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Abstract

A recent discover allows to define differential operators on topological spaces that have
a highly non classical structure. The aim of this project is to introduce (in an elementary
way) the Laplace operator on the Sierpinski Triangle and study some of its properties. The
approach will basically be the same as in [1] but the structure of our paper will slightly
differ. We will also expose an algorithm that we produced to compute harmonic functions
on the Gasket.
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1 Preliminary

In this introductory section we shortly expose our approach to the problem, we introduce the
Sierpinski Gasket by giving an easy construction algorithm and we introduce some notations
and explain the concept of addresses.

1.1 Resume

The goal of this paper is to define a Laplacian on the Sierpinski Gasket. In order to do this we
start by first studying some elementary properties of the Gasket in the first part. We introduce
and explain concepts and notions such as self-similar measures and graph energy of functions.
By the end of the first part we shall have defined harmonic functions on the Gasket which
are key objects in this paper. This allows us to introduce the Laplacian on the Gasket in the
second part. Here we develop some of the main properties of this differential operator. Finally,
we open up to some applications of this theory.

1.2 Construction of the Sierpinski Gasket and notations

In order to begin our study of the Sierpinski Gasket and its properties we need to know what
we are working with. We describe a small algorithm that generates the Gasket :
Consider an equilateral triangle in the plane with its interior. Take the midpoints of each seg-
ment and connect them. These lines define a smaller triangle which is ”upside-down” compared
to the original one. Remove this new triangle from the original one. We now have three smaller
copies of the original triangle and a ”hole” in the middle where the removed triangle used to
be. Iterate this process on each of the smaller copies. Let Tm denote the figure at level m, then

SG =
⋂

m∈N

Tm.

From now on we shall write SG for the Sierpinski Gasket to make the notations shorter.
SG is not necessarily constructed from an equilateral triangle. In fact, our algorithm works for
any nondegenerate triangle in the plane, but we will only work on the symmetric version of SG.

We will sometimes work on the graph of SG. Let Γm denote the graph of level m with
m ∈ N. Let q0, q1 and q2 denote respectively the lower left point, the lower right point and the
upper point of SG. We define V0 = {q0, q1, q2} and we call this set the boundary of SG. Two
small neighboring triangles of Tm intersect at exactly one point. We put all such points and V0

in a set that we call Vm. We let Em denote the set of edges of the small triangles in Tm. We
then write Γm = (Vm, Em). It is easy to see that #Vm = 1

2 (3
m+1 + 3). If Tm denotes the set

of small triangular cells contained in the graph of level m, then #Tm = 3m.
Furthermore, the graph can be embedded in SG with V∗ a dense subset. We write

Γ = lim
m→∞

Γm,

and let V∗ be the set of vertices of Γ. We will work on SG by analogy with I = [0, 1]. Both I
and SG are compact and from now on we will use K to denote either I or SG.

1.3 Addresses

To find our way around in SG we introduce the notion of address. To identify the cells of SG,
we define three applications Fi : SG → SG, for i = 0, 1, 2. If we consider the graph at level

2



1, then F0SG, F1SG and F2SG correspond respectively to the lower left cell, the lower right
cell and the upper cell. We generalize this notation to any cell of SG at any level m by using
words w of length m. The notation then becomes FwSG = Fw1...wm

SG = (Fwm
◦ ... ◦ Fw1

)SG.
If x is a point in Vm \ V0, we write x = Fwqi, where i = 0, 1 or 2 and w is a word of length

m. This notation is called the address of x. Note that the word w determines the cell of level
m in which x lies (namely FwSG) and qi indicates whether x is the lower left vertex of, the
lower right vertex or the upper vertex of this cell. But this address is not unique. In fact, we
can also write x = Fw′qj . If wm 6= i, then wk = w′

k for all k < m, w′
m = i and wm = j. If

wm = i, then x ∈ Vm−1 and we reason by induction. We look at wm−1 and if wm−1 = i we
look at wm−2. Since x ∈ Vm \ V0, there exists n < m an index of w such that wn 6= i. Then,
as seen before, w′

k = wk for all k < n, w′
n = i, wn = j and w′

l = wl = i for all n < l ≤ m. The
address of qi (i = 0, 1, 2) is uniquely determined at each level m and is : qi = Fm

i qi. Notice
that qi has exactly 2 neighbors in Vm and that all x in Vm \V0 have exactly 4 neighbors in Vm.
This is true for all m ∈ N.

2 Measure and Energy on SG

2.1 Self-similar measures and integrals on SG

In this section we will define what self-similar measures are (particularly the uniform measure)
and will state some of their interesting properties. The main purpose of defining measures is
that to any measure is associated an integral, and that we will need one when we will define
the Laplacian in section 3.

Definition 2.1. We call a function µ : Cells(SG)1→ R a regular probability measure on SG
if it satisfies the following conditions for any cell C :

(i) µ(C) > 0, (positivity)

(ii) If we have C = ∪N
i=1Ci with the Ci ”almost” disjoints (i.e two cells can only intersect on

a single point), then µ(C) =
∑N

i=1 µ(Ci), (additivity)

(iii) µ(C) → 0 when C gets smaller, (continuity)

(iv) µ(SG) = 1. (probability)

Notice that we can extend µ to the set of finite unions of almost disjoint cells, and keep the
property that µ is a regular probability measure : if A is finite union of almost disjoint Ci, just
define

µ(A)
.
=
∑

i

µ(Ci)

and all four (extended) conditions are verified.
Moreover, instead of additivity, we can only require that

µ(FwSG) =
∑

i

µ(FwFiSG)

i.e. the additivity for the decomposition of a triangle into three smaller triangles of the next
level.

1We use this notation for the set of cells of SG, i.e. for the set of subsets of SG which are similar to SG
(actually it is equal to the set of Fw(SG) where w is a word of {0, 1, 2} of arbitrary length)
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A particular case of measure in SG is what is called the uniform measure :

µ(C) =

(
1

3

)m

for each cell C of level m. We can now make a more general definition :

Definition 2.2. A self-similar measure on SG is a regular probability measure µ such that (if
we use the notations µ(FiSG) = µi for i = 0, 1, 2) we have

µ(FwSG) =

|w|
∏

j=1

µwj

which implies the more visual statement that, when we apply Fi to a set A ⊂ SG, we multiply
its measure by µi.

We also see that if µ is a self-similar measure, since A can be written as the almost disjoint
union of A ∩ FiSG, we have

µ(A) =
∑

i

µ(A ∩ FiSG).

This leads to

Theorem 2.1. (Self-similar identity)

µ(A) =
∑

i

µiµ(F
−1
i A).

Definition 2.3. Let µ be a self-similar measure on SG and f : SG → R be any continuous
function. We then define the integral of f on SG as

∫

SG

f dµ = lim
m→∞

∑

|w|=m

f(xw)µ(FwSG)

where xw is any point of FwSG.

We must explain this definition a little. First, it is not hard to show that the limit always exist.
Moreover, it does not matter which point of FwSG we pick because since f is continuous f
tends to be constant on FwSG as m grows. We also notice that actually the term in the limit
is a weighted average of f. We will often use the uniform measure because computations will be
in general a lot easier with it than with the other self-similar measures. With it, in the integral,
all values of f(xw) are given the same weight.
We now give a simple but useful result.

Theorem 2.2. Let f : SG → R be any continuous function, µ a self-similar measure on SG.
Then ∫

SG

f dµ =
∑

i

µi

∫

SG

f ◦ Fi =
∑

i

∫

FiSG

f dµ

The proof uses the self-similar identity.
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2.2 Graph energy and harmonic extension of a function

Definition 2.4. Given a function f : Vm → R, we define the graph energy of f on Γm as the
quantity

Em(f) =
∑

x∼
m
y

(f(x)− f(y))2

where x ∼
m

y stands for ”x and y are neighbors in Γm”.

We will say that f̃ : Vm+1 → R extends harmonically f if f̃ if an extension of f (i.e. f̃ |Vm
= f)

and if Em+1(g) ≥ Em+1(f̃) for any extension g of f on Vm+1.

2.2.1 Harmonic extension from V0 to V1

As an example, we give the harmonic extension of any function f : V0 → R. Such a function
consists of three real values , say a, b and c, which correspond to f(q0), f(q1) and f(q2). We
want to find x, y and z three values for f̃ of the vertices in V1 \ V0 that minimize the graph
energy of f̃ (see Figure 1 below).

c

y

a z b

x

Figure 1: Values of f on V0, and values of its extension on V1.

After a computation we obtain a linear system where x, y, z are unknown (this linear system
is detailed in ”Properties of harmonic extension” below). We eventually find the 2

5 − 1
5 rule :

the value for f̃ at a certain vertex v of V1 \ V0 is given by the formula

2

5
(n1 + n2) +

1

5
o

where n1 and n2 are the values of f on the V0-neighbors
2 of v and o is the value of f on the

remaining vertex of V0 (the opposite one).
First, it is obvious that extending harmonically a function is a linear transformation, since

it is just multiple applications of the 2
5 − 1

5 rule. We can also state a result that we will use
later :

2A vertex in V1 \ V0 has two neighbors in V0 and two neighbors in V1 \ V0.
More generally, a vertex of Vm+1 which is not in Vm has exactly two neighbors in Vm+1 \Vm and two neighbors
in Vm, whereas a vertex in the graph of level m+1 which is also a vertex in the graph of level m has all its four
neighbors in Vm+1 \ Vm. This statement is visually obvious.
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Theorem 2.3. (Mean value condition) If f : Vm → R is a function and f̃ : Vm+1 → R is its
harmonic extension then for any point x in Vm+1 \ Vm

∑

y ∼
m+1

x

(f̃(x)− f̃(y)) = 0 (1)

or in other words f̃(x) is the average of the values of f on the (four) neighbors of x in Vm+1.

Proof. This is actually part of the computation which leads to the 2
5−

1
5 rule. Let f be a function

on Vm which takes real values (we will use the notations of figure (1), taking advantadge of SG’s
self-similarity by considering only a small triangle where the problem m m+1 is reduced to
a problem 0 1).
We want to minimize the energy as a function of x, y and z. We obtain the system







4x = b+ c+ y + z
4y = a+ c+ x+ z
4z = a+ b+ x+ y

and thus we found that x, y, z are the averages of the function values on the neighbors so our
statement follows.

2.2.2 Generalisation

The method described above for extending harmonically a function f from V0 → R to V1 → R

gives us a way for extending f from Vm → R to Vm+1 → R (by self-similarity, and localness of
energy3 it is obvious that an algorithm m m+ 1 can be just multiple applications of 0 1
to all triangles that are similar to V1).

We make another statement : for every ε > 0 we can find n an integer such that hn : Vn →
R(function computed by successive harmonic extensions of f) restricted to any ”little triangle”
T (i.e. a triangle similar to V0) differs only of ε from a constant function. Thus the sequence
hn converges to a continuous function h.

From these observations we see immediately that if we are given three values a, b, c for a
function f : V0 → R, we can obtain a function h : V∗ → R such that h extends f and h|Vm+1

extends h|Vm
harmonically for any m. Then because V∗ is dense in SG (i.e. its closure is SG)

we can extend h to SG, so we get h : SG → R continuous4 that minimizes the graph energy
at any level m (where values of h(q0), h(q1) and h(q2) are given). We shall call such functions
harmonic functions.

2.2.3 Harmonic extension algorithm

We have seen previously that given three real numbers a, b and c as values on V0, a harmonic
function h : SG → R is uniquely determined. In particular, we can compute the values of h for
all points in Vm for any m only from a, b and c, with a simple algorithm :

1. Use the 1
5 − 2

5 rule to compute the values of x, y and z
(see Figure 1). (0  1)

3”Localness of energy” means here that for any n we have En(f) =
∑

j ETj
(f) where ETj

(f) means the

energy of f on Tj , and where {Tj} is a collection of triangles that covers Γm and such that two triangles intersect
in at most one point.

4The h we obtain is continuous because as we said before on small triangles h tends to be constant.
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2. Do the same on small triangles (q0, F1q0, F2q0), (q1, F0q1, F2q1) and
(q2, F0q2, F1q2). (1  2)

3. Repeat this until you reach level m

This allows us to compute, for instance, the graph of the harmonic extension of level 7 from
f(q0) = 0, f(q1) = 1 and f(q2) = 8 (represented in Figure 2 below).

0.0 0.5 1.0

0.0

0.2

0.4

0.6
0.8

0

2

4

6

8

Figure 2: Graph of the harmonic extension of level 7 for initial values 0, 1, 8

2.3 Defining a new energy

We will see in this part that Em(f) does not behave well, and then we will define a new energy
Em(f) that is more convenient for us.

If h is harmonic, we obtain (with a bit of calculation) Em+1(h) =
3
5Em(h). In general, we

have the inequality Em+1(f
′) ≥ 3

5Em(f) for any f ′ such that f ′|Vm
= f (because a harmonic

extension minimizes the energy among all possible extensions of a fonction defined at a given
level). That is a big problem, because we cannot define a ”nice” energy of a map f : V∗ → R

as lim
m→∞

Em(f), because this limit is always zero for any harmonic function f . This motivates

us to define a ”good” graph energy

Em(f) =

(
5

3

)m

Em(f).

We see that for any m, if f is harmonic then

Em+1(f) =

(
5

3

)m+1

Em+1(f)

=

(
5

3

)m

Em(f)

= Em(f).
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So for a harmonic function the graph energy is the same at any level (and more generally
Em+1(f) ≥ Em(f))
This leads us to

Definition 2.5. For f : SG → R we define the energy of f as

E(f) = lim
m→∞

Em(f)

= lim
m→∞

(
5

3

)m∑

x∼
m
y

(f(x) − f(y))2

(the energy is defined only if the limit above is finite).

We immediately see that if f is harmonic, E(f) is defined and is equal to E0(f).
We also notice that if f is constant, then (f(x) − f(y))2 = 0 ∀x, y ∈ SG, thus Em(f) = 0

for any f , and therefore E(f) = 0.
We will now prove the converse ; suppose that E(f) = 0. We know that

E(f) = lim
m→∞

Em(f |Vm
) ≥ 0

and that Em(f) is increasing asm grows. So we must have Em(f) = 0 for anym. So if a = f(p0),
b = f(p1) and c = f(p2) (where the pi are the vertices of a triangle T of level m) then

2(a− b)2 + 2(a− c)2 + 2(b− c)2 = 0

(we used localness of energy to ”restrict” the energy to T ) so a = b = c and therefore f is
constant on T .

2.4 Functions with finite energy

We know that in I, if f : I → R is a function for which the Laplacian exists then
∫ 1

0

f ′(x)2dx < ∞

or in other terms a function f : I → R which has a Laplacian has finite energy. Since we
proceed by analogy, this motivates us to move our interest towards functions with finite energy
on SG.

Definition 2.6. We will use the notation dom E = {f : SG → R | E(f) < ∞}

We have E(αf) = α2E(f) (immediate from the definition). We then want to define the energy
of two functions ; we proceed by analogy with the way of defining the inner product in Rn from
the euclidean norm.

Definition 2.7. The energy of a function at level m is a quadratic form. We define its asso-
ciated bilinear form (which we shall call the energy of f and g at level m) by

Em(f, g) =
1

4
(Em(f + g)− Em(f − g)).

It turns out that

Em(f, g) =

(
5

3

)m∑

x∼
m
y

(f(x) − f(y))(g(x)− g(y)).

We notice that E(f, g) is a bilinear product on dom E.
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We now come to a result which will prove to be useful later :

Lemma 2.4. Let f , g be two functions Vm → R, f̃ the harmonic extension of f , g′ any
extension of g on Vm+1 (possibly not harmonic). Then we have

Em+1(f̃ , g
′) = Em(f, g).

Proof. We notice first that
Em+1(f̃ , g̃) = Em(f, g)

where g̃ is the harmonic extension of g.
Indeed, by definition (and because harmonic extension is a linear transformation)

Em+1(f̃ , g̃) =
1

4
(Em+1(f̃ + g)− Em+1(f̃ − g))

=
1

4
(Em(f + g)− Em(f − g))

= Em(f, g).

Thus to finish the proof we only need to show that Em+1(f̃ , g
′) = Em+1(f̃ , g̃) i.e. that

Em+1(f̃ , g
∗) = 0 where g∗ = g′ − g̃. Note that g∗|Vm

= 0 (we will say that g∗ vanishes on
Vm).
We have

Em+1(f̃ , g
∗) =

∑

x ∼
m+1

y

(f̃(x)− f̃(y))(g∗(x) − g∗(y)).

We now fix x. We consider the terms of the sum of type g∗(x)(f̃ (x)− f̃(y)). Either x is in Vm

(and then g∗(x) = 0 because g∗ vanishes on Vm so the entire term is zero) or x is in Vm+1 \ Vm

and then f̃(y) = f(y) for all neighbors of x (because they are in Vm and f̃ is an extension of
f). So the term is

∑

y ∼
m+1

x

(f̃(x)− f(y))

which is equal to zero by (1). Hence Em+1(f̃ , g
∗) = 0 and therefore Em(f̃ , g∗) = 0.

3 Laplacian

3.1 Weak formulation

Recall. For all functions u defined on V∗, we say u ∈ dom E if E(u) < ∞. Furthermore, we
say u ∈ dom0 E if u ∈ dom E and u vanishes on the boundary.

We are now ready to define a Laplacian ∆ on both our self-similar spaces, I and SG. In
fact, all we need is : the bilinear energy E(u, v) and a regular probability measure µ. Most
of the time we will use the standard self-similar measure µ for simplicity, but it is important
to note that we are free to use any (self-similar) measure. We will write the Laplacian ∆µ to
denote its dependence on the chosen measure or simply ∆ when using the standard self-similar
measure. The Laplacian ∆ is then called the standard Laplacian.

The idea behind the definition is the integration-by-parts formula. Suppose u and v are
two C2 functions on I and v vanishes at the endpoints (i.e. v(0) = v(1) = 0). Then the
integration-by-parts formula gives us

∫ 1

0

u′′(x)v(x)dx = −

∫ 1

0

u′(x)v′(x)dx.
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The converse also holds. Let u be a C1 function on I and suppose there exists a continuous
function f such that

∫ 1

0

f(x)v(x)dx = −

∫ 1

0

u′(x)v′(x)dx (2)

for all such v, then u ∈ C2 and u′′ = f .

Note that on I, E(u, v) =

∫ 1

0

u′(x)v′(x)dx, for all u, v in C1.

We now rewrite (2), with the energy, as

E(u, v) = −

∫ 1

0

f(x)v(x)dx (3)

for all v ∈ dom0 E . This tells us that u ∈ C2 and u′′ = f if and only if u ∈ dom E and (3)
holds.
The following definition is valid for K = I as well as SG.

Definition 3.1. Let u ∈ dom E and f be a continuous function. Then u ∈ dom ∆µ with
∆µu = f if

E(u, v) = −

∫

K

fvdµ (4)

for all v ∈ dom0 E.

This definition is the weak formulation. In section 3.3 we will deal with the boundary terms
and we will then give a more general definition.

In order for our definition to be interesting, it needs to hold for a certain number of cases.
At first it is not clear that dom ∆µ contains non-trivial functions. Of course, 0 ∈ dom ∆µ and
∆µ0 = 0. Also, all constant functions are contained in dom ∆µ.
This theorem shows that all harmonic functions h are contained in dom ∆µ and that ∆µh = 0.
Note that this is true for all µ.

Theorem 3.1. If h is harmonic then h ∈ dom ∆µ and ∆µh = 0. If u ∈ dom ∆µ and ∆µu = 0
then u is harmonic.

Proof. Suppose h is harmonic. Then, by lemma 2.4, ∀v ∈ dom0 E , E(h, v) = E0(h, v). But
E0(h, v) = 0 because v vanishes on the boundary. This gives us

0 = E(h, v) = −

∫

K

∆µhvdµ

⇒ ∆µh = 0 and h ∈ dom ∆µ.
To show the converse, we consider a function u that satisfies u ∈ dom ∆µ and ∆µu = 0. We

make a special choice for v : for some point x ∈ Vm \ V0, we let Ψ
(m)
x denote the piecewise

harmonic spline that satisfies Ψ
(m)
x (y) = δxy, for all y ∈ Vm. Note that Ψ

(m)
x ∈ dom0 E since

x /∈ V0. We have E(u,Ψ
(m)
x ) = 0 because ∆µu = 0. By lemma 2.4 (here Ψ

(m)
x is the one that is

harmonic), E(u,Ψ
(m)
x ) = Em(u,Ψ

(m)
x ). But the equation Em(u,Ψ

(m)
x ) = 0 implies that

∑

y∼
m
x

(u(x)− u(y)) = 0

which is exactly the condition that u is harmonic.
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Now that we know dom ∆µ contains harmonic functions we might try to expand this property
to a wider class based on harmonic functions. To do this we may try powers or polynomials
of harmonic function. But this does not work for K = SG. In fact, we will see that u ∈ dom
∆µ ⇒ u2 /∈ dom ∆µ for the standard measure on SG.

3.2 Normal derivatives

To formulate our weak definition of the Laplacian we used the integration-by-parts formula
assuming v vanished at the endpoints of I. We would like to move towards a wider definition
of the Laplacian and therefore our next goal is to remove the condition that v vanishes at the
endpoints. Without this assumption, the integration-by-parts formula yields

∫ 1

0

u′′(x)v(x)dx = −

∫ 1

0

u′(x)v′(x)dx + (u′(1)v(1)− u′(0)v(0)). (5)

To restore the symmetry between the boundary points we define the normal derivatives such
that ∂nu(1) = u′(1) and ∂nu(0) = −u′(0) to measure the rate of change in a direction moving
outside of I. With this definition, (5) becomes

E(u, v) = −

∫

I

(∆u)vdµ+
∑

∂I

v∂nu (6)

where µ is the standard measure. This is actually a special case of the Gauss-Green formula
that we shall state in section 3.3.

For K = I the standard Laplacian is a second derivative and the normal derivatives are
first derivatives. It is important to observe that at any rate the existence of normal derivatives
is weaker than the existence of a Laplacian.

What we are looking for is a formula for E(u, v) on SG that is similar to (6). We now give
a definition of normal derivatives which also covers the case K = SG. Here we let r denote the
renormalization factor. On SG, r = 3

5 and on I, r = 1
2 .

Definition 3.2. Let x ∈ V0 and u be a continuous function of K. We define

∂nu(x) = lim
m→∞

r−m
∑

y∼
m
x

(u(x)− u(y)) (7)

to be the normal derivative of u at x and we say that ∂nu(x) exists if the limit exists.

We make the following statement without giving a proof since this one is trivial.

Proposition 3.2. The normal derivative is a linear operator.

In other words, if u and v are two functions that both have existing normal derivatives, then
∂n(u + v) = ∂nu+ ∂nv.

For I the normal derivative is clearly the ordinary first derivative. On SG this is not the
case, but we can explicit (7) which then becomes

∂nu(qi) = lim
m→∞

(
5

3

)m

(2u(qi)− u(Fm
i qi+1)− u(Fm

i qi−1)).

The factor 2 comes form the fact that on the boundary x only has 2 neighbors.
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We want to compute the normal derivatives of harmonic functions on SG. Therefore we
introduce the notion of eigenvalue-functions. It is convenient to represent the harmonic exten-
sion algorithm by the three matrices A0, A1 and A2. Using the ” 2

5 − 1
5” rule it is easy to see

that

A0 =





1 0 0
2
5

2
5

1
5

2
5

1
5

2
5



 , A1 =





2
5

2
5

1
5

0 1 0
1
5

2
5

2
5



 , A2 =





2
5

1
5

2
5

1
5

2
5

2
5

0 0 1



 .

The eigenvalues of these matrices are respectively 1, 3
5 and 1

5 . The eigenvectors associated to
these values are respectively (for A2) :

hc =





1
1
1



 , hs =





1
1
0



 , ha =





1
−1
0



 .

It is appropriate to speak about eigenfunctions rather than eigenvectors since the vectors hs,
ha and hc uniquely determine functions by harmonic extension.
hs is the symmetric eigenfunction, ha the anti-symmetric, or skew-symmetric eigenfunction and
hc the constant eigenfunction. For simplicity we will compute the normal derivatives of these
three functions at q2.
For the constant function, hc(q2) = 1 and hc(F

m
2 q0) = hc(F

m
2 q1) = 1 for all m, which implies

that 2hc(q2) − hc(F
m
2 q0) − hc(F

m
2 q0) = 0 for all m. It follows that ∂hc(q2) = 0. For the

skew-symmetric function, ha(q2) = 0, ha(F
m
2 q0) = (15 )

m and ha(F
m
2 q1) = −(15 )

m where we
used the ” 2

5 − 1
5” rule. Using the same argument as for hc, it follows that ∂nha(q2) = 0. For

the symmetric function, hs(q2) = 0, hs(F
m
2 q0) = hs(F

m
2 q1) = (35 )

m and from this it follows
that (53 )

m(2hs(q2)− hs(F
m
2 q0)− hs(F

m
2 q0)) = −2 which brings us to ∂nhs(q2) = −2.

Notice that we did not need to take the limit to compute these normal derivatives because the
sequence is constant. This is true for any harmonic function h by linearity. Indeed,

Theorem 3.3. If h is harmonic on SG, then

∂nh(q2) = 2h(q2)− h(q0)− h(q1).

Proof. The three eigenfunctions hs, ha and hc form a basis of the space of harmonic functions
on SG. This implies that

∃α, β, γ ∈ R such that h = αhs + βha + γhc.

Using the linearity of the normal derivative, we get

∂nh(q2) = α∂nhs(q2) + β∂nha(q2) + γ∂nhc(q2) = −2α.

On the other hand we have

2h(q2)− h(q1)− h(q0) = 2γ − (α− β + γ)− (α+ β + γ) = −2α.

Thus
∂nh(q2) = 2h(q2)− h(q0)− h(q1).

Note that the definition of the normal derivative can be localized. Let FwK be any cell of K
and let x = Fwqi be a boundary point. Then ∂nu(Fwqi) = r−|w|∂n(u ◦ Fw)(qi).
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3.3 The Gauss-Green formula

In section 3.2 we saw a particular form of this formula. We now give the full formula.

Theorem 3.4. Let Ω be a nice (in some sense) open set of Rn and u, v be two C2 functions.
Then the Gauss-Green formula is

∫

Ω

∇u · ∇vdx = −

∫

Ω

(∆u)vdx +

∫

∂Ω

v(∂nu)dσ (8)

where dσ is the surface measure on ∂Ω.

By analogy, we get

Theorem 3.5. Let u ∈ dom ∆µ and v ∈ dom E. Then

E(u, v) = −

∫

SG

(∆µu)vdµ+
∑

V0

v(q)∂nu(q).

We have now defined the Laplacian on SG without the condition on the boundary.
Another result is easily obtained from the Gauss-Green formula. We expose it in the fol-

lowing theorem.

Theorem 3.6. Let u, v be defined as in theorem (3.4). Then

∫

SG

(u∆µv − v∆µu)dµ =
∑

V0

(u∂nv − v∂nu).

The proof is a computation.

3.4 Pointwise formula

Now that we have a clear definition of the Laplacian, we would like to be able to compute
the Laplacian of a function at a given point. For this we need the pointwise formula. In this
paragraph we will proceed to finding this formula on SG.

Let u be a function in dom ∆µ and v be a function defined on SG that happens to vanish
at the boundary. The weak formulation then yields

E(u, v) = −

∫

SG

(∆µu)vdµ. (9)

We want a formula for ∆µu(x) with x ∈ V∗. We make a special choice for the function v by

replacing it with the piecewise harmonic spline Ψ
(m)
x where x is a point in Vm \ V0. As seen in

the proof of theorem 3.1, Ψ
(m)
x (y) = δxy ∀y ∈ Vm \ x and Ψ

(m)
x ∈ dom0 E .
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By lemma 2.4,

E(u,Ψ(m)
x ) = Em(u,Ψ(m)

x )

=

(
5

3

)m ∑

y∼
m
y′

(u(y)− u(y′))(Ψ(m)
x (y)−Ψ(m)

x (y′))

=

(
5

3

)m∑

y∼
m
x

(u(x)− u(y))

=

(
5

3

)m

(4u(x)−
∑

y∼
m
x

u(y))

= −

(
5

3

)m

∆mu(x).

Let f be a continuous function such that f := ∆µu. We rewrite (9), where v = Ψ
(m)
x , as

(
5

3

)m

∆mu(x) =

∫

SG

fΨ(m)
x dµ.

We now divide both sides of this equation by

∫

SG

Ψ(m)
x dµ. This is a non-zero constant so it is

legal. This operation yields the equation

(53 )
m∆mu(x)

∫

SG
Ψ

(m)
x dµ

=

∫

SG
fΨ

(m)
x dµ

∫

SG
Ψ

(m)
x dµ

. (10)

Let σm be the function defined as σm :=
Ψ

(m)
x

∫

SG
Ψ

(m)
x dµ

. Clearly,

∫

SG

σmdµ = 1.

In what follows in the construction of the pointwise formula we shall give the main idea without
entering in details.
As m → ∞, supp σm becomes very ”small”, f becomes ”constant” and we can therefore take
it out of the integral. This translates as

lim
m→∞

∫

SG

f(x)σmdµ = lim
m→∞

f(x)

∫

SG

σmdµ

︸ ︷︷ ︸
=1

= f(x).

With this information we rewrite (10) as

∆µu(x) = lim
m→∞

(
5

3

)m(∫

SG

Ψ(m)
x dµ

)−1

∆mu(x).

These computations also work for the case I = K, hence the theorem we now give.

Theorem 3.7. Let K = I or K = SG, x be a point in V∗ \V0 and u be a function of dom ∆µ.
The pointwise formula is

∆µu(x) = lim
m→∞

r−m

(∫

SG

Ψ(m)
x dµ

)−1

∆mu(x).
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If we consider the standard measure on K it is easy to compute the factor (
∫

SG
Ψ

(m)
x dµ)−1

exactly.

If K = I, Ψ(m)
x is simply a tent function. So

∫

SG

Ψ(m)
x dµ is simply the area of a triangle of

heigth 1 and basis 2. 1
2m . It follows immediately that

(∫

SG

Ψ(m)
x dµ

)−1

= 2m. Furthermore,

r−m = 2m. So the pointwise formula turns out to be

∆µu(x) = lim
m→∞

u(x+ 1
2m )− 2u(x) + u(x− 1

2m )

( 1
2m )2

= u′′(x).

If K = SG, Ψ
(m)
x is supported on to cells of level m. If FwK is one of these cells with vertices

x, y and z then Ψ
(m)
x +Ψ

(m)
y +Ψ

(m)
z restricted to FwK is identically 1 (it is harmonic and takes

on the value 1 at all three vertices). Thus

∫

FwK

(Ψ(m)
x +Ψ(m)

y +Ψ(m)
z )dµ = µ(FwK) =

1

3m
.

By symmetry, all three summands have equal integrals, so

∫

FwK

Ψ(m)
x =

1

3m+1
. Together with

the contribution of the other m-cell, we get

∫

SG

Ψ(m)
x =

2

3m+1

and the pointwise formula becomes

∆µu(x) =
3

2
lim

m→∞
5m∆mu(x).

A pointwise formula can also be computed with a non-standard self-similar measure, but it
then depends on x.

3.5 Local behavior of functions

In this part we will only work on SG. We will study the local behavior of harmonic functions.

Definition 3.3. Let f : SG → R be a function defined on SG. The oscillation of f on a cell
Km = FwSG (w is a word of length m) is

OscKm
(f) = max

x∈Km

f(x)− min
x∈Km

f(x).

This next lemma will soon be useful.

Lemma 3.8. Let f, g be two functions defined on SG. Then

(i) max (f) + min (g) ≤ max (f + g) ≤ max (f) + max (g),

(ii) min (f) + min (g) ≤ min (f + g) ≤ min (f) + max (g).
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Proof. We will only prove (i) since the proof of (ii) is similar.

max (f + g) = max {f(x) + g(x) : x ∈ SG}

≥ max {f(x) + min (g) : x ∈ SG}

= max (f) + min (g).

The second inequality is proved using the same method.

We now give a result concerning the local behavior of harmonic functions that will prove to be
important for the next steps of our study.

Lemma 3.9. Let h be a harmonic function and consider the m-level cell Fm
2 SG.

(i) If ∂nh(q2) 6= 0, then OscFm
2

SG(h) is a Θ
((

3
5

)m)
.

(ii) If ∂nh(q2) = 0, then OscFm
2

SG(h) is a O
((

1
5

)m)
.

Proof. Let h be a harmonic function and consider the eigenfunctions hs, ha and hc.
As seen before, we have

∃α, β, γ ∈ R such that h = αhs + βha + γhc.

Let us have a closer look at the eigenfunctions, and more precisely at the oscillation of these
functions on the given cell Fm

2 SG.

• The symmetric eigenfunction :
Notice that max

Fm
2

SG
hs =

(
3
5

)m
and min

Fm
2

SG
hs = 0. Hence, OscFm

2
SG(hs) =

(
3
5

)m
.

• The skew-symmetric eigenfunction :
Notice that max

Fm
2

SG
ha =

(
1
5

)m
and min

Fm
2

SG
ha = −

(
1
5

)m
. Hence, OscFm

2
SG(ha) = 2

(
1
5

)m
.

• The constant eigenfunction :
Notice that max

Fm
2

SG
hc = 1 and min

Fm
2

SG
hc = 1. Hence, OscFm

2
SG(hc) = 0.

By using lemma (3.8) we know that

OscFm
2

SG(h) ≤ |α|OscFm
2

SG(hs) + |β|OscFm
2

SG(ha) + |γ|OscFm
2

SG(hc)

⇒ OscFm
2

SG(h) ≤ |α|

(
3

5

)m

+ 2 |β|

(
1

5

)m

.

By using lemma (3.8) again, we also get

OscFm
2

SG(h) ≥ |α|

(
3

5

)m

− 2 |β|

(
1

5

)m

.

This tells us that :
− if α 6= 0, then OscFm

2
SG(h) is a Θ

((
3
5

)m)
,

− if α = 0, then OscFm
2

SG(h) is a O
((

1
5

)m)
.

Yet, we have shown previously that ∂nh(q2) = −2α and thus the lemma has been proved.
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We will now broaden lemma (3.9) to the class of functions in dom ∆, but the second result will
be slightly weaker than previously. We give this lemma without proof.

Lemma 3.10. Let u ∈ dom ∆.

(i) If ∂nu(q2) 6= 0, then OscFm
2

SG(u) is a Θ
((

3
5

)m)
,

(ii) If ∂nu(q2) = 0, then OscFm
2

SG(u) is a O
(
m
(
1
5

)m)
.

With these tools we are now able to show the following result.

Theorem 3.11. If u, v ∈ dom ∆ and u, v are nonconstant, then uv /∈ dom ∆.

Proof. Since u, v are nonconstant functions in dom ∆, there exists a point x0 ∈ V∗ such that
∂n(uv)(x0) 6= 0. By using lemma (2) we treat different cases:

∂nu ∂nv Oscillation decay rate compared to decay rate of Θ
((

3
5

)m)

6= 0 6= 0 Θ
((

3
5

)2m
)

too fast

= 0 6= 0 O
(
m
(

3
25

)m)
too fast

= 0 = 0 O
(
m2
(

1
25

)m)
way too fast

This proves that Osc(uv) is not a Θ
((

3
5

)m)
. By lemma (2), this shows that uv /∈ dom ∆.

The next result is a direct consequence of this theorem.

Corollary 3.12. If u ∈ dom ∆ and u is nonconstant, then u2 /∈ dom ∆.

Proof. Write v
.
= u and apply theorem (3.11).

Furthermore, we have

Theorem 3.13. Let f : R → R be a nonlinear differentiable function and u be a nonconstant
function in dom ∆. Then f(u) is not in dom ∆.

Proof. Without loss of generality we let f(0) = 0 (proving the statement for f(x) is the same
as proving the statement for g(x) = f(x) − f(0)). To prove the theorem we use the Taylor
expansion of f in a close neighborhood of 0 up to the second order : there exists constants α,
β and a function g such that

f(t) = αt+ βt2 + g(t).

Pick a point x0 in Km such that u(x0) = 0 and where Km is an m-level cell of SG. The goal is
to see the local behavior of Osc(f ◦ u) on this cell. Using the Taylor expansion above, we write

f(u(x)) = αu(x) + βu2(x) + g(u(x)).

Notice that αu(x) is in dom ∆ and that (f ◦ u)(x0) = 0.
Let y1 and y2 denote the two neighbors of x0 in Km. We now compute the normal derivative
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of f ◦ u at x0.

∂n(f ◦ u)(x0) = lim
m→∞

(
5

3

)m

(2

=0
︷ ︸︸ ︷

(f ◦ u)(x0)−(f ◦ u)(y1)− (f ◦ u)(y2))

= lim
m→∞

(
5

3

)m


α(−u(y1)− u(y2)) + β(−u2(y1)− u2(y2))− g(u(y1))− g(u(y2))
︸ ︷︷ ︸

→ 0 faster than the first term





= α∂nu(x0).

The last equality comes from the fact that u(x0) = 0.
From this computation we can conclude that

∂nu(x0) 6= 0 ⇐⇒ ∂n(f ◦ u)(x0) 6= 0.

Recall that u is nonconstant, so ∂nu(x0) 6= 0. Since u ∈ dom ∆, by lemma (3.10), OscKm
(u) is

a Θ
((

3
5

)m)
. Hence, OscKm

(f ◦ u) is also a Θ
((

3
5

)m)
. But,

OscKm
(f ◦ u) ≤ |(f ◦ u)(x)− (f ◦ u)(x0)|

≤
∣
∣βu2(x) + g(u(x))

∣
∣

≤ βC1

(
3

5

)2m

+ C2

(
3

5

)3m

⇒ OscKm
(f ◦ u) is a O

((
3

5

)2m
)

This cannot be possible unless f(u) /∈ dom ∆.

Actually this theorem has quite negative consequences. If {ρi} is a partition of unity and f is
a functon we want to study and ρi and f both have Laplacians, then f ◦ ρi does not have a
Laplacian. Therefore, we cannot use partitions of unity for partial differential equations on SG
as we would usually do on manifolds.

3.6 Gluing functions on SG

Suppose we have three continuous functions f0 : F0SG → R, f1 : F1SG → R and
f2 : F2SG → R. If we know that (we will use the notations in 1) f1(x) = f2(x), f0(y) = f2(y)
and f0(z) = f1(z) (i.e. matching of the fi on the three intersection points), we can ”glue” them
to form another function f : SG → R . We then know that f is continuous (by a basic result
in topology called the gluing lemma). We notice that if fi are of finite energy, then f also has
finite energy. We then state without proof

Theorem 3.14. Under the hypothesis from above, and if we suppose that the fi have Laplacian
with the extra condition that ∂nfi(p) + ∂nfj(p) = 0 for any intersection point p (i.e the normal
derivatives sum to 0 on intersection points), then the function g obtained by gluing the ∆fi is
equal to ∆f .

4 Examples of differential equations on SG

In this section we will introduce the Green’s function and expose the Dirichlet’s problem on
SG.
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Let U be an open subset of Rn with some conditions on ∂U (smooth or piecewise smooth).
The Dirichlet’s problem is the following system:

{
−∆u = f on U
u ≡ 0 on ∂U.

Here f : U → R is a given function with some conditions.
We do not prove the following result.

Theorem 4.1. The homogeneous Dirichlet’s problem admits a unique solution.

This unique solution is given by

u(x) =

∫

U

G(x, y)f(y)dy,

where G denotes the Green’s function. This is also true for the problem on SG.
Furthermore, the inhomogeneous Dirichlet’s problem −∆µu = f, u(qi) = ai, i = 0, 1, 2,

has a unique solution

u(x) =

∫

U

G(x, y)f(y)dµ(y) + h(x),

where h is the harmonic function satisfying h(qi) = ai.

Theorem 4.2. If u ∈ dom0 E and u minimizes the energy

1

2
E(u, u) +

∫

SG

fudµ,

then u solves the Dirichlet’s problem.

Conclusion :

We have successfully defined a Laplacian on SG and studied its main properties. Never-
theless, it is important to note that many other differential operators exist and that these can
be compared with our Laplacian. What we have developed in this paper can be used to solve
differential equations on SG (including the heat equation and other diffusion problems). But
the tools that we usually use on manifolds are not all available in our case. For example, we
cannot work with partitions of unity, as we have seen.
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