m2 logm− 3

4
m2 +O(m log(m+ 1)).

Proof. By definition we have logG(m+1) =
∑m−1

j=1 log j!. So we may assume
m ≥ 2.
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Let a and b be integers with a < b and let f : [a, b] → R be a non
decreasing continuous function. We will use the inequality

f(a) +

∫ b−1

a

f(x)dx ≤
b−1∑
j=a

f(j) ≤
∫ b

a

f(x)dx.

The map x 7→ x log x− x is non decreasing on x ≥ 1. So

−1 +

∫ m−1

1

(x log x− x)dx ≤
m−1∑
j=1

j log j − j ≤
∫ m

1

(x log x− x)dx.

We compute the two integrals using that x 7→ x2

2
log x − 3

4
x2 is an anti

derivative of x 7→ x log x− x to find

−1+

∫ m−1

1

(x log x− x)dx

= −1 +

[
x2

2
log x− 3

4
x2

]m−1

1

= −1 +
(m− 1)2

2
log(m− 1)− 3

4
(m− 1)2 +

3

4

= −1 +
m2

2
log(m− 1)−m log(m− 1) +

1

2
log(m− 1)− 3

4
m2 +

3

2
m

=
m2

2
log(m)− 3

4
m2 +O(m log(m+ 1))

and ∫ m

1

(x log x− x)dx =

[
x2

2
log x− 3

4
x2

]m
1

=
m2

2
logm− 3

4
m2 +

3

4
.

Stirling’s approximation (Proposition A.21) states that log j! = j log j − j +
O(log(j + 1)). Thus

m−1∑
j=1

log j! =
m−1∑
j=1

j log j − j +
m−1∑
j=1

O(log(j + 1))

=
m−1∑
j=1

j log j − j +O(m log(m+ 1)).

Putting everything together proves the lemma.
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Lemma 3.15. Let m ≥ 0 be an integer, then

log
G(m+ 2)2

G(2m+ 3)
≤ −(m+ 1)2 log

4(m+ 1)

e3/2
+O(m log(m+ 1)).

Proof. Observe that the left hand side vanishes form = 0. So we may assume
m ≥ 1. Lemma 3.14 applied to m+ 1 and 2m+ 2 implies

logG(m+ 2) =
1

2
(m+ 1)2 log(m+ 1)− 3

4
(m+ 1)2 +O(m log(m+ 1))

and

logG(2m+3) = 2(m+1)2(log 2+log(m+1))−3(m+1)2+O(m log(m+1)),

respectively. The lemma follows on taking the difference 2 logG(m + 2) −
G(2m+ 3).

Lemma 3.16. Let N and m ≥ 0 be integers with N ≥ m + 2. Set p =
(m+ 1)/N , then

m∑
j=1

(m+ 1− j) log(N2 − j2)

≤ pχ(p)N2 + (m+ 1)2 log
4(m+ 1)

e3/2
+O((m+ 1) logN).

Proof. Let a and b be integers with a ≤ b and suppose f : [a, b] 7→ R is a

non-increasing continuous function. Then
∑b

j=a f(j) ≤ f(a) +
∫ b

a
f(x)dx.

Let S denote the sum in question. Clearly, f(x) = (m+1−x) log(N2−x2)
is non negative and non-increasing on [0,m+ 1]. So S ≤

∑m+1
j=0 f(j) and

S ≤ 2(m+ 1) logN +

∫ m+1

0

(m+ 1− x)(log(N − x) + log(N + x))dx

= 2(m+ 1) logN + 2 log(N)

∫ m+1

0

(m+ 1− x)dx+N2

∫ p

0

(p− y) log(1− y2)dy

(3.17)

after a substitutionn y = x/N . Observe that
∫ m+1

0
(m+1−x)dx = (m+1)2/2.

The function

y 7→ −2py +
y2

2
+

(
py +

1− y2

2

)
log(1− y2) + p log

1 + y

1− y
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is an anti-derivative of (p − y) log(1 − y2). This anti-derivative vanishes at
y = 0 and its value at y = p < 1 equals pχ(p)+p2 log p+p2 log 4− 3

2
p2 by the

definition of χ. This allows us to compute the integral in (3.17) and conclude
the proof.

Proof of Lemma 3.13. If n = m + 1, then the lemma follows from χ(1) = 0
and (3.10). So we may assume N ≥ m + 2. Using the definition of γN,m

(Definition 3.3), we write

log γN,m = log
G(m+ 2)2

G(em+ 3)
+

m∑
j=1

(m+ 1− j) log(N2 − j2).

Adding the bounds from Lemmas 3.15 and 3.16 leads to cancellation

log γN,m ≤ pχ(p)N2 +O((m+ 1) logN).

Observe that

pχ(p)N2 = pχ(p)(N(N − 1) +N) = pχ(p)(N(N − 1)) + (m+ 1)χ(p).

The lemma follows as (m+1)χ(p) ends up in the error term of (3.14); indeed,
the continuous function χ : [0, 1] → R is bounded from above.
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4 Transfinite diameter of a hedgehog

In this section we bound from above the transfinite diameter of a hedgehog
following the work of Habegger [9].

4.1 Preliminary results

Lemma 4.1. For any real number z ∈ [−2, 2] there is a w ∈ C \ {0} with
|w| = 1 such that w + w−1 = z.

Proof. We write w = eiθ = cos(θ) + i sin(θ) for some real number θ. We
compute the sum w + w−1

w + w−1 = (cos(θ) + i sin(θ)) + (cos(θ)− i sin(θ)) = 2 cos(θ).

We need to show that

w + w−1 = 2 cos(θ) = z

or, equivalently, that

cos(θ) =
z

2

Since z ∈ [−2, 2], it follows that z
2
∈ [−1, 1]. The cosine function maps real

numbers to the interval [−1, 1], so there exists a real number ζ such that

cos(ζ) =
z

2
.

Let w = eiζ . By construction, |w| = 1 and it satisfies

w + w−1 = 2 cos(ζ) = z.

Lemma 4.2. Let m ≥ 0 and suppose z0, . . . , zm lie on a line segment of
length ϵ. Then ∏

0≤i<j≤m

|zj − zi| ≤ 2m(m+ 1)(m+1)/2
( ϵ
4

)m(m+1)/2

. (4.1)
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Proof. The left-hand side of (4.1) is invariant under translating all zi. If we
translate appropriately and stretch by the factor 4

ϵ
, then

∏
0≤i<j≤m

(
4

ϵ

)
|zj − zi| =

(
4

ϵ

)m(m+1)
2 ∏

0≤i<j≤m

|zj − zi|,

so the product is multiplied by
(

4
ϵ

)m(m+1)/2

. Without loss of generality, we

may thus assume ϵ = 4, that the line segment in question equals [−2, 2], and
that m ≥ 1. For each i we have zi ∈ [−2, 2], hence by Lemma 4.1 there is
wi ∈ C \ {0} with |wi| = 1 and wi + w−1

i = zi. Let

V =
∏

0≤i<j≤m

|zj − zi| =
∏

0≤i<j≤m

|wj − wi + w−1
j − w−1

i |

=
∏

0≤i<j≤m

∣∣∣∣(wi − wj)(wiwj − 1)

wiwj

∣∣∣∣ = ∏
0≤i<j≤m

|(wi − wj)(wiwj − 1)|

We now apply Lemma 2 in [11]. In our case, using |wj| = 1, it implies that

V =
1

2

∣∣∣∣ det(wi
j + w−i

j

)
0≤i,j≤m

∣∣∣∣
=

1

2

∣∣∣∣∣∣∣∣∣
w0

0 + w−0
0 w0

1 + w−0
1 w0

2 + w−0
2 · · · w0

m + w−0
m

w1
0 + w−1

0 w1
1 + w−1

1 w1
2 + w−1

2 · · · w1
m + w−1

m
...

...
...

. . .
...

wm
0 + w−m

0 wm
1 + w−m

1 wm
2 + w−m

2 . . . wm
m + w−m

m

∣∣∣∣∣∣∣∣∣ .
We have |wi

j + w−i
j | ≤ 2 for all i and j. Hadamard’s inequality (Theorem

A.1) implies

V ≤ 1

2

m∏
j=0

(
m∑
i=0

|wi
j + w−i

j |2
)1/2

≤ 1

2

m∏
j=0

(
(m+ 1) · 22

)1/2
≤ 1

2
2m+1(m+ 1)(m+1)/2

= 2m(m+ 1)(m+1)/2.
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Lemma 4.3 (Fischer’s Inequality). Let n ∈ N, let m1, . . . ,mn ≥ 0 be inte-
gers, and set N = (m1 + 1) + · · · + (mn + 1). For each l ∈ {1, . . . , n} let
Ml ∈ MatN,ml+1(C) and set M = (M1 · · ·Mn) ∈ MatN(C). Then

detM
⊤
M ≤

n∏
l=1

detMl
⊤
Ml.

Proof. Let

(
M ′ ∗
∗ M ′′

)
∈ MatN(C) be a positive definite Hermitian matrix

with M ′ ∈ Matr(C) and M ′′ ∈ MatN−r(C). Theorem 13.5.5 [17] states that

det

(
M ′ ∗
∗ M ′′

)
≤ det(M ′) det(M ′′).

If the N ×N matrix is merely positive semi-definite, then adding a positive
multiple of the unit matrix leads to a positive-definite Hermitian matrix.
So the inequality holds for all positive semi-definite matrices by continu-
ity. Moreover, by induction the analog inequality holds for more than two
matrices on the diagonal.

As M
⊤
M is positive semidefinite and Hermitian we conclude

detM
⊤
M = det

M1
⊤

...

Mn
⊤

(M1
⊤ · · · Mn

⊤
)

= det

M1
⊤
M1 ∗

. . .

∗ Mn
⊤
Mn

 ≤
n∏

l=1

detMl
⊤
Ml.

4.2 Habegger’s bound

The following result due to Habegger [9] bounds from above the transfinite
diameter of the union of a hedgehog with n quils and a closed disk of radius
1− 1/n centered at the origin.
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Theorem 4.4. Let n ∈ Z>0 and a1, . . . , an ∈ C with max{|a1|, . . . , |an|} = 1.
Set K = K(a1, . . . , an) and S = K ∪ {z ∈ C : |z| ≤ 1− 1/n}. Then

log τN(K) ≤ log τN(S) ≤ −0.39

n
+O

(
log(nN)

N

)
.

In particular, τ(K) ≤ τ(S) ≤ e−0.39/n.

Corollary 4.5. Let n ∈ Z>0 and a1, . . . , an ∈ C and set K = K(a1, . . . , an).
Then

τ(K) ≤ e−0.39/n max
1≤i≤n

|ai|.

Proof. Define

K′ = K
(

a1
max1≤i≤n |ai|

, . . . ,
ad

max1≤i≤n |ai|

)
.

Then by Theorem 4.4 τ(K′) ≤ e−0.39/n. Now since K = K′ max1≤i≤n |ai|
we obtain τ(K) = τ(K′)max1≤i≤n |ai| ≤ e−0.39/2d max1≤i≤n |ai| by the scaling
property of the transfinite diameter.

Proof of Theorem 4.4. The first inequality follows as τN(K) ≤ τN(L) for all
non-empty compact subsets K ⊂ L ⊂ C and all N ≥ 2. We now prove the
bound for S.

Let ϵ = 1/n ∈ (0, 1]. Our choice of ϵ is in part made by convenience.
Let N ≥ 2 and suppose z1, . . . , zN ∈ S are pairwise distinct. Our goal is to
bound

v =
2

N(N − 1)
log

∏
1≤i<j≤N

|zj − zi| =
2

N(N − 1)
log | det(zi−1

j )1≤i,j≤N |

from above where the second equality follows as the matrix is of Vandermonde
type (Proposition A.3).

We arrange our points z1, . . . , zN into n + 1 parts as follows. We first
collect all points zj with |zj| ≤ 1 − ϵ, relabel these points z0,0, . . . , z0,m0 . If
|zj| > 1 − ϵ, fix any l ∈ {1, . . . , n} with zj ∈ [0, 1]al. We add zj to the l-th
part. So for each l ∈ {1, . . . , n} we obtain points zl,0, . . . , zl,ml

on [0, 1]al.
Note that (m0 + 1) + · + (mn + 1) = N and ml ≥ −1 for all l. We set
pl = (ml + 1)/N .
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a1a2

a3

Figure 4: The inner circle has radius 1− 1/n and the outer circle has radius
1. The points z0,0, . . . , z0,m0 are inside the red circle. For each l ∈ {1, . . . , n}
the points zl,0, . . . , zl,ml

are outside the inner circle and on the line segment
[0, 1]al.

Fischer’s Inequality (Lemma 4.3), implies

v ≤ 2

N(N − 1)

n∑
l=0
ml≥0

1

2
log | detAN(zl,0, . . . zl,ml

)⊤AN(zl,0, . . . , zl,ml
)|

where AN(zl,0, . . . , zl,ml
) ∈ MatN,m+1(C) as in (3.1).

Recall that |zl,j| ≤ 1. We will apply Corollary 3.5 to the terms l ∈
{1, . . . , n} and Proposition 3.4 part (iii) to l = 0, if ml ≥ 0, respectively to
obtain the following bound:

v ≤ p0
m0

N − 1
log(1− ϵ)

+
n∑

l=1

min

{
0, plχ(pl) +

2

N(N − 1)

∑
0≤i<j≤ml

log |zl,j − zl,i|

}
+O

(
logN

N

)
.

(4.2)

We now prove (4.2). We first bound the term of the sum for l = 0 if m0 ≥ 0
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using Proposition 3.4 (iii):

2

N(N − 1)

1

2
log | detAN(z0,0, . . . z0,m0)

⊤AN(z0,0, . . . , z0,m0)|

≤ 2

N(N − 1)

(m0 + 1) logN +
m0(m0 + 1)

2
logmax{|z0,0|, . . . , |z0,m0|}︸ ︷︷ ︸

≤1−ϵ


≤ 2

m0 + 1

N − 1

logN

N
+

m0 + 1

N

m0

N − 1
log(1− ϵ)

≤ O

(
logN

N

)
+ p0

m0

N − 1
log(1− ϵ).

(4.3)

Now using Corollary 3.5 to bound each term of the sum for 1 ≤ l ≤ n,ml ≥ 0
we obtain

2

N(N − 1)

n∑
l=1
ml≥0

1

2
log | detAN(zl,0, . . . zl,ml

)⊤AN(zl,0, . . . , zl,ml
)|

≤ 2

N(N − 1)

n∑
l=1
ml≥0

(
min

{
0,

1

2
log γN,m +

∑
0≤i,j≤m

log |zj − zi|

−m
m∑
j=0

log+ |zj|
}
+

m+ 1

2
logN + (N + 1))

m∑
j=0

log+ |zj|

)

≤
n∑

l=1
ml≥0

min

{
0, plχ(pl) +

2

N(N − 1)

∑
0≤i,j≤ml

log |zj − zi|
}

+O

(
(m1 + 1) + · · ·+ (mn + 1)

(N − 1)

logN

N

)
=

n∑
l=1
ml≥0

min

{
0, plχ(pl) +

2

N(N − 1)

∑
0≤i,j≤ml

log |zj − zi|
}

+O

(
logN

N

)
,

(4.4)

where we used Lemma 3.13 for the second inequality, we used (m0+1)+ · · ·+
(mn + 1) = N to bound the error term, and observe that

∑m
j=0 log

+ |zj| = 0
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because |zl,j| ≤ 1. Note also that every term coming from some l with
ml ≤ −1 can be omitted. Combining the two cases (4.3) and (4.4) together
yield (4.2).

Let us treat the terms on the right-hand side separately. For l = 0 and if
m0 ≥ 0 we use m0

N−1
= p0 − N−(m0+1)

N(N−1)
and log(1− ϵ) ≤ −ϵ to find

p0
m0

N − 1
log(1− ϵ) ≤ −ϵp20 + ϵp0

N − (m0 + 1)

N(N − 1)
= −ϵp20 +O

(
1

N

)
. (4.5)

Let l ∈ {1, . . . , n} with ml ≥ 0. The points zl,0, . . . , zl,ml lie on a line segment
of length ϵ. By (4.1) we find∑

0≤i<j≤ml

log |zl,j − zl,i|

≤ log

(
2ml(ml + 1)(ml+1)/2

( ϵ
4

)ml(ml+1)/2
)

= ml log(2) +
ml + 1

2
log(ml + 1) +

ml(ml + 1)

2
log
( ϵ
4

)
=

ml(ml + 1)

2
log

ϵ

4
+O((ml + 1) log(ml + 1)).

(4.6)

Recall that ml

N−1
= pl − N−(m+1)

N(N−1)
and ml + 1 ≤ N and note that

ml = (N − 1)pl −
N − (m+ 1)

N
≤ (N − 1)pl (4.7)

and

ml + 1 ≤ (N − 1)pl + 1. (4.8)

We substitute (4.7) and (4.8) into (4.6) to obtain∑
0≤i<j≤ml

log |zl,j − zl,i|

≤ (N − 1)pl ((N − 1)pl + 1)

2
log
( ϵ
4

)
+O ((N − 1)pl log ((N − 1)pl + 1)) .
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We multiply by 2
N(N−1)

2

N(N − 1)

∑
0≤i<j≤ml

log |zl,j − zl,i|

≤ 2

N(N − 1)

(N − 1)2p2l + (N − 1)pl
2

log
( ϵ
4

)
+O

(
2

N(N − 1)
(N − 1)pl ((N − 1)pl + 1)

)
=

(N − 1)p2l + pl
N

log
( ϵ
4

)
+O

(
2

N
pl log ((N − 1)pl + 1)

)
≤ p2l log

( ϵ
4

)
+ pl log

( ϵ
4

)
+O

(
1

N
pl log ((N − 1)pl + 1)

)
≤ p2l log

( ϵ
4

)
+O

(
1

N
pl log ((N − 1)pl + 1)

) (
because log

( ϵ
4

)
< 0)

)
= p2l log

( ϵ
4

)
+O

(
1

N
pl log (Npl)

)
≤ p2l log

( ϵ
4

)
+O

(
1

N
pl log (N)

)
(because pl ≤ 1).

So using that log(N) ≤ log(4N/ϵ) we get

2

N(N − 1)

∑
0≤i<j≤ml

log |zl,j − zl,i| ≤ p2l log
ϵ

4
+O

(
pl
log(4N/ϵ)

N

)
. (4.9)

50



We plug (4.5) and (4.9) into (4.2) and find

v ≤ −ϵp20 +O

(
1

N

) n∑
l=1

min

{
0, plχ(pl) + p2l log

ϵ

4
+O

(
pl
log(4N/ϵ)

N

)}
≤ −ϵp20 +O

(
1

N

) n∑
l=1

plO

(
log(4N/ϵ)

N

)
+ pl min

{
0, χ(pl) + pl log

ϵ

4

}
≤ −ϵp20 +O

(
1

N

)
+ (p1 + · · ·+ pn)O

(
log(4N/ϵ)

N

)
+

n∑
l=1

pl min
{
0, χ(pl) + pl log

ϵ

4

}
≤ −ϵp20 +

n∑
l=1

pl min
{
0, χ(pl) + pl log

ϵ

4

}
+O

(
log(4N/ϵ)

N

)
as p1+· · ·+pn ≤ 1. Next recall that x 7→ χ(x) is concave on [0, 1]. Therefore,
so is x 7→ χ(x) + x log ϵ

4
and x 7→ min{0, χ(x) + x log ϵ

4
}. Jensen’s Inequality

(Proposition A.22) implies

n∑
l=1

pl min
{
0, χ(pl) + pl log

ϵ

4

}
=

(
n∑

l=1

pl

)
·
∑n

l=1 pl min
{
0, χ(pl) + pl log

ϵ
4

}∑n
l=1 pl

≤

(
n∑

l=1

pl

)
·min

{
0, χ

(
p21 + · · ·+ p2n
p1 + . . . pn

)
+

(
p21 + · · ·+ p2n
p1 + . . . pn

)
log

ϵ

4

}
.

And thus

v ≤ −ϵ(1− p)2 + pmin

{
0, χ

(
σ2

p

)
+

σ2

p
log

ϵ

4

}
+O

(
log(4N/ϵ)

N

)
with p = p1 + · · · + pn = 1 − p0 and σ2 = p21 + · · · + p2n; if p = 0 then
the bound holds when omitting the term pmin{· · · } here and corresponding
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terms below. By (3.16) we have

χ(x) = −x log x+

(
3

2
− log 4

)
x−

∞∑
k=2

x2k−1

k(2k − 2)(2k − 1)

≤ −x log x+

(
3

2
− log 4

)
x

≤ −x log x+ log ex
3
2
−x log 4

= −
(
x log x+ x log 4− x log e3/2

)
= −x log

(
4x

e3/2

)
for all x ∈ (0, 1]. So

p

(
χ

(
σ2

p

)
+

σ2

p
log

ϵ

4

)
≤ p

−σ2

p
log

4σ2

p

e3/2
+ p

σ2

p
log

ϵ

4

= σ2

(
log

4σ4

pe3/2
− log

ϵ

4

)
= −σ2 log

16σ2

e3/2pϵ
,

and thus

v ≤ −ϵ(1− p)2 − σ2 log+
(

16σ2

e3/2pϵ
+O

(
log(4N/ϵ)

N

)
.

Lemma A.20 implies

p2

n
=

(p1 + · · ·+ pn)
2

1 + · · ·+ 1
≤ p11

1
+ · · ·+ p2n

1
= σ2

and thus

v ≤ −ϵ(1− p)2 − p2

n
log+

(
16p

e3/2ϵn

)
+O

(
log 4N/ϵ

N

)
.

We recall ϵ = 1/n. So

v ≤ − 1

n

(
(1− p)2 + p2 log+

(
16p

e3/2

))
+O

(
log(nN)

N

)
. (4.10)
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If p < e3/2/16 = 0.2801 . . . , then

v ≤ − 1

n

(
1− e3/2

16

)2

+O

(
log(nN)

N

)
≤ 1

2n
+O

(
log(nN)

N

)
. (4.11)

For example, if p = 0, then v ≤ −1/n+O(log(nN)/N).
If p ≥ e3/2/16, then we can replace log+ by log in (4.10) and conclude

v ≤ −f(p)

n
+O

(
log(nN)

N

)
, where f(p) = (1− p)2 + p2 log

(
16p

e3/2

)
.

The second derivative of x 7→ f(x) is log(28e2x2). So f is convex on (0.1,∞).
As f ′(0.487) < 0 < f ′(0.488), the derivative f ′ has a zero p0 ∈ [0.487, 0.488].
Thus f(p) ≥ f(p0). Using that x 7→ x2 log(16xe−3/2) is increasing on
(e/16,∞) ⊃ (0.2,∞) we obtain

f(p) ≥ f(p0) ≥ (1− 0.488)2 + 0.4872 log(16 · 0.487e−3/2) > 0.39.

So

v ≤ −0.39

n
+O

(
log(nN)

N

)
. (4.12)

Regardless of the size of p we have (4.12) by (4.11).
As z1, . . . , zN ∈ S are pairwise distinct, but otherwise arbitrary, we con-

clude that

log τN(S) = sup
z1,...,zN∈K

2

N(N − 1)
log

∏
0≤i<j≤N

|zj−zi| ≤ −0.39

n
+O

(
log(nN)

N

)
.

Taking the limit as N → ∞ yields log τ(S) ≤ −0.39/n, as desired.
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5 Proof of the Schinzel-Zassenhaus Conjec-

ture

In this section, we prove Theorem 1.1. Before going through the proof, we
need some preliminary results on the rationality of series.

5.1 Rationality results for series

Proposition 5.1. A necessary and sufficient condition for a series

f(z) =
∞∑
j=0

fjz
j ∈ C[[z]]

to represent a rational function is that the determinants det∆k of the matri-
ces

∆k =


f0 f1 · · · fk
f1 f2 · · · fk+1
...

...
. . .

...
fk fk+1 . . . f2k

 , (5.1)

are trivial for all sufficiently large k.

Proof. Suppose first that f(z) is a rational function, P (z)/Q(z) say, with
Q(z) = qr + qr−1z + · · · + q0z

r and the qj not all 0. Then from Qf = P , we
see that

q0fm + q1fm+1 + · · ·+ qrfm+r = 0 for m > degP . (5.2)

This is the coefficient of the term that has degree m+ r > degP and thus it
has to be zero.

Thus, for k > r + degP ,

∆k =


f0 f1 · · · fr · · · fk−r · · · fr+degP fr+degP+1 · · · fk
f1 f2 · · · fr+1 · · · fk−r+1 · · · fr+degP+1 fr+degP+2 · · · fk+1
...

...
. . .

...
. . .

...
. . .

...
...

. . .
...

fk fk+1 . . . fk+r · · · fk−r+k · · · fk+r+degP fk+r+degP+1 · · · f2k

 ,

and the rightmost r+1 columns of ∆k are linearly dependent, so det∆k = 0.
Conversely, suppose that det∆k = 0 for all k ≥ p, where we can assume

that p is the smallest integer with this property. Then the rightmost column
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of ∆p is a linear combination of the first p columns of ∆p, so that for some
q0, q1, . . . , qp−1, we have

Lp+j := q0fj + q1fj+1 + · · ·+ qp−1fj+p−1 + fp+j = 0 (j = 0, 1, . . . , p).

We now show by induction that Lp+j = 0 for all j ≥ 0. Assume that for
some m > p we have Lp+j = 0 for j = 0, 1, 2, . . .m − 1. We need to show
that Lp+m = 0. Let us write ∆m as

∆m =



∆p−1

fp fp+1 · · · fm
fp+1 fp+2 · · · fm+1
...

...
. . .

...
f2p−1 f2p . . . fp+m−1

fp fp+1 · · · f2p−1

fp+1 fp+2 · · · f2p
...

...
. . .

...
fm fm+1 . . . fp+m−1

f2p f2p+1 · · · fp+m

f2p+1 f2p+2 · · · fp+m+1
...

...
. . .

...
fp+m fp+m+1 . . . f2m


.

Now, starting at the (p+1)th column, add to each column a linear combina-
tion of the previous p columns with coefficients q0, q1, . . . , qp−1. This gives

det∆m = det


∆p−1

Lp Lp+1 · · · Lm
...

...
. . .

...
L2p−1 L2p . . . Lp+m−1

fp fp+1 · · · f2p−1
...

...
. . .

...
fm fm+1 . . . fp+m−1

L2p L2p+1 · · · Lp+m
...

...
. . .

...
Lp+m Lp+m+1 . . . L2m



= det


∆p−1 0

fp fp+1 · · · f2p−1
...

...
. . .

...
fm fm+1 . . . fp+m−1

0 Lp+m

...
...

Lp+m . . . L2m


= ±(Lp+m)

m−p+1 det∆p−1.

Then since det∆m = 0 and det∆p−1 ̸= 0, we have Lp+m = 0, completing the
induction step.
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Now we have Lp+j for j > p equals to zero and

Lp+j = q0fj + q1fj+1 + · · ·+ qp−1fj+p−1 + fp+j

for j > p. So f = P/Q for degP ≥ p− 1, degQ = p .
Thus, f(z) represents a rational function with numerator of degree p−1 and
denominator of degree p.

In what follows we use the notation Ĉ for C ∪ {∞}.

Theorem 5.2. Let E be a compact subset of C that is symmetric about the
real axis, so that E = E, where E is the set of complex conjugates of elements
of E. Suppose that the transfinite diameter τ(E) of E is less than 1. Suppose
also that

f

(
1

z

)
=

∞∑
j=0

aj
zj

is regular on the complement Ĉ \ E of E and that all of the aj are integers.
Then f(1/z) is a rational function.

Proof. Let ϵ > 0, and Eϵ be an ϵ-thickening of E. We can, by choosing ϵ
sufficiently small, ensure that Eϵ has also transfinite diameter, τϵ say, less
than 1. Note that f(1/z) remains regular in Ĉ \Eϵ. Next, consider the k×k
matrices

∆k :=


a1 a2 · · · ak
a2 a3 · · · ak+1
...

...
. . .

...
ak ak+1 . . . a2k


and Ck := (cij)i,j=0,1,...,k−1, where cij is the residue of f(1/z)Ti(z)Tj(z) at
z = 0. Here, the polynomials Ti(z) of degree i are the Chebyshev polynomials
for the set Eϵ ; the Ti have maximum modulus mi on Eϵ (see Definition 2.2).
Now define the k × k upper triangular matrix

Bk := (bij)i,j=0,1,...,k−1 =


1 b01 · · · b0,k−1

1 b1,k−1

. . .
...

0 1

 ,

where for any given j and i ≤ j its entries are defined by

Tj(z) = bjjz
j + bj−1,jz

j−1 + · · ·+ b0j.
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Note that as the polynomials Tj are all monic (so bjj = 1), the matrix Bk

has all its diagonal entries equal to 1. Then we have the identity

B⊺
k∆kBk = C,

because the matrices on both sides of the equation have (i, j)-th entry∑
0≤l≤i

∑
0≤m≤j

blial+m+1bmj for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ k − 1,

where al+m+1 = al,m. Hence, det∆k = detC. This identity will give us a
way of bounding | det∆k| from above.

We note that f(1/z) is bounded on the boundary of Eϵ, where ϵ has been
chosen as above. Hence, by Cauchy’s Integral Theorem, |cij| is bounded
above by a constant times mimj. Specifically

|ci,j| =
∣∣∣∣ 1

2πi

∮
γ

f

(
1

z

)
TiTj

∣∣∣∣ ≤ mimj

∣∣∣∣ 1

2πi

∮
γ

f

(
1

z

)∣∣∣∣ .
The above holds because according to the residue theorem, for a meromorphic
function f , the residue at the point ak is given by:

Res(f, ak) =
1

2πi

∮
c

f(z)dz

where γ is a positively oriented simple closed curve around ak and not in-
cluding any other singularities on or inside the curve.

Choose a number τ2 with τϵ < τ2 < 1 and then an integer I such that
for all i ≥ I we have m

1/i
i < τ2 or mi < τ i2. Next, we apply Hadamard’s

Inequality (Theorem A.1) to detC. For i < I there is a constant, c1 say,
with

∑∞
j=1 |cij|2 ≤ c1, independent of k. This comes from

∞∑
j=1

|cij|2 ≤
∞∑
j=1

m2
i︸︷︷︸

constant

m2
j

∣∣∣∣ 1

2πi

∫
γ

f

(
1

z

)∣∣∣∣2︸ ︷︷ ︸
constant

≤
∞∑
j=1

τ 2j2 max
i≤I

{m2
i }︸ ︷︷ ︸

constant

∣∣∣∣ 1

2πi

∫
γ

f

(
1

z

)∣∣∣∣2︸ ︷︷ ︸
constant

≤ c1 (where i < I).
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The last inequality holds because for x such that |x| < 1 we have

∞∑
x=0

xn =
1

1− x
.

While for i ≥ I there is a constant c2 with
∑∞

j=1 |cij|2 ≤ c2τ
2i
2 . This comes

from

∞∑
j=1

|cij|2 =
∞∑
j=1

m2
im

2
j

∣∣∣∣ 1

2πi

∫
γ

f

(
1

z

)∣∣∣∣2
≤ τ 2i2

∞∑
j=1

τ 2j2

∣∣∣∣ 1

2πi

∫
γ

f

(
1

z

)∣∣∣∣2︸ ︷︷ ︸
constant

= τ 2i2 c2 (where i ≥ I).

Using Hadamard’s (Theorem A.1) inequality we obtain

|det∆k|2 = |detC|2 ≤
k−1∏
i=0

(
k−1∑
j=0

|cij|2
)

=
I−1∏
i=0

(
k−1∑
j=0

|cij|2
)

︸ ︷︷ ︸
≤c1

·
k−1∏
i=I

(
k−1∑
j=0

|cij|2
)

︸ ︷︷ ︸
≤τ2i2 c2

≤ cI1 ·
k−1∏
i=I

τ 2i2 c2 = c3c
k−I
2

k−1∏
i=I

τ 2i2

Now we look at the product

k−1∏
i=I

τ 2i2 = τ
∑k−1

i=I 2i
2 = τ

2(
∑k−1

i=1 i−
∑I−1

i=1 i)
2 = τ

k(k−1)−I(I−1)
2

= τ k
2−k−I2+I

2 < τ k
2−k−I2

2 = τ
k(k−1)
2 · τ−I2

2 = τ
k(k−1)
2 · c5

thus

|det∆k|2 ≤ c3c
k−I
2

k−1∏
i=I

τ 2i2 < c3c
k−I
2 τ

(k−1)
2

k
· c5

< c3c
k
6(τ

k−1
2 )k = c3(c6τ

k−1
2 )k = c3(c6τ2τ

k
2 )

k = c3(c4τ
k
2 )

k.

Because each det∆k is an integer, they must be 0 for all k sufficiently large.
Then Proposition 5.1 tells us that f(z) is rational.
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5.2 Proof of Theorem 1.1

Lemma 5.3. Let α be an algebraic number. Then αn = α
n
for all integers

n > 0.

Proof. The Galois group Gal(Q/Q) acts transitively on the conjugates of α,
as well as on conjugates of αn. By the multiplicativity of the automorphisms,
the set of the conjugates of αn equals the set of n-th powers of the conjugates

of α. Hence αn = α
n
.

Lemma 5.4. Let α be a non-zero algebraic integer of degree d having minimal
polynomial P (z) =

∏d
i=1(z − αi). Then the series

F (1/z) :=

√
P ∗
2

(
1

z

)
P ∗
4

(
1

z

)
∈ C[[1/z]]

=

√
1

z2d
P2(z)P4(z)

=
1

zd

√
P2(z)P4(z)

lies in Z[[1/z]] and has zeros precisely at α2
i , α

4
i (i = 1, . . . , d), where the αi

are the conjugates of α.

Proof. Since the Maclaurin series of (1+4Y )−1/2 =
∑∞

j=0(−1)
(
2j
j

)
Y j ∈ Z[Y ],

we also have
√
1 + 4Y ∈ Z[Y ]. Now from Lemma A.18 we have that P4(z) =

P2(z)+4R(z) for some R(z) ∈ Z[z] of degree at most d−1 . Then we obtain√
P2(z)P4(z) =

√
P2(z)(P2(z) + 4R(z)) = P2(z)

√
1 + 4R(z)/P2(z)).

We now rewrite this identity in terms of reciprocal polynomials. So, on
dividing by zd , rewriting this identity in terms of the reciprocal polynomials
P ∗
2 , P

∗
4 and R∗ and using the fact that P ∗

2 (0) = 1 (because P2 is monic we
have that the constant term of P ∗

2 is equal to 1 ), we see that

F (1/z) :=

√
P ∗
2

(
1

z

)
P ∗
4

(
1

z

)

= P ∗
2

(
1

z

)√√√√√√√1 + 4z−(d−degR)

R∗
(

1
z

)
P ∗
2

(
1
z

) ∈ Z
[[

1

zd−degR

R∗(1/z)

P ∗
2 (1/z)

]]
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If we show

1

zd−degR

R∗(1/z)

P ∗
2 (1/z)

∈ Z[[1/z]],

then F (1/z) ∈ Z[[1/z]]. Now observe that

R∗(z)

P ∗
2 (z)

=
R∗(z)

1− (1− P ∗
2 (z))

= R∗(z)
∑
k≥0

(1− P ∗
2 (z))

k

︸ ︷︷ ︸
∈Z[[z]]

.

Thus

R∗(1/z)

P ∗
2 (1/z)

∈ Z[[1/z]],

and

1

zd−degR

R∗(1/z)

P ∗
2 (1/z)

∈ Z[[1/z]].

Therefore F (1/z) lies in Z[[1/z]] and, because P ∗(1/z) = 1/zdP (z), it has
zeros precisely at α2

i , α
4
i (i = 1, . . . , d), where the αi are the conjugates of

α.

Lemma 5.5. Let P (z) ∈ Z[z] a monic integer irreducible polynomial and
assume that P2 is irreducible. If

√
P2(z)P4(z) is a polynomial, then P is a

cyclotomic polynomial.

Proof. Since P2(z) is irreducible, for
√
P2(z)P4(z) to be a polynomial, P4(z)

must be equal to P2(z). Now take any root α of the irreducible polynomial P .

The maximal modulus of a zero of P2(z) is α
2
, while the maximal modulus

of a zero of P4(z) is α
4
. So α

2
= α

4
= 1 and, by Theorem A.19 α is a

root of unity.

Finally we can prove Theorem 1.1.

Proof of Theorem 1.1. Let P (z) =
∏d

i=1(z − αi) be the minimal polynomial
of α and F (1/z) be as in Lemma 5.4. First we construct a set containing
all the non-regular points of F (1/z). We take the 2d points α2

1, . . . , α
2
d and

α4
1, . . . , α

4
d and we define the hedgehogK = K (α2

1, . . . α
2
d, α

4
1, . . . , α

4
d). Because
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these numbers have at most 2d′ different arguments, at most 2d′ of them are
needed to define K. So, by Corollary 4.5, K has transfinite diameter at most

e−0.39/2d′ α
4
.

Assume that P2(z) is irreducible and assume by contradiction α <

e0.39/8d
′
. Then K has transfinite diameter less than 1. Also we observe that

α2
1, . . . , α

2
d and α4

1, . . . , α
4
d are the roots of P2(z) and P4(z) respectively, so the

non-real roots come in pairs that are symmetric about the real axis. Thus
K is symmetric about the real axis and contains the branch points of the
square root function. Hence, F (1/z) = 1

zd

√
P2(z)P4(z) is rational, by Theo-

rem 5.2 , and having no poles except at z = 0, is in fact a polynomial in 1/z.
This implies that since P2(z) is irreducible and zdF (1/z) =

√
P2(z)P4(z) is a

polynomial, by Lemma 5.5 α is a root of unity: a contradiction. We deduce
that Theorem 1.1 is true whenever P2 is irreducible.

Finally, for the case where P2 is reducible assume that Theorem 1.1 is true
for all non-zero algebraic integers of degree less than d, which are not roots of
unity. The case when d = 1 is obvious. Now, since P2(z) is reducible, with α2

one of its zeros, the degree of α2 is less than that of α. So, by induction, the
conclusion of the theorem holds for α2. Also, since a pair αj,−αj must occur
among the conjugates of α, it follows from Galois theory that the arguments
of the conjugates of α are in pairs θ, θ+ π, say. Hence, the numbers α2

j have

at most 1
2
d′ arguments between them. Thus, by induction α2 ≥ e0.39/8(d

′/2),

or by Lemma 5.3 α ≥ e0.39/8d
′
. Thus the Theorem is true for α of degree

d.
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A Appendix

A.1 Linear algebra

Theorem A.1 (Hadamard’s Inequality). If A = (ai,j) is a complex n × n
matrix. Then

| detA| ≤
n∏

j=1

(
n∑

i=1

|ai,j|2
)1/2

, (A.1)

with equality if and only if either both sides are zero or
∑n

i=1 ai,jaik for j ̸= k.

Proof. Lemma 3.2 in [16].

Theorem A.2 (Cauchy-Binet Formula). Let A and B be matrices of size
n×m and m× n respectively, with n ≤ m. Then

det(AB) =
∑

1≤k1<k2<···<kn≤m

Ak1...knB
k1...kn ,

where Ak1...kn is the minor obtained from the columns of A whose numbers
are k1, . . . , kn and Bk1...kn is the minor obtained from the rows of B whose
numbers are k1, . . . , kn. In other words, det(AB) is the sum of products of the
corresponding majors of A and B, where a major of a matrix is, by definition,
a determinant of maximal order minor in the matrix.

Proof. We follow [13].
Let C = AB, ci,j =

∑m
k=1 ai,kbk,j. Then

detC =
∑
σ∈Sn

(−1)σ
(∑

k1

a1,k1bk1,σ(1) · · ·
∑
kn

an,knbkn,σ(n)

)

=
m∑

k1,...,kn=1

a1,k1 · · · an,kn
∑
σ∈Sn

(−1)σbk1,σ(1) · · · bkn,σ(n)

=
m∑

k1,...,kn=1

a1,k1 · · · an,knBk1...kn .

The minor Bk1...kn is non-zero only if the numbers k1, . . . , kn are distinct.
Thus, the summation can be performed over distinct numbers k1 . . . kn. Since
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Bτ(k1)...τ(kn) = (−1)τBk1...kn for any permutation τ of the numbers k1, . . . , kn,
we have

m∑
k1,...,kn=1

a1,k1 · · · an,knBk1...kn =
∑

k1<k2<···<kn

∑
τ

(−1)τa1,τ(1) · · · an,τ(n)Bk1...kn

=
∑

1≤k1<k2<···<kn≤m

Ak1...knB
k1...kn .

An alternative notation for the Cauchy-Binet formula is

det(AB) =
∑
S

ASB
S

where the sum runs over the set of size n subsets of {1, . . . ,m} and AS and
BS are defined as Ak1...kn and Bk1...kn for {k1, . . . , kn} = S.

Proposition A.3 (Vandermonde determinant ). Let X1, X2, . . . , Xn be in-
determinates and let

V =


1 1 · · · 1
X0 X1 · · · Xn

X2
0 X2

1 · · · X2
n

...
...

...
...

Xn−1
0 Xn−1

1 · · · Xn−1
n

 ∈ Matn+1,n+1(Z[X0, . . . , Xn])

be the Vandermonde matrix. The determinant of this matrix is called the
Vandermonde determinant and it is equal to

detV =
∏

1≤i<j≤n

(Xj −Xi).

Proof. If Xk = Xl with k ̸= l , then the Vandermonde determinant vanishes
because in that case two rows of the determinant are identical. Hence, if
det(V ) is zero whenever Xk = Xl, (Xk − Xl) divides the determinant as a
polynomial in the Xi’s. But that means that the product

∏
1≤i<j≤n(Xj−Xi)

must divide the determinant.
On the other hand, the determinant is a polynomial in the Xi’s of de-

gree at most
(
n
2

)
. Combined with the previous observation, this implies
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that the determinant equals the right-hand side product times, possibly,
some constant. To compute the constant, we compare the coefficients of
X0

1X
1
2 · · ·Xn−1

n on both sides, this coefficient must be equal to one and this
completes the proof.

Proposition A.4. Let X1, X2, . . . , Xn be indeterminates. If p1, p2, . . . pn are
polynomials of the form pj(x) = ajx

j−1+ lower terms, then

det
1≤i,j≤n

(pj(Xi)) = a1a2 · · · an
∏

1≤i<j≤n

(Xj −Xi).

This proposition can be proved in just the same way as the above proof
of the Vandermonde determinant evaluation.

A.2 Schur polynomials

The following definitions and proposition are based on [19], [18] and [1].

Definition A.5. Fix integers n ≥ 1 and λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. The λ’th
Schur function is the polynomial defined as

sλ(x1, x2, . . . , xn) :=
|xλi+n−i

j |1≤i,j≤n

|xn−i
j |1≤i,j≤n

=

∣∣∣∣∣∣∣∣∣
xλ1+n−1
1 xλ1+n−1

2 . . . xλ1+n−1
n

xλ2+n−2
1 x2x

λ2+n−2 . . . xλ2+n−2
n

...
...

. . .
...

xλn
1 xλn

2 . . . xλn
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xn−1
1 xn−1

2 . . . xn−1
n

xn−2
1 xn−2

2 . . . xn−2
n

...
...

. . .
...

x0
1 x0

2 . . . x0
n

∣∣∣∣∣∣∣∣∣

.

Definition A.6. Given a partition λ of n, a Young diagram of shape λ is
an array of boxes arranged in rows. There are λi boxes in row i, each row
of boxes starts at the leftmost position of the row and by the convention on
partitions the lengths of rows are non-increasing.

Definition A.7. AYoung tableau of shape λ is an assignment of the numbers
1, 2, . . . , n to the n boxes of the Young diagram associated to λ.
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1 2

4

5

3

Figure 5: A Young diagram and Young tableau of shape (2, 1, 1, 1)

Definition A.8. Let T be a tableau of shape λ. If the number of 1’s, 2’s
, 3’s . . . occuring in T is r1, r2, r3 . . . then associate the monomial xw(T ) =
xr1
1 xr2

2 xr3
3 · · · to T .

Proposition A.9. sλ(x1, x2, . . . , xn) =
∑

T xw(T ) where the sum runs over
all tableaux of shape λ.

Proof. Corollary 12.5 in [18].

A.3 Bernoulli numbers and Bernoulli polynomials

Definition A.10. The Bernoulli numbers Bn are a sequence of signed ratio-
nal numbers defined by the generating function

x

ex − 1
=

∞∑
n=0

Bn

n!
xn. (A.2)

That is, we are to expand the left-hand side of this equation in powers of x,
i.e., a Taylor series about x = 0. The coefficient of xn in this expansion is
Bn

n!
.

Definition A.11. The Bernoulli polynomials Bn(s) are defined by the gen-
erating function

F (x, s) =
xexs

ex − 1
=

∞∑
n=0

Bn(s)

n!
xn.

We now prove a few properties of the Bernoulli numbers and polynomials.

Proposition A.12. If n ≥ 3 is odd, then Bn = 0.
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Proof. We extract the term for n = 1 from (A.2) and obtain

t

et − 1
= − t

2
+
∑
n≥0
n̸=1

Bn
tn

n!
.

Thus
t

et − 1
+

t

2
=
∑
n≥0
n ̸=1

Bn
tn

n!
.

We rewrite the left hand side as

t

et − 1
+

t

2
=

2t+ t(et − 1)

2(et − 1)
=

t

2
· e

t + 1

et − 1
=

t

2
· e

t/2 + e−t/2

et/2 − e−t/2

and observe that t
et−1

+ t
2
is an even function. Thus

∑
n≥0
n̸=1

Bn
tn

n!
is also even

and therefore Bn = (−1)nBn for n ̸= 1. We conclude that if n ≥ 3 and n is
odd, then Bn = 0.

Proposition A.13 (Faubauler’s Formula). Let i ≥ 0 be an integer and let
Bi = T i+ · · · ∈ Q[T ] denote the i-th Bernoulli polynomial with constant term
Bi(0). Then

N−1∑
k=0

ki = si(N) where si =
(Bi+1(T )−Bi+1(0))

i+ 1
∈ Q[T ].

A.4 Other results

Theorem A.14 (Newton’s Identities). Take any complex variables α1, . . . , αd

and define for k ≥ 0

sk := αk
1 + · · ·+ αk

d,

tk := (−1)k
∑

1≤i1<···<ik≤d

αi1 · · ·αik , (with tk = 0 if k > d).

Then, for each k ≥ 1, we have

sk +
k−1∑
r=1

trsk−r + ktk = 0.
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Proof. We have formally that

∞∑
k=0

sk
zk

=
∞∑
k=0

αk
1 + · · ·+ αk

d

zk

=
d∑

i=0

∞∑
k=0

(
αi

z

)k

=
d∑

i=1

1

1− αi

z

= z
d∑

i=1

1

z − αi

=

z
∑d

i=1

∏n
j=1
j ̸=i

(z − αj)∏d
i=1(z − αi)

=
zP ′(z)

P (z)
,

where

P (z) :=
d∏

i=1

(z − αi) = zd + t1z
d−1 + t2z

d−2 + · · ·+ td.

Thus

∞∑
k=0

sk
zk

P (z) = zP ′(z),

∞∑
k=0

sk
zk

(zd + t1z
d−1 + t2z

d−2 + · · ·+ td) = (d)zd + (d− 1)t1z
d−1 + · · ·+ td−1z.

Comparing the coefficients of zd−k of P (z)
∑∞

k=0(sk/z
k) and zP ′(z), and using

s0 = d finishes the proof.

Theorem A.15. Let P (z) =
∏d

i=1(z − αi) ∈ Z[z], and

sk :=
d∑

i=1

αk
i , (k = 1, 2, . . . )
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as before. Then for all n ∈ N we have (with µ the Möbius function)∑
l|n

slµ

(
n

l

)
≡ 0 (mod n).

For the proof, we need the following simple lemma.

Lemma A.16. Any integer power series

1 + a1z + a2z
2 + · · ·+ anz

n + · · ·

can be written formally as a product
∏∞

k=1(1− zk)bk , where the exponents bk
are also all integers.

Proof. Inductively, if we have such a product for which the coefficients of
z0, z1, . . . , zn−1 are the desired ones, say

n−1∏
k=1

(1− zk)bk ≡ 1 + a1z + a2z
2 + · · ·+ an−1z

n−1 + a′nz
n (mod zn+1)

say, then a′n is an integer and if we multiply the product by (1− zn)a
′
n−an we

obtain a product
∏n

k=1(1−zk)bk for which the coefficients of z0, z1, . . . , zn−1, zn

are the desired ones:

(1− zn)a
′
n−an

n−1∏
k=1

(1− zk)bk ≡ 1 + a1z + · · ·+ an−1z
n−1 + a′nz

n − a′nz
n + anz

n (mod zn+1)

≡ 1 + a1z + · · ·+ an−1z
n−1 + anz

n (mod zn+1).

Proof of Theorem A.15. We use Lemma A.16 to write the reciprocal poly-
nomial of P (z) as

d∏
i=1

(1− αiz) =
∞∏
k=1

(1− zk)bk ,

where the exponents bk are all integers. Taking logarithms, we have

d∑
i=1

log(1− αiz) =
∞∑
k=1

bk log(1− zk).
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Then, comparing coefficients of zn in the Maclaurin expansions of both sides
gives

−sn
n

=
∑
k|n

− bk
n/k

,

or sn =
∑

k|n kbk. Then, we apply Möbius inversion, Lemma A.17 to obtain∑
l|n slµ

(
n
l

)
= nbn.

Lemma A.17 (Möbius’ Inversion Formula). Let f be an arithmetic function.
Define F (n) :=

∑
d|n f(d) for n ∈ Z>0. Then

f(n) =
∑
d|n

µ
(n
d

)
F (d) for n ∈ Z>0.

Given a monic integer polynomial P (z) =
∏d

i=1(z − αi), let Pl(z) denote

the polynomial
∏d

i=1(z−αl
i). Because its coefficients are symmetric functions

of the αi, we have Pl(z) ∈ Z[z].

Lemma A.18. For all l, n ∈ Z>0 we have∑
l|n

Pl(z)µ
(n
l

)
≡ 0 (mod n).

Proof. By Theorem A.15 the coefficient of zd−1 of
∑

l|n Pl(z)µ(n/l) is

−
∑
l|n

slµ(n/l) ≡ 0 (mod n)

Similarly, the coefficient of zd−j of
∑

l|n Pl(z)µ(n/l) is also a multiple of n.

This is seen by replacing P by the polynomial of degree
(
d
j

)
whose zeroes are

the products αi1αi2 · · ·αij for all possible j-element subsets {i1, i2, . . . , ij} of

{1, 2, . . . , d}, and then considering its coefficient of z(
d
j)−1.

Theorem A.19 (Kronecker’s First Theorem). Suppose that α is a non-zero
algebraic integer that lies, with its conjugates, in the unit disc |z| ≤ 1. Then
α is a root of unity.
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Proof. Suppose that α has degree d, with minimal polynomial

Pα(z) = zd + a1z
d−1 + · · ·+ ad,

say. Then, because (−1)kak is the sum of all possible distinct k-tuples of the
zeros of P , all of which have modulus at most 1, we have |ak| ≤

(
d
k

)
, (k =

0, . . . , d) . The same bounds apply to the coefficients of the polynomial
Pr whose zeros are the r-th powers of those of P . Because the algebraic
integers form a ring, αr is also an algebraic integer, the coefficients of Pr

are integers, so there are only finitely many possibilities for the coefficients
of these polynomials. Hence, there are finitely many possibilities for all
the zeros of all the Pr, and so in particular, there are only finitely many
possibilities for the αr. Therefore, two of them must be equal, say αr = αs

with r < s. Then αr−s = 1, and we see that α is a root of unity.

Lemma A.20. Let a1, a2, . . . , an be real numbers and b1, b2, . . . , bn positive
real numbers. Then

a21
b1

+ · · ·+ a2n
bn

≥ (a1 + · · ·+ an)
2

b1 + · · ·+ bn
.

Proof. We first prove that for all real numbers a1, a2 and positive real num-
bers b1, b2

a21
b1

+
a22
b2

≥ (a1 + a2)
2

b1 + b2
. (A.3)

Applying inequality (A.3) several times, we obtain

a21
b1

+
a22
b2

+
a23
b3

+ · · ·+ a2n
bn

≥ (a1 + a2)
2

b1 + b2
+

a23
b3

+ · · ·+ a2n
bn

≥ (a1 + a2 + a3)
2

b1 + b2 + b3
+ · · ·+ a2n

bn
≥ · · ·

≥ (a1 + · · ·+ an)
2

b1 + · · ·+ bn
.

Proposition A.21 (Stirling’s approximation). For a positive integer n we
have

log n! = n log n− n+O(log(n+ 1)).
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Proposition A.22 (Jensen’s Inequality). For be a real concave function ϕ,
real numbers x1, x2, . . . , xn and positive real numbers a1, . . . , an we have∑n

i=1 aiϕ(xi)∑n
i=1 ai

≤ ϕ

(∑n
i=1 aixi∑n
i=1 ai

)
.
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