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Abstract

We study elliptic curves and modular forms with the aim to state and understand the Taniyama-
Shimura Conjecture, now known as the Modularity Theorem. We illustrate the theorem on two
examples using an approach with modular symbols.
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Introduction

The aim of this work is to state and understand the Taniyama-Shimura Conjecture. This conjecture,
known since 2001 as the Modularity Theorem, states that:

All rational elliptic curves arise from modular forms.

Understanding this statement requires the study of elliptic curves and modular forms. The link
provided by the Modularity Theorem between these two completely unrelated areas in mathematics
is far from being trivial.

In the first chapter we study elliptic curves and their fundamental properties. We follow an
approach similar to the one in [He02]. After having defined elliptic curves over a field K and looked
at birational equivalence between algebraic curves, we introduce Weierstrass equations and show that
every rational elliptic curve may be represented by an equation of this type. We study the reduction
modulo a prime p of elliptic curves. As we will see, the characterization of these reductions depends
on the chosen Weierstrass equation of the curve and this motivates the introduction of minimal
Weierstrass equations and proving Néron’s theorem which states that every rational elliptic curve
is isomorphic to a curve given by a minimal Weierstrass equation. We then declare that the type of
reduction modulo p of an elliptic curve is the type of reduction of a minimal Weierstrass equation
representing the curve. This enables us to define the conductor N of an elliptic curve. Up to
isomorphism, there is only a finite number of elliptic curves for a given conductor N and thus
elliptic curves may be ordered using this conductor. We end the first chapter by defining the Hasse-
Weil L-function of a rational elliptic curve and expressing it as a Dirichlet series. This series, called
the L-series of the elliptic curve, contains information about the reduction modulo p prime of the
curve. We will see that its coefficients are related to the conductor of the curve and the number of
points of the same curve viewed over Fp for p prime. The conductor and the L-series are the two
major concepts related to rational elliptic curves that are needed to state the Conjecture.

The second chapter is dedicated to the study of modular forms. In the first part of this chapter
we mainly follow the approaches of [DS05] and [He02]. We introduce the modular group SL2(Z) and
congruence subgroups of SL2(Z) with special emphasis on Γ0(N) which is the subgroup considered
in the Conjecture. Then we define several actions of the modular group on different sets and
finish this preliminary part of the chapter with the notion of fundamental domains for congruence
subgroups. We characterize this first part as a preliminary part because the concepts introduced are
needed in order to understand and define modular forms, which are the real object of study of this
chapter. Following the approach of [DS05] we define modular forms of weight k for any congruence
subgroup of SL2(Z), keeping in mind that our main focus is on Γ0(N) and the weight 2. We follow
up with some examples of modular forms on SL2(Z), which are not needed for the Conjecture
but still interesting as they enable us to get a better grasp of the rather abstract definition of
modular forms. Furthermore, some interesting properties related to Eisenstein series are exposed
here. Mainly following [Se70] we introduce Hecke operators for SL2(Z) and then for Γ0(N). This
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results in the definition of Hecke forms that is needed in the Conjecture.

After the two first chapters we are ready to state the Taniyama-Shimura Conjecture and this is
what we do in the third chapter after a brief history of the Conjecture. In a short paragraph we
relate the Modularity Theorem with Fermat’s Last Theorem.

The fourth and final chapter is dedicated to the computational illustration of the Conjecture.
Following [St07], we choose the modular symbol approach to do these computations. After a brief
definition of these symbols, we expose a trick due to Manin that enables us to express every modular
symbol as a Q-linear combination of a finite number of specific symbols. We state a theorem due
to Manin that allows us to compute a basis for the space of modular symbols for Γ0(N). We then
define Hecke operators on this same space and introduce a pairing of modular symbols for Γ0(N)

with modular forms for Γ0(N). We show that this pairing is compatible with the Hecke operators
and thus the eigenvalues of the Hecke operators on modular forms may be computed through the
operators on modular symbols. Putting all this together we finally compute two explicit examples
verifying the Conjecture, the first one computed by hand and the second using SAGE.

The prerequisites for a good understanding of this work is knowledge of complex analysis, linear
algebra and basic abstract algebra with special emphasis on group actions. Familiarity with differ-
entiable manifolds may be helpful but not crucial since this part of the theory is not really treated
in this work.
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1 Elliptic curves

In this chapter, we define elliptic curves and study some of their important properties. These
properties will be needed later for understanding the Taniyama-Shimura Conjecture. We start with
the definition of elliptic curves.

1.1 Definition

We need to define elliptic curves over a given field K. In order to do this, we need a couple
of definitions. First, recall that a polynomial f ∈ K[X,Y ] is said to be homogeneous if all of
its monomials have the same total degree, which we call then the degree of the polynomial. For
example the polynomial Y 2 − Y X is homogeneous, but the polynomial Y 2 −X3 +X is not.

Now, it comes naturally that if we are given a non-homogeneous polynomial we would like to
homogenize it. The following definition gives the answer to this question.

Definition 1.1. Let K be a field and f ∈ K[X,Y ] be a non-zero polynomial of positive degree
d. The homogenization of f is the unique homogeneous polynomial F ∈ K[X,Y, Z] of degree d
satisfying F (X,Y, 1) = f(X,Y ).

For example, the homogenization of the polynomial f(X,Y ) = Y 2 −X3 +X is the polynomial
F (X,Y, Z) = Y 2Z −X3 +XZ2. We now define plane projective curves.

Definition 1.2. Let d ∈ N \ {0}. A plane projective curve of degree d defined over a field K is an
element of P(Kh[X,Y, Z]d), where Kh[X,Y, Z]d is the K-vector space of homogeneous polynomials
of degree d defined in the variables X, Y and Z and P(Kh[X,Y, Z]d) is the associated projective
space.

So a plane projective curve C is given by a non-zero polynomial F ∈ Kh[X,Y, Z]d up to non-zero
scalar multiples. We speak of the curve C given by the equation F (X,Y, Z) = 0. For any field K ′

that contains K, we set

C(K ′) = {(a, b, c) ∈ P2(K ′) : F (a, b, c) = 0},

and this makes sense since F is homogeneous. In fact, recall that the projective plane of a field K
can be viewed as K3 \ {(0, 0, 0)} quotiented by the homothetic equivalence relation:

(a, b, c) ∼ (a′, b′, c′) ⇐⇒ ∃λ ∈ K∗ such that (a′, b′, c′) = (λa, λb, λc).

So a point in P2(K) is a homothetic equivalence class. Furthermore, it is easy to see that

F (λX, λY, λZ) = 0 ⇐⇒ F (X,Y, Z) = 0,
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since F is homogeneous. Note that if F is homogeneous of degree d, then its partial derivatives
are also homogeneous polynomials but of degree d − 1. We now introduce the concept of singular
points.

Definition 1.3. Let K be an algebraic closure of K and P = (a, b, c) ∈ C(K). The point P is said
to be a singular point of C if:

grad(F )(a, b, c) = (0, 0, 0).

Otherwise, P is said to be non-singular. A curve that has no singular points is said to be smooth.

Example 1.4. Consider the curve C defined over Q by F (X,Y, Z) = Y 2Z −X3 = 0. We have

grad(F )(X,Y, Z) = (−3X2, 2Y Z, Y 2)

and thus the point (0, 0, 1) is clearly a singular point of C and we conclude that C is singular.
Consider the curve C ′ defined over any field K with characteristic different from 2 by the

equation F (X,Y, Z) = X2 + Y 2 + Z2 = 0. We compute that

grad(F )(X,Y, Z) = (2X, 2Y, 2Z)

and notice that it only vanishes at the point (X,Y, Z) = (0, 0, 0). But this point is not in P2(K),
thus C is smooth. Note that if K has characteristic 2, then every point in C is singular.

Finally, we need to speak about the genus of a projective algebraic curve. When C is a smooth
algebraic curve defined over C, its genus is equal to the number of “holes" of the corresponding
Riemann surface. We will not need this definition. There is a simple formula to compute the genus
g of a smooth plane projective curve. It depends only on the degree d of the polynomial that defines
the curve and it is given by:

g =
1

2
(d− 1)(d− 2).

Thus, a smooth plane projective curve of genus 1 is defined by a polynomial of degree 3. We have
now defined all the concepts needed to introduce elliptic curves defined over any field K.

Definition 1.5. Let K be any field. An elliptic curve over K is a pair (E,O) consisting of a plane
projective smooth curve E of genus 1 and a point O ∈ E(K).

For example, the curve given by the polynomial X3+Y 3+Z3 together with O = (1,−1, 0) is an
elliptic curve over any field with characteristic different from three, but the curve given by X2+Y 2

is not an elliptic curve since it is not smooth (and the genus of this curve is 0).
For simplicity, we will most of the time speak of an elliptic curve E instead of (E,O). The point

O will be implicit.
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1.6. In practice, when we speak about elliptic curves, we always have in mind a specific equation
f(X,Y, Z) = 0 for it. But there is no such thing as a unique equation that defines the curve. An
elliptic curve E is a geometrical object for which we may choose a projective embedding such that
E ⊂ P2. Then E is given by an equation up to non-zero scalar multiples and from there on we may
choose an actual f ∈ K[X,Y, Z] to “represent” E. It follows that properties of the elliptic curve E
must be distinguished from those of the chosen equation f = 0.

1.2 Birational maps between algebraic curves

Now that we have defined elliptic curves we will see that some of them are isomorphic. It is in
fact more appropriate to speak about isomorphism classes of elliptic curves rather than just elliptic
curves. Elliptic curves are particular cases of algebraic curves and this section is about this larger
class of curves. We start with the notion of rational maps.

Definition 1.7. Let F and G be two plane projective curves defined over a field K and let A,B,C ∈
Kh[X,Y, Z]d. The polynomials A,B and C are said to define a rational map ϕ from F to G defined
over K if for all points (x, y, z) in F (K), except for a finite number,

ϕ(x, y, z) = (A(x, y, z), B(x, y, z), C(x, y, z))

is well defined, in other words not equal to zero, and lies in G(K).

For example, let F (X,Y, Z) = Z and G(X,Y, Z) = Y 2 −XZ. Then ϕ(x, y, z) = (x2, xy, y2) is
a rational map from F to G defined over any field.

Definition 1.8. Let F and G be two plane projective curves and ϕ : F → G be a rational map
defined over K. Then ϕ is said to be birational if there exists a rational map ψ : G→ F such that
for all points of F (K) and G(K), except for a finite number, the composition maps

ψ ◦ ϕ and ϕ ◦ ψ

are well defined and equal to the identity map. The curves F and G are said to be birationally
equivalent over K if there exists a birational map between them.

Definition 1.9. Two plane projective curves are said to be isomorphic over K if there exists a
birational map between them defined over K.

Let C be a smooth plane projective curve over a field K given by f(X,Y, Z) = 0. We denote by
K(C) the function field of the curve C that we will now construct. Since K is a field, K[X,Y ] is
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an integral ring. Consider the ring AC = K[X,Y ]/⟨f(X,Y, 1)⟩. We need the following lemma and
proposition in our construction.

Lemma 1.10. If A is a unique factorization domain, then every irreducible element of A is prime.

Proof. Let a ∈ A be an irreducible element of A. Then a is non-zero and not a unit. Since A is
a unique factorization domain, we may write a as a finite product of prime elements of A. Thus,
there exists a positive integer n and prime elements pi ∈ A for 1 ≤ i ≤ n such that a = p1p2 . . . pn.
If n > 1, this contradicts the fact that a is irreducible. Thus n = 1 and a is prime.

Proposition 1.11. Let C be a plane projective curve over K given by the equation f(X,Y, Z) = 0.
If f(X,Y, 1) is irreducible in K[X,Y ], then K[X,Y ]/⟨f(X,Y, 1)⟩ is an integral domain.

Proof. By basic abstract algebra, we know that K[X,Y ] is a unique factorization domain. Since
f(X,Y, 1) is irreducible in K[X,Y ], we know by Lemma 1.10 that f(X,Y, 1) is also prime. Thus the
ideal generated by f(X,Y, 1) is a prime ideal and this is equivalent to K[X,Y ]/⟨f(X,Y, 1)⟩ being
an integral domain.

1.12. Let D and E be two plane projective curves defined over K and given respectively by the
polynomials f and g. Suppose D ̸= E, gcd(f, g) = c ∈ K and let deg(f) = dD and deg(g) = dE .
ThenD∪E is a plane projective curve given by the polynomial fg. Bézout ’s Theorem concerning the
number of intersection points of two plane projective curves, tells us that #D(K)∩E(K) = dDdE .
Also, all points of this intersection are singular points. In fact, an intersection between the two
curves is either a “cross” intersection or a “tangent” intersection. In the first case, there are two
distinct tangent lines to D ∪ E at the intersection point. In the second, there is one tangent line,
but with multiplicity two.

Suppose that f is reducible. Then we may write C = D ∪ E where D and E are two plane
projective curves. Using the above remark, the intersection between D and E is non-empty and
contains only singular points. This contradicts our assumption of C being smooth. Hence f is
irreducible and Proposition 1.11 applies. Thus AC is an integral ring and we may consider the
fraction field of AC . We set

K(E) = Frac(AC),

where Frac(AC) denotes the fraction field of AC .

1.13. The function field is a birational invariant.
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1.3 Weierstrass equations

We define elliptic curves via Weierstrass equations. This definition is less restrictive than one would
think as we will see. We then define the discriminant of these equations and look at singular cubic
curves. We start with the definition of Weierstrass equations.

1.3.1 Long and short Weierstrass equations

Definition 1.14. Let K be a field. A long Weierstrass equation defined over K is an equation of
the form:

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, (1.14.1)

where a1, a2, a3, a4, a6 ∈ K.

Theorem 1.15. Let (E,O) be an elliptic curve defined over a field K.

(i) There exist functions x, y in K(E) and elements a1, a2, a3, a4, a6 of K such that the map
ψ : E → P2(K) sending P ∈ E to (x(P ), y(P ), 1) is a birational map from (E,O) to the
projective curve defined over K given by

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 (1.15.1)

and such that ψ(O) = (0, 1, 0).

(ii) Every other couple (x′, y′) that suits the same conditions as above can be written:

x′ = u2x+ r y′ = u3y + sx+ t,

where u, r, s, t ∈ K and u is non-zero. We say that (u, r, s, t) is a feasible change of coordinates.

Proof. We refer to [He02] Chapter 4, Section 4.12 p. 211− 212.

Let E be an elliptic curve. Using Theorem 1.15, it may be assumed that the projective equation
for E is of the form:

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3. (1.15.2)

We search for points at infinity, in other words points of the form (a, b, 0) with (a, b) ̸= (0, 0), by
setting Z = 0. This yields the equation X3 = 0, which is solved by X = 0. We see that E has
exactly one point at infinity and its projective coordinates are O = (0, 1, 0). In other words, E
only intersects the projective line Z = 0 in one point. Thus, we can set Z = 1 and work with the
equation Y 2+ a1XY + a3Y = X3+ a2X

2+ a4X + a6, which happens to be a Weierstrass equation.
It follows that

E(K) = {(x, y) ∈ K2 : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {O}.
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If we start with a long Weierstrass equation of type 1.14.1 over a field K with char(K) ̸= 2, 3

we can transform it into what we call a short Weierstrass equation.

Definition 1.16. A short Weierstrass equation defined over a field K is an equation of the form:

Y 2 = X3 +AX +B, (1.16.1)

with A,B ∈ K.

Consider the long Weierstrass equation y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. We set

b2 = a21 + 4a2

b4 = a1a3 + 2a4

b6 = a23 + 4a6

b8 = a21a6 − a1a3a4 + 4a2a6 + a2a
2
3 − a24

c4 = b22 − 24b4

c6 = −b32 + 36b2b4 − 216b6.

Since char(K) ̸= 2, we get

y2 = x3 +
b2
4
x2 +

b4
2
x+

b6
4
.

Finally, since char(K) ̸= 2, 3, we get

y2 = x3 − c4
48
x− c6

864
,

which is the short Weierstrass equation we were looking for.

1.3.2 The discriminant

Definition 1.17. The quantity:

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6 =
c34 − c26
123

is called the discriminant of the cubic 1.14.1.

It is easy to see that the discriminant of the cubic 1.16.1 is ∆ = −16(4A3 + 27B2). In fact, if
we consider this equation and compare it with the cubic 1.14.1, we see that a1 = a3 = a2 = 0, a4 =

A, a6 = B. Then b2 = 0, b4 = 2A, b6 = 4B, b8 = −A2 and it follows that

∆ = −8.8A3 − 27.16B2 = −16(4A3 + 27B2). (1.17.1)

A calculation shows that the curve defined by the cubic 1.14.1 is singular (or non-smooth) if and
only if ∆ = 0. Hence, a Weierstrass equation defines an elliptic curve if and only if the discriminant
is non-zero.
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It is important to note that the discriminant is not attached to the isomorphism class of an
elliptic curve. In fact, if we make a feasible change of coordinates using Theorem 1.15, we get
u4c′4 = c4, u

6c′6 = c6 and thus ∆ = u12∆′. We now define a quantity that has the property of being
invariant under feasible change of coordinates.

Definition 1.18. The quantity:

j =
c34
∆

is called the modular invariant of the elliptic curve E. We shall denote it j(E).

Theorem 1.19. Let E and E′ be two elliptic curves defined over an algebraically closed field K.
We then have the following assertion:

E and E′ are isomorphic ⇐⇒ j(E) = j(E′).

Proof. The direct implication is easy since E and E′ are isomorphic and thus have the same Weier-
strass equation up to a feasible change of coordinates, which does not affect j.

For the converse, suppose that the characteristic of K is different form 2 and 3. Then E and E′

have short Weierstrass equations of the form:{
E : y2 = x3 +Ax+B

E′ : y′2 = x′3 +A′x′ +B′.

It is easy to see that c4 = −48A, c′4 = −48A′ and thus

j(E) = j(E′) ⇐⇒ 1728
4A3

4A3 + 27B2
= 1728

4A′3

4A′3 + 27B′2 ⇐⇒ A′3B2 = A3B′2.

We are confronted with several cases.
If j = 0, then A = A′ = 0 and B,B′ ̸= 0. Let u ∈ K such that u6 = (B′/B). The existence of

such a u is guaranteed since K is supposed algebraically closed. Then (u, 0, 0, 0) is a feasible change
of coordinates from E′ to E.

If j = 1728, then B = B′ = 0 and A,A′ ̸= 0. Let u ∈ K such that u4 = (A′/A). Then (u, 0, 0, 0)

is a feasible change of coordinates from E′ to E.
If j ̸= 0, 1728, then (B′/B)2 = (A′/A)3. Thus, (B′/B)4 = (A′/A)6. Let u ∈ K such that

u4 = (A/A′) and u6 = (B/B′). Then (u, 0, 0, 0) is a feasible change of coordinates from E′ to E.
In fact,

y′2 = x′3 +A′x′ +B′ =⇒ u6y2 = u6x3 + u2A′x+B′ =⇒ u6u4y3 = u6u4x3 + u6A′x+ u4B′

=⇒ B′

B

A′

A
y3 =

B′

B

A′

A
x3 +A′B

′

B
x+B′A

′

A
=⇒ y3 = x3 +Ax+B,

which is the equation of E.
If char(K) = 2 or 3, we have to do the computations with long Weierstrass equations, a thing

that we will not do here.
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Example 1.20. This example will serve as an illustration of the concepts covered in the last two
sections. Provided two equivalent elliptic curves, we will expose a feasible change of coordinates
and compute both the discriminant and the modular invariant of these curves.

Let E and E′ be two elliptic curves over Q given by the following equations:{
E : y2 = x3 + 2x+ 2

E′ : y′2 + 1
2y

′x′ = x′3 + 11
16x

′2 + 5
16x

′ + 5
64 .

A calculation shows that (2, 1, 2, 0) is a feasible change of coordinates from E to E′. Thus the two
curves are isomorphic. We now compute the discriminant of the two curves.

(E) We have defined the elliptic curve E using a short Weierstrass equation. Identifying with
Equation 1.16.1 we get: A = B = 2. Using Equation 1.17.1, we compute:

∆E = −16(4.23 + 27.22) = −2240.

(E′) We have defined the elliptic curve E′ using a long Weierstrass equation. Identifying with
Equation 1.14.1 we get: a′1 = 1/2, a′2 = 11/16, a′3 = 0, a′4 = 5/16, a′5 = 5/64. We now compute
that b′2 = 3, b′4 = 5/8, b′6 = 5/16. Further computations give c′4 = −6, c′6 = −27. Finally, by using
Definition 1.17, we compute the discriminant ∆E′ = −35

64 . Note that u12∆E′ = −212.3564 = −2240 =

∆E , just as expected. We now show that the modular invariants of E and E′ are equal.
(E) By comparing the equation of E with the long Weierstrass Equation 1.14.1 we get: a4 =

a6 = 2, ai = 0, i = 1, 2, 3. Thus b2 = 0, b4 = 4, b6 = 8. Using this, we find that c4 = −96. Using
Definition 1.18, we compute:

j(E) =
c34
∆E

=
963

2240
=

13824

35
.

(E′) Recall that c′4 = −6. Using Definition 1.18, we compute:

j(E′) =
c
′3
4

∆E′
= 63.

64

35
=

13824

35
.

We see that j(E) = j(E′), just as expected.

1.3.3 Singular cubic curves

Let C : f(x, y) = 0 be a cubic curve defined over a field K by a long Weierstrass equation with

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6, (1.20.1)

where ai ∈ K, i = 1, 2, 3, 4, 6. Suppose E is singular. Then there exists a point P = (x0, y0) such
that grad(f)(x0, y0) = 0. We compute the Taylor expansion of f in a neighborhood of P up till the
third order:

f(x, y) = −(3x0 + a2)(x− x0)
2 + a1(x− x0)(y − y0) + (y − y0)

2 − (x− x0)
3

= [(y − y0)− α(x− x0)][(y − y0)− β(x− x0)]− (x− x0)
3,

12



where α and β lie in an algebraic closure of K.

Definition 1.21. If α ̸= β, then P is said to be a node (or double point). In this case there are
two distinct tangent lines to C at P , namely

y − y0 = α(x− x0) and y − y0 = β(x− x0).

If α = β, then P is said to be a cusp. In this case there is a unique tangent line to C at P with
multiplicity two.

There is an easy way to identify cusps and nodes of an singular curve given by a Weierstrass
equation as we see in the following proposition that we give without proof since this one is a simple
computation.

Proposition 1.22. Let C be a curve defined over a field K by a long Weierstrass Equation 1.20.1.

(i) The curve C admits a cusp if and only if ∆ = c4 = 0.

(ii) The curve C admits a node if and only if ∆ = 0 and c4 ̸= 0.

1.23. Note that the condition ∆ = 0 is equivalent to the curve C being singular as we have already
seen.

1.4 Weierstrass equations over Z

We study the reduction modulo a prime p of elliptic curves. We start by characterizing the reduction
of Weierstrass equations and then introduce minimal Weierstrass equations in order to characterize
the reduction of elliptic curves which is the aim of this section.

1.4.1 Reduction modulo p

Now that we have got a better grasp of elliptic curves and some of their properties, we will turn
our attention towards elliptic curves defined over Q and the reduction modulo a prime number p of
the defining equations.

Consider an elliptic curve E defined over Q by the short Weierstrass equation:

y2 = x3 +Ax+B, (1.23.1)

where A,B ∈ Q. If we define a feasible change of coordinates as follows x′ = λ2x, y′ = λ3y, where
λ ∈ Q∗, then we obtain the equation y′2 = x′3 +λ4Ax′ +λ6B. We see that choosing λ wisely yields

13



an equation with integer coefficients. Thus, up to a feasible change of coordinates, we may assume
that A,B ∈ Z.

Let p be a prime and consider the equation

Ep : y
2 = x3 +Apx+Bp,

where Ap and Bp are respectively the classes of A and B modulo p.

Definition 1.24. Let E : y2 = x3 +Ax+B be a short Weierstrass equation with A,B ∈ Z and let
p be a prime. We say that

(i) E has good reduction at p if the equation Ep defines a smooth curve.

(ii) E admits multiplicative reduction at p if the curve defined by the equation Ep admits a node
in P2(Fp). There are two types of multiplicative reduction. If the slopes of the tangent lines (α
and β in Section 1.3.3) are in Fp, we say that the reduction is split multiplicative. Otherwise,
we say that the reduction is non-split multiplicative.

(iii) E admits additive reduction at p if the curve defined by the equation Ep admits a cusp in
P2(Fp).

We see that if E has good reduction at p, then ∆ ̸≡ 0 (mod p). In the opposite case, we say
that E has bad reduction at p. So the bigger the discriminant, the more places of bad reduction
there exist for E.

Example 1.25. Let p > 3 be a prime and consider the two elliptic curves E and E′ defined over
Q by:

E : y2 = x3 + 1 and E′ : y′2 = x′3 + p6.

It is easy to see that (1p , 0, 0, 0) is a feasible change of coordinates form E to E′, thus the two elliptic
curves are isomorphic over Q. If we compute their discriminants, we get:

∆E = −432 = −24.33 and ∆E′ = −432p12 = −24.33.p12.

Since p > 3, E has good reduction at p while E′ has bad reduction at p. Hence Definition 1.24
concerns the equation of the curve and not the curve as a geometrical object.

We want to be able to choose one particular representative Weierstrass equation from the iso-
morphism class of an elliptic curve and determine the reduction modulo p of the curve using this
equation. The goal is for the curve to have a minimal number of places of bad reduction and this
motivates the introduction of minimal Weierstrass equations. We state and prove a theorem due to
Néron that states that every elliptic curve may be represented by such a minimal equation and we
deduce the reduction of the curve using the reduction of such a representative equation. In order
to introduce minimal Weierstrass equations, we first need the definition of the p-adic absolute value
on Q of a prime number p.

14



1.4.2 The p-adic absolute value on Q

An absolute value on an integral ring A is a map A −→ R defined by x 7−→ |x|, that satisfies the
following conditions:

(i) |x| ≥ 0 for all x ∈ A and |x| = 0 if and only if x = 0.

(ii) |xy| = |x|.|y| for all x, y ∈ A.

(iii) |x+ y| ≤ |x|+ |y|, for all x, y ∈ A (triangle inequality).

For example, the usual absolute value | · | on R is an absolute value in this sense, but also x 7→ 2|x|.

Definition 1.26. The p-adic absolute value on Q is the map from Q to R defined by x 7−→ |x|p,
where |0|p = 0 and |x|p = p−n if x = pn a

b with n ∈ Z and a, b ∈ Z \ pZ.

The function x 7→ |x|p is indeed an absolute value. It satisfies the inequality |x + y|p ≤
sup{|x|p, |y|p}, for all x, y ∈ Q, which is stronger than the triangle inequality. Because of this,
we say it is an ultrametric or non-archimedean absolute value on Q.

Now that we have defined the p-adic absolute value we may consider the following set:

Z(p) = {x ∈ Q : |x|p ≤ 1} =

{
r

q
: r ∈ Z, q ∈ Z \ pZ

}
.

This is a subring of Q and is referred to as the valuation ring of | · |p. If x ∈ Q is an element of Z(p),
then we say that x is a p-integer, or that x is p-integral.

1.4.3 Minimal Weierstrass equations

Let E be an elliptic curve defined over Q. In Section 1.3.1 we saw that such a curve can be defined
by a long Weierstrass equation with integer coefficients:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1.26.1)

Let p be a prime. If the coefficients of this equation are all p-integers, then it is said to be p-integral.

Definition 1.27. Equation 1.26.1 is said to be p-minimal if the following conditions hold:

(i) The equation is p-integral.

(ii) |∆|p cannot increase if we perform a feasible change of coordinates in Q resulting in a new
p-integral equation.

The last condition tells us that if we perform a feasible change of coordinates and the new
equation is p-integral, then we must have |∆|p ≥ |∆′|p. In other words, the discriminant of a
p-minimal Weierstrass equation is maximal in terms of the p-adic absolute value.
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From now on we shall write a feasible change of coordinates

x = u2x′ + r y = u3y′ + su2x′ + t (1.27.1)

with u, r, s, t ∈ Q. We then have:

ua′1 = a1 + 2s

u2a′2 = a3 − sa1 + 3r − s2

u3a′3 = a3 + ra1 + 2t

u4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st

u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1

u4c′4 = c4

u6c′6 = c6

u12∆′ = ∆.

(1.27.2)

We now state and prove two lemmas that we will use in the proof of Néron’s Theorem on the
existence of minimal Weierstrass equations..

Lemma 1.28. Let p be a prime and suppose that the coefficients of Equation 1.26.1 are p-integers.
Then:

(i) If |∆|p > p−12 or |c4|p > p−4 or |c6|p > p−6, then the equation is p-minimal.

(ii) If p > 3 and if |∆|p ≤ p−12 and |c4|p ≤ p−4, then the equation is not p-minimal.

Proof. To prove (i), assume that |∆|p > p−12. Suppose, by contradiction, that the equation is not
p-minimal. Then there exists a feasible change of coordinates (u, r, s, t) such that the new equation
is p-integral and

|∆′|p > |∆|p. (1.28.1)

Let |u|p = p−n, with n an integer. Since u12∆′ = ∆ we see that |∆|p = |∆′|p.|u|12p . Using Inequality
1.28.1, we see that |∆′|p > |∆′|p.|u|12p , and thus |u|p < 1. Furthermore, ∆′ ∈ Z(p) since Z(p) is a ring
and a′i ∈ Z(p), i = 1, 2, 3, 4, 6 by hypothesis. This implies that |∆′|p ≤ 1. From this it follows that

|u|12p =
|∆|p
|∆′|p

>
p−12

|∆′|p
≥ p−12 =⇒ p−12n > p−12 =⇒ p12(1−n) > 1 =⇒ n < 1.

But |u|p < 1, and therefore we must have n > 0. Finally this gives us 0 < n < 1 and this is a
contradiction. The cases where |c4|p > p−4 and |c6|p > p−6 can be proved in a similar way.

In order to prove (ii) we let p > 3 be a prime number and suppose that |∆|p ≤ p−12 and
|c4|p ≤ p−4. Using Definition 1.17, we see that 1728∆ = c34 − c26. Note that the prime factor
decomposition of 1728 is 2633. Since p > 3, p does not enter this decomposition and therefore
|1728|p = 1. Using the fact that | · |p is ultrametric, we compute:

|c6|2p = |c34 − 1728∆|p ≤ sup{|c34|p, | − 1728∆|p} = sup{|c34|p, |1728∆|p}.
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But |c34|p = |c4|3p ≤ (p−4)3 = p−12 and |1728∆|p = |1728|p.|∆|p = |∆|p ≤ p−12. This shows that
sup{|c34|p, |1728∆|p} ≤ p−12, which implies that |c6|p ≤ p−6. Similarly,

|∆|p ≤ p−12, |c6|p ≤ p−6 =⇒ |c4|p ≤ p−4,

|c4|p ≤ p−4, |c6|p ≤ p−6 =⇒ |∆|p ≤ p−12.

We have seen before that transforming, via a feasible change of coordinates, Equation 1.26.1 into a
short Weierstrass equation yields the equation:

y2 = x3 − c4
48
x− c6

864
.

On this equation we now perform the feasible change of coordinates (p, 0, 0, 0). This yields the
equation:

y′2 = x′3 − c4
48
p−4x′ − c6

864
p−6. (1.28.2)

The coefficients of this new equation are p-integers. In fact,

| c4
48
p−4|p = |c4|p.|p−4|p = |c4|p.p4 ≤ p−4.p4 = 1.

This computation can only be done because p > 3 and therefore |48|p = 1. A similar calculation
shows that | c6

864p
−6|p ≤ 1. Thus Equation 1.28.2 is p-integral. From System 1.27.2, we know that

∆′ = p−12∆ and thus
|∆′|p = |p−12|p.|∆|p = p12.|∆|p > |∆|p.

So the initial Equation 1.26.1 is not minimal.

Lemma 1.29. Let E be an elliptic curve defined over Q and p be a prime.

(i) Any equation for E can be made p-minimal via a feasible change of coordinates with coefficients
in Q.

(ii) If an equation for E is already p-integral, then the resulting equation of this change of coordi-
nates is also p-integral.

(iii) Two minimal equations at p for E are related by a feasible change of coordinates for which
|u|p = 1 and r, s, t are p-integers.

Proof. For this proof, we will suppose that p > 3. We start by proving (i). We may suppose that E
is given by a Weierstrass equation with integer coefficients. Thus |∆|p ≤ 1. Since ∆ ̸= 0 (because
otherwise E would not be an elliptic curve), we have |∆|p > 0. So there is only a finite number of
|∆′|p between |∆|p and 1, and this proves the existence of a p-minimal equation.

We prove statement (ii). If the resulting equation is p-minimal, then the eighth equation of
System 1.27.2 tells us that |u|p ≤ 1. Since ai, a′i ∈ Z(p), i = 1, 2, 3, 4, 6, the first three equations of
System 1.27.2 tell us that r, s, t ∈ Z(p).
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Finally we prove the last statement. If a given equation for E is p-minimal, then we have already
seen in (ii) that |u|p ≤ 1. The u-parameter of the inverse transformation is u−1. So, by (ii), we
also have |u−1|p ≤ 1. But |u−1|p = |u|−1

p , so |u|p ≥ 1 and therefore |u|p = 1. We already know from
(ii) that r, s, t ∈ Z(p) and thus the proof is complete.

Definition 1.30. Equation 1.26.1 is said to be globally minimal if:

(i) Its coefficients are integers.

(ii) The equation is p-minimal for all prime numbers p.

Example 1.31. Let E be an elliptic curve defined over Q and given by the equation E : y2 = x3+1.
Clearly, the coefficients of this equation are integers. We saw in Example 1.25 that ∆ = −432 =

−2433. If p > 3 is a prime number, then |∆|p = 1 and the equation is p-minimal. Otherwise,
we compute that |∆|2 = 2−4 > 2−12 and |∆|3 = 3−3 > 3−12. By Lemma 1.28, the equation is
2-minimal and 3-minimal. Thus the equation is globally minimal.

In order to prove that all elliptic curves possess a globally minimal equation we need this next
lemma.

Lemma 1.32. Let p1, ..., pn be a finite set of prime numbers and ϵ1, ..., ϵn be positive real numbers.
For all i ∈ {1, ..., n} take pi-integers xi ∈ Z(pi). Then there exists x ∈ Z such that, for all 1 ≤ i ≤ n,
we have |x− xi|pi ≤ ϵi.

Proof. Let p be prime and notice that Z(p) ⊂ Zp = {x ∈ Qp : |x|p ≤ 1}, where Qp is the p-adic field,
that is, the completion of Q with respect to | · |p. Actually, one can show that Zp is the completion
of Z with respect to | · |p. By construction of this completion, Z is dense in Zp.

Considering the above remark, we may choose integers x′i ∈ Z such that |xi − x′i|pi <
ϵi
2 for all

1 ≤ i ≤ n. Let m be an arbitrary positive integer. By the classic Chinese Remainder Theorem,
the system of linear congruences x ≡ x′i(mod pmi ) for 1 ≤ i ≤ n has a unique solution x (mod
(p1p2 . . . pn)

m). But then, for all i, there exists ci ∈ Z \ piZ and a positive integer ki such that
x− x′i = cip

kim
i . Thus |x− x′i|pi = p−kim

i → 0, when m→ ∞. Hence, there exists a positive integer
Ni such that |x − x′i|pi <

ϵi
2 whenever m ≥ Ni. Let N be the maximum of all Ni. If we choose

m ≥ N , then we obtain
|x− xi|pi ≤ |x− x′i|pi + |x′i − xi|pi < ϵi

for all 1 ≤ i ≤ n, as desired.

1.33. Lemma 1.32 is actually equivalent to the Chinese Remainder Theorem. We do not prove
the other implication since we do not need it but it is worth noting. This lemma is therefore often
directly referred to as the Chinese Remainder Theorem.
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Theorem 1.34 (Néron). Let E be an elliptic curve defined over Q and given by a Weierstrass
equation.

(i) There exists a change of coordinates 1.27.1, with coefficients in Q, such that the resulting
equation is globally minimal.

(ii) Two globally minimal equations for the same curve E are related by a change of coordinates
1.27.1 such that u = ±1 and r, s, t are integers.

Proof. We do not need to prove (ii) since it is a direct consequence of Lemma 1.29. So we only
need to prove part (i), that is, the existence of a globally minimal equation.

Let E be an elliptic curve defined over Q by a Weierstrass equation. As seen already, up to
feasible change of coordinates we may suppose that the coefficients of this equation are all integers.
This implies that ∆ is also an integer.

Let p be a prime that divides ∆. Then, by Lemma 1.29, there exists a feasible change of
coordinates (up, rp, sp, tp) such that the resulting equation is p-minimal. This same lemma also
tells us that up, rp, sp, tp ∈ Z(p). From System 1.27.2 we know that |up|12p |∆p|p = |∆|p, where ∆p

is the discriminant of the new equation. Let us write up = pλpθp, where θp ∈ Z(p), |θp|p = 1 and
λp ≥ 0 (point (ii) of Lemma 1.29). Then |up|p = p−λp ≤ 1. Now, we perform a feasible change of
coordinates with

u =
∏
p|∆

pλp ∈ N.

Then

|∆′|p = |u|−12
p |∆|p =

∏
ℓ|∆

|ℓλℓ |p

−12

|∆|p = |pλp |−12
p |∆|p = p12λp |∆|p = |up|−12

p |∆|p = |∆p|p.

So this new equation is minimal at all primes that divide ∆.
Since |∆′|ℓ = 1 if ℓ is a prime that does not divide ∆, the equation is p-minimal for all p, where

p is prime. The only thing we need to do now is to show that the coefficients of this equation are
integers. Then by definition it is globally minimal.

We need to choose r, s, t wisely and we will do this using Lemma 1.32. We shall take r, s, t ∈ Z
such that, for all primes p that divide ∆, we have

|r − rp|p ≤ p−6λp |s− sp|p ≤ p−6λp |t− tp|p ≤ p−6λp .

This is possible since there is only a finite number of primes dividing the discriminant. To prove
that a′i, i = 1, 2, 3, 4, 6 are integers we need to show that |a′i|ℓ ≤ 1 for all i = 1, 2, 3, 4, 6 and all p
prime. If ℓ does not divide ∆, then there is no problem since ai, r, s, t are integers.

For i = 1, if ℓ = p does divide ∆, then write

ua′1 = a1 + 2s = a1 + 2(s− sp) + 2sp = upa1,p + 2(s− sp).
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It follows that

|ua′1|p ≤ max{|upa1,p|p, |2(s− sp)|p} ≤ max{|up|p, p−6λp} = max{p−λp , p−6λp} = p−λp = |up|p.

But |up|p = |u|p, so |ua′1|p = |u|p|a′1|p ≤ |u|p, thus |a′1|p ≤ 1.
For i = 2, if ℓ = p does divide ∆, then write

u2a′2 = a3 − sa1 + 3r − s2 = a3 − spa1 + 3rp − s2p + (sp − s)a1 + 3(r − rp) + (s2p − s2)

= u2pa2,p + (sp − s)(a1 + s+ sp) + 3(r − rp)|u2a′2|p ≤ max{|up|2p, p−6λp} = |up|2p,

thus |a′2|p ≤ 1.
The other cases for i can be proved in a similar way using System 1.27.2.

We may now characterize the reduction modulo a prime p of an elliptic curve. The following
definition does not depend on the choice of the minimal Weierstrass equation.

Definition 1.35. Let p be a prime, E be an elliptic curve defined over Q and let W be a minimal
Weierstrass equation for E. We say that

(i) E admits good reduction at p if W admits good reduction at p.

(ii) E admits split (respectively non-split) multiplicative reduction at p if W admits split (respec-
tively non-split) multiplicative reduction at p.

(iii) E admits additive reduction at p if W admits additive reduction at p.

We now introduce the conductor of an elliptic curve E. It is a positive integer NE , which
contains information about the reduction of E. The conductor will be of major importance in what
will follow. In the case of additive reduction at 2 or 3, we refer to [Og67].

Definition 1.36. Let E be an elliptic curve defined over Q. The conductor NE is the product

NE =
∏

p prime

pfp ,

where

fp =


0 if E has good reduction at p,

1 if E admits multiplicative reduction at p,

2 + δp if E admits additive reduction at p.

where δp ≥ 0 is a certain integer whose precise definition we omit, except for saying that δp = 0 if
p > 3.

20



Example 1.37. In this example we compute the conductor of a well-known elliptic curve. Let E
be an elliptic curve defined over Q and given by the equation E : y2−y = x3−x2. Comparing with
Definition 1.14.1, we see that a1 = a4 = a6 = 0 as well as a2 = a3 = −1. A computation shows that
c4 = 16 and c6 = −152, thus

∆ =
163 − 1522

123
= −11.

The coefficients of the equation are integers and if p ≠ 11 is prime, then |∆|p = 1 and thus
the equation is p-minimal. Note that |∆|11 = 11−1 > 11−12 and by Lemma 1.28, the equation is
11-minimal. Thus the equation is globally minimal.

If p ̸= 11 is a prime number, then fp = 0. If p = 11, then c4 ̸≡ 0 mod 11. So E admits a double
point and the reduction modulo 11 is multiplicative, hence f11 = 1. This leads to NE = 11.

We will show that E has split multiplicative reduction at 11. We shall use the notation E for
the curve E modulo 11. We have

E11 : f(x, y) = 0,

where f(x, y) = y2 +10y+10x3 + x2. We look for the singular point P = (x0, y0) of E11 by forcing
the equality between the gradient of f at P and 0:

grad(f)(x0, y0) = (8x20 + 2x0, 2y0 + 10) = (0, 0).

A calculation shows that P = (8, 6). We take the third order Taylor expansion of f in a neighborhood
of P :

f(x, y) = (y − 6)2 − 9(x− 8)2 − (x− 8)3 = [(y − 6)− 3(x− 8)][(y − 6)− 8(x− 8)]− (x− 8)3.

Thus, the tangent lines of E11 at P are y = 3x+ 7 and y = 8x+ 8. Both of these lines have slopes
in F11, hence E admits split multiplicative reduction at 11.

1.5 The L-series of elliptic curves over Q

We define and study the L-series of elliptic curves over Q. These series will constitute the link
that we will establish between elliptic curves and modular forms. We start with some important
theorems and results on elliptic curves over finite fields, mostly without proof.

1.5.1 Results concerning elliptic curves over finite fields

Let p be a prime and n a positive integer. The following theorem was first conjectured by E. Artin
in 1924 in his thesis and proved in 1934 by the German mathematician H. Hasse.

Theorem 1.38 (Hasse). Let E be an elliptic curve over Fpn. Then the order of E(Fpn) satisfies

|#E(Fpn)− (pn + 1)| ≤ 2
√
pn.
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Proof. For the original article by Hasse we refer to [Ha36]. For a modern proof, see Theorem 1.1 of
[Si86] Section V.I.

This result gives an approximation of the order of E(Fpn) and tells us that it does not differ
very much from pn + 1. We state the following theorem without proof.

Theorem 1.39. Let E be an elliptic curve over Fp and define a = p+ 1−#E(Fp).
Write X2 − aX + p = (X − α)(X − β). Then, the equality

#E(Fpn) = 1− αn − βn + pn

holds for all n ≥ 1.

1.40. The numbers α, β in Theorem 1.39 are two conjugate complex numbers that satisfy |α| =
|β| = √

p. In fact, we have

α =
a−

√
a2 − 4p

2
β =

a+
√
a2 − 4p

2
.

Since |a| ≤ 2
√
p, we have a2 − 4p ≤ 0. Hence α and β are complex conjugates. Since 2α =

a− i
√

4p− a2, we have 2|α| =
√
a2 + 4p− a2 = 2

√
p. Since α and β are conjugates, we know that

|α| = |β| = √
p.

Example 1.41. In this example, we compute #E(F9) for an elliptic curve E over F3 in two different
ways. We numerically illustrate the above theorems. Let E be the elliptic curve of Example 1.37
viewed over F3:

E : y2 − y = x3 − x2.

Since ∆ = −11, we know that E has good reduction at 3. A short computation shows that E(F3) =

{O, (0, 0), (0, 1), (1, 0), (1, 1)}, thus #E(F3) = 5. By definition, we then have a = 3 + 1 − 5 = −1.
Then

X2 − aX + p = X2 +X + 3 =

(
X − −1− i

√
11

2

)(
X − −1 + i

√
11

2

)
= (X − α)(X − β).

Using Theorem 1.39, #E(F9) = 1 + 5 + 9 = 13.
We now compute #E(F9) by hand. Consider the irreducible polynomial X2 − 2 ∈ F3[X]. Let ξ

be a root of this polynomial. Then we may identify F9 with F3(ξ) = {0, 1, 2, ξ, ξ + 1, ξ + 2, 2ξ, 2ξ +

1, 2ξ + 2}.
Using Table 1, we can count the order of E(F9). Remember to add the point O to the list, since

it is not represented in this table. Doing this, we find that #E(F9) = 13.
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x x2 x3 x3 − x2 x2 − x #y|y2 − y = x3 − x2

0 0 0 0 0 2

1 1 1 0 0 2

2 1 2 1 2 1

ξ 2 2ξ 2ξ + 1 2ξ + 2 0

ξ + 1 2ξ 2ξ + 1 1 ξ + 2 1

ξ + 2 ξ 2ξ + 2 ξ + 2 ξ + 1 2

2ξ 2 ξ ξ + 1 ξ + 2 1

2ξ + 1 ξ ξ + 1 1 2ξ + 2 1

2ξ + 2 2ξ ξ + 2 2ξ + 2 1 2

Table 1: Computations in F9

1.5.2 The zeta function of elliptic curves over finite fields

We define the zeta function of an elliptic curve and study some of its properties.

Definition 1.42. Let p be a prime and let E be an elliptic curve over Fp. Let Nm = #E(Fpm),
for all m ≥ 1 integer. The Z-function of E and the local zeta-function ζp of E are respectively the
formal power series and the function defined by:

Z(E, T ) = exp

( ∞∑
m=1

Nm

m
Tm

)
ζp(E, s) = Z(E, p−s),

where s ∈ C.

Proposition 1.43. Let E be an elliptic curve over Fp and let a = p+ 1−#E(Fp). Then

Z(E, T ) =
pT 2 − aT + 1

(1− T )(1− pT )
ζp(E, s) =

1− ap−s + p1−2s

(1− p−s)(1− p1−s)
.

Proof. In this proof we use the fact that,

∞∑
m=1

(ξx)m

m
= − log(1− ξx),

where the term on the left is a formal series. Since #E(Fp) = p + 1 − a, we know by Theorem
1.39 that #E(Fpm) = 1− αm − βm + pm, where α and β are the complex roots of the polynomial
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X2 − aX + p. Knowing this we compute:

Z(E, T ) = exp

( ∞∑
m=1

1− αm − βm + pm

m
Tm

)

= exp

( ∞∑
m=1

Tm

m
+

(pT )m

m
− (αT )m

m
− (βT )m

m

)
= exp (− log(1− T )− log(1− pT ) + log(1− αT ) + log(1− βT ))

=
(1− αT )(1− βT )

(1− T )(1− pT )

=
pT 2 − aT + 1

(1− T )(1− pT )
.

To prove the equality concerning the function ζp, one only needs to substitute T with p−s.

1.44. Notice that Proposition 1.43 implies Theorem 1.39. Hence, the two are equivalent.

We can experiment a little with this Z-function. Let p be a prime, m ≥ 1 and C be the curve
defined over Fpm by the equation xy = 0. The curve C is obviously not an elliptic curve. However,
let us define the Z-function of C as in Definition 1.42 by

Z(C, T ) = exp

( ∞∑
m=1

Nm

m
Tm

)
,

where Nm = #C(Fpm). It is easy to see that Nm = 2pm − 1. We now compute that

Z(C, T ) = exp
(∑∞

m=1
2pm−1

m Tm
)

= exp
(∑∞

m=1
(pT )m

m + (pT )m

m − Tm

m

)
= exp (−2 log(1− pT ) + log(1− T ))

= (1−T )
(1−pT )2

.

So the Z-function of C is again rational. This is not a coincidence. In fact, a result by Dwork and
Grothendieck states that we can define a Z-function for any finite system of equations over Fp by
counting solutions and this function will always be rational.

1.5.3 The L-series

We start by defining the L-function of an elliptic curve and then we show that this function takes
the form of a Dirichlet series.

Let E be an elliptic curve over Q and let p be a prime.

Definition 1.45. The L-function of E at p is defined, for s ∈ C, by

Lp(E, s) =

(1− app
−s + p1−2s)−1 if E has good reduction at p,

(1− app
−s)−1 if E admits bad reduction at p,
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where

ap =



p+ 1−#E(Fp) if E has good reduction at p,

1 if E admits split multiplicative reduction at p,

−1 if E admits non-split multiplicative reduction at p,

0 if E admits additive reduction at p.

1.46. If E admits good reduction at p, then Lp(E, s) is exactly the numerator of the local zeta
function of E.

Definition 1.47. The Hasse-Weil L-function of E is defined by

L(E, s) =
∏

p prime

Lp(E, s),

where s ∈ C.

The Hasse-Weil L-function of E has analogous properties to the ones of the Riemann zeta
function

ζ(s) =
∞∑
n=1

1

ns
.

We recall that the Riemann zeta function converges for Re(s) > 1 and that it can be expressed as
an Euler product:

ζ(s) =
∏

p prime

1

1− p−s
.

The local Lp-functions of E correspond by analogy to the terms 1
1−p−s .

1.48. We may write the Hasse-Weil L-function under the form

L(E, s) =
∏

bad p

(1− app
−s)−1

∏
good p

(1− app
−s + p1−2s)−1,

where the first product is finite since it only concerns primes p that induce bad reduction and the
second product is infinite.

Proposition 1.49. The Hasse-Weil L-function of E converges for Re(s) > 3
2 .

Proof. Suppose that Re(s) > 3/2. By Remark 1.48, we only need to show the result for∏
good p

(1− app
−s + p1−2s)−1, (1.49.1)

since the product over the bad primes is finite.
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For any good prime p, consider the polynomial 1− apT + pT 2 and let θp be any one of its two
complex roots. Then product 1.49.1 becomes∏

good p

(1− θpp
−s)−1(1− θpp

−s)−1.

Since |θp| = p
1
2 , we see that |θpp−s| = p

1
2
−Re(s). Thus, |1− θpp

−s| ≥ |1− |θpp−s|| = |1− p
1
2
−Re(s)|.

The same arguments hold for the conjugate of θp. Now,∏
good p

|(1− app
−s + p1−2s)−1| ≤

∏
good p

| 1

1− p
1
2
−Re(s)

|2.

We state that |1− p
1
2
−Re(s)|−1 ≥ 1. In fact, since Re(s) > 3/2, we have

|1− p
1
2
−Re(s)| < |1− p

1
2
− 3

2 | = |1− 1

p
| ≤ 1.

This implies that∏
good p

(1− app
−s + p1−2s)−1 ≤

∏
p prime

| 1

1− p
1
2
−Re(s)

|2 = |ζ(Re(s)− 1

2
)|2.

We have Re(s) > 3
2 ⇐⇒ Re(s) − 1

2 > 1 ⇐⇒ Re(Re(s) − 1
2) > 1. Thus |ζ(Re(s) − 1

2)|
2 is finite.

Furthermore, the product 1.49.1 is non-zero and this proves the absolute convergence of 1.49.1 and
finishes the proof.

An alternative way to prove this is to use the following result of real analysis: for real numbers
αn ≥ 0,

∞∑
n=1

αn converges ⇐⇒
∞∏
n=1

(1 + αn) converges.

Thus, we need only to verify that
∑

p | − app
−s + p1−2s| < +∞. But∑

p

| − app
−s + p1−2s| ≤

∑
p

|app−s|+
∑
p

|p1−2s|.

We start by dealing with the second term:

∑
p

|p1−2s| =
∑
p

p1−2Re(s) <
∑
p

p−2 ≤
∞∑
n=1

n−2 < +∞.

For the other term, we notice that |ap| ≤ 2p
1
2 by Theorem 1.38. We then get:

∑
p

|app−s| =
∑
p

|ap|pRe(s) ≤ 2
∑
p

p
1
2
−Re(s) ≤ 2

∑
p

p
1
2
−( 3

2
−ϵ) ≤ 2

∞∑
n=1

n−δ < +∞,

where ϵ > 0 and δ = 1− ϵ < 1. This ends the alternative proof.
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Definition 1.50. We can expand the Hasse-Weil function of an elliptic curve E and transform it
into a Dirichlet series:

L(E, s) =
∞∑

m=1

an
ns
,

where s ∈ C. This is called the L-series of E.

This definition does not give us the coefficients of the L-series. We now show how to obtain
these. Recall that

L(E, s) =
∏

bad p

(1− app
−s)−1

∏
good p

(1− app
−s + p1−2s)−1

and recall the formula for the infinite geometric series:

1

1− x
=

∞∑
m=0

xm. (1.50.1)

Let p be a good prime, in other words a prime such that E has good reduction at p. Then, by
using Equation 1.50.1, we see that

1

1− app−s + p1−2s
=

∞∑
m=0

(app
−s − p1−2s)m.

Using the Newton binomial, we compute that

(app
−s − p1−2s)2 = a2pp

−2s − 2appp
−3s + p2p−4s,

(app
−s − p1−2s)3 = a3pp

−3s − 3a2ppp
−4s + 3app

2p−5s − p3p−6s,

(app
−s − p1−2s)4 = a4pp

−4s − 4a3ppp
−5s + 6a2pp

2p−6s − 4app
3p−7s + p4p−8s.

Thus,

1

1− app−s + p1−2s
= 1 +

ap
ps

+
a2p − p

p2s
+
a3p − 2app

p3s
+
a4p − 3a2pp+ p2

p4s
+

3app
2 − 4a3pp

p5s

+
6a2pp

2 − p3

p6s
− 4app

3

p7s
+
p4

p8s
+

∞∑
m=5

(app
−s − p1−2s)m.

1.51. The definition of apk is that it is the coefficient of p−ks. So we can set

ap2 = a2p − p, ap3 = a3p − 2app, ap4 = a4p − 3a2pp+ p2.

Generalizing this, we find that apapn = apn+1 + papn−1 if p is prime, n ≥ 1.

Let p be a bad prime, that is, a prime such that E has bad reduction at p. Then, by using
Equation 1.50.1, we get

1

1− app−s
=

∞∑
m=0

(app
−s)m = 1 +

ap
ps

+
a2p
p2s

+
∞∑

m=3

(app
−s)m.
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1.52. By multiplying out these infinite series for various p to get terms in the Dirichlet series we
see that:

(i) If n =
∏

j p
ej
j , then an =

∏
j ap

ej
j

.

(ii) If n = p with p prime, then an is the same as ap of Definition 1.45.

Example 1.53. We will compute the first terms of the L-series of the elliptic curve E defined over
Q by

E : y2 − y = x3 − x2.

We have already seen in Example 1.37 that ∆ = −11, that this equation is globally minimal
and that E admits split multiplicative reduction at 11. Now, since E admits split multiplicative
reduction at 11, we use Definition 1.45 to set a11 = 1. A quick calculation shows that #E(F2) = 5.
Thus, by definition, a2 = 2 + 1 − 5 = −2. We already saw in Example 1.41 that #E(F3) = 5

and thus a3 = 3 + 1 − 5 = −1. Similar calculations show that a5 = 1 and a7 = −2. With this
information, we compute 

a4 = a22 = a22 − 2 = 4− 2 = 2,

a6 = a2×3 = a2.a3 = 2,

a8 = a23 = a32 − 2a2.2 = −8 + 8 = 0,

a9 = a32 = a23 − 3 = −2,

a10 = a2×5 = a2.a5 = −2.

Hence the Hasse-Weil L-series of E up till the eleventh term is:

L(E, s) = 1− 2

2s
− 1

3s
+

2

4s
+

1

5s
+

2

6s
− 2

7s
− 2

9s
− 2

10s
+

1

11s
+ · · ·
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2 Modular forms

In this chapter we radically change the subject from elliptic curves to modular forms. As we will
see, modular forms are functions of the complex upper half plane that behave in a certain manner
under the action of the matrix group SL2(Z), which we call the modular group. Elliptic curves and
modular forms emerge from two completely unrelated areas of mathematics but by the end of this
chapter we shall have constructed a link between the two notions.

2.1 The modular group

A general theory of modular forms can be developed around SL2(Z) and some of its particular
subgroups called congruence subgroups. We shall not do this here since, as we will see, we will
only work with the congruence subgroup Γ0(N). For a more general approach we refer to [DS05]
Chapters 1 and 2.

2.1.1 Congruence subgroups

Let N be a positive integer and consider the group homomorphism

ΠN : SL2(Z) −→ SL2(Z/NZ)(
a b
c d

)
7−→

(
[a]N [b]N
[c]N [d]N

)
.

Definition 2.1. The kernel of ΠN is called the principal congruence subgroup of level N and is
denoted Γ(N). Explicitly, that is

Γ(N) =

{(
a b

c d

)
∈ SL2(Z) :

(
a b

c d

)
≡

(
1 0

0 1

)
(mod N)

}
.

Definition 2.2. A subgroup Γ of SL2(Z) is said to be a congruence subgroup if there exists N a
positive integer such that Γ ⊃ Γ(N). The smallest such N is called the level of the congruence
subgroup.

We may now introduce the particular congruence subgroup of level N mentioned above

Γ0(N) =

{(
a b

c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

Notice that Γ0(1) = SL2(Z).
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2.3. We verify that Γ0(N) is indeed a subgroup of SL2(Z). Let M =
(
a b
c d

)
∈ Γ0(N) and M ′ =(

a′ b′

c′ d′

)
∈ Γ0(N). Clearly det(MM ′) = 1 since det(M) = 1 = det(M ′). Furthermore (MM ′)21 =

ca′ + dc′ ≡ 0 (mod N) since both c and c′ are zero modulo N . So MM ′ ∈ Γ0(N). By definition,
M is invertible and M−1 =

(
d −b
−c a

)
. Thus det(M−1) = 1 and (M−1)21 = −c ≡ 0 (mod N). So

M−1 ∈ Γ0(N).

2.1.2 Results on indices

We state some results concerning the indices of Γ0(N) and Γ(N) in SL2(Z).

Proposition 2.4. Let N be a positive integer. Then Γ(N) is a normal subgroup of SL2(Z) and the
quotient group SL2(Z) /Γ(N) is isomorphic to SL2(Z/NZ).

Proof. Since, by definition, Γ(N) is the kernel of ΠN we know by basic algebra that it is a normal
subgroup of SL2(Z), and we only need to show that ΠN is surjective to prove the isomorphism.

Let γ ∈ SL2(Z/NZ) and lift it to obtain a matrix M =
(
a b
c d

)
∈ M2(Z) such that M ≡ γ (mod

N). Then det(M) ≡ 1 (mod N). There exist matrices U, V ∈ SL2(Z) such that UMV is diagonal.
We write UMV =

(
a1 0
0 a2

)
. Then det(UMV ) = det(U) det(M) det(V ) = det(M). Thus a1a2 ≡ 1

(mod N). Define W =
(

a2 1
a2−1 1

)
and X =

(
1 −a2
0 1

)
. Note that det(W ) = 1 = det(X), thus both

these matrices are in SL2(Z). We have

WUMVX =
(

a2 1
a2−1 1

) (
a1 0
0 a2

) (
1 −a2
0 1

)
=
(

a1a2 a2(1−a1a2)
a1a2−a1 a2(1−a1a2)+a1a2

)
≡
(

1 0
1−a1 1

)
(mod N),

since a1a2 ≡ 1 (mod N). Write A =
(

1 0
1−a1 1

)
. The determinant of A is 1 and therefore A ∈ SL2(Z).

Finally set M ′ = (WU)−1A(V X)−1. Then M ′ ≡ M (mod N) ≡ γ (mod N). Since M ′ ∈ SL2(Z),
we have proved that ΠN is surjective.

2.5. A calculation that we do not expose here shows that

#SL2(Z/NZ) = N3
∏
p|N

(
1− 1

p2

)
.

Note that if N = p is prime this is easy. Start by noticing that the sequence

1 → SLn(Fp) ↪→ GLn(Fp)
det↠ F∗

p → 1

is exact. The group GLn(Fp) is the set of all n by n matrices with coefficients in Fp for which the
columns are linearly independent. For the first column, there are pn − 1 possibilities (the all zero
column is not valid). For the second column, there are pn−p possibilities since there are p multiples
of the first column. Proceeding like this, we find that there are pn − pn−1 possibilities for the nth

column. Combining this, we have

#GLn(Fp) = (pn − 1)(pn − p) · · · (pn − pn−1) =
n−1∏
k=0

(pn − pk)
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Thus (p− 1)#SLn(Fp) = #GLn(Fp) =
∏n−1

k=0(p
n − pk). Setting n = 2, we get

#SL2(Z) =
(p2 − 1)(p2 − p)

p− 1
= p(p2 − 1) = p3(1− 1

p2
).

Then one needs to show the result for pn and that # SL2(Z/n1n2Z) = # SL2(Z/n1Z)# SL2(Z/n2Z)
for n1, n2 relatively prime. Then the general result follows.

By Proposition 2.4, we know that SL2(Z) /Γ(N)
∼−→ SL2(Z/NZ) and thus [SL2(Z) : Γ(N)] =

#SL2(Z/NZ).

Proposition 2.6. Let N be a positive integer. The index of Γ0(N) in SL2(Z) is

[SL2(Z) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
.

Proof. In order to compute the index of Γ0(N) in SL2(Z) we introduce the congruence subgroup

Γ1(N) =

{(
a b

c d

)
∈ SL2(Z) :

(
a b

c d

)
≡

(
1 ∗
0 1

)
(mod N)

}
,

where ∗ means unspecified. We have the inclusions

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z) .

Consider the group homomorphism Γ1(N) −→ Z/NZ given by
(
a b
c d

)
7−→ [b]N . This map is

surjective. In fact, let n ∈ Z/NZ and consider the matrix ( 1 n
0 1 ). This matrix is an element of

Γ1(N) and its image by the homomorphism is [n]N = n. The kernel of this map is{(
a b

c d

)
∈ Γ1(N) : [b]N = 0

}
=

{(
a b

c d

)
∈ SL2(Z) :

(
a b

c d

)
≡

(
1 0

0 1

)
(mod N)

}
= Γ(N).

Hence, we have an isomorphism Γ1(N)/Γ(N)
∼−→ Z/NZ and thus [Γ1(N) : Γ(N)] = N .

Consider the group homomorphism Γ0(N) −→ (Z/NZ)∗ given by
(
a b
c d

)
7−→ [d]N . This map

is surjective. In fact, since [d]N ∈ (Z/NZ)∗, there exists an element [d′]N of (Z/NZ)∗ such that
[d]N [d′]N = 1. Consider the matrix

(
[d′]N 0
0 [d]N

)
. It is an element of Γ0(N) and its image by the

map is [d]N . The kernel of this map is{(
a b

c d

)
∈ Γ0(N) : [d]N = 1

}
=

{(
a b

c d

)
∈ SL2(Z) :

(
a b

c d

)
≡

(
1 ∗
0 1

)
(mod N)

}
= Γ1(N).

So we have an isomorphism Γ0(N)/Γ1(N)
∼−→ (Z/NZ)∗ and [Γ0(N) : Γ1(N)] = ϕ(N), where ϕ is

the Euler totient function.
We know that [SL2(Z) : Γ(N)] = [SL2(Z) : Γ0(N)][Γ0(N) : Γ1(N)][Γ1(N) : Γ(N)]. Thus

[SL2(Z) : Γ0(N)] =
N3

Nϕ(N)

∏
p|N

(
1− 1

p2

)
.
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Recall that the Euler totient function can be expressed as an Euler product:

ϕ(N) = N
∏
p|N

(
1− 1

p

)
.

Using this we finally get

[SL2(Z) : Γ0(N)] =
N3

N2

∏
p|N

(
1− 1

p2

1− 1
p

)
= N

∏
p|N

(
1 +

1

p

)
.

Proposition 2.7. Let N = p be a prime. Then the matrices(
1 0

0 1

)
,

(
1 0

1 1

)
, . . . ,

(
1 0

N − 1 1

)
,

(
0 −1

1 0

)

form a system of right coset representatives of Γ0(N) in SL2(Z).

Proof. We prove that the union

Γ0(N)

(
1 0

0 1

)
∪ Γ0(N)

(
1 0

1 1

)
∪ . . . ∪ Γ0(N)

(
1 0

N − 1 1

)
∪ Γ0(N)

(
0 −1

1 0

)

is disjoint. This union is contained in SL2(Z) and by Proposition 2.6, [SL2(Z),Γ0(N)] = N + 1.
Thus proving that the union is disjoint will end the proof.

Suppose there exists
(
a b
c d

)
∈ Γ0(N) and 0 ≤ k, k′ < N such that(

a b

c d

)(
1 0

k 1

)
=

(
1 0

k′ 1

)
.

Then b = 0, d = 1 and a = 1. This implies that c+ k = k′. But since
(
a b
c d

)
∈ Γ0(N) we have c ≡ 0

(mod N). Thus k ≡ k′ (mod N) and since 0 ≤ k, k′ < N this implies that k = k′.
Suppose there exists

(
a b
c d

)
∈ Γ0(N) and 0 ≤ k < N such that(

a b

c d

)(
0 −1

1 0

)
=

(
1 0

k 1

)
.

Then b = 1, a = 0, d = k and c = −1. But then c ̸≡ 0 (mod N) and this contradicts the assumption
that

(
a b
c d

)
∈ Γ0(N).

This proves that the union is disjoint and hereby ends the proof.
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2.1.3 Generators of SL2(Z)

We state and prove an important proposition concerning the structure of SL2(Z).

Proposition 2.8. The group SL2(Z) is generated by the matrices

S =

(
0 −1

1 0

)
and T =

(
1 1

0 1

)
.

Proof. Let Γ be the subgroup of SL2(Z) generated by S and T . Note that Tn = ( 1 n
0 1 ) ∈ Γ for all

n ∈ Z and S2 = −I2 ∈ Γ. Let A =
(
a b
c d

)
be a matrix in SL2(Z). We perform an induction on |c|.

Note the identity

ATn =

(
a b′

c nc+ d

)
, (2.8.1)

where b′ = na+ b.
If c = 0, then ad = 1 which implies that a = d = ±1. If a = d = 1, then A =

(
1 b
0 1

)
= T b ∈ Γ.

Otherwise, A = S2
(
1 −b
0 1

)
= S2T−b ∈ Γ.

Now, suppose c ̸= 0 and that every
(
a′ b′

c′ d′

)
∈ SL2(Z) with |c′| < |c| belongs to Γ. Choose N ∈ Z

such that −1/2 − d/c ≤ N ≤ 1/2 − d/c. Then, using Equation 2.8.1, we see that ATN =
(
a b′

c d′

)
with d′ = Nc+ d and b′ = Na+ b. Hence

−1

2
− d

c
≤ N ≤ 1

2
− d

c
=⇒ − c

2
≤ d′ ≤ c

2
=⇒ |d′| ≤ |c|

2
< |c|.

Note that ATNS =
(

b′ −a
d′ −c

)
. Since |d′| < |c| we can apply the induction hypothesis and state that

ATNS ∈ Γ. Let B ∈ Γ such that ATNS = B. Then A = BS−1T−N ∈ Γ and we have proved the
proposition.

2.2 Actions of the modular group

In this section we define and study several actions of the modular group. We will understand their
purpose in the next section when we introduce modular forms. Note that we define the actions of
SL2(Z) and thus Γ0(N), being a subgroup of SL2(Z), naturally inherits these actions by restriction.

2.2.1 Action on the Poincaré half plane

We define the complex upper half plane H, also known as the Poincaré half plane, as follows

H = {z ∈ C : Im(z) > 0}.

We now consider the following group action

SL2(Z)×H −→ H
(γ, z) 7−→ γ · z = az+b

cz+d ,
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where γ =
(
a b
c d

)
∈ SL2(Z).

2.9. The above map is indeed a group action. To see this we first show that γ · z is in fact in the
upper half plane. Let z ∈ H and write z = x + iy, with x a real number and y a positive real
number. Then

γ · z = a(x+ iy) + b

c(x+ iy) + d
=

(ax+ b) + iay

(cx+ d) + icy
=

((ax+ b)(cx+ d) + acy2) + iy(ad− cb)

(cx+ d)2 + (cy)2
.

So the imaginary part of γ · z is y/(cx + d)2 + (cy)2, since γ ∈ SL2(Z) and therefore ad − bc = 1.
The denominator is positive and we already know that y > 0. Thus γ · z ∈ H.

We now verify that it is a group action. It is easy to see that I2 · z = z for all z in the upper
half plane so we only need to show that γ · (γ′ · z) = (γγ′) · z for all γ, γ′ ∈ SL2(Z) and z ∈ H. We
compute that

(γγ′) · z =

((
a b

c d

)(
a′ b′

c′ d′

))
· z =

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
· z = (aa′ + bc′)z + (ab′ + bd′)

(ca′ + dc′)z + (cb′ + dd′)
.

On the other hand,

γ · (γ′ · z) =

(
a b

c d

)
·

((
a′ b′

c′ d′

)
· z

)
=

(
a b

c d

)
· a

′z + b′

c′z + d′

=
a(a

′z+b′

c′z+d′ ) + b

c(a
′z+b′

c′z+d′ ) + d
=

(aa′ + bc′)z + (ab′ + bd′)

(ca′ + dc′)z + (cb′ + dd′)
,

as desired.

2.2.2 Weight k right action

Let k be an integer. We define the weight k right action of SL2(Z) on the set of function f : H −→ C
as follows. For all γ =

(
a b
c d

)
∈ SL2(Z),

(f [γ]k)(z) = (cz + d)−kf(γ · z).

2.10. The above map is indeed a group action. Note that (f [I2]k)(z) = f(I2 · z) = f(z) for all
z ∈ H. We need to show that if γ and γ′ are matrices in SL2(Z), then (f [γγ

′]k)(z) = ((f [γ]k)[γ
′]k)(z).

We compute

(f [γγ
′]k)(z) = ((ca′ + dc′)z + (cb′ + dd′))−kf((γγ′) · z)

= ((ca′ + dc′)z + (cb′ + dd′))−kf(γ · (γ′ · z)).

On the other hand,

((f [γ]k)[γ
′]k)(z) = (c′z + d′)−kf [γ]k(γ′ · z)

= (c′z + d′)−k(c(γ′ · z) + d)−kf(γ · (γ′ · z))

= ((ca′ + dc′)z + (cb′ + dd′))−kf(γ · (γ′ · z)) = (f [γγ
′]k)(z).
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In this paragraph we shall consider an action of SL2(Z) on the set of holomorphic differential
forms of degree 1. For the reader who is unfamiliar with differential forms, we refer to [Ca94]
Chapters 1 and 2. What follows will be crucial when we introduce modular symbols later.

Consider the left action of SL2(Z) on the set of holomorphic differential forms on H defined by

γ · (f(z)dz) = f(γ · z)d(γ · z),

where f : H → C is holomorphic and γ ∈ SL2(Z).
To see that this is indeed an action, note that I2 · (f(z)dz) = fdz and let γ, γ′ ∈ SL2(Z). Then

compute

γ′ · (γ · (f(z)dz)) = γ′ · (f(γ · z)d(γ · z)) = f(γ′ · (γ · z))d(γ′ · (γ · z))

= f((γ′γ) · z)d((γ′γ) · z) = (γ′γ) · (f(z)dz).

2.11. As we will see, modular forms satisfy a modularity condition which means that modular forms
are invariant under the weight k right action. Our main object of study are modular forms of weight
2 for Γ0(N) and this motivates the next observation that will prove to be of great importance.

A function f : H → C is a modular form of weight 2 for a congruence subgroup Γ if and only if
the differential form f(z)dz is invariant under the left action of Γ.

Let f be a modular form of weight 2. The above observation only relies on the modularity
condition that f must satisfy in order to be a modular form. This condition is exactly that f [γ]2 = f

for all γ ∈ Γ. Let γ =
(
a b
c d

)
∈ Γ. We compute

d(γ · z) = ∂

∂z
(γ · z)dz = ∂

∂z

(
az + b

cz + d

)
dz =

ad− bc

(cz + d)2
dz = (cz + d)−2dz.

Thus, γ · (f(z)dz) = f(γ · z)d(γ · z) = f(γ · z)(cz+ d)−2dz = f [γ]2(z)dz = f(z)dz. The last equality
holds because of the modularity condition on f .

2.2.3 Action on P1(Q)

As we will see, modular forms are complex functions of the upper half plane H that satisfy a group
action condition and a holomorphicity condition. In order to define this last condition we introduce
the notion of cusps.

We consider P1(Q) that we have already defined. We may identify elements (s : t) of P1(Q) with
s
t if t ̸= 0 and with ∞ if t = 0. It is therefore appropriate to write

P1(Q) = Q ∪ {∞}.
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The modular group acts on this set in the following way: let γ =
(
a b
c d

)
∈ SL2(Z) and r ∈ P1(Q).

Then

γ · r =

ar+b
cr+d if r ̸= ∞,

a
c if r = ∞.

Note that if the denominator c or cr + d equal zero, then γ · r = ∞ ∈ P1(Q).

Definition 2.12. Let Γ be a congruence subgroup of SL2(Z). We define

C(Γ) = Γ \ P1(Q)

to be the set of cusps of Γ.

We prove that C(Γ) is of finite cardinality for all congruence subgroups of SL2(Z).

Proposition 2.13. Let G be a group, H ≤ G a subgroup of G with finite index in G. Furthermore,
suppose X ̸= ∅ is a set for which we define a G-action and suppose G acts transitively on X. Then
the cardinal of the quotient H \X satisfies

#(H \X) ≤ [G : H].

In particular, the quotient H \X is finite.

Proof. Let x0 ∈ X. We define the map

αx0 : H \G −→ H \X
Hg 7−→ H(g · x0).

We show that this is a well defined map. Let g, g′ ∈ G such that Hg = Hg′. Then there exists
h′ ∈ H such that g′ = h′g and thus

H(g′ · x0) = {h · (g′ · x0) | h ∈ H} = {h · ((h′g) · x0) | h ∈ H} = {(hh′) · (g · x0) | h ∈ H}

= {h · (g · x0) | h ∈ H} = H(g · x0).

Hence αx0(Hg) = αx0(Hg
′).

The map αx0 is surjective. In fact, consider Hx ∈ H \ X. Since G acts transitively on X,
there exists g ∈ G such that x = g · x0. Thus Hx = H(g · x0) = αx0(Hg). It follows from the
surjectivity of αx0 that #(H \X) ≤ [G : H] and since [G : H] is finite by assumption, H \X is of
finite cardinality.

Lemma 2.14. The group SL2(Z) acts transitively on P1(Q). In other words, for all α and β in
P1(Q) there exists γ ∈ SL2(Z) such that γ · α = β.
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Proof. Let α ∈ P1(Q). Either α = ∞ or α ∈ Q. Suppose α = p/q ∈ Q, with p, q relatively prime.
Since gcd(p, q) = 1, by Bézout’s Identity, there exist integers r, s such that rp + sq = 1. Consider
the matrix γ =

(
p −s
q r

)
. It is an element of SL2(Z) since det(γ) = rp+sq = 1, and γ ·∞ = p/q = α.

Let α, β be two arbitrary elements of P1(Q). Then there exist γ, δ ∈ SL2(Z) such that α = γ ·∞
and β = δ · ∞. Then β = (δγ−1) · α and δγ−1 ∈ SL2(Z) since SL2(Z) is a group.

Corollary 2.15. Let Γ be a congruence subgroup of SL2(Z). Then the set of cusps C(Γ) is finite.

Proof. By the previous lemma, the group SL2(Z) acts transitively on P1(Q) and by Remark 2.5,
Γ has finite index in SL2(Z). Thus, applying Proposition 2.13 with G = SL2(Z), H = Γ and
X = P1(Q) yields #

(
Γ \ P1(Q)

)
≤ [SL2(Z) : Γ] as desired.

2.16. Without proof we give a formula for the exact number of cusps of Γ0(N):

#C(Γ0(N)) =
∑
d|N

ϕ(gcd(d,
N

d
)),

where ϕ is the Euler totient function. This enables us to see that Γ0(11) has exactly 2 cusps and
that Γ0(39) for example has 4 cusps.

2.3 Fundamental domains

We describe a fundamental domain for the action of SL2(Z) on H. Fundamental domains are most
important if we want to consider quotients Γ \ H, where Γ is a congruence subgroup of SL2(Z).

Definition 2.17. A fundamental domain for the action of a subgroup Γ of SL2(Z) on H is an open
subset D of H such that

(i) If z1 and z2 are two equivalent points (under the action of Γ) contained in D, then z1 = z2.

(ii) The closure D of D contains at least one point of each Γ-orbit.

2.18. From this definition we can observe:

(i) The map D −→ H/ SL2(Z) is surjective and its restriction to D is injective.

(ii) When γ runs through Γ, the sets {γD} cover H.

Lemma 2.19. Let z ∈ H and fix a, b ∈ Z. Then there is only a finite number of integers c, d such
that Im(γ · z) ≥ Im(z), where γ =

(
a b
c d

)
∈ SL2(Z).
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Proof. Let γ =
(
a b
c d

)
∈ SL2(Z) and z′ = γ · z = (az + b)/(cz + d) such that Im(z′) ≥ Im(z). A

calculation performed in Section 2.2.1 shows that

Im(z′) =
Im(z)

(cRe(z) + d)2 + (c Im(z))2
=

Im(z)

|cz + d|2
.

The condition Im(z′) ≥ Im(z) translates as |cz + d|2 ≤ 1. But (c Im(z))2 ≤ |cz + d|2 ≤ 1 which
implies |c| ≤ 1/ Im(z) and thus there is only a finite number of c ∈ Z. Then the condition (cRe(z)+

d)2 + (c Im(z))2 ≤ 1 gives a finite number of d.

Theorem 2.20. The subset D of H defined by

D =

{
z ∈ H : |z| > 1, |Re(z)| < 1

2

}
is a fundamental domain for the action of SL2(Z) on H. Furthermore, two distinct elements of
D can only be equivalent if they both lie on the boundary of D. We shall refer to this set as the
“standard” fundamental domain.

0 1−1

D

i

Figure 1: The standard fundamental domain

Proof. Define D1 to be the following subset of H:

D1 =

{
z ∈ H : |Re(z)| < 1

2
, |cz + d| > 1 if (c, d) ̸= (0, 0) and (c, d) ̸= (0, 1)

}
.

The strategy of the proof is the following: (1) D = D1; (2) D contains at least one element of each
orbit; (3) two distinct elements of D can only be equivalent if they both lie on the boundary of D.

(1) Clearly we have D1 ⊂ D. In fact, one only needs to set (c, d) = (1, 0). For the other
inclusion, let z = x+ iy ∈ D, where x, y ∈ R with |x| < 1/2, x2 + y2 > 1. Then

|cz + d|2 = (cx+ d)2 + (cy)2 = c2(x2 + y2) + 2cdx+ d2 > c2 − |cd|+ d2 ≥ 1.

Thus D ⊂ D1 and we have proved (1).
(2) Consider S =

(
0 −1
1 0

)
. By Lemma 2.19, there exists z ∈ H such that

Im(z) = max
{
Im(

(
0 −1
c d

)
· z)
}
,
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where the maximum is taken over all (c, d) ∈ Z2 such that
(
0 −1
c d

)
∈ SL2(Z). We may translate z

into {z ∈ H : |Re(z)| ≤ 1/2}. Then we must have |z| ≥ 1. In fact, suppose that |z| < 1. Then
Im(S · z) = Im(z)/|z|2 > Im(z) and this contradicts the maximality of Im(z). Thus z ∈ D and D

contains at least one element of each orbit.
(3) Let z, z′ ∈ D such that z′ = az+b

cz+d . Since D = D1, we have that z, z′ ∈ D1. Thus

Im(z′) =
Im(z)

|cz + d|2
≤ Im(z)

because |cz + d| ≥ 1. But we also have

Im(z) =
Im(z′)

| − cz′ + a|2
≤ Im(z′)

because | − cz′ + a| ≥ 1. So Im(z) = Im(z′). Thus

1 = |cz + d|2 ≥ c2 − |cd|+ d2 ≥ 1 =⇒ (c, d) = (0,±1) or (c, d) = (±1, 0).

This implies that
(
a b
c d

)
= ± ( 1 1

0 1 )
n or

(
a b
c d

)
= ±

(
0 −1
1 0

)
.

In the first case, if n ̸= 0, z′ = ±(z + n). But then n = 1 since the width of D is 1. Thus z, z′

lie on the vertical boundaries of D.
In the second case, z′ = S · z = −1/z and we know that |z| ≥ 1 and |z′| ≥ 1. But

|z′| = 1

|z|
=⇒ |z′| ≤ 1 =⇒ |z′| = |z| = 1,

hence z, z′ lie on the unit circle.
Otherwise, z′ = T 0 · z = z.

0 1−1 2−2

i

1T−1 T

T−1S TSS

STS ST ST−1ST−1S

Figure 2: Transformations of the standard fundamental domain

Corollary 2.21. Let Γ be a subgroup of finite index n in SL2(Z) and let Γg1, · · · ,Γgn be a system
of left classes of SL2(Z) modulo Γ such that SL2(Z) = Γg1 ∪ · · · ∪ Γgn. Then ∆ := g1D ∪ · · · ∪ gnD
is a fundamental domain for Γ.
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Proof. Basic topological properties show that ∆ is open. Let z ∈ H, then there exists σ ∈ SL2(Z)
such that σ · z ∈ D. Since σ ∈ SL2(Z), there exists i ∈ {1, · · · , n} such that σ ∈ Γgi. Thus there
exists γ ∈ Γ such that σ = γgi. Then σ · z = γ · (gi · z) ⊂ γ(giD) ⊂ γ(∆). So the closure of ∆
contains at least one point of each Γ-orbit.

Let z, z′ be two Γ-equivalent points of ∆. Then there exist i, j ∈ {1, · · · , n} such that z ∈ giD

and z′ ∈ gjD. Then g−1
i · z ∈ D and g−1

j · z′ ∈ D. Clearly g−1
i · z and g−1

j · z′ are Γ-equivalent and
since D is a fundamental domain for SL2(Z) we must have g−1

i ·z = g−1
j ·z′. Hence i = j and z = z′.

So ∆ contains at most one point of each Γ-orbit. Thus ∆ is a fundamental domain for Γ.

2.22. Let Γ be a congruence subgroup of SL2(Z). Using the previous corollary we can choose
representatives for the classes of SL2(Z) modulo Γ in a certain way and visualize the cusps of Γ

as being the intersection points of ∆ with the real axis. Since we have chosen the cusps to be
equivalence classes, this determination does not depend on the choice of the representatives. This
illustrates the result of Corollary 2.15 on the cardinality of C(Γ).

Example 2.23. We use the previous remark to visualize the cusps of Γ0(11).

Figure 3: A fundamental domain for Γ0(11)
1

Using Figure 3 we see that Γ0(11) only has two cusps, namely the classes of 0 and ∞.

2.4 Modular forms

We are now almost ready to define modular forms for congruence subgroups of SL2(Z). We start
by defining weakly modular functions and then, by using the actions introduced in Section 2.2, we

1Drawn with Fundamental Domain Drawer program developed by H.A. Verrill.
http://www.math.lsu.edu/~verrill/fundomain/index2.html accessed on 02/12/13.
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define modular forms. Again our main concern is the definition of modular forms for Γ0(N) but
in this section we construct a more general theory around congruence subgroups and thus we view
Γ0(N) as a particular case to which the theory applies.

2.4.1 Definition

Definition 2.24. Let k be an integer and Γ be a congruence subgroup of level N . A weakly modular
function of weight k and level N for Γ is a meromorphic function f : H −→ C that is Γ-invariant
under the weight k right action. In other words,

f [γ]k = f

for all γ ∈ Γ.

Lemma 2.25. If f is a weakly modular function of weight k for a congruence subgroup Γ and if
δ ∈ SL2(Z), then f [δ]k is a weakly modular function of weight k for the congruence subgroup δ−1Γδ.

Proof. Note that f [δ]k is meromorphic and has the same poles as f . Let γ = δ−1αδ ∈ δ−1Γδ. Then

(f [δ]k)[γ]k = f [δγ]k = f [δδ
−1αδ]k = f [αδ]k = f [δ]k ,

since α ∈ Γ.

We define the extended upper half plane H∗ to be

H∗ = H ∪ P1(Q).

Modular forms of weight k for a congruence subgroup Γ are weakly modular functions that are
holomorphic on the extended upper half plane. In order to clarify the difference between the
different functions satisfying modularity conditions we introduce a table summarizing modularity
of a function f : H → C for Γ and weight k.

Weakly modular
function

Modular function Modular form Cusp form

f [γ]k = f and f
meromorphic on H

f [γ]k = f and f
meromorphic on H
and at cusps

f [γ]k = f and f
holomorphic on H
and at cusps

f [γ]k = f and f
holomorphic on H
and at cusps and f
is zero at all cusps

Table 2: Summary (modularity for Γ, weight k)

In order to properly define modular forms we need to clarify the meaning of this holomorphicity
condition.

41



Fix a weakly modular function f of weight k for a congruence subgroup Γ of level N . The
principal congruence subgroup of level N , Γ(N), contains the matrix TN =

(
1 N
0 1

)
. Since Γ is a

congruence subgroup of level N it also contains TN and thus there exists a positive integer h such
that f(z + h) = f(z) for all z in H. Note that h = N always works but there might exist a smaller
such h. Then f is hZ-periodic for some minimal h > 0. Let D be the open unit disc and let
D′ := D \ {0} be the punctured open unit disc. We consider the holomorphic map qh : H −→ D′

defined by qh(z) = e
2iπz
h . We define the function gh : D′ −→ C such that gh(qh) = f(log(q)/2iπh ).

This function is well defined and f(z) = gh(qh(z)). If f is holomorphic on H, then gh is holomorphic
on the punctured discD′ by composition of holomorphic functions. Thus gh has a Laurent expansion
in a neighborhood of 0:

gh(qh) =

+∞∑
n=−∞

anq
n
h .

We say that f is meromorphic at ∞ if gh is meromorphic at 0, that is, if an = 0 for all sufficiently
small n. Then there exists m ∈ Z such that gh(q) =

∑∞
n=m anq

n. If m ≥ 0, then gh extends
holomorphically to the puncture point 0 and we say that f is holomorphic at ∞. In this case, f has
a Fourier expansion:

f(z) =

∞∑
n=0

anq
n
h(z) =

∞∑
n=0

ane
2iπnz

h .

But we also have to deal with the rest of the cusps. Fix α ∈ P1(Q). It follows from Lemma 2.14
that there exists δ ∈ SL2(Z) such that α = δ · ∞. By Lemma 2.25, f [δ]k is a weakly modular
function of weight k for the congruence subgroup δ−1Γδ. We define f to be holomorphic at α if
f [δ]k is holomorphic at ∞. We say that f is holomorphic on the extended upper half plane H∗ if f
is holomorphic on H and at all α ∈ P1(Q).

2.26. If f is holomorphic at α ∈ P1(Q), then f is holomorphic at Γα =: α ∈ C(Γ). In fact, let
γ ∈ Γ and consider γ · α. Then γ · α = (γδ) · ∞ and f [γδ]k = f [δ]k is a weakly modular function of
weight k for the congruence subgroup (γδ)−1Γ(γδ) = δ−1Γδ. Thus, in order for f to be holomorphic
on H∗, f only needs to be holomorphic at all α ∈ C(Γ). By Corollary 2.15, the number of cusps is
finite so f only needs to be holomorphic at a finite number of α ∈ P1(Q).

Definition 2.27. Let Γ be a congruence subgroup of level N and let k be an integer. A function
f : H −→ C is said to be a modular form (respectively a modular function) of weight k and level N
for Γ if

(i) The function f is a weakly modular function of weight k for Γ.

(ii) The function f is holomorphic (respectively meromorphic) on H∗.

We denote by Mk(Γ) the set of modular forms of weight k for Γ.

42



2.28. Note that T = ( 1 1
0 1 ) ∈ Γ0(N). Thus every modular form in Γ0(N) is Z-periodic and

f(z) =
∞∑
n=0

ane
2iπnz.

Proposition 2.29. Let Γ be a congruence subgroup of level N . The product of two modular forms
of weights k and l for Γ is a modular form of weight k + l for Γ.

Proof. Let f ∈ Mk(Γ) and g ∈ Ml(Γ). It follows from basic complex analysis that fg is holomorphic
on H since both f and g are holomorphic on H by definition. We show that fg is Γ-invariant under
the weight k + l right action. Let γ =

(
a b
c d

)
∈ Γ. Then, for all z ∈ H,

(fg)[γ]k+l(z) = (cz + d)−(k+l)(fg)(γ · z) = f [γ]k(z)g[γ]l(z) = (fg)(z),

since f and g are modular forms of weight k and l respectively.
Finally, we check that fg is holomorphic on H∗. Let α ∈ P1(Q). There exists δ ∈ SL2(Z)

such that δ · ∞ = α. Since both f and g are holomorphic at α, we know that f [δ]k and g[δ]l are
holomorphic at ∞. Thus there exist sequences {an}, {bn} such that

(fg)[δ]k+l(z) = (f [δ]kg[δ]l)(z) =

( ∞∑
n=0

ane
2iπnz

h

)( ∞∑
n=0

bne
2iπnz

h

)
=

∞∑
n=0

 ∑
i+j=n

aibj

 e
2iπnz

h .

Thus fg is holomorphic at α. Since α is arbitrary, we have shown that fg is holomorphic on H∗

and this ends the proof.

2.30. It can easily be checked that Mk(Γ) is a C-vector space. It follows from Proposition 2.29
that Mk(Γ)Ml(Γ) ⊂ Mk+l(Γ). Thus

M(Γ) :=
⊕
k∈Z

Mk(Γ)

is a graded C-algebra.

Proposition 2.31. Let k be an integer. If N ′ divides N , then every modular form for Γ0(N
′) is a

modular form of the same weight for Γ0(N). In other words, we have the inclusion

Mk(Γ0(N
′)) ↪→ Mk(Γ0(N)).

The image of this inclusion is called the set of “Oldforms”.

Proof. Let n be an integer. Since n ≡ 0 (mod N) implies n ≡ 0 (mod N ′), we easily see that
Γ0(N) ⊂ Γ0(N

′). Let f ∈ Mk(Γ0(N
′)). We need to show that f is holomorphic on C(Γ0(N)) and

that f is invariant under the weight k right action restricted to Γ0(N).
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Let [α]Γ0(N) ∈ C(Γ0(N)). Then

[α]Γ0(N) = {γ · α|γ ∈ Γ0(N)} ⊂ {γ · α|γ ∈ Γ0(N
′)} = [α]Γ0(N ′),

since Γ0(N) ⊂ Γ0(N
′). Thus C(Γ0(N)) ⊂ C(Γ0(N

′)) and it is then clear that f is holomorphic on
C(Γ0(N)).

The fact that f is invariant under the weight k right action restricted to Γ0(N) follows imme-
diately from the fact that Γ0(N) ⊂ Γ0(N

′).

2.4.2 Examples of modular forms of level 1

We are later interested in modular forms of weight 2 for Γ0(N). In this section we give examples of
modular forms for SL2(Z) in order to get in touch with a concrete modular form. We will not need
this later. We start by making a few remarks on modular forms of level 1.

First, recall that by Proposition 2.8, SL2(Z) is generated by the matrices S and T . Hence, in
order to show that a meromorphic function f : H −→ C is weakly modular of integer weight k it
suffices to show that

f(z + 1) = f(z) and f(−1

z
) = zkf(z).

Next, recall that by Lemma 2.14, SL2(Z) only has one cusp and we may choose ∞ as a rep-
resentative. Thus, if f ∈ M(SL2(Z)), then f is holomorphic at ∞ and therefore has a Fourier
expansion

f =
∞∑
n=0

anq
n,

where q : z 7→ e2iπz. Since q(z) → 0 when Im(z) → ∞, we see that a weakly modular holomorphic
function f is holomorphic at ∞ if the limit of f(z) exists when Im(z) → ∞.

We start with some trivial examples. The all-zero function is a modular form of level 1 of any
integer weight k. Note that the weight of a non-zero form is unique. Constant functions are modular
forms of level 1 and weight 0.

2.32. Note that this last observation can be extended. In fact, it is true that for any N , a function
f is a modular form of level N and weight 0 if and only if f is a constant function.

2.33. Let f be a weakly modular function of weight k for SL2(Z). Letting γ = −I2 ∈ SL2(Z) yields
the following equation

f(z) = (−1)kf(z), ∀z ∈ H.

We see that if k is odd, then the only such function is the all-zero function.

To see non-trivial examples of modular forms we introduce Eisenstein series.
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Definition 2.34. Let k > 2 be an integer. The weight k Eisenstein series Gk : H −→ C is defined
by

Gk(z) =
∑′

(c,d)∈Z2

1

(cz + d)k
,

for z ∈ H. Here, ′ means that the sum is over Z2 \ {(0, 0)}.

Notice that if τ ∈ H is fixed, then the sum is taken over all non-zero elements of the lattice
Λ = Λ(1, τ) = Z + Zτ . To see that the Eisenstein series defined above is indeed well-defined, we
need to show that the series is absolutely convergent and this is a consequence of this next lemma
as we will see.

Lemma 2.35. Let α be a real number. Then the series∑′

ω∈Λ

1

ωα

converges absolutely if and only if α > 2.

Proof. Consider the parallelogram P centered at the origin with vertices −1 − τ, 1 − τ, 1 + τ and
−1+ τ . Let r and R respectively denote the minimal and the maximal distances from the origin to
P .

C

1 + ττ

0

−τ 1− τ−1− τ

1−1

−1 + τ

r R

Figure 4: The first two layers of the lattice Λ

Consider the first layer of Λ. If ω is any of the 8 non-zero lattice points of this layer (see Figure
4), then it holds that r ≤ |ω| ≤ R by definition of r and R.

Consider the second layer of Λ. There are 16 new lattice points in this layer (see Figure 4). If
ω is any of these 16 points, then the inequality 2r ≤ |ω| ≤ 2R holds.
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In general, in the kth layer of Λ, there are 8k new lattice points and for each of these it holds
that kr ≤ |ω| ≤ kR. Therefore, we have

1

(kR)α
≤ 1

|ω|α
≤ 1

(kr)α

for all non-zero lattice points ω in the first k layers of Λ.
Let S(n) denote the sum over the 8

∑n
k=1 k distinct non-zero lattice points ω in the first n

layers of Λ of the terms 1
|ω|α . In other words, S(n) =

∑ 1
|cτ+d|α where the sum is taken over

c, d = −n, . . . ,−1, 0, 1, . . . , n with (c, d) ̸= (0, 0). We then have

n∑
k=1

8k

(kR)α
=

8

Rα

n∑
k=1

1

kα−1
≤ S(n) ≤

n∑
k=1

8k

(kr)α
=

8

rα

n∑
k=1

1

kα−1
.

Recall that the Riemann zeta-function ζ converges for complex numbers with real part greater
than 1 and thus S(n) is bounded from above by 8

rα ζ(α− 1) if α > 2. This bound is independent of
n and therefore we may write

lim
n→∞

S(n) ≤ 8

rα
ζ(α− 1)

and this proves that the series
∑′

ω∈Λ
1
ωα converges absolutely if α > 2.

On the other hand, if α ≤ 2, then ζ(α− 1) does not converge. Combined with the inequality

S(n) ≥ 8

Rα
ζ(α− 1)

this shows that the series
∑′

ω∈Λ
1
ωα does not converge if α ≤ 2.

Proposition 2.36. Let k > 1 be an integer. The Eisenstein series G2k is a non-constant modular
form of weight 2k and level 1, that is, G2k ∈ M2k(SL2(Z)). Furthermore, we have

G2k(∞) = 2ζ(2k),

where ζ is the Riemann zeta-function.

Proof. We start by showing that G2k is well defined and holomorphic on H and at ∞. Let z ∈ D

where D = {z ∈ H : |z| > 1 and |Re(z)| < 1/2} is the standard fundamental domain of SL2(Z)
described in Theorem 2.20. Let (c, d) ∈ Z2 \ {(0, 0)}. Then

|cz + d|2 = (cRe(z) + d)2 + (c Im(z))2 = c2zz + 2cdRe(z) + d2 ≥ c2 − cd+ d2 = |cρ− d|2,

where ρ = e
iπ
3 . Since 2k > 2, we may apply Lemma 2.35 to see that the series

∑′

(c,d)∈Z2

1
|cρ−d|2k

converges for k > 1. Hence, G2k converges normally on D. This implies that G2k also converges
uniformly on D and thus G2k is holomorphic on D since it is the uniform limit of a sequence of
holomorphic functions. This is also true for all γD with γ ∈ SL2(Z). In fact, it suffices to apply
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the previous result to G2k(γ
−1 · z). But Remark 2.18 (ii) states that H is covered by these subsets,

thus G2k is well defined and holomorphic on H.
We show that G2k is holomorphic at ∞. It is sufficient to show that the limit of G2k(z) exists

when Im(z) → ∞ and we may suppose that z stays in D. Since the convergence is uniform on D

we can take the limit term by term. The terms 1/(cz + d)2k for which c ̸= 0, vanish. Those for
which c = 0, become 1/d2k. Thus

lim
Im(z)→∞

G2k(z) =
∑′

d∈Z

1

d2k
= 2

∞∑
d=1

1

d2k
= 2ζ(2k).

It remains to show that G2k is modular. By the remarks above, we only need to show this for
S and T . Let z ∈ H. Since G2k converges absolutely for k > 1 it is permitted to change the order
of summation of the terms and this will not affect the convergence of the series. Thus, we may
compute that

G2k(z + 1) =
∑′

(c,d)∈Z2

1

(cz + (c+ d))2k
=

∑′

(c,d)∈Z2

1

(cz + d)2k
= G2k(z).

The second equality holds because the map on Z2 defined by (c, c+ d) 7→ (c, d) is invertible. Thus
as (c, c+ d) runs through Z2 \ {(0, 0)}, so does (c, d).

G2k(−
1

z
) =

∑′

(c,d)∈Z2

1

(−c1z + d)2k
= z2k

∑′

(c,d)∈Z2

1

(dz − c)2k
= z2k

∑′

(c,d)∈Z2

1

(cz + d)2k
= z2kG2k(z).

The third equality holds because the map on Z2 defined by (d,−c) 7→ (c, d) is invertible. This ends
the proof.

2.37. It can be proved (see [Se70] Chapter VII Section 3.2) that G4 and G6 are algebraically
independent over C and

{Ga
4G

b
6 : a, b ∈ N and 4a+ 6b = k}

is a basis for the C-vector space Mk(SL2(Z)). This is equivalent to saying that ϵ : C[X,Y ] →
M(SL2(Z)) is an isomorphism, where ϵ assigns G4 to X and G6 to Y . Thus, we can identify
M(SL2(Z)) with C[G4, G6]. That means that every element of the graded C-algebra M(SL2(Z))
can be expressed as a polynomial in G4 and G6 with complex coefficients.

For example, every modular form of weight 30 can be expressed as

aG6
4G6 + bG3

4G
3
6 + cG3

6,

for some unique a, b, c ∈ C. It follows that the dimension of M30(SL2(Z)) is 3. More generally the
dimension of Mk(SL2(Z)) is

dim(Mk(SL2(Z))) = #{(a, b) ∈ N2 : 4a+ 6b = k}.

Hence we see that if k = 0, 4, 6, 8, 10, then Mk(SL2(Z)) has dimension 1. Also, the dimension of
M2(SL2(Z)) is 0 and since our object of study is modular forms of weight 2 for Γ0(N) we see that
the case N = 1 is not relevant from our point of view.
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We proceed to computing the Taylor series of the Eisenstein series G2k with respect to q =

q(z) = e2πiz. We shall make the convention for the next part that

∑
n∈Z

= lim
N→∞

N∑
n=−N

.

This gives sense to the series we are about to consider, since it does not converge absolutely.

Proposition 2.38. Let z ∈ C \ Z. We have the following formula

π cot(πz) =
∑
n∈Z

1

z + n
.

Proof. The function x 7→ cos(zx) is even and thus its Fourier series only contains terms in cosine:

cos(zx) =
a0
2

+
∞∑
n=1

an cos(nx) with an =
2

π

∫ π

0
cos(zx) cos(nx)dx.

We compute that

a0 =
2

π

∫ π

0
cos(zx)dx =

2 sin(πz)

πz

and for n positive,

an =
2

π

∫ π

0
cos(zx) cos(nx)dx

=
1

2π

∫ π

0
ei(z+n)x + e−i(z+n)x + ei(z−n)x + e−i(z−n)xdx

=
1

π

∫ π

0
cos((z + n)x) + cos((z − n)x)dx

=
1

π

(
sin((z + n)x)

z + n
+

sin((z − n)x)

z − n

)
=

(−1)n2z sin(πz)

π(z2 − n2)
.

Thus, for x ∈ [−π;π],

cos(zx) =
2z sin(πz)

π

(
1

2z2
+

∞∑
n=1

(−1)n cos(nx)

z2 − n2

)
.

Setting x = π yields
cos(πz)

sin(πz)
= cot(πz) =

1

π

(
1

z
+

∞∑
n=1

2z

z2 − n2

)
,

and thus

π cot(πz) =
1

z
+

∞∑
n=1

(
1

z + n
+

1

z − n

)
=
∑
n∈Z

1

z + n
.
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Notice that

π cot(πz) = π
cos(πz)

sin(πz)
= iπ

eiπz + e−iπz

eiπz − e−iπz
= iπ

q(z) + 1

q(z)− 1
= iπ − 2iπ

1− q(z)
= iπ − 2iπ

∞∑
n=1

q(z)n.

Combining this with Proposition 2.38 yields the equality

∑
n∈Z

1

z + n
= iπ − 2iπ

∞∑
n=1

q(z)n

and differentiating k − 1 times (k ≥ 2), we see that

∑
n∈Z

1

(z + n)k
=

(−2iπ)k

(k − 1)!

∞∑
n=1

nk−1q(z)n. (2.38.1)

We introduce the following notation: σm(n) =
∑

d|n d
m.

Proposition 2.39. Let k ≥ 2. The Taylor series of the Eisenstein series G2k with respect to q is

G2k = 2ζ(2k) + 2
(2iπ)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)q
n.

Proof. We already know from Proposition 2.36 that G2k(∞) = 2ζ(2k) and thus the constant term
of the Taylor series with respect to q is 2ζ(2k). We compute

G2k(z) =
∑′

(c,d)∈Z2

1

(cz + d)2k
= 2ζ(2k) + 2

∞∑
c=1

∑
d∈Z

1

(cz + d)2k
.

Using Equation 2.38.1 with z replaced by cz, we see that

∑
d∈Z

1

(cz + d)2k
=

(−2iπ)2k

(2k − 1)!

∞∑
d=1

d2k−1q(z)dc.

Hence

G2k(z) = 2ζ(2k) + 2
(2iπ)2k

(2k − 1)!

∞∑
c=1

∞∑
d=1

d2k−1q(z)dc.

We perform the change of variables n = dc. Then c divides n and

∞∑
c=1

∞∑
d=1

d2k−1qdc =

∞∑
n=1

∑
c|n

(n
c

)2k−1
qn =

∞∑
n=1

∑
d|n

d2k−1qn =

∞∑
n=1

σ2k−1(n)q
n.

We then have

G2k(z) = 2ζ(2k) + 2
(2iπ)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)q(z)
n.
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We want to give an explicit formula for ζ(2k). In order to find this formula we consider the
Bernoulli numbers introduced by Jakob Bernoulli in his 1713 Ars Conjectandi (posthum). These
are denoted Bk and defined by the equality

x

ex − 1
=

∞∑
k=0

Bk
xk

k!
. (2.39.1)

We give some of the first values of the Bernoulli numbers in the following table:

k 0 1 2 3 4 5 6 7 8 9 10

Bk 1 −1
2

1
6 0 − 1

30 0 1
42 0 − 1

30 0 5
66

Table 3: First values of the Bernoulli numbers

It can be shown that Bn = 0 for all odd n > 1.

Proposition 2.40. If k ≥ 1 is integer, then

ζ(2k) = (−1)k+1 2
2k−1

(2k)!
B2kπ

2k.

Proof. We start by noticing that

z cot(z) = 1 +
∞∑
k=2

Bk
(2iz)k

k!
. (2.40.1)

In fact, we compute

z cot(z) = z
cos(z)

sin(z)
= iz

eiz + e−iz

eiz − e−iz
= iz +

2iz

e2iz − 1
.

Using Equation 2.39.1, with x is replaced by 2iz, yields

z cot(z) = iz +

∞∑
k=0

Bk
(2iz)k

k!
.

Using Table 3, we see that

z cot(z) = 1 +
∞∑
k=2

Bk
(2iz)k

k!
.

Since all Bernoulli numbers of odd index greater than 1 is zero we may write this as

z cot(z) = 1 +
∞∑
k=1

B2k
(2iz)2k

(2k)!
= 1−

∞∑
k=1

(−1)k+1B2k
22kz2k

(2k)!
,

since i2k = (−1)k.
Recall that the sine function can be written as an Euler product in the following way

sin(z) = z

∞∏
n=1

(
1− z2

n2π2

)
.
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We take the logarithm of both sides of this equation and differentiate. We see that

d

dz
log(sin(z)) = cot(z)

and

d

dz
log

(
z

∞∏
n=1

(
1− z2

n2π2

))
=

d

dz

(
log(z) +

∞∑
n=1

log

(
1− z2

n2π2

))
=

1

z
+ 2

∞∑
n=1

z

z2 − n2π2
.

Combining these facts yields

z cot(z) = 1 + 2

∞∑
n=1

z2

z2 − n2π2
= 1− 2

∞∑
n=1

z2

n2π2 − z2
.

Notice that
∞∑
k=1

z2k

n2kπ2k
=

∞∑
k=1

(
z2

n2π2

)k

=
z2

n2π2

1− z2

n2π2

=
z2

n2π2 − z2
.

Using this, we find that

z cot(z) = 1− 2
∞∑
n=1

∞∑
k=1

z2k

n2kπ2k
= 1− 2

∞∑
k=1

ζ(2k)
z2k

π2k
.

Finally, if we compare this last equation with Equation 2.40.1, we get
∞∑
k=1

2ζ(2k)
z2k

π2k
=

∞∑
k=1

(−1)k+1B2k
22kz2k

(2k)!

and thus

ζ(2k) = (−1)k+1 2
2k−1

(2k)!
B2kπ

2k.

In the following table we give some values of ζ(2k):

k 1 2 3 4 5

ζ(2k) π2

6
π4

90
π6

945
π8

9450
π10

93555

Table 4: Some values of the Riemann zeta function

Definition 2.41. Let k > 2. We define the normalized Eisenstein series Ek as

Ek =
(k − 1)!

2(2iπ)k
Gk.

Using this definition wee see that the Taylor series of the normalized Eisenstein series E2k, for
k > 1 is

E2k = −B2k

4
+

∞∑
n=1

σ2k−1(n)q
n.
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We do the computations for E4 and E6:

E4 =
1

240
+ q + 9q2 + 28q3 + 73q4 + 126q5 + 252q6 + · · ·

and
E6 = − 1

504
+ q + 33q2 + 244q3 + 1057q4 + 3126q5 + 8052q6 + · · ·

2.4.3 Cusp forms

Definition 2.42. Let Γ be a congruence subgroup of level N and let k be an integer. A function
f : H −→ C is said to be a cusp form of weight k and level N for Γ if it is zero at all cusps.
We denote by Sk(Γ) the set of cusp forms of weight k for Γ. It is a C-linear subspace of Mk(Γ).

Example 2.43. Consider the modular forms G4 and G6. We set g2 = 60G4 and g3 = 140G6. By
Proposition 2.36,

g2(∞) = 120ζ(4) =
4

3
π4 and g3(∞) = 280ζ(6) =

8

27
π6.

Consider the modular form ∆ = g32 − 27g23. We compute that

∆(∞) =
64

27
π12 − 64

27
π12 = 0.

Thus ∆ is a cusp form of weight 12 for SL2(Z).

2.5 Hecke operators on modular forms

In this section we introduce Hecke operators. We start by defining these on the space Mk(SL2(Z))
and then we extend this definition to Mk(Γ0(N)). We will see the action of Hecke operators on
the set Mk(SL2(Z)) and we will describe it via the Fourier series of the modular forms. We follow
an approach similar to the ones in both [Se70] Chapter VII Section 5 and [He02] Chapter 5 Section
5.7. A more geometrical approach can be found in [St07] Chapter 3 Section 3.1 but we will leave
this aside.

2.5.1 Hecke operators for SL2(Z)

Let n be a positive integer. Consider the set of matrices

∆n =

{(
a b

c d

) ∣∣∣ a, b, c, d ∈ Z, ad− bc = n

}
.
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The group SL2(Z) acts on ∆n by left multiplication:

SL2(Z)×∆n −→ ∆n

(γ, α) 7−→ γα.

We decompose ∆n in orbits of this action and choose a system of representatives R for SL2(Z) \∆n.
The finiteness of this system is a consequence of this next proposition.

Proposition 2.44. For any positive integer n, we have the disjoint union

∆n =
∪{

SL2(Z)

(
a b

0 d

) ∣∣∣ a > 0, ad = n, 0 ≤ b < d

}
.

Proof. Let α =
(
a b
c d

)
∈ ∆n. We proceed to finding γ = ( x y

z w ) ∈ SL2(Z) such that γα =
(
a′ b′

0 d′

)
.

We need to have za + wc = 0. We set z = c/(a, c) and w = −a/(a, c). To simplify notations we
shall write (·, ·) instead of gcd(·, ·). Then the condition is satisfied and (z, w) = 1. By Bézout’s
Identity, there exists integers x and y such that xw − yz = 1 and thus γ = ( x y

z w ) is in SL2(Z).
Note that a′d′ = det(γα) = det(γ) det(α) = n. Without loss of generality, we may assume that
a′, d′ > 0 (otherwise just take −γ). Finally, multiplying by

(
1 h
0 1

)
on the left with a suitable h gives

the condition 0 ≤ b′ < d′.
To see that the union is disjoint, suppose there exists γ = ( x y

z w ) ∈ SL2(Z) and positive integers
a, d, a′, d′, 0 ≤ b < d, 0 ≤ b′ < d′ such that(

x y

z w

)(
a b

0 d

)
=

(
a′ b′

0 d′

)
.

Since the set of all invertible upper triangular matrices form a group, we must have z = 0 and thus
xw = 1. Then ax = a′ and dw = d′. Since a, a′, d, d′ are all positive by assumption, we must have
x = w = 1. Then a = a′ and d = d′. Finally, b + yd = b′ and thus b ≡ b′ (mod d). But since
0 ≤ b, b′ < d, we conclude that b = b′. This shows that the union is disjoint.

Recall that we defined the weight k right action of SL2(Z) on the set of functions f : H → C.
One can extend this action, for k even, to GL2(Z) in the following way. For all γ =

(
a b
c d

)
∈ GL2(Z),

(f [γ]k)(z) = det(γ)
k
2 (cz + d)−kf(γ · z).

Let k be an even integer and let f : H → C be a function which is SL2(Z)-invariant under the
weight k right action. Then the sum

∑
f [µ]k taken over all µ ∈ R is independent of the choice of

the representatives. In fact, if γ ∈ SL2(Z) and µ ∈ R, then

f [γµ]k = (f [γ]k)[µ]k = f [µ].
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Definition 2.45. Let n be a positive integer. The nth Hecke operator for SL2(Z) is a linear map
from the set of functions f : H → C to the same set. It is denoted Tn and defined as

Tnf = n
k
2
−1
∑
µ∈R

f [µ]k ,

where R is a system of representatives for SL2(Z) \∆n.

Using Proposition 2.44, we may express the nth Hecke operator in a more explicit way:

Tnf(z) = nk−1
∑

0≤b<d
a≥1,ad=n

d−kf(
az + b

d
). (2.45.1)

Proposition 2.46. Let n be a positive integer. If f is a weakly modular function of weight k, then
so is Tnf .

Proof. We start by verifying the modularity condition for Tnf . If γ ∈ SL2(Z), then

(Tnf)
[γ]k = n

k
2
−1
∑
µ∈R

(f [µ]k)[γ]k = n
k
2
−1
∑
µ∈R

(f [γ]k)[µ]k = n
k
2
−1
∑
µ∈R

(f [µ]k)[γ]k = Tnf,

where the third equality follows from the fact that f is SL2(Z)-invariant under the weight k right
action.

Equation 2.45.1 shows that Tnf is meromorphic on H if f is meromorphic on H. In fact, a finite
sum of meromorphic functions is meromorphic. The same argument applies if f is holomorphic and
thus if f is holomorphic on H, then so is Tnf .

In the rest of this section we shall write c(m) instead of cm for the Fourier coefficients of f . This
is only done to make the proofs easier to read.

Proposition 2.47. Let n be a positive integer and let f =
∑

m∈Z c(m)qm be a modular function of
weight k. Then Tnf is also a modular function of weight k. We have

Tnf =
∑
m∈Z

γ(m)qm with γ(m) =
∑

a|(n,m)
a≥1

ak−1c
(mn
a2

)
.

Proof. Using Equation 2.45.1, we see that

Tnf(z) = nk−1
∑

0≤b<d
a≥1,ad=n

d−k
∑
m∈Z

c(m)e2πi
az+b

d
m.

Suppose d|m, and set m′ = m/d. Then

d−1∑
b=0

e2πi
mb
d =

d−1∑
b=0

e2πim
′b =

d−1∑
b=0

1 = d.
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Otherwise,
d−1∑
b=0

e2πi
mb
d =

1− (e2πi
m
d )d

1− e2πi
m
d

=
1− e2πim

1− e2πi
m
d

= 0.

Thus
Tnf(z) = nk−1

∑
a≥1
ad=n

d−k+1
∑
m′∈Z

c(m′d)e2πizam
′
.

Write µ = am′. Then

Tnf =
∑
µ∈Z

qµ
∑
a≥1

a|(n,µ)

(n
d

)k−1
c

(
µd

a

)
.

Since f is meromorphic at ∞, there exists a positive constant N such that c(m) = 0, ∀m ≤ −N .
Thus c(µd/a) = 0, ∀µ ≤ −nN . From this, we see that Tnf is meromorphic at ∞ and this shows
that Tnf is a modular function of weight k. To finish the proof, remember that ad = n and therefore
a = n/d and d/a = n/a2. Thus

Tnf =
∑
µ∈Z

 ∑
a≥1

a|(n,µ)

ak−1c
(µn
a2

) qµ.

Corollary 2.48. Let n and m be positive integers. Then

TnTm =
∑

d|(n,m)

dk−1Tnm
d2

= TmTn.

In particular, TnTm = Tnm if n and m are relatively prime.

Proof. Let f =
∑

m∈Z c(m)qm. Using the previous proposition, we compute that

∑
d|(n,m)

dk−1Tnm
d2
f =

∑
d|(n,m)

dk−1
∑
α∈Z

 ∑
a|(nm

d2
,α)

ak−1c
(mnα
d2a2

) qα.

Similarly, we compute that

Tnf =
∑
α∈Z

 ∑
a|(n,α)

ak−1c
(nα
a2

) qα

and

TmTnf =
∑
α∈Z

 ∑
d|(m,α)

dk−1
∑

a|(n,mα
d2

)

ak−1c
(mnα
d2a2

) qα

=
∑

d|(n,m)

dk−1
∑
α∈Z

 ∑
a|(nm

d2
,α)

ak−1c
(mnα
d2a2

) qα

as desired.
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Let f =
∑∞

m=0 a(m)qm ∈ Mk(SL2(Z)). Consider now the particular case when n = p is prime.
Then

Tpf =
∞∑

m=0

a(pm)qm + pk−1
∞∑

m=0

a(m)qpm.

Furthermore consider two particular cases of Corollary 2.48:

(i) If p divides n once, then gcd(np , p) = 1 and Tn = Tn
p
Tp.

(ii) If p2 divides n, then Tn = Tn
p
Tp − pk−1T n

p2
.

Corollary 2.49. If f is a modular form (resp. a cusp form), then Tnf is also a modular form
(resp. a cusp form).

Corollary 2.50. Consider the same notations as in Proposition 2.47. Then γ(0) = σk−1(n)c(0)

and γ(1) = c(n).

Corollary 2.51. If n = p is prime, thenγ(m) = c(pm) if p ∤ m,

γ(m) = c(pm) + pk−1c
(
m
p

)
if p|m.

Example 2.52. We compute the first terms of T2E4. Recall that we already computed the Taylor
series of E4 with respect to q in the end of Section 2.4.2. We let γm denote the coefficients of
the series of T2E4. Using the results of Corollary 2.50, we see that γ0 = 3/80 and γ1 = 9. Using
Corollary 2.51, we compute γm for m = 2, · · · , 6. We can then write

T2E4 =
3

80
+ 9q + 81q2 + 252q3 + 657q4 + 1134q5 + 2268q6 + · · ·

2.5.2 Hecke forms for SL2(Z)

Let f =
∑∞

m=0 amq
m ∈ Mk(SL2(Z)), not equal to the all-zero function, and suppose f is an

eigenfunction for all Hecke operators Tn. In other words, there exists a sequence {λn}∞n=1 ⊂ C such
that Tnf = λnf for all positive integer n.

Theorem 2.53. The coefficient a1 of f is non-zero. Furthermore, if f is normalized such that
a1 = 1, then an = λn for all positive integer n.
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Proof. Using Corollary 2.50, we see that the q coefficient of Tnf is an. But since Tnf = λnf , this
coefficient is also λna1. Thus an = λna1 for all n. So if a1 = 0, then an = 0 for all n. Hence, f is
the all-zero function and this contradicts our assumption. Thus a1 ̸= 0. If a1 = 1, then an = λn for
all n.

Definition 2.54. Let f ∈ Mk(SL2(Z)). We say that f is a Hecke form (for SL2(Z)) if f is
normalized in the sense that a1 = 1 and if f is an eigenfunction for all Hecke operators Tn.

Corollary 2.55. Two Hecke forms of weight k which have the same eigenvalues coincide.

Corollary 2.56. Let f =
∑∞

m=0 amq
m be a Hecke form of weight k. Thenaman = amn if gcd(m,n) = 1,

apapn = apn+1 + pk−1apn−1 if p prime, n ≥ 1.

Proof. Using Theorem 2.53 and Corollary 2.48, we get

TnTmf(z) = Tnamf(z) = amanf(z) =
∑

d|(m,n)

dk−1Tmn
d2
f(z) =

∑
d|(m,n)

dk−1amn
d2
f(z).

Thus, if m and n are relatively prime, aman = amn. From the above computation we see that

apapn =
∑

d|(m,n)

dk−1a pn+1

d2

= apn+1 + pk−1apn−1 .

2.57. Observe that the function n 7→ an is multiplicative. That is, if m,n are relatively prime, then
amn = aman.

Theorem 2.58 (Hecke). Let k ≥ 4 be even and f =
∑∞

m=0 amq
m ∈ Sk(SL2(Z)). Then

an = O(n
k
2 ) when n→ +∞.

In other words, there exists a positive real constant C such that |an| ≤ Cn
k
2 for n sufficiently large.

Proof. Since f is a cusp form, a0 = 0. We can then factorize f by q and write

f =

( ∞∑
m=1

amq
m−1

)
q.

If we write z = x+ iy, then |f(z)| = O(|q(z)|) = O(e−2πy) when q(z) → 0, that is, when y → +∞.
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Let ϕ(z) = |f(z)|y
k
2 . Then ϕ is invariant under the action of SL2(Z). In fact, let γ =

(
a b
c d

)
∈

SL2(Z) and recall that Im(γ · z) = y/|cz + d|2. Thus

ϕ(γ · z) = |f(γ · z)| Im(γ · z)
k
2 = |cz + d|k|f(z)| y

k
2

|cz + d|k
= ϕ(z).

Furthermore, ϕ is continuous on the standard fundamental domain D. Since |f(z)| = O(e−2πy), we
see that ϕ(z) → 0 when y → +∞. Thus ϕ is bounded and there exists a constant M such that

|f(z)| ≤My−
k
2 when y → +∞. (2.58.1)

Fix y and let x run through [0, 1]. Then q(z) = e2πi(x+iy) describes a circle of center 0 and radius
e−2πy. We shall denote this circle Cy. Now consider the functions gn = fq−(n+1), with n positive.
Observe that

gn =
∞∑

m=1

amq
m−n−1 =

∞∑
k=−n

ak+n+1q
k =

a1
qn

+ · · ·+ an
q

+

∞∑
k=0

ak+n+1q
k.

Thus gn has one pole at 0 of order n and Res0(gn) = an. Applying the Residue Theorem, we get

an =
1

2πi

∫
Cy

f(z)q(z)−n−1dz =

∫ 1

0
f(x+ iy)q(x+ iy)−ndx.

Using Equation 2.58.1 we see that |an| ≤ My−
k
2 e2πny. This inequality holds for all positive y. In

particular, if y = 1
n , then |an| ≤Me2πn

k
2 and thus an = O(n

k
2 ).

2.5.3 Hecke operators for Γ0(N)

We define Hecke operators for Γ0(N) and expose some of their main properties. These properties
and their proofs are analogous to those of Section 2.5.1 and 2.5.2.

Let N and n be positive integers and consider the set of matrices

∆N
n =

{(
a b

c d

)
∈ ∆n

∣∣∣ a, b, c, d ∈ Z, (a,N) = 1, c ≡ 0 (mod N)

}
.

The group Γ0(N) acts on ∆N
n by left multiplication

Γ0(N)×∆N
n −→ ∆N

n

(γ, α) 7−→ γα.

We decompose ∆N
n in orbits of this action and choose a system of representatives RN for Γ0(N)\∆N

n .
The finiteness of this system is a consequence of this next proposition.
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Proposition 2.59. For any positive integer n, we have the disjoint union

∆N
n =

∪{
Γ0(N)

(
a b

0 d

) ∣∣∣ a > 0, ad = n, 0 ≤ b < d, (a,N) = 1

}
.

Proof. The inclusion “⊇” is straightforward. For the other inclusion, consider α =
(
a b
c d

)
∈ ∆N

n . We
know by Proposition 2.44 that there exists γ = ( x y

z w ) ∈ SL2(Z) such that(
a b

c d

)
=

(
x y

z w

)(
a′ b′

0 d′

)
,

where a′d′ = n, a′, d′ > 0 and 0 ≤ b′ < d′. Since a = a′x and (a,N) = 1, we have that (a′, N) = 1.
Then, since c ≡ 0 (mod N) and c = a′z, we find that z ≡ 0 (mod N) and thus γ ∈ Γ0(N).

By analogy with Hecke operators for SL2(Z), we define Hecke operators for Γ0(N), denoted TN
n ,

as follows:
TN
n f = n

k
2
−1

∑
µ∈RN

f [µ]k ,

for f ∈ Mk(Γ0(N)).

2.60. If N is clear from the context, we shall write Tn instead of TN
n .

Similarly, we get a more explicit formula for Tn if we choose the system that follows from
Proposition 2.59. This yields,

Tnf(z) = nk−1
∑

0≤b<d,(a,N)=1
a≥1,ad=n

d−kf(
az + b

d
).

Note that since ( 1 1
0 1 ) ∈ Γ0(N), every f ∈ Mk(Γ0(N)) can be written as

f =
∞∑

m=0

amq
m.

Thus Proposition 2.47 can be fitted for Γ0(N). All other properties from Section 2.5.1 can be
derived for Γ0(N). We end this section by stating an important theorem.

Theorem 2.61. The Hecke forms form a basis for M2(Γ0(N)).

Proof. This is Theorem 5.7.2 of [He02]. The proof is not technical but requires the Petersson scalar
product that we do not define.
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3 The Taniyama-Shimura Conjecture

We now have all the elements in hand needed to state the famous conjecture, which is the objective
of our study. The statement was originally conjectured in 1955 by Yutaka Taniyama. His colleague
Goro Shimura gave a precise statement of the conjecture in the following year. In 1967, a paper of
André Weil provided strong evidence in favor of the conjecture. On September 19nth 1994, Andrew
Wiles, with help from Richard Taylor, obtained the full proof of the Taniyama-Shimura Conjecture
for a special class of elliptic curves defined over Q. This version of the conjecture sufficed to prove
Fermat’s Last Theorem. Extending the methods developed by Wiles in his proof, Christophe Breuil,
Brian Conrad, Fred Diamond, and Richard Taylor obtained the proof of the full conjecture in 2001,
which then became known as the Modularity Theorem. We now state the theorem.

Theorem 3.1 (Breuil, Conrad, Diamond, Taylor, Wiles). Let E be an elliptic curve defined over
Q with conductor N and let L(E, s) be the L-series of E:

L(E, s) =
∞∑
n=1

a(n)

ns
.

(See Section 1.5.3 for the definition of the coefficients of this L-series). Then the function f : H → C
defined by

f =
∞∑
n=1

a(n)qn,

with q : z 7→ e2iπz, is a cusp form and a Hecke form for Γ0(N).

In 1637, Pierre de Fermat famously claimed to have proved, in the margin of a copy of the
Arithmetica, what would become known as Fermat’s Last Theorem. He claimed to have found a quite
marvelous proof of this statement but that the margin was too small to contain it. Unfortunately,
no sign of this proof was ever found and this lead to a 358-year long search for the proof. The
statement is as follows.

Conjecture 3.2 (Fermat). Let n be a positive integer. The equation:
an + bn = cn

abc ̸= 0

a, b, c ∈ Z

has no solutions for n ≥ 3.

After the death of Fermat, mathematicians undertook the work of proving his many assertions
one by one. The famous conjecture was the last one that was attempted and that is why it became
known as Fermat’s Last Theorem. It eventually became one of the most famous unsolved problems
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in mathematics and its resolution stimulated the development of several areas in mathematics
during the many years of search. The conjecture was proved for several special cases of n and many
advances were made by Euler, Goldbach, Germain, Legendre, Dirichlet, Lamé, Liouville, Cauchy,
Kummer and many more famous mathematicians. But no one succeeded in proving the general
case.

Around 1955, Taniyama and Shimura noticed a possible link between elliptic curves and modular
forms. This was surprising since the two areas were completely unrelated. This resulted in the
Taniyama-Shimura Conjecture which was precisely formulated around 1956. It is sometimes referred
to as the Taniyama-Shimura-Weil Conjecture because of the contribution of Weil in 1967. In general,
the conjecture was believed inaccessible. In 1983, Gerhard Frey noticed a link between the conjecture
and Fermat’s Last Theorem. He asserted that if a solution existed to Fermat’s problem for n ≥ 3,
then from this solution, one would be able to extract an elliptic curve with such bizarre properties
that its existence would contradict the Taniyama-Shimura Conjecture. It became clear that if this
statement was correct, then a proof of Taniyama-Shimura would imply Fermat’s Last Theorem.
But he did not succeed in proving his statement. The missing part was identified by Jean-Pierre
Serre and became known as the epsilon-conjecture. In 1986, Ken Ribet obtained a proof for this
conjecture, which became known as Ribet’s Theorem. The ground was then laid for Andrew Wiles
who embarked on a 7-year long lonely search which resulted in him obtaining the proof of the
Modularity Theorem in 1993 for elliptic curves that only admit good or multiplicative reduction
modulo a prime p. This special case of the theorem was enough to imply Fermat’s Last Theorem.
But a flaw was discovered in his proof. With help from Richard Taylor, he corrected this flaw
and the correct proof was submitted in 1995, making Wiles’ childhood dream of proving Fermat
come true. The methods used in his proof were extended by Breuil, Conrad, Diamond, and Taylor
between 1996 and 2001 and led to the full proof of the Modularity Theorem.

A nice description of the historical context surrounding Fermat’s Last Theorem and the Modu-
larity Theorem can be found throughout [He02].
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4 Computations

The aim of this section is to numerically illustrate the Modularity Theorem for some selected
examples. We choose an approach using modular symbols and follow [St07] Chapter 3.

4.1 Modular symbols

We introduce modular symbols with the aim of constructing a basis for the vector space S2(Γ0(N)).
We then expose a trick due to Manin that gives a finite list of generators and relations for the space
of modular symbols. We then define Hecke operators on modular symbols and study the relation
between these and the Hecke operators for weight 2 modular forms for Γ0(N).

4.1.1 Definition

We consider homotopy classes of oriented paths in H∗ with endpoints belonging to P1(Q) and denote
them {α, β}, where α, β ∈ P1(Q). Note that the order of the pair matters. Consider the following
homology relations:

(1) {α, β}+ {β, γ}+ {γ, α} = 0

(2) {α, α} = 0

(3) {α, β} = −{β, α}

for α, β, γ ∈ P1(Q).

Definition 4.1. We define M2 to be the Q-vector space generated by symbols {α, β} quotiented
by the three homology relations. An element of this space is called a modular symbol. Modular
symbols of the form {α, β} are called elementary symbols.

∞

0α β

Figure 5: The elementary symbols {α, β} and {0,∞}
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4.2. Recall that an element s of a Q-vector space V with basis B may be expressed in one and only
one way as a Q-linear combination of elements of B

s =

∞∑
i=1

λibi,

where each λi ∈ Q and all but at most finitely many λi are 0. Elements of V are formal sums over
B.

The group GL2(Q) acts from the right on the space of modular symbols M2 in the following
way: let γ ∈ GL2(Q) and s =

∑∞
i=0 λi{αi, βi} ∈ M2. Then

γ · s =
∞∑
i=0

λiγ · {αi, βi} =

∞∑
i=0

λi{γ · αi, γ · βi}.

Here, GL2(Q) acts on P1(Q) by linear fractional transformation. That means that this action
is the same as the one in Section 2.2.3 but extended to GL2(Q). Explicitly this corresponds to the
action

γ · r =

ar+b
cr+d if r ̸= ∞
a
c if r = ∞

where r ∈ P1(Q) and
(
a b
c d

)
∈ GL2(Q). If the denominator c or cr + d equal zero, then we declare

that γ · r = ∞ ∈ P1(Q). Seeing that the action of GL2(Q) on M2 is indeed an action and that it is
well defined is immediate.

Definition 4.3. We define the space of modular symbols for Γ0(N) to be the space M2(N) defined
as M2 quotiented by the sub-vector space of M2 that is generated by modular symbols of the form
{α, β} − γ{α, β}, where {α, β} ∈ M2 and γ ∈ Γ0(N). An element of this space is called a modular
symbol for Γ0(N).

4.1.2 Cuspidal modular symbols

Let B2(N) denote the Q-vector space with basis the finite set of cusps C(Γ0(N)). We define the
boundary map

δN : M2(N) −→ B2(N)

to be the linear map that sends {α, β} ∈ M2(N) to {β}−{α}, where {β} denotes the basis element
of B2(N) corresponding to β ∈ P1(Q). When the context is clear we shall write δ instead of δN .

4.4. This is a well defined map. Let α, β, γ ∈ P1(Q). We verify that the four relations we declared
above hold in the image of δ. For the first one, we simply compute that δ({α, β}+{β, γ}+{γ, α}) =
({β}−{α})+({γ}−{β})+({α}−{γ}) = 0. For the second, δ({α, β}) = {β}−{α} = −({α}−{β}) =
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−δ({β, α}). Finally, it is clear that δ({α, α}) = {α}−{α} = 0. For the last relation, let γ ∈ Γ0(N).
Then for all α ∈ P1(Q), {α} = {γ · α} since α and γ · α represent the same cusp. Thus

δ({α, β} − γ · {α, β}) = {β} − {α} − {γ · β}+ {γ · α} = 0.

Definition 4.5. The kernel of δN is called the space of cuspidal modular symbols and is denoted
S2(N).

Thus, an element of S2(N) can be thought of as a linear combination of paths in H∗ whose
endpoints are cusps.

4.1.3 Manin’s trick

We know by Proposition 2.6 that Γ0(N) has finite index in SL2(Z). Let r0, . . . , rm be a system of
right coset representatives for Γ0(N) in SL2(Z). Then

SL2(Z) =
m∪
i=0

Γ0(N)ri,

where the union is disjoint. Manin’s trick enables us to write every modular symbol as a Q-linear
combination of symbols of the form ri{0,∞}. It shows that {ri{0,∞} | i = 0, · · · ,m} generates
M2(N).

Theorem 4.6 (Manin). Let r0, . . . , rm be a system of right coset representatives for Γ0(N) in
SL2(Z). The linear map

φ : Q[r0, . . . , rm] −→ M2(N)∑m
i=0 λiri 7−→

∑m
i=0 λiri{0,∞}

is surjective.

Proof. Let {α, β} ∈ M2(N). Using the first and the third homology relation, we notice that {α, β} =

{0, β}−{0, α} for all α, β ∈ P1(Q). Thus it suffices to show that there exists {λi}mi=0 ⊂ Z such that∑m
i=0 λiri{0,∞} = {0, ba}, where (a, b) = 1.
The first step is to write b

a as a simple continued fraction. That is

b

a
= a0 +

1

a1 +
1

a2+
1

a3+...

,

where ai for i = 0, 1, . . . are integers. We shall write this in the following way, which is more
compact:

b

a
= a0 +

1

a1+

1

a2+
· · ·

64



We have written the continued fraction as if it is infinite but it is actually finite in our case since
we only consider rationals. Thus, there exists a positive integer N such that

b

a
= a0 +

1

a1+

1

a2+
· · · 1

aN
.

The second step of the trick consists in considering the successive convergents of b
a . The nth

convergent, for 0 ≤ n ≤ N , is denoted pn
qn

and defined as

pn
qn

= a0 +
1

a1+

1

a2+
· · · 1

an
.

In addition we also consider two formal convergents, namely the ones of order −2 and −1 defined
formally and respectively as p−2

q−2
= 0

1 and p−1

q−1
= 1

0 .
We notice that pkqk−1 − pk−1qk = (−1)k−1 and thus the matrix defined by

γk =

(
pk (−1)k−1pk−1

qk (−1)k−1qk−1

)
is in SL2(Z). Furthermore, we see that

γk{0,∞} = {γk · 0, γk · ∞} =

{
pk−1

qk−1
,
pk
qk

}
= ri{0,∞},

for a certain i ∈ {0, · · · ,m}. In fact, there exists δ ∈ Γ0(N) and 0 ≤ i ≤ m such that δri = γk.
Thus γk{0,∞} = δri{0,∞} = ri{0,∞} since we quotiented by the relation {α, β} − γ{α, β} = 0.

Finally, note that{
0,
b

a

}
=

{
p−2

q−2
,
p−1

q−1

}
+

{
p−1

q−1
,
p0
q0

}
+ . . .+

{
pN−1

qN−1
,
pN
qN

}
.

This is a consequence of the homology relations we stated and the fact that p−2/q−2 = 0 and
pN/qN = b/a by definition. Using our observation above, we know that for each −1 ≤ k ≤ N , there
exists 0 ≤ i ≤ m such that {

pk−1

qk−1
,
pk
qk

}
= ri{0,∞}

and this completes the proof.

Example 4.7. LetN = 11 and b
a = 4

7 . We use Manin’s trick to express the modular symbol {0, 4/7}
as a Q-linear combination of ri{0,∞}. We know from Proposition 2.6 that the index of Γ0(11) in
SL2(Z) is 12. Using Proposition 2.7 we choose the following system of right coset representatives
for Γ0(11) \ SL2(Z): (

1 0

0 1

)
,

(
1 0

1 1

)
,

(
1 0

2 1

)
, . . . ,

(
1 0

10 1

)
,

(
0 −1

1 0

)
.

We start by expanding 4
7 as a continued fraction. The algorithm is simple. Let a0 be the integer

part of 4
7 , that is 0 and write

4

7
= a0 +

1
7
4
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Let a1 be the integer part of 7
4 , that is 1. Repeat this process until you obtain the desired form.

Doing this yields
4

7
= 0 +

1

1 + 1
1+ 1

3

and we may write
4

7
= 0 +

1

1+

1

1+

1

3
.

The convergents of 4
7 are

p−2

q−2
=

0

1
,

p−1

q−1
=

1

0
,

p0
q0

=
0

1
,

p1
q1

=
1

1
,

p2
q2

=
1

2
,

p3
q3

=
4

7
.

Thus {0, 4/7} = {0,∞} + {∞, 0} + {0, 1} + {1, 1/2} + {1/2, 4/7} = {0, 1} +
(
1 −1
2 −1

)
{0,∞} +

( 4 1
7 2 ) {0,∞}. We state that {0, 1} = 0 for all N . To see why, note that T = ( 1 1

0 1 ) ∈ Γ0(N) for all
N . Thus {∞, 0} = {T · ∞, T · 0} = {∞, 1}. So

0 = {∞, 1} − {∞, 0} = {∞, 1}+ {0,∞} = {0,∞}+ {∞, 1} = {0, 1}.

Also, notice that(
1 −1

2 −1

)
=

(
10 −1

11 −1

)(
1 0

9 1

)
and

(
4 1

7 2

)
=

(
−5 1

−11 2

)(
1 0

9 1

)
.

and
(
10 −1
11 −1

)
,
( −5 1
−11 2

)
∈ Γ0(11). Thus we may write

{0, 4/7} = 2
[(1 0

9 1

)
{0,∞}

]
.

4.1.4 Manin symbols

Fix right coset representatives r0, . . . , rm for Γ0(N) in SL2(Z). We introduce the following notation
ri{0,∞} = [ri] for i = 0, . . . ,m and we consider the formal symbols [ri]

′, for i = 0, . . . ,m. We
define the right action

SL2(Z)×{[r0]′, . . . , [rm]′} −→ {[r0]′, . . . , [rm]′}
(γ, [ri]

′) 7−→ [ri]
′ · γ = [rj ]

′,

where Γ0(N)rj = Γ0(N)riγ. We extend the notion by setting

[α]′ = [Γ0(N)α]′ = [ri]
′,

where ri is such that α ∈ Γ0(N)ri. Then the right action of Γ0(N) is [α]′ · γ = [αγ]′.

Definition 4.8. The symbols [r0]
′, . . . , [rm]′ are called Manin symbols.

66



Note that this definition does not depend on the choice of the representatives ri. In fact, let
{g0, . . . , gm} be another system of representatives. Then for each 0 ≤ i ≤ m, there exists 0 ≤ k =

ki ≤ m such that Γ0(N)gi = Γ0(N)rki and ki ̸= kj for i ̸= j. Thus, [gi]′ = [Γ0(N)gi]
′ = [rki ]

′. We
may reorder the gi’s in a way such that [gi]

′ = [ri]
′ for all i.

Recall from Proposition 2.8 that the modular group SL2(Z) is generated by the matrices S =(
0 −1
1 0

)
and T = ( 1 1

0 1 ).

Theorem 4.9 (Manin). Let M denote the quotient of the Q-vector space generated by the Manin
symbols [r0]

′, . . . , [rm]′ by the sub-vector space generated by the relations (for all i = 0, . . . ,m)

[ri]
′ + [ri]

′ · S = 0 and [ri]
′ + [ri]

′ · (TS) + [ri]
′ · (TS)2 = 0.

Then there is an isomorphism
Ψ :M

∼−→ M2(N)

given by [ri]
′ 7→ [ri] for all i.

Proof. The injectivity of Ψ requires a certain amount of work and therefore we refer to [Ma72]
Chapter 1 Section 7 for the proof of this part. The surjectivity of Ψ is a consequence of Theorem
4.6. We show that Ψ is well defined. We need to verify that the relations considered in the theorem
hold in the image. To prove that the first relation holds, we observe that

Ψ([ri]
′ + [ri]

′ · S) = Ψ([ri]
′ + [riS]

′) = [ri] + [riS] = ri{0,∞}+ riS{0,∞}

= {ri · 0, ri · ∞}+ {ri · (S · 0), ri · (S · ∞)} = {ri · 0, ri · ∞}+ {ri · ∞, ri · 0} = 0,

where we used the third homology relation for the last equality.
For the second relation, start by noticing that TS =

(
1 −1
1 0

)
and (TS)2 =

(
0 −1
1 −1

)
. Then

Ψ([ri]
′ + [ri]

′ · (TS) + [ri]
′ · (TS)2) = Ψ([ri]

′ + [ri(TS)]
′ + [ri(TS)

2]′) = [ri] + [ri(TS)] + [ri(TS)
2]

= {ri · 0, ri · ∞}+ {ri · ((TS) · 0), ri · ((TS) · ∞)}+ {ri · ((TS)2 · 0), ri · ((TS)2 · ∞)}

= {ri · 0, ri · ∞}+ {ri · ∞, ri · 1}+ {ri · 1, ri · 0} = 0,

where we used the first homology relation for the last equality.

4.10. This theorem provides a finite presentation for the space of modular symbols. In particular

dim(M2(N)) = dim(M) ≤ [SL2(Z) : Γ0(N)].

4.2 Hecke operators on modular symbols

We define Hecke operators on modular symbols and then introduce a perfect pairing between these
and the Hecke operators for modular forms for Γ0(N) and weight 2.
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4.2.1 Definition

Let N and n be positive integers and consider the set of matrices

∆N
n =

{(
a b

c d

)
∈ ∆n

∣∣∣ a, b, c, d ∈ Z, (a,N) = 1, c ≡ 0 (mod N)

}
just as we did when we defined Hecke operators for modular forms for Γ0(N). Recall from Propo-
sition 2.59, that

Rn =

{(
a b

0 d

) ∣∣∣ ad = n, a ≥ 1, (a,N) = 1, 0 ≤ b < d

}
is a system of right coset representatives of Γ0(N) \∆N

n .

Definition 4.11. Let N and n be positive integers. We define the nth Hecke operator on M2(N)

to be the map from M2(N) to M2(N) defined by

Tns =
∑
g∈Rn

g · s.

It is easy to verify that this is a well defined map. We now consider the case where n = p is
prime. If p ∤ N and g =

(
a b
0 d

)
∈ Rp, then since ad = p and a is positive we must have a = 1, d = p

or a = p, d = 1. In the first case, g =
(
1 b
0 p

)
with 0 ≤ b < p. In the second case, g =

(
p b
0 1

)
,

with 0 ≤ b < 1 and therefore g =
(
p 0
0 1

)
. If p|N , then a ̸= p because otherwise (a,N) ̸= 1. Thus

g =
(
1 b
0 p

)
, with 0 ≤ b < p. Hence, if p ∤ N

Rp =

{(
1 r

0 p

) ∣∣∣ 0 ≤ r < p

}
∪

{(
p 0

0 1

)}
.

Otherwise,

Rp =

{(
1 r

0 p

) ∣∣∣ 0 ≤ r < p

}
.

It follows from these observations and our definition of Hecke operators that if N is a positive
integer, p is prime and {α, β} ∈ M2(N), then the pth Hecke operator on the elementary symbol
{α, β} is

Tp{α, β} =


(
p 0
0 1

)
· {α, β}+

p−1∑
r=0

(
1 r
0 p

)
· {α, β} if p ∤ N

p−1∑
r=0

(
1 r
0 p

)
· {α, β} if p |N.

Thus if s =
∑∞

i=0 λi{αi, βi} ∈ M2(N), then

Tps =
∑
g∈Rp

g · s =
∞∑
i=0

λi
∑
g∈Rp

g · {αi, βi}.
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4.2.2 Pairing of modular symbols with modular forms

Consider the pairing ⟨·, ·⟩ : M2(N) × M2(Γ0(N)) −→ C that sends {α, β} ∈ M2(N) and f ∈
M2(Γ0(N)) to ∫

α→β

f(z)dz

that we extend Q-linearly in the first variable in the sense that if s =
∑∞

i=0 λi{αi, βi} ∈ M2(N)

with {λi}∞i=0 ⊂ Q, then

⟨s, f⟩ =
∞∑
i=0

λi

∫
αi→βi

f(z)dz.

We immediately notice that ⟨·, ·⟩ is Q-bilinear and C-linear in the second variable. The integral
is taken over a path α → β that represents the elementary symbol {α, β}. Note that this pairing
makes sense since the integral is independent of the choice of the path α→ β. To see this, we adopt
the notation δ1 := α → β and let δ2 be another path that represents the symbol {α, β}. Since f
is holomorphic on H, Cauchy’s theorem tells us that the integral of f on any closed path in H is
equal to zero. But this does not suffice to prove the independence of the choice of paths since the
closed path C := δ1− δ2 contains two points that belong to P1(Q), namely the points α and β. But
there is a way to avoid this problem. Let ϵ > 0 and let Cα

ϵ and Cβ
ϵ be the circles with radius ϵ and

respective centers α and β.

α β

δ1

−δ2

y1

x1 x2

y2

ϵϵ
γ1 γ2Cα

ϵ Cβ
ϵ

Figure 6: The closed path Γ in H

Let x1 = δ1∩Cα
ϵ , y1 = δ2∩Cα

ϵ , x2 = δ1∩Cβ
ϵ and y2 = δ2∩Cβ

ϵ . Define γ1 = (y1 → x1) ⊂ (Cα
ϵ ∩

◦
C)

and γ2 = (x2 → y2) ⊂ (Cβ
ϵ ∩

◦
C). Observe that the path Γ := δ1 + γ2 − δ2 + γ1 is closed in H (see

Figure 6). Thus by our previous discussion, the integral of f on Γ is zero. Thus∫
δ2

f(z)dz −
∫
δ1

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz.

As ϵ → 0, the path γi “shrinks” towards zero. But does the integral of f of γi also tend to zero?
The answer is yes. Since f is holomorphic at the cusps and holomorphicity at a cusp implies that
f is bounded in a close neighborhood of the cusp, we see that there exists M > 0 such that∫

γi

|f(z)|dz ≤M

∫
γi

dz → 0 as ϵ→ 0,
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for i = 1, 2. Hence ∫
δ1

f(z)dz =

∫
δ2

f(z)dz

as we set out to prove.

4.12. The above pairing is well defined. We need to verify that the pairing satisfies the three
homology relations from Section 4.1.1 and the relation defined in Definition 4.3. Let α, β, γ ∈ P1(Q)

and f ∈ M2(Γ0(N)). In order to verify the three relations of Section 4.1.1, we need to show that∫
(α→β)+(β→γ)+(γ→α)

f(z)dz = 0

∫
α→α

f(z)dz = 0

∫
(α→β)+(β→α)

f(z)dz = 0.

Note that all three paths (α→ β)+ (β → γ)+ (γ → α), α→ α and (α→ β)+ (β → α) form closed
loops in H∗. Thus, the desired results follow from arguments similar to the ones already developed
above.

In order to show the result for the relation of Definition 4.3, let γ ∈ Γ0(N). We need to show
that

⟨γ · {α, β}, f⟩ = ⟨{α, β}, f⟩.

By definition,

⟨γ · {α, β}, f⟩ =
∫

γ·α→γ·β

f(γ · z)d(γ · z).

Since f ∈ M2(Γ0(N)), we know by Remark 2.11 that f(γ · z)d(γ · z) = f(z)dz. Furthermore,
γ · {α, β} = {α, β}. Thus ∫

γ·α→γ·β

f(γ · z)d(γ · z) =
∫

α→β

f(z)dz,

as desired.

Proposition 4.13. The Hecke operators are compatible with the integration pairing ⟨·, ·⟩ in the
sense that for all s ∈ M2(N), f ∈ M2(Γ0(N)) and p prime, ⟨Tps, f⟩ = ⟨s, Tpf⟩.

Proof. Since the pairing is Q-linear in the first variable it suffices to prove the equality for an
elementary symbol {α, β} ∈ M2(N). Let p be a prime and f ∈ M2(Γ0(N)). Then

⟨{α, β}, Tpf⟩ = ⟨{α, β}, p
2
2
−1
∑
g∈Rp

f [g]2⟩ = ⟨{α, β},
∑
g∈Rp

f [g]2⟩

=

∫
α→β

∑
g∈Rp

f [g]2(z)dz =
∑
g∈Rp

∫
α→β

pd−2f(
az + b

d
)dz.

We perform the change of variables w = az+b
d . Then

⟨{α, β}, Tpf⟩ =
∑
g∈Rp

∫
g·α→g·β

d

a
pd−2f(w)dw =

∑
g∈Rp

∫
g·α→g·β

p

ad
f(w)dw =

∑
g∈Rp

∫
g·α→g·β

f(w)dw.
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On the other hand,

⟨Tp{α, β}, f⟩ = ⟨
∑
g∈Rp

g · {α, β}, f⟩ =
∑
g∈Rp

∫
g·α→g·β

f(z)dz.

Thus ⟨Tp{α, β}, f⟩ = ⟨{α, β}, Tpf⟩.

Restricting the pairing as follows ⟨·, ·⟩ : S2(N) × S2(Γ0(N)) −→ C, it remains Q-bilinear and
C-linear in the second variable. Hence, the map

α : S2(N) −→ HomC(S2(Γ0),C) = S2(Γ0(N))∗

that sends s ∈ S2(N) to ⟨s, ·⟩ is well defined. Here, S2(Γ0(N))∗ denotes the dual of S2(Γ0(N)). We
state the following theorem without proof.

Theorem 4.14. The map αR : S2(N)⊗QR −→ S2(Γ0(N))∗ that sends s to ⟨s, ·⟩ is an isomorphism.
In other words, our pairing is perfect.

Proof. See Theorem 3.4 of [St07].

Corollary 4.15.
dimQ S2(N) = 2 dimC S2(Γ0(N))

Proof. This is Proposition 3.8 of [St07].

Corollary 4.16. The Hecke operators for S2(Γ0(N)) and those for S2(N) have the same eigenval-
ues.

Proposition 4.17. The Hecke operators on S2(N) commute. Moreover, the function n 7→ Tn is
multiplicative. Thus, Tn for n composite is determined by the operators Tp with p prime.

Proof. This proposition is a consequence of Corollary 2.48 which states the same result for Hecke
operator on S2(Γ0(N)). Let s ∈ S2(N) and f ∈ S2(Γ0(N)). Then ⟨s, TnTmf⟩ = ⟨s, TmTnf⟩ and
using Proposition 4.13 we see that ⟨TmTns, f⟩ = ⟨TnTms, f⟩ which implies that αR(TmTns) =

αR(TnTms) since f is arbitrary. Since αR is an injection, we must then have TmTns = TnTms.
If n and m are relatively prime, then TnTmf = Tnmf . Thus

⟨s, TnTmf⟩ = ⟨s, Tnmf⟩ = ⟨Tnms, f⟩.

But we also have ⟨s, TnTmf⟩ = ⟨TmTns, f⟩ and thus αR(Tnms) = αR(TmTns) and since αR is an
injection, we see that TmTns = Tnms.
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4.18. If 2d = dim(S2(N)) and {e1, . . . , e2d} is a basis for this space, then the series

fi =
∞∑
n=0

⟨Tnei, ei⟩qn

are Hecke forms for Γ0(N) for i = 1, . . . , 2d. Here, ⟨·, ·⟩ denotes the standard scalar product on
C. Thus, we may compute a basis for S2(Γ0(N)) by looking only at the eigenvalues of the Hecke
operators Tp on S2(N). It suffices to list the series fi until we have enough to form a basis for
S2(Γ0(N)) and this is possible since dim(S2(Γ0(N))) = d by Corollary 4.15.

4.3 Computations

We have now covered the theory that is necessary and sufficient for us to numerically illustrate the
Modularity Theorem. We give a table of the dimension g of S2(Γ0(N)).

N 1 2 3 4 5 6 7 8 9 10 11 12 13
g 0 0 0 0 0 0 0 0 0 0 1 0 0
N 14 15 16 17 18 19 20 21 22 23 24 25 26
g 1 1 0 1 0 1 1 1 2 2 1 0 2
N 27 28 29 30 31 32 33 34 35 36 37 38 39
g 1 2 2 3 2 1 3 3 3 1 2 4 3

Table 5: Dimension g of S2(Γ0(N)).

We shall proceed in the following way.

(i) We compute a basis for the space M of Manin symbols. By Theorem 4.9, we already know
that the Manin symbols generate M . We compute the relations defined on M in this theorem
using the action of GL2(Z) on M defined in Section 4.1.4. Then, using linear algebra we study
the independence between these symbols by looking at the relations. This will give us a basis
for M . Once we have a basis for M , we also have one for M2(N) by Theorem 4.9.

(ii) We compute the image of each basis element of this basis by the Hecke operator Tn. This
allows us to express Tn as a matrix. We compute its eigenvalues.

(iii) We compute the boundary map and find a basis for its kernel, which is the space S2(N). We
compute Tn on S2(N) and find its eigenvalues.

(iii) We construct a basis for S2(Γ0(N)) using Remark 4.18.

(iv) We consider an elliptic curve with conductor N and compute the coefficients an of its L-series.
We then express the function f =

∑
anq

n in the basis we constructed for S2(Γ0(N)).
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4.3.1 Illustration for N = 3

We start by computing T2 on the space M2(3). The strategy is to compute a basis for the space
M on Manin symbols. Then, using Theorem 4.9, we know that M ∼= M2(3), and thus we will also
have computed a basis for M2(N). We then apply T2 on this basis and express the operator as a
matrix.

Recall from Proposition 2.7 that the matrices

r0 =

(
1 0

0 1

)
, r1 =

(
0 −1

1 0

)
, r2 =

(
1 0

1 1

)
, r3 =

(
1 0

2 1

)

form a system of right coset representatives of Γ0(3) in SL2(Z).
We list the relations defined in Theorem 4.9. We do the computations of the first relations. The

first relation is [r0]
′ + [r0]

′ · S = 0. Referring to the action defined in Section 4.1.4, we see that
[r0]

′ + [r0]
′ · S = [r0]

′ + [r0S]
′ = [r0]

′ + [ri]
′, where Γ0(3)(r0S) = Γ0(3)ri. Notice that r0S = S = r1

and thus [r0S]
′ = [r1]

′. Hence, the relation is [r0]
′ + [r1]

′ = 0.
The second relation is [r0]

′ + [r0]
′ · (TS) + [r0]

′ · (TS)2 = 0. First, compute that r0TS =

TS =
(
1 −1
1 0

)
and notice that

(
1 −1
1 0

)
= ( 1 1

0 1 )
(
0 −1
1 0

)
= ( 1 1

0 1 ) r1 and that ( 1 1
0 1 ) ∈ Γ0(3). Thus,

Γ0(3)(r0TS) = Γ0(3)r1 and we may conclude that [r0TS]
′ = [r1]

′. Similarly, we compute that
r0(TS)

2 = (TS)2 =
(
0 −1
1 −1

)
. Notice that

(
0 −1
1 −1

)
=
(
2 −1
3 −1

)
( 1 0
2 1 ) =

(
2 −1
3 −1

)
r3 and that

(
2 −1
3 −1

)
∈

Γ0(3). Thus, Γ0(3)(r0TS) = Γ0(3)r3 and we may conclude that [r0(TS)2]′ = [r3]
′. Thus, the second

relation is [r0]
′ + [r1]

′ + [r3]
′ = 0. By iterating this procedure we find the six remaining relations:

[r0]
′ + [r1]

′ = 0 [r0]
′ + [r1]

′ = 0 [r2]
′ + [r3]

′ = 0 [r2]
′ + [r3]

′ = 0

[r0]
′ + [r1]

′ + [r3]
′ = 0 [r0]

′ + [r1]
′ + [r3]

′ = 0 3[r2]
′ = 0 [r0]

′ + [r1]
′ + [r3]

′ = 0.

Recall that the aim is to find a basis for the space M . We already know that [r0]
′, [r1]

′, [r2]
′

and [r3]
′ generate M but since we quotient by the above relations, we need to look at independence

between the Manin symbols modulo these relations. We express the above relations as a linear
system: 

1 1 0 0

1 1 0 1

0 0 1 1

0 0 3 0



[r0]

′

[r1]
′

[r2]
′

[r3]
′

 =


0

0

0

0

 .

Notice that we omit the recurrent relations. Taking the reduced row echelon form of this matrix
yields the equivalent system 

1 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0



[r0]

′

[r1]
′

[r2]
′

[r3]
′

 =


0

0

0

0

 .
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Thus, our complicated system of relations above simplifies to

[r0]
′ + [r1]

′ = 0 [r2]
′ = 0 [r3]

′ = 0.

Hence, M has dimension 1 and its basis is the class of [r1]′ (or [r2]
′). We choose [r1]

′. Notice that
by Theorem 4.9, these relations hold in the image. Thus

[r0] + [r1] = 0 [r2] = 0 [r3] = 0. (4.18.1)

This implies that dim(M2(N)) = 1 and we may choose as basis of M2(N) the class of the modular
symbol [r1] = r1 · {0,∞} = {∞, 0}. Now we compute T2[r1]:

T2[r1] =

(
2 0

0 1

)
{∞, 0}+

(
1 0

0 2

)
{∞, 0}+

(
1 1

0 2

)
{∞, 0}.

Note that ( 2 0
0 1 ) {∞, 0} = {∞, 0} = [r1], ( 1 0

0 2 ) {∞, 0} = {∞, 0} = [r1] and ( 1 1
0 2 ) {∞, 0} = {∞, 12} =

{∞, 0} + {0, 12} = [r1] + [r3], since [r3] = r3 · {0,∞} = {0, 12}. Using the relations 4.18.1, we see
that [r3] = 0 and thus

T2[r1] = 3[r1].

Notice that this example is very easy and the computation of T2[r1] is almost immediate but in
more complicated cases one might need to use the continued fraction method described in the proof
of Theorem 4.6 in order to compute the Hecke operator. We will see this in the next sections.

In conclusion, T2 is the 1 × 1 matrix with coefficient 3. Its characteristic polynomial is x − 3

and its only eigenvalue is 3.

Computing the boundary map only involves looking at the cusps of Γ0(3). Using the formula of
Remark 2.16 we see that there are only two cusps.

Figure 7: A fundamental domain for Γ0(3)
2

2Drawn with Fundamental Domain Drawer program developed by H.A. Verrill.
http://www.math.lsu.edu/~verrill/fundomain/index2.html accessed on 19/12/13.
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This is confirmed by Figure 7. We may choose 0 and ∞ as a basis for B2(3). We compute that
δ([r1]) = {0} − {∞} and thus

δ =

(
1

−1

)
The kernel of the boundary is the null space and thus S2(3) = ∅. Using Corollary 4.15, we see
that dim(S2(Γ0(3))) = 0 as indicated in Table 5 and thus the Modularity Theorem is automatically
verified for N = 3.

4.3.2 Illustration for N = 11

Recall from Proposition 2.7 that the matrices

r0 =

(
1 0

0 1

)
, r1 =

(
0 −1

1 0

)
, r2 =

(
1 0

1 1

)
, r3 =

(
1 0

2 1

)
, r4 =

(
1 0

3 1

)
, . . . , r11 =

(
1 0

10 1

)

form a system of right coset representatives of Γ0(11) in SL2(Z). Using the same technique as in
the previous example we compute the relations on the corresponding Manin symbols. Expressing
each relation as a vector in the basis [r0]

′, . . . , [r11]
′, this gives us the following relation matrix:

1 1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 1 0 0 1 0 1 0 0

0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 1 0


where again we omit the recurrent relations. Then

1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 −1 0

0 0 0 0 1 0 0 0 0 1 −1 0

0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1 −1 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0
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is the reduced echelon form of this matrix. Thus we obtain the equivalent relations:

[r0]
′ = −[r1]

′ [r2]
′ = 0 [r3]

′ = [r10]
′ [r4]

′ = −[r9]
′ + [r10]

′

[r5]
′ = −[r9]

′ [r6]
′ = −[r10]

′ [r7] = −[r10]
′ [r8]

′ = [r9]
′ − [r10]

′ [r11]
′ = 0.

Hence, we see that every Manin symbol can be expressed as a linear combination of the symbols
[r1]

′, [r9]
′, [r10]

′ and therefore M has dimension 3 and basis {[r1]′, [r9]′, [r10]′}. Using Theorem 4.9
as before, M2(11) has dimension 3 and basis {[r1], [r9], [r10]} = {{∞, 0}, {0, 18}, {0,

1
9}}.

We compute some Hecke operators on M2(11). In order to compute Tp on M2(11) we need to
compute the image of each basis element and then we may express Tp as a matrix.

We start by computing the Hecke operator T2 on M2(11). Thus, we need to compute T2[r1], T2[r9]
and T2[r10]. The first calculation is similar to the one we did in Section 4.3.1 and we get

T2[r1] = 3[r1] + [r3] = 3[r1] + [r10]

.
We compute T2[r9]:

T2[r9] = T2

{
0,

1

8

}
=

(
2 0

0 1

){
0,

1

8

}
+

(
1 0

0 2

){
0,

1

8

}
+

(
1 1

0 2

){
0,

1

8

}
.

We do the calculation step by step. For the first term of the sum, ( 2 0
0 1 ) {0, 1/8} = {0, 1/4} =

( 1 0
4 1 ) {0,∞} = [r5] = −[r9]. The second term is ( 1 0

0 2 ) {0, 1/8} = {0, 1/16} = ( 1 0
16 1 ) {0,∞}. We

notice that ( 1 0
16 1 ) = ( 1 0

11 1 ) (
1 0
5 1 ) and ( 1 0

11 1 ) ∈ Γ0(11). Hence, ( 1 0
0 2 ) {0, 1/8} = [r6] = −[r10]. For the

third term, ( 1 1
0 2 ) {0, 1/8} = {1/2, 9/16} = {0, 9/16}−{0, 1/2} = {0, 9/16}− [r3] = {0, 9/16}− [r10].

We use the continued fraction method illustrated in Example 4.7 to find that {0, 9/16} = 2[r10]−[r9].
Thus ( 1 1

0 2 ) {0, 1/8} = [r10]− [r9]. Combining all these results, we finally get that

T2[r9] = −[r9]− [r10] + [r10]− [r9] = −2[r9].

We compute T2[r10] step by step like we did for T2[r9]. Computing the first term of the sum,
we get ( 2 0

0 1 ) {0, 1/9} = {0, 2/9}. Using the continued fraction method, we see that {0, 2/9} =

−[r9] − [r10]. For the second term of the sum, ( 1 0
0 2 ) {0, 1/9} = {0, 1/18} = ( 1 0

18 1 ) {0,∞} =

( 1 0
11 1 ) (

1 0
7 1 ) {0,∞} = [r8] = [r9] − [r10], since ( 1 0

11 1 ) ∈ Γ0(11). Finally, for the third term,
( 1 1
0 2 ) {0, 1/9} = {1/2, 5/9} = {0, 5/9} − [r3] = {0, 5/9} − [r10]. Using the continued fraction

method, we see that {0, 5/9} = [r10] and thus the third term of the sum is 0. Combining the three
terms gives us

T2[r10] = −[r9]− [r10] + [r9]− [r10] = −2[r10].

Having computed the Hecke operator T2 for all basis elements of M2(N) we may now explicit
T2:

T2 =

3 0 0

0 −2 0

1 0 −2

 .
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The characteristic polynomial of T2 is −(x− 3)(x+ 2)2 and its eigenvalues are 3 and −2.

Using the same method as above we compute T3 on M2(11):

T3{α, β} =

(
3 0

0 1

)
{α, β}+

(
1 0

0 3

)
{α, β}+

(
1 1

0 3

)
{α, β}+

(
1 2

0 3

)
{α, β}.

Clearly, ( 3 0
0 1 ) [r1] = ( 1 0

0 3 ) [r1] = [r1] and ( 1 1
0 3 ) [r1] = [r1] + [r4] = [r1] − [r9] + [r10]. For the last

term, we obtain ( 1 2
0 3 ) [r1] = {∞, 2/3} = [r1] + {0, 2/3}. Using the continued fraction method, we

find that {0, 2/3} = [r9] and thus ( 1 2
0 3 ) [r1] = [r1] + [r9]. Combining the four terms, we get

T3[r1] = 4[r1] + [r10].

For the second basis element, compute that ( 3 0
0 1 ) [r9] = {0, 3/8}. Using continued fractions, we

see that {0, 3/8} = [r0] + [r1] + [r3] + [r5] + [r11] = −[r9] + [r10]. The second term is easily com-
puted: ( 1 0

0 3 ) [r9] = {0, 1/24} = [r3] = [r10] by continued fractions. Next, ( 1 1
0 3 ) [r9] = {1/3, 3/8} =

{0, 3/8}−{0, 1/3} = −[r9]+[r10]−[r4] = 0. Finally, ( 1 2
0 3 ) [r9] = {2/3, 17/24} = {0, 17/24}−[r9] and

by continued fractions we find that {0, 17/24} = [r9]+2[r7] = [r9]−2[r10]. Thus ( 1 2
0 3 ) [r9] = −2[r10].

Combining the four terms, we obtain
T3[r9] = −[r9].

For the last basis element, we immediately see that ( 3 0
0 1 ) [r10] = [r4] = −[r9] + [r10]. It is

also easy to see that ( 1 0
0 3 ) [r10] = {0, 1/27} = ( 1 0

27 1 ) {0,∞} = [r6] = −[r10]. The third term
becomes ( 1 1

0 3 ) [r10] = {1/3, 10/27} = {0, 10/27} − [r4] and by the continued fraction method,
{0, 10/27} = [r0] + [r1] + [r3] + [r4] − [r3] + [r11] + [r10] = [r4] + [r10]. Thus ( 1 1

0 3 ) [r10] = [r10].
The last terms is ( 1 2

0 3 ) [r10] = {2/3, 19/27} = {0, 19/27} − [r9]. By the continued fraction method,
{0, 19/27} = [r9]− [r10] + [r9]− [r10]. Thus ( 1 2

0 3 ) [r10] = [r9]− 2[r10]. Combining the four terms, we
obtain

T3[r10] = −[r10].

We may finally write

T3 =

4 0 0

0 −1 0

1 0 −1

 .

The characteristic polynomial of T3 is −(x− 4)(x+ 1)2 and its eigenvalues are 4 and −1.

We compute a basis for S2(11). In order to do this we first need to compute the boundary map
defined in Section 4.1.2 and then compute its kernel. Recall that Γ0(11) only has two cusps (see
Figure 3). We choose as representatives for C(Γ0(11)) the elements 0 and ∞ of P1(Q). Thus the
classes {0} and {∞} form a basis of B2(11). Recall that {[r1], [r9], [r10]} is a basis for the space
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M2(11) of modular symbols. We compute that δ([r1]) = δ({∞, 0}) = {0} − {∞}. If we apply the
boundary map to [r9], we get δ([r9]) = δ({0, 1/8}) = {1/8} − {0} = 0. In fact,

( −4 1
−33 8

)
· 0 = 1/8

and
( −4 1
−33 8

)
∈ Γ0(11) and thus {1/8} = {0}. Similarly, δ([r10]) = δ({0, 1/9}) = {1/9} − {0} = 0,

since ( 5 1
44 9 ) · 0 = 1/9 and ( 5 1

44 9 ) ∈ Γ0(11). Hence the boundary map, with respect to our chosen
bases is

δ =

(
1 0 0

−1 0 0

)
.

Now that we have expressed δ as a matrix we can compute the kernel of δ, which is the space
S2(11) of cuspidal modular symbols, by solving the linear system

(
1 0 0

−1 0 0

)ab
c

 =

0

0

0

 ,

where (a, b, c) with a, b, c ∈ Q is an element of M2(11) expressed in the basis {[r1], [r9], [r10]}. This
equation is solved by all elements of the form (0, b, c) and thus S2(11) is a space of dimension 2 and
with basis {[r9], [r10]}.

We compute some Hecke operators on S2(11). We start by computing T2. We already computed
that T2[r9] = −2[r9] and T2[r10] = −2[r10] and thus T2 on the space S2(11) is the matrix

T2 =

(
−2 0

0 −2

)
.

We compute T3 on S2(11). We already computed that T3[r9] = −[r9] and T3[r10] = −[r10] and
thus T3 on S2(11) is

T3 =

(
−1 0

0 −1

)
.

Since dim(S2(11)) = 2 we know from Corollary 4.15 that dim(S2(Γ0(11))) = 1 as indicated in
Table 5. Remark ?? tells us that the Hecke forms f1, f2 defined by

f1 =
∞∑
n=1

⟨Tn[r9], [r9]⟩qn f2 =
∞∑
n=1

⟨Tn[r10], [r10]⟩qn

are candidates for a basis of S2(Γ0(11)). In this case ⟨Tn[r9], [r9]⟩ = ⟨Tn[r10], [r10]⟩ and thus a basis
for S2(Γ0(11)) is given by the form

f =
∞∑
n=1

bnq
n,

where bn = ⟨Tn[r9], [r9]⟩. We compute the first coefficients. We must have b1 = 1 since f is a Hecke
form. The coefficient b2 is the eigenvalue of T2 and thus b2 = −2. Similarly, b3 = −1. It is clear that
since the eigenvalues of Tn are the same on S2(11) and S2(Γ0(11)), then the relations in Corollary
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2.56 holds for the eigenvalues of Tn on S2(11). In particular, b4 = b22 − 2b1 = 4 − 2 = 2. We may
then write

f(z) = q − 2q2 − q3 + 2q4 + · · ·

In Example 1.53, we considered the elliptic curve of conductor 11 given by

E : y2 − y = x3 − x2

and computed its L-series up to the eleventh term :

L(E, s) =

∞∑
n=1

an
ns

= 1− 2

2s
− 1

3s
+

2

4s
+

1

5s
+

2

6s
− 2

7s
− 2

9s
− 2

10s
+

1

11s
+ · · · .

The Modularity Theorem asserts that g :=
∑∞

n=1 anq
n ∈ S2(11). But this is a space of one dimension

and with basis the Hecke form f . Thus we must have g = λf for some scalar λ. But noticing that
b1 = a1 we may identify λ = 1. We have verified the theorem for N = 11.

Notice that for p ̸= 11 prime we have bp = p+1−#E(Fp). We can therefore use Hecke operators
on modular symbols to compute the number of points of the reduced elliptic curve E modulo p for
any p different from 11. We illustrate this for p = 101. Using SAGE, we compute T101 on S2(11):

T101 =

(
2 0

0 2

)
.

Thus 2 = 101 + 1−#E(F101) and therefore #E(F101) = 100.

4.3.3 Illustration for N = 35

Consider the elliptic curve E defined over Q by E : y2+y = x3+x2−x. Using the notations of Section
1.3, we identify a1 = 0, a2 = 1, a3 = 1, a4 = −1 and a6 = 0. We compute that b2 = 4, b4 = −2 and
b6 = 1. Thus

c4 = 64 and c6 = −568.

Using Definition 1.17, the discriminant of E is ∆ = −35. Therefore, if p ̸= 5, 7 is prime, then
|∆|p = 1 and thus the equation of E is p-minimal. Moreover, note that |∆|5 = 5−1 > 5−12 and
|∆|7 = 7−1 > 7−12 hence, by Lemma 1.28, the equation of E is 5-minimal and 7-minimal. Since the
coefficients of the equation are all integers, we may state that the equation of E is globally minimal.
We can therefore use this equation to study the reduction modulo p of E.

We compute the conductor of E. If p ̸= 5, 7 is prime, then E admits good reduction at p and
thus fp from Definition 1.36 is equal to zero. If p = 5, then ∆ = 0 and c4 ̸= 0 modulo 5. Hence,
the reduction modulo 5 of the elliptic curve E admits a node and by Definition 1.24 the reduction
of E at 5 is multiplicative. Therefore f5 = 1. If p = 7, then ∆ = 0 and c4 ̸= 0 modulo 7. Hence,
the reduction modulo 7 of the elliptic curve E admits a node and again the reduction of E at 7 is
multiplicative. Therefore f7 = 1. Hence the conductor of E is NE = 35.
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We now study the type of multiplicative reduction of the curve E at p = 5. Let E5 denote the
reduced curve. We have E5 : f(x, y) = 0 with f(x, y) = y2 + y − x3 − x2 + x. We look for the
singular point P = (x0, y0) of E5 by solving the equation grad(f)(x0, y0) = (0, 0). Computing the
gradient in F5, we get

grad(f)(x, y) = (−3x2 − 2x+ 1, 2y + 1).

Thus finding the point P is equivalent to solving the system2x20 + 3x0 + 1 = 0

2y0 + 1 = 0.

We see that y0 = −2−1, where this is the inverse of 2 in F∗
5. Thus y0 = 2. Solving the equation

in x0 we get x0 = 4 or x0 = 2. Thus P = (2, 2) or P = (4, 2). We verify that f(2, 2) = 1 and
f(4, 2) = 0 and therefore the only possibility is P = (4, 2). Following Section 1.3.3, the third order
Taylor series of f at a neighborhood of P is

f(x, y) = −3(x− 4)2 + (y − 2)2 − (x− 4)3 = [(y − 2)−
√
3(x− 4)][(y − 2) +

√
3(x− 4)]− (x− 4)3.

Thus the slopes of the tangent lines at P are
√
3 and −

√
3. Since

√
3 ̸∈ F5, Definition 1.24 tells us

that the reduction of E at 5 is non-split multiplicative.
We study the type of multiplicative reduction of the curve E at p = 7. Let E7 denote this time

the reduced curve modulo 7. We have E7 : f(x, y) = 0 with f(x, y) = y2+ y−x3−x2+x. We look
for the singular point P = (x0, y0) and therefore compute the gradient of f in F7:

grad(f)(x, y) = (4x2 + 5x+ 1, 2y + 1).

Finding the point P requires solving the system4x20 + 5x0 + 1 = 0

2y0 + 1 = 0.

We see that y0 = −2−1 = 3 and solving the equation in x0, we find that x0 = 6 or x0 = 5. Thus
P = (6, 3), or P = (5, 3). But f(6, 3) = 4 and f(5, 3) = 0 and therefore the only possibility is
P = (5, 3). Following Section 1.3.3, the third order Taylor series of f at a neighborhood of P is

f(x, y) = −2(x− 5)2 + (y − 3)2 − (x− 5)3 = [(y − 3)−
√
2(x− 5)][(y − 3) +

√
2(x− 5)]− (x− 5)3.

Hence the slopes of the tangent lines at P are
√
2 = 3 and −

√
2 = 4, which are both elements of

F7. We may then conclude that the reduction of E at 7 is split multiplicative.

We now compute the L-series of E. A quick calculation shows that #E(F2) = 3 and #E(F3) = 3.
Thus, referring to Definition 1.45, the coefficients 2 and 3 of the L-series are a2 = 0 and a3 = 1.
Thus the L-series of E is given by

L(E, s) = 1 +
0

2s
+

1

3s
+ · · ·

80



The Modularity Theorem states that the function

f =
∞∑
n=1

anq
n = q + 0q2 + q3+ ???

is a Hecke form for Γ0(NE) = Γ0(35).

We now compute a basis for S2(Γ0(35)) constituted by Hecke forms using modular symbols.
The goal is to express the function f in this basis and we will then have verified the statement of
the theorem.

Using SAGE we compute a basis for S2(Γ0(35)) to precision O(q45). See [St07] Section 3.6 for
the commands to use. We find that

f1 = q − 2q6 − 2q8 − q11 + 4q13 − q15 + 2q16 + 2q18 + 2q20 + q21 + 2q22 − 4q23 + q25 + 2q26 − 4q27

− 2q28 + q29 − 2q30 − 2q31 − 2q32 − 4q33 − 2q34 − q35 + 2q36 + 4q37 + 4q38 − q39 − 2q40 − 6q41

+ 2q42 − 2q43 + 2q44 +O(q45)

f2 = q2 − 3q4 − q5 + 2q6 + q7 + 3q8 − q9 + q10 − q11 − 4q12 + 2q13 − q14 − q15 − q16 + 2q17 − q18

+ 4q19 − q20 + q21 − 2q22 − 4q23 + 4q24 + q28 − q29 + 2q30 − 2q31 + 3q32 + 3q36 − 2q37 − 8q38

+ 3q39 + 3q40 − 8q41 − 2q42 − 6q43 + 6q44 +O(q45)

f3 = q3 − 2q4 − q5 + 2q6 + q7 + 2q8 − 2q9 − 2q11 − 2q12 + q13 + 2q16 + 3q17 − 2q18 + 2q19 − 2q22

− 2q23 − 2q26 − q27 + 2q29 + 2q30 − 2q31 + 2q32 + q33 + 2q34 + 2q36 − 2q37 − 4q38 + 6q39

+ 2q40 − 6q41 − 2q42 − 8q43 + 4q44 +O(q45)

form a basis of S2(Γ0(35)). Using Table 5, we see that indeed dimS2(Γ0(35)) = 3.
We want to express f in this basis. We write f = λ1f1+λ2f2+λ3f3. Looking at the coefficients

of f , we see that

1 = 1λ1 + 0λ2 + 0λ3 0 = 0λ1 + 1λ2 + 0λ3 1 = 0λ1 + 0λ2 + 1λ3.

Hence λ1 = 1, λ2 = 0 and λ3 = 1 and f = f1 + f3. We conclude that f is indeed a Hecke form for
Γ0(35).

With this information we can compute the unknown coefficients of f . For example, a5 =

1.0 + 1.(−1) = −1. Our previous computations for p = 5 show that the reduction of E at 5 is
non-split multiplicative and Definition 1.45 tells us that indeed a5 = −1. We may now express f to
precision O(q45):

f = q + q3 − 2q4 − q5 + q7 − 2q9 − 3q11 − 2q12 + 5q13 − q15 + 4q16 + 3q17 + 2q19 + 2q20 + q21

− 6q23 + q25 − 5q27 − 2q28 + 3q29 − 4q31 − 3q33 − q35 + 4q36 + 2q37 + 5q39 − 12q41

− 10q43 + 6q44 +O(q45).

For example, a43 = −10. Definition 1.45 tells us that a43 = 43 + 1−#E(F43) and thus

#E(F43) = 54.
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