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Introduction 

A fundamental  tenet of Diophantine Geometry is that the geometric properties 
of an algebraic variety should determine its basic arithmetic properties. This 
is certainly true for curves, where the sign of the Euler characteristic of C deter- 
mines whether the set of rational points on C is finite (X (C)< 0), a finitely generat- 
ed group ()~(C)= 0), or parametrizable (Z (C)> 0). For higher dimensional varieties 
there are some precise conjectures due to Bombieri, Lang, and Vojta [15] which 
predict when the rational points on a variety should be finite or degenerate 
(i.e. not  Zariski dense), and some conjectures of Manin  et al. [-2, 5] on the distri- 
bution of rational points in those cases when they are Zariski dense. But except 
for abelian varieties, their subvarieties, and some Fano  varieties (varieties for 
which the anticanonical bundle is ample), there are very few general theorems. 

In this paper we will study the rational points on a certain class of K 3  
surfaces defined over a number  field K. The moduli space of marked algebraic 
K3 surfaces is a countable union of 19 dimensional quasi-projective varieties. 
We are going to look at the 18 dimensional family studied by Wehler 1-17]. 
Wehler's family consists of K3 surfaces S whose automorphism group Aut(S) 
contains a subgroup d isomorphic to the free product 7/,2"~ 2 of two cyclic 
groups of order 2. We will use the geometric information provided by this infinite 
automorphism group to study the K-rat ional  points on S. 

For any point PeS, we can look at the orbit of P under the action of 
d, 

(d = (d(P) = {~bP: ~b ~ r  

We call such an orbit a chain. Then the study of the K-rat ional  points on 
S is divided into two parts: (i) Describe the points in a given chain (g~S(K). 
(ii) Describe the collection of chains in S(K). 

The chains themselves naturally separate into two sorts, those with finitely 
many elements and those with infinitely many elements. This is analogous to 
the points on an abelian variety, which generate either finite or infinite sub- 
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groups. Our first main result says that S(K) contains only finitely many finite 
chains. (Just as an abelian variety contains only finitely many points of finite 
order defined over any given number  field.) Our second main result, which 
we describe more precisely below, gives the counting function for the number  
of points in a chain with height less than a given bound. 

A basic tool in the study of Diophant ine equations is the theory of height 
functions. On abelian varieties Nbron and Tate developed a theory of canonical 
heights which have especially nice transformation properties. If A is an abelian 
variety and if DePic(A) is a symmetric divisor class, then the canonical height 
/~D interacts with the group law on A via the formula fio(nP)=n2fiD(P). (See, 
e.g. [-9].) In a similar way we will develop a theory of canonical heights on 
our K3  surface S which transforms canonically relative to the automorphism 
group ~ .  More precisely, we will prove the existence of two canonical heights 
h + a n d / t -  on S which satisfy the transformation formulas 

t/+ (4~ P) = (2 + ]/~)~(~) ~(~)(P) 
and 

/z- (~b P) = (2 + V~) -  ~ (~) n c x (,) (p) 

for every ~bed. Here ((q~)ET] and z(q~)e { -4- l} are functions that we will precisely 
describe in Sect. 2. The functions t7 -+ have many properties similar to those 
enjoyed by canonical heights on abelian varieties. For  example, ~-+(P)__>0 for 
all points PeS(K), and 

~+ (P) = 0 -~  ~ -  (P) = 0 ~ cd (P) is finite. 

In order to draw arithmetic conclusions, one ultimately must relate everything 
to heights relative to a projective embedding. So we also show that the function 

~ =  � 8 9  1)(f~ + +/~-)  

is a Weil height corresponding to a very ample divisor. These and other proper- 
ties of the canonical heights n r+ and ~-  are described in Theorem 1.1 in Sect. 1. 

F rom the transformation formulas it is clear that the product /~+ f~- takes 
the same value at P and at ~bP for any automorphism q~e,~. This allows us 
to define a canonical height of a c h a i n / t ( ~ )  = fi+ (P) f~- (P) which can be calculat- 
ed by choosing any point P in the chain. Notice that /~(cd)=0 if and only 
if the chain (d is finite; it is this observation which ultimately enables us to 
prove that S(K) contains only finitely many finite chains. In the case that 
/4(~) > 0, its value determines the arithmetic complexity of the chain. For  exam- 
ple, ~(cg) appears in the following counting formula which we will prove in 
Sect. 4: 

~ {PeCg: h(P)__<B} =K log(B2/I~(C~))+O(1) as B ~ oe. 

Here K= K(cg)=0.3796... or 0.7593... depending on whether the chain cg is one 
or two sided, and the big-O constant  is absolute (it is even independent of 
the surface S.) 

The organization of this paper is as follows. We begin in Sect. 1 by setting 
notation and stating our  main results. We also raise several questions for our 
K3 surfaces which are analogous to theorems and conjectures on abelian varie- 
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ties. Section 2 is devoted to geometry. We determine how the automorphisms 
in d act on Pic(S), and use this information to draw various conclusions about 
chains, ample and effective divisors, and curves of low genus. In Sect. 3 we 
prove the existence and basic properties of the canonical height, and in Sect. 4 
we apply our results to bound the number of finite chains and count the number 
of points in infinite chains. To illustrate our general theory, we present a numeri- 
cal example in Sect. 5, including a list of the first few points in a particular 
infinite chain. This list has an unexpected arithmetic property. In the final section 
we show how a strong form of Vojta's conjecture [15] can be used to explain 
this property. 

1 Notation and the main theorems 

In this section we will state our main results and raise a number of interesting 
questions meriting further study. We begin by setting some notat ion which 
will remain fixed throughout  this paper. 
K a number field. 
S/K a smooth surface contained in ~ 2 X  ~2  given by the intersection of 

two effective divisors, one of type (1, 1) and one of type (2, 2). In other 
words, S is the locus described by two equations of the form 

3 3 

Z aijxlYJ = Z bi~klXiXjYkYz =0 
i,j= 1 i,j,k,l= 1 

Pl, P2 the projections pj: S --* p2 induced by the natural projections 

p~: IP 2 x IP 2 ~ IP 2. 

D 1, D 2 ePic(S), where D r is the divisor class of p'H, where H e P i c ( ~  2) is 
a hyperplane section. 

~rl, ~r 2 eAut(S), where ~rj is the involution of S induced by the double cover 
p~: S --* F 2. 

~4 tAu t (S ) .  The subgroup of Aut(S) generated by a I and a 2. 

c~ = 2  +]~J.  

E +, E -  ePic(S)|  given by the formulas 

E+=c~D1-D2, E -  = --D1 + ~ D  2. 

The surface S is a K 3 surface. By varying the coefficients of the polynomials 
defining S, one can produce an 18 dimensional family of such surfaces (up 
to isomorphism over 112). For  basic facts about  K3  surfaces, see [3, 6]. This 
particular family of surfaces is studied by Wehler in 1-17]; he shows that the 
general member of this family has automorphism group exactly equal to ~ .  
For  our purposes it is enough to have sr as a subgroup of Aut(S), so we 
will not  need to worry about  the fact that Wehler's proof  does not guarantee 
the existence of even a single S/~ with Aut (S)=  d .  (This is a failing common 
to all theorems in algebraic geometry which assert that the general member 
of a family has a certain property. Fo r  example, the Noether-Lefschetz theorem 
[7, i0]  and the Dimension and Smoothness theorems in Brill-Noether theory 
[i ,  p. 214] have this form. Note  that the term "genera l"  means except for counta- 
bly many proper Zariski closed subsets of the relevant moduli space. Since 
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itself is countable, there is nothing to prevent every ~ point in the moduli 
space from being deleted !). 

Our first result says that there are height functions /~+ and /~- on S(/s 
which transform "canonical ly" relative to the group of automorphisms d .  

Theorem 1.1 There is a unique pair of functions 

fi+, fi-: s ( ~ )  - ,  IR 

satisfying the following two properties: 

(i) fi• = he �9 + 0 (1). 
fi• oo-, = ~ 1  U .  

(ii) fi• o 62 = ~+ 1 •*. 

The functions [i + and On- have the following additional properties: 

(iii) /~+ o~b=~+t(4')//-+z(r for all ~ e ~ .  

[Here Z: ~r  {_1}  and re: ~4 ~2g  are functions we will describe in Sect. 2; 
and fi +- 1 is an alternative notation for fi +-.] 

(iv) Define fi= fi+ + h- .  

Then fi is a Weil height function .for the ample divisor class (~ - 1)(D 1 + Dz). 

(v) The function fi + fi- is ~4-invariant. That is, 

fi+((oP)fi-(c~P)=fi+(P)fi-(P) f o r a l l ( o e d  andall P~S(K).  
(vi) [i• (P)>O for all P~S(K,). 

(vii) Let PeS(K) .  7hen 

fi + ( P ) = O ~ [ i -  ( P ) = O ~  { dp P: dp~,_ci } is finite. 

The automorphisms in d act on the points of S. We will call the orbit 
of a point P a chain, since it can be pictured as 

...~,(r 1 62 P ~3,(ya P g-~ P . ~ 6 1 P  ~.~72 61P~-~(71 (72 (71P~,... 

Of course, such a chain may loop back on itself. 

D e f i n i t i o n .  A chain P c  S(K.) is a set of points of the form 

c~(P) = {~bP: q~Ed} 

for some PeS(K) .  We will say that a chain c~ is K-rational if c ~ S ( K ) .  We 
define the (canonical) height of a chain cg to be 

FI(cg) = fi + (P) fi- (P) for any pecg. 

(Note that Theorem 1.1 (v) says that/~(cg) is independent of the choice of Pecg.) 
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Since S(K) is a disjoint union of chains, we can break up the study of 
S(K) into two questions: 

What do the points in a K-rational chain look like? 
What does the set of K-rational chains look like? 

We will be able to answer the first question quite well. For the second, we 
will be able to limit the number of finite K-rational chains; but at present 
we do not have any good description of the infinite K-rational chains. We 
begin with our description of the finite chains. 

Theorem 1.2 (a) ~ is finite e ,  12I (cs = 0 <=> ~( P) = 0 for all P e qf . 

(b) For any constant B, the set 

{chains ~ c S(K):/4 (~q) < B} 

is finite. In particular, there are only finitely many chains cg c S(K) with # ~ < oo, 

Remark. We can actually prove something a little bit stronger concerning the 
set of finite chains. For any P~S(K) ,  let ceg(P) denote the chain containing P. 
Then we can prove that 

{PeS(K): # ~ ( P ) <  oo} 

is a set of bounded height. Thus this set contains only finitely many points 
defined over fields of bounded degree. 

Next we investigate the heights of the points in a given infinite chain. We 
give an estimate for the point of smallest height and count the number of points 
with height less than a given bound. 

Theorem 1.3 Let ~ c S ( K )  be a chain with 4#~=oo. 

(a) 

(b) Let 

2 ~ / ~ )  =< min ]~(P) =< 2 ~ / / ~  (~). 
PEW 

#(<~)= ~ {~e~:: ~Q =Q} 

be the order'of  the stabilizer of  Q for any point Qe<g, so II(W) equals 1 or 
2. I f  B2 > 412I (W), then 

# {PeCg: 1 B 2 I fi(P)<=B} 1o <4. 

(Note that from (a),/f B 2 < 4/4(<g), then no point PeCg satisfies fi(P)<=B.) 

(c) For any ample divisor DePic(S), 

1 B 2 
e{ee~ : :  h~(P)<B}=~) log~ H~) +O(1) as B --+ oc. 

The 0(1) constant depends only on D and the choice of  Well height function 
ha. 

Using Theorem 1.3, we can reduce the question of counting points in S(K) 
to the question of counting rational chains. 
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T h e o r e m  1 . 4  Let 

S(K)r~. = (PeS(K):  ~(P)=0} = {PeS(K): (~'(P) is finite}, 

and let #(~) be as in Theorem 3. Then 

44: (Pe  S{K):/~(P) =< B} = @ S(K)fi, + 
_ B 2  .(g 

{ ~ l o g = 4 / ~ ( ~ ) + g (  ) } '  
~ ' ~  S(K)  

0 < 4/: /(~}_< B z 

where :t~S(K)fin is finite, and I~(c6')] =<4 for all chains ~. 

We have defined a K-rational chain to be a chain whose points are all 
defined over K. As the referee has pointed out, it is also natural to look at 
those chains g which are Galois invariant. We can use the canonical height 
to quickly give a very explicit description of all such chains. 

Corollary 1.5 Let P~S(F,) be a point whose chain ~(P) is stable under the action 
of  Oal (K/K). Then P satisfies one of  the .following three conditions. 

(i) PeS(K).  (I.e. ~(P) is K-rational.) 

(ii) PeSfin. (I.e. ~'(P) is finite.) 
( i i i )[K(P):K]=2.  More precisely, there is a z e a l  and a j e{1 ,2}  so that 
pj(zP)ep2(K). Further, in this case there are no non-trivial elements of o~r that 
f i x  P. 

The results stated above raise a number  of interesting questions which are 
very much analogous to problems which have been extensively studied on abe- 
lian varieties. 

Question 1 (K 3 Analogue of N4ron's Theorem) Describe the counting function 
for rational chains, 

4f {~ c S(K): /4  (~) __< B}, 

as B ~ .  Bogomolov and Mumford (cf. the appendix to I l l ] )  have shown 
that a K3 surface always contains (singular) curves of genus 0 and l, so this 
number  will grow rapidly, at least if K is large enough. Batyrev and Manin 
[-2] have a precise conjecture which predicts that "most"  of the rational points 
on S will lie on curves of genus 0. However, it is an easy consequence of a 
result of Wehler [-18] that a general surface of this type contains no smooth 
curves of genus less than 2. (See Corollary 2.6.) It seems to be a difficult question 
to determine all of the singular curves of genus 0 and 1. We define 

S(K)* = {PeS(K): P lies on no curve of genus 0 or 1 in S}, 

and ask for the order of growth of 

~= {~ ~ s(K)*: t~ ((~) < B}. 

(A bold conjecture of Bogomolov (cf. I-2, p. 35]) asserts that S( / ( )*=0,  which 
would make the answer to our last question very easy !) 

Question 2 (K3 Analogue of Torsion Conjecture) Is there a bound for S(K)fi. 
that depends only on K, independent of the choice of K 3 surface S/K ~ ~z  x ~2 ? 
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Question 3 (K3 Analogue of Raynaud's Theorem) Let C c  S be an irreducible 
curve which is not fixed by any non-trivial element of ~J. Is it true that C c~ Sri, 
is finite? (Here Snn is an abreviation for S(/<)n,, the set of all points of S having 
finite chains.) 

We observe that if C1 and C2 denote the branch loci of the projections 
Pl and P2 respectively, then for any q ~ ,  every point in C1 c~q5C2 will be 
in Srin. Now varying q~ will undoubtedly yield infinitely many points in C1 ~ Sfi,. 
This is why we must restrict ourselves to curves not fixed by elements of,~4. 

Question 4 (K3 Analogue of Lang Conjecture) Is there a positive lower bound 
for /t(P), independent of S, valid for points PeS(K)~\S(K)rin ? More generally, 
let h(S) be the height of the point in moduli space corresponding to S, where 
we fix a projective embedding of the moduli space. Is there a constant c>0,  
depending only on K, so that for all S/K, 

fi(P)>ch(S) for all P~S(K), Pg~S(K)n,? 

Question 5 (K 3 Analogue of Lehmer Conjecture) Are there constants c = c (S)> 0 
and d=d(S) so that for all extension fields L/K, 

c 
h(P)=> [L: K]" for all PeS(L), Pq~S(L)fin 9. 

More precisely, can one take d = �89 as is expected to be true for abelian surfaces? 

Question 6 (K 3 Analogue of Serre's "Image of Galois" Theorem) Let 

alp= {4,~,~: +p=e} 

denote the stabilizer of a point P~S; and for any subgroup 2 c .~ ,  let 

s [ 2 ]  = {PES(/~): dp = 2}. 

Thus if P~S [2] ,  then there is a bijection d/2~-*cg(P). 
Assume now that [ d : 2 ]  < oo. Then every element in S [ 2 ]  c~ S(K) generates 

a finite K-rational chain, so Theorem 1.2(b) implies that S [2 ]  ~ S(K) is a finite 
set. The question we pose is to describe the Galois group Gal(K(S[2J)/K) 
as a subgroup of the symmetric group of S[2] .  In particular, is the index 
of GaI(K(S[2])/K) in the symmetric group of S [ 2 ]  bounded independently 
of 2 ,  subject always to the assumption that [ d : 2 ]  < ov ? 

2 The geometry of the K 3 surface S 

Let S c IP 2 x lP 2 be a smooth surface as described in Sect. 1. Then the projections 
p~: S -+ ~,2 each exhibit S as a double cover of p2 branched along a smooth 
sextic curve. The subgroup J of Aut(S) generated by ~1 and a 2 is isomorphic 
to the free product 7Z2*TZ2 of two groups of order 2. (See [17].) In this section 
we are going to study the geometry of S. We begin with a simple geometric 
calculation 
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Lemma 2.1 (a) 

(b) 

a ~ D t = D 1 ,  

0.*D 1 = --D1 + 4 D 2 ,  

a* E + =o~-l E - ,  

0.* E + =o~ E - ,  

0.'~ D2=4 D 1 - D 2 ,  

0.* D z = D2, 

a ' E -  = ~ E  +, 

0.* E -=o~-  I E +. 

J.H. Silverman 

Proof. (a) First, letting H be a generator of Pic(~'2), we find that  

aj D~-- a i p~ H -- (p~ 0.j) H -  pj H = Dj. 

This proves two of  the desired equalities. 
Next, from the definition of a j, we see that 

P~ (Pj P) = (n) + (a t P). 

(This is an equality of zero-cycles.) Hence for any D~Pic(S), 

p* pj, D = D + a j ,  D = D + a *  D. 

(Since aj is an involution, we have 0.j~= a*.) Now we let H 1 = H x •2 and H2 
=]1>2 x H be a basis for Pic(• 2 x p2)  and compute an  intersection number:  

(p2,D,). H=(p2,p*  H). H 

= (p~ H)- (p~ H), by "push-pul l"  formula, 

= S. H1 "H;,  intersection in p2  x ~2, 

= ( H l + H 2 ) . ( 2 H l + 2 H 2 ) ' H l ' H 2 ,  since S is the 
intersection of a (1, 1) form an d  a (2, 2) form, 

=4. 

Since Pic(~2)=2gH and H 2 = l ,  we see that p2,D 1 =4H.  Substi tuting above 
gives 

0"2 D1 -P2 Pz*DI - D 1  = p * ( 4 H ) - D 1  = 4 D 2 - - D  1 �9 

This is the third equality, a n d  the fourth is proven similarly. 

(b) These all follow from (a), the definition of E • a n d  the fact that 4 - - a  = ~ -  ~. 
For  example, 

a*E  + =a~(c~Dl - D 2 ) = ~ D 1  --(4D1 --D2)= - - ~ - 1 0 1  + D  2 = ~ -  1 E - .  

The others are similar. [] 

It  will actually be useful to have a complete description of how the 
automorphisms in  d act o n  E § and E - .  To do this we need to describe two 
maps. The first is the  unique character 

X : s / ~ { + l }  
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of  order 2 on d .  This  is mos t  s imply defined by 

~ ( 0 - i , ~ i 2 f f i 3 . . . 6 i . ) = ( - - 1 )  n. 

T h e  kernel  of)~ is the cyclic subgroup  of s t  genera ted  by a~ 0.2- 
The o the r  funct ion 

{: d --, 71 

is defined induct ively  by the rules: 

d(e) = 0, {(a~ 4))= --  1 - #(4)), {(a2 4)) = 1 --#(4)). 

T h e  fol lowing brief table  should m a k e  the defini t ion clear, while the subsequent  
l emma  expla ins  why it is na tura l  to look at funct ion ~. 

D ' ' '  0"10"20"1 0.10"2 0.1 e 0.2 (720.1 0.21"710-2 ' '  

#(4)) ... - 3  - 2  --1 0 1 2 3 .. 
Z(4)) --. - 1  1 - 1  1 - 1  1 - -1  .. 

Proposi t ion 2.2 (a) The map (: s l  ~ 7/is a bijection of  sets. 
(b) 

{(4) ~/') = {(4)) + Z (4)) {0P) foral l  4 ) , ~ d .  

Thus { represents a (non-trivial) element of the cohomology group H 1 (~ ,  Z), where 
we make 71 into an d-module  via the action )~: d ~ {_+ 1} = A u t ( Z ) .  

(c) 
4)* E +- =oc• E• 

(Here E +- 1 means the same thing as E• 

Proof  (a) This  is clear  f rom the table ;  or  m o r e  r igorously,  one can easily check  
by induc t ion  that if in, i2, . . . ,  i, is an  a l ternat ing sequence of  l 's  and  2's, then 

f(0.i, ffiz...0.i.)= f n, i f  i 1 = 2 ;  
--n,  if i 1=1 .  

(b) This, too ,  is easily checked by induct ion.  It is c lear ly  true if 4)= e. Assume  
n o w  it is t rue  for 4); we need to check it for  0.~4) and  0.24). We  will do  the  
former ;  t he  latter is d o n e  similarly. 

f (a 1 ~b ~) = - 1 - ~ (~b ~), defini t ion of  E, 

= - 1 - {((4)) + 2(4)) {(~)}, induc t ion  hypothesis ,  

={(a14))-)~(4))  {(0), defini t ion o f &  

= f (a 1 4)) + X (a 1 4)) ~'(~k), since )~(a 1) = - i. 

We h a v e  just  verif ied the cocycle  relat ion,  so { represents  an  element  of  
the  c o h o m o l o g y  g roup  H ~ (d ,  Z). T o  see it is non-tr ivial ,  we note tha t  ker()~)--7l 



356 J .H.  S i l v e r m a n  

via the identification 620-1 ~ 1, and that ker(z) acts trivially on 7Z. Hence under 
the restriction map 

HI (~, ~) res  Hl(ker(z),  ~)  ~_ Hom(~ ,  ;g) ~7Z, 

the image of ~ is #(0-2 a l ) =  2; so f represents a non-trivial cohomology class. 
(c) Again the proof is by induction. The desired result is clearly true for 4' = e. 
Assuming it is true for ~b, we must check it for cr~ ~b and c~2 ~b. Thus 

(al ~b)* E -+ = qb* (a* E-+) 

=~b*(c~ZlE+), f r o m L e m m a  5.1(b), 

= ~ ~ ~ (~ �9 t~,)E ~ z~,~), induction hypothesis, 

=oS-(1 + t(4a~) E ~  X(4~) 

=c~+-e("'4~) E +x(''r d e f i n i t i o n o f ( a n d z .  

The verification for 0-2 q~ is done similarly. [] 

We are now going to describe several geometric properties of our surface 
S. These results are relevant to our discussion in Sect. 1, and should prove 
useful in further studying the arithmetic of S. However,  they are not  actually 
needed for the construction and applications of the canonical height, so the 
reader who is mainly interested in arithmetic results can skip directly to Sect. 3. 

As a first geometric application of Prop. 2.2, we show that an infinite chain 
is always Zariski dense in S. 

Corollary 2.3 Let Cgc S be a chain with #e c-g= oo. Then c~ is Zariski dense in 
S. 

Proof. Suppose that cg is not Zariski dense, and let F be the one-dimensional 
part of the Zariski closure of cg. Since # ~ = ~ ,  we know that F 4= 0. Write 

F=OC~ 
i = l  

as a union of  irreducible curves C~c S. By construction, # (~ c~ C~)= oo for each 
1 < i N n ;  and the Cg's are the only irreducible curves on S with this property. 

Fo r  any ~bed, we have qScg= ~. Since q5 is one-to-one, it follows that 

oo = :~(~ec--, c , ) =  #(4,~,- ,  c i ) =  :~(~ r-, q~- 1 c,). 

Hence qS- 1 Ci is one of  the Cj's. In other words, we get a map (clearly a homo- 
morphism) from od to the symmetric group ~ ,  

7r: d --* ~ ,  determined by q5 (Ci)= C~,~il 

The kernel of 7r has finite index in d ,  so we can find an integer k > 1 such 
that n ((0-2 a 0 k) = e. 
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In particular, we see that (crzal) k C1 = C1. On the other hand, when we com- 
pute intersection indices using Prop. 2.2, we find 

E e . C I = E  • �9 (0"2 0"l)k C1 

= ((o" 2 oh)k) * g •  C 1 

=~-+2kE-+ .C1 " 

Since k =I = 0 and ct = 2 + l ~ ,  we conclude that E + - C 1 = E -  - C 1 = 0. Hence 

0 =  C1 ' (E + + E - )  = ( a - -  1)(C1 "(O1 +02)).  

But DI +Dz is ample and C~ is a curve, so this is a contradiction. Therefore 
is Zariski dense in S. [] 

Remark. We just proved that an infinite chain ~KcS is Zariski dense in S. If 
~ S ( Q ) ,  it is natural to ask how ~ is distributed in S(~).  The map that takes 
a point P~S(P,.) to its chain ~(P)=S(~,) is a (non-linear) dynamical system 
which certainly merits further study. Preliminary computer  calculations reveal 
some interesting patterns, but  at present we have nothing definitive to say. 

It is an easy exercise to classify the subgroups of ~4; in particular, the sub- 
groups of finite index are precisely the subgroups which contain ( a2a0  k for 
some non-zero integer k. So a point P~S will generate a finite chain (i.e. in 
our earlier notation, P6Sfin) if an only if it is fixed by s o m e  (o-2o-1) k. We can 
use Prop. 2.2 to show that each (a2aO k has only a finite number  of fixed points. 
More  generally, we prove the following. 

Corollary 2.4 For any d?~',  let 

~ = { P ~ S :  (gP=P} 

be the set of fixed points of c~. Also let C i c S  be the ramification locus of pi: 
S ~ p 2  f o r i = l ,  2. 

(a) I f  d?=zair -1 for some ze~r then ~ = z C i .  
(b) I f  c~=(al a2)k for some k~TZ, k 4=O, then ~ is finite. 

Proof (a) The definition of the afs shows immediately that ~ ,  = C~. Hence 

p E ~ , c ~ z a ~ z - 1 p = p ~ a i ( z - l  p )=z  a p 

~ r -  1 P e ~ ,  = C i c r  C i . 

(b) Suppose # ~ = oo. Since ~ is a Zariski closed subset of S, it follows that 
there is an irreducible curve C ~ . ~ .  Then ~blc is the identity map on C, so 
~b* C =  C. Since ~b has degree 1, it follows that for any divisor DeDiv(S),  

C.D=q6*C.dp*D=C.dp*D. 

Taking D=E • and q6 = (a l  az) k, we observe that Z(~b)= 1, so 

C. E • =C.(o* E • =C.(ot• E•177 E• 

Hence 
(1 - ot•176 �9 E • = O. 
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Now (/)=(trla2)k~e, SO ( (q~)# :0 ,  which means that a+-e(4')+l. Therefore C . E  + 
= C . E - = 0 .  Now we obtain a contradiction by observing that C is effective 
and that E + + E -  = ( a - -  1)(01 + D2) is in the ample cone of Pic(S) |  Therefore 
o~ contains no curves, so it is a finite set of points. []  

Remark. For  any subgroup ~ d ,  let S[-~] be as in Question 6 of Sect. 1. 
It follows immediately from Corollary 2.4 and the remarks preceding it that 
if [ ~ r  then S[M] is finite, since S [ ~ ]  will be contained in ~ , , , : )~  
for some non-zero integer k. It is an interesting problem to try to determine 
the order of S [ ~ ]  for particular subgroups. 

Fo r  example, let ~ be the subgroup generated by a l  and za2z-~  for some 
z ~ .  Then one easily sees that S [ M J  is contained in Ca c~zC2. We can compute 
the intersection index C a.zC2 as follows: Each pg is ramified over a smooth 
curve of degree 6, so C2 = 6 D~ in Pic (S). Hence 

432 a2 
C 1 �9 z C  2 = z*(6 Da)-(6 D2) = (~2  __ i)2 (~r +(xtO+ 1)]2 -t- (X - e ( Q -  (z(z) + 1)]2). 

This certainly suggests that # S [ 9 ~ ]  ~ as I~(~)l~,  but a rigorous proof  
would need to take multiplicities into account, as well as the possibility that 
some points in Ca c~ z C a might have stabilizer strictly larger than M~. 

Next  let ~ ,  be the (cyclic) subgroup of sr generated by (a~a2) k for some 
integer k4:0. Alan Landman has sketched for me a proof  that  the Lefschetz 
number of (trl 0"2) k is 

~t2k+~-2k+22, 

which again suggests that # S [ ~ k ]  ~ (3(3 as k ~ ~ .  We briefly indicate Landman's  
proof. 

Consider the action of a~ on the Hodge  diamond H* =HI'J(S, ~)  of S. Since 
a~ is an involution, very eigenvalue of a1 on H* is _+ 1, say n + plus ones 
and n -  minus ones. By the generalized Lefschetz fixed point  formula, 

n + - n -  = L(aO = (Euler characteristic of fixed point set of a~)= - 18, 

since a~ fixes the branch locus of p~, which is a smooth  sextic curve in F 2. 

On the other hand, n + + n -  = d i m H * = 2 4 .  Hence n § = 3  and n -  =21. N o w  trl 
acts as +1  on H ~ and H 4, and it also acts as + I  on the subspace of H L~ 
spanned by the image of D~, since a*D~=D~. Hence it acts as - 1  on the 
rest of H*. In particular, if we let V be the image of P i c ( S ) |  in H ~'1 and 
V • its or thogonal  complement,  then aa acts as - 1 on V • since it is diagonaliz- 
able and all of it's eigenvalues are - 1 .  Further, aa acts as - 1  on H~ 
and H2'~ By a similar argument, the same holds for a 2. Hence (aaa2) k 
acts as + 1 on all of H* except for V; in other words, H * ~  V @ C  22 as a represen- 
tation space for (a a a2) k. Using the basis V = ~ E  + ~ E - ,  we find that 

L((al az) k) = Trace (al a2) k Iv + Trace(a1 az) k 1c22 = ~2k _~_ ~ - 2k ..~ 22, 

which is Landman's  formula for the Lefschetz number  of  (a 102) k. 

We can also describe the effective and ample divisors in Pic(S), or at least 
in that part of Pic(S) spanned by D 1 and D 2. 
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Proposition 2.5 Let DePic(S) be a divisor which can be written in the form 

D=nlD1  +n2D2. 

Then the following are equivalent: 

(i) D is effective. 
(ii) D is ample. 

(iii) D. E + > 0 and D. E -  > O. 

(iv) nx > - ~ n 2  and n2>  - ~ n l .  

In its entirety, this proposition only holds for divisors in Span{D1, D2}; it may 
not be true for all divisors in Pic(S). However, the following implications are 
true for every DePic(S): 

( i i )~  (i)~(iii)  

Proof. Before starting the proof, we note that D ~ = D ~ = 2  and D~.D2=4. So 
using the definition of E • and ~2 = 4 a -  1, one easily computes 

E + . E + = E  . E - = 0  and E + . E - = 1 2 c c  

We begin by showing that (i) implies (iii) for every divisor DePic(S). So 
let D be any effective divisor on S. We write 

D = t l E  + + t 2 E -  + FePic(S) |  
with 

D . E -  D.E + 
and F . E  + = F . E -  =0.  - -  t 2  = , tl 12a ' 12~ 

Since E + and E -  span the same subspace of P ic(S) |  as D1 and Dz, we 
note that F.D 1 =F.D2 =0.  

For  any integer k, let (Ok=(azat)keAut(S). Since DI-}-O 2 is very ample and 
~b k is an automorphism, the divisor (b~' (D 1 + D2) is very ample. Hence its intersec- 
tion with the effective divisor D is a positive integer. Thus 

1 < / ) -  ~b~' (D 1 + D2), intersection of effective and very ample, 

= (~-- 1)(D- ~b~ (E + + E-)), definition of E +, 

=(~--1)( t l  E+ +t2E-) . (~ZkE + +~ 2kE-), fromProp.  2.2(c), 

=(c(-- 1) 12 ~(~-2kti  +~2kt2). 

This inequality holds for all keZ ,  which implies that tl > 0  and tz>O. We con- 
clude that D.E  + > 0  and D . E -  >0.  

Next we show that (ii) implies (i), again for arbitrary divisors on S. We 
will use the following general facts that hold on all K3  surfaces. (See, e.g., 
I-3] or [6].) 

h2(Cs)=h~ 1, 

h' (Cs)=q=b,  (S) = O, 

p. (S) = h 2 ((gs) - h 1 ((gs) = 1, 

Jfs = O, (~s the canonical class on S.) 
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Let DePic(S)  be any divisor. The Riemann-Roch theorem [6, p. 472], [-8, V.1.6] 
for surfaces says that 

h~ h~ (D) + h~ D)= �89 (D2-- D . ~.)  + p~(S) + l. 

So for a K 3 surface we find that 

h~176189  D2 +po(S)+ I >=�89 D2 + 2. 

By assumption, D is ample, so h ~  and D 2 > 0 .  Hence h~ so 
D is effective. 

The proof  that (iii) and (iv) are equivalent is immediate once one calculates 

D . E + = 2 l ~ ( n l  +~n2) and D.E =2] /3 (c tn ,+n2) .  

We have now proven ( i i )~( i )~( i i i ) -~( iv) ,  so it remains to show that (iii) 
implies (ii). We will use the Nakai-Moishezon criterion [-8, V.I.10]. Write D 
= t~ E + + t2 E -  with t l ,  t2 eP-~ as above. Note  this is where we use the assumption 
that D is a linear combinat ion of D 1 and D 2. Our assumption (iii) implies that 
t 1 > 0  and t z >0.  Hence 

D2=24C~tl t2>O. 

Next let C o S  be any irreducible curve. Then C gives an effective divisor, so 
from (i) implies (iii) we deduce that C.E + > 0  and C . E - > 0 .  (Remember that 
we proved (i)~(ii i)  for every divisor in Pic(S).) Hence 

C . D = t l  (C.E+)+ t2(C. E-)>O. 

By the Nakai -Moishezon criterion, D is ample. []  

If Pic(S) has rank 2, we can also pick out the curves on S of small arithmetic 
genus. Wehler's generalization of the Noether-Lefschetz theorem [-18, Theo- 
rem 5.6] says that a general surface like S satisfies this rank 2 condition, although 
it does not  appear to be known how to find such surfaces defined over  Q 
or over a number field. And even if one had such a surface, in order to describe 
the rational points on S, one really needs to find the curves of geometric genus 
0 and 1; this seems in general to be a difficult problem. (See also [14, w 
for a computat ion of all curves of arithmetic genus 0 on a particular K 3 surface 
having a very large Picard group, and a discussion of the problem of singular 
curves of geometric genus 0.) 

Corollary 2.6 Assume that Pic(S) has rank 2. Let C c S  be an irreducible curve 
on S. Then the arithmetic genus of  C satisfies 

pa(C)~2. 

Further, if p.(C)= 2, then there is an automorphism (o ~ d  such that 

~b*C=D 1 or  D 2 in Pic(S). 
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Proof Write C= n x D~ +n2D2 in Pic(S), where n l, n2e2~. Then the adjunction 
formula [8, V.1.5 and Ex. V.1.3] gives (note S has trivial canonical bundle) 

po(C)= �89 + c. a~) + 1 

=n~ +4nlnz  +n~ + 1 = (~nl +n2)(nl -{'- ~n2) + 1. 
O~ 

Since C is effective, Prop. 2.5 implies that ~n 1 + n 2 > 0  and n~ + ~ n 2 > 0 ,  SO we 
see that p,(C)>l (strict inequality.) Further, p,(C) is an integer, from which 
it follows that p,(C)> 2. This proves the first assertion. 

For  the second assertion, we observe that 

pa(C) = 2 <:~ n~ + 4/'/2/'/2 -[- n2 : 1. 

As above, we factor the quadratic form as 

1 = n  2 + 4 n  l n 2 + n  ~=(nl+~n2)(nl +2-1n2)  

in the ring ~ E 2 ] = Z [ [ / 3 ] .  Each factor is a unit, and the fundamental unit 
in 7Z[~] is 2, so there is an integer k such that 

H l ' ~ n 2 ~  k and n l ~ - 0 ~ - l H 2 : ~  -k. 

Next we write C in terms of the basis {E +, E } for Pic(S)| 

C = ( ~ I  l ) ( ( ~ n , + n 2 ) E + + ( n l + ~ n 2 ) E -  ) 

= ( ~ 1  I ) (~ I -~E+ + ~kE-). 

Using Prop. 2.2, we can find an automorphism ~ b ~  such that (,(q~)=k. Note 
that 4'* E -+ ='~ • t(,~) E -+ z~0). Hence 

~b. C = ( ~ ) ( ~ .  ~-t(,~)~b.E + + ~t~,)q~* E-)  

= ( ~ z ~ l  1) (~ EZ(~)+ E z(,~)) 

=J 'D,  if Z(~b)= 1, 

l D 2 if Z(qS)=- l .  [ ]  

3 Existence of the canonical height 

In this section we are going to prove that the canonical heights /~+ and /~- 
exist, are unique, and satisfy properties (i)-(vii) of Theorem 1.1. We start with 
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uniqueness. Suppose that B+ and ~• satisfy (i) and (ii). Using (i) we see that 
f + =/~+ - ~  + is bounded, and then using (ii) repeatedly gives 

f• ((O.2 0-1) • n p )  = ~2nf_+ (p) .  

The left-hand-side is bounded independently of n, so dividing by c~ 2" and letting 
n ~ oo shows that f • (P) = 0. Hence//+ = ~-+. 

To show the /~+ exist, we use Tate's averaging method. From Prop. 2.1(b) 
we have the divisor class relations 

(O'2 O-l)* E + = 0 ~ 2 E  +, (o-1 0-2)* E -  = c ~ 2 E  - , 

and these give the height relations 

he+(0-2a~P)=~2hE+(P)+O(1), hE-(a,0-gP)=c~2hE-(e)+o(1). 

Now Tate's method shows that the limits 

and 

/~+ (P) = l im ~ -  2nhE~ ((0" 20"l)np) 

/~- (P) = lim c~- 2, he + ((0-1 a2)" P) 

exist and satisfy 

(i) / i '+=hE++O(1), n ~ = h  E +O(1). 

(ii)' ~+(o '2o ' ,P)=gz~+(P),  h - ( a t0 -2P)=~2~- (P ) .  

We briefly sketch the argument for/~+. (See, e.g., [12, VIII.9.1] or [9, Chap. 5] 
for the analogous construction on abelian varieties.) 

Thus let PeS(K). Then for any n>=m we have 

I c~- 2" he + ((aza,)"P)-cz-2"hE+ ((a2 0-0mP) l 

= ~ o~-2ihE~((tY2~71)iP)--o:-2i+2hE+((t72crl)i-lP) 
i = m + l  

< ~ ~-2 ' [hE+(~2~QO-~:h~+(Q~)I .  where Q~=(,T20-~)'-IP, 
,=,.+~ 

~ ~-2iK, where JhE+o(0-20-1)--o:2hE+[~K=K(S), 
i = m + l  

~--2m K 

oc2 1 �9 

Hence the sequence c~-2. he + ((0"2 O" 1) n P )  is Cauchy, so the limit defining ~+ exists. 
Further, taking m = 0 and letting n ~ oo in the above inequality shows that 

[h + (P)-hE+ (P) l~  ~c 
~ 2 _  1 " 
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We now have functions n ee satisfying (i); and in place of (ii) we have the 
conditions we denoted above by (ii)'. Using (i) and Lemma 2.1(b) we have 

ne+ (a z P ) =  h~+ (0" 2 P) + 0(1) = h,~e, (P) + 0(1) 

=o:he (P)+O(1)=o:ne-(P)+O(1). 

Now replace P by (al az) 'P  and use (ii)' to get 

~2 ~ ne+ (o. 2 p )  = ne+ ( (~  ~ o" ~ P)  

= ne* (o2(ol aft'P) 

= ~ne-((al a2)"P)+O(1) 

=~z"+ l ne- (P)+ O(1). 

Dividing by ~2, and letting n ~  gives the equality /~+(o2P)=~ne (P). This 
is one of the equations in (ii); the other three are proven similarly. 

Next we verify (iii) by induction on 4). It is clearly true for 4)=e, so we 
assume it is true for 4) and verify it for o14) and a z 4  ) .  Thus 

ne-+ o(al 4))= ~T 1 ne~ o 4), from (ii), 

= ~ �9 1 �9 e(r ne~ z(~), induction hypothesis, 

=~+_e(,~,4,)ne• definition of E and )~. 

This proves (iii) for a 1 4), and az 4) is proven similarly. 
Property (iv) follows immediately from (i) and the definition of E• 

ne= ne+ +ne- =he+ +he- +O(1) 

=h~,o,-o2 + h-o~+o, D2 + O(l)=(o~-- l)ho~ +o2 + O(1). 

Similarly, property (v) is immediate from (iii): 

ne+ (4)p)ne- (4)p)= {~e(r162 {a- e(r162 (p)} = ne+ (p)ne- (p). 

To prove property (vi), we use (iv), which implies that the function ne= ne+ + ne- 
is bounded below. (A Well height corresponding to an ample divisor is always 
bounded below.) Hence 

ne+ = n e -  ne-  > - ne- - o ( 1 ) ;  

so for any point P~S(K) and any n > 0 ,  

ne+ (p) = a -  z, ne+ ((a2 a 1)" P) 

>=c~- z"{--ne- ((aeaO"P)--O(1)} 
= -o~-4"ne-(p)--O(~-z"). 

Letting n ~ ~ gives ne+ (P) > 0. A similar argument gives ne- (P) > 0. 



364 J.H. Silverman 

It remains to prove proper ty  (vii). Suppose first that  ne+(P)=0. Then using 
(iii) and (iv) we find that  

~((a2 a,)" P) =/~+ ((o- 2 a 1)" P) + n e-  ((a2 at)" P) 

=~2"fi+ (p)+~-  2"fi-(e) 
= a -  2,f~- (p). 

Therefore {(a2a~) 'P:  n = l ,  2 . . . .  } is a set of bounded height for the height n e. 
Since ~ is a height relative to an ample divisor, it follows that  this is a finite 
set. Hence there is an integer n__> 1 such that ( a 2 a 0 " P = P ,  and so 

( ~ , ) . ~  ~{q~p:r ~ 4 ' P ,  

is a well-defined surjective map. Since the subgroup (a2a~) "~ has finite index 
in ~,, (precisely, it has index 2 n,) it follows that  the set of ~b P's is finite. 

Conversely, suppose that  there are only finitely many  ~bP's. Then f~+(~bP) 
is bounded independently of q~, so 

~+(P)=o:-z"fi+((a2a~)'P) )0. 
n ~  

This completes the proof  that  

/~+ (P) =0~*  {~bP: ~bEd} is finite. 

The proof for ~-  is done similarly. [ ]  

4 Applications of the canonical height 

In this section we use canonical height functions to prove our main theorems 
describing the rat ional  points of S. 

Proof of Theorem 1.2. (a) Since /4(cd)=/~+(P)/~-(P) for any point  PeW, this 
is jus t  a restatement of  Theorem 1.1 (vii). 

Proof of Theorem 1.3. (a) Fix any Q e ~ .  Then 

min/~(P) = min/~(~b Q) 
P e ~  O E ~  

= min/~+ (~b Q) + ~-  (4) Q) 

=rain  a~(o)~xr + a-tr f rom Theorem 1.1 (iii), 

= min a"/~xI,)(Q) + ~- , /~-  xt,)(Q). 

Here we are writing Z: Z ~  { + 1} for z ( n ) = ( - -  1)". We have also used the fact 
that  g: ~ ~ 7] is surjective (Prop. 2.2(a)). 

If  we let 
f (n) = o~" fi X(") (Q) + ~-" fi- z(,)(Q), 
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then we must find the minimum of f(n) over all ne7Z. The lower bound is 
immediate: 

min f(n) > inf {t/~ + (Q) + t -~ ~- (Q)} = 2 ~//~ + (Q)/~- (Q) = 2 ~ .  
ne2~ t e ~  

For the upper bound, we let 

1 r~- (O) 1 
m = 2 [ ~ - l ~  2]. 

(Here [ . ]  denotes greatest integer.) Then m is even and 

_~, ~ / U ~ ) <  - <  1 ~ / ~  

SO 

rain f (n) < f(m) < 2 o: ]/[i + (Q) [i- (Q) = 2 ~ ] / / ~ ) .  

This completes the proof of Theorem 1.3(a). [] 

Proof of Theorem 1.2. (b) Let ~ c S (K) be a chain with/~ (g)< B. From Theorem 
1.3 (a), there is a point P e P  with nO(P)< 2 ~ ]/B. Hence 

# {cgcS(K):/4(cg)<B}_< #{PeS(K):  ~(P)=<2~]~}. 

But/~ is a Weil height with respect to an ample divisor class (Theorem 1.1 (iv)), 
so this last set is finite. This proves the first half of Theorem 1.2(b); and the 
second half follows from (a), which says that 

{~=S(K):  #~q<oo} ={(g=S(K):/~(cg)=0}. [] 

Proof of Theorem 13. (b) Let 

v (c~,/~; B) = # { P e c~: ~(p) __< B} 

be the counting function of cg relative to the canonical height ~. Fix any point 
QeC~. Then the map 

~ ,  ~ Q ,  

is surjective and #(~)-to-1, so 

#(~) v(C~,/~; B)= # {~b~/: ~(~bQ)__< B} 

= # {neZ: ~" nCXr176 (Q) + a-"~;- zr B} 

= #{me;g: (~z)"fi+(Q)+(~2)-"fi-(Q)<=B} 
+ # {meg: (0c2)"(g/~ + (Q))+ (g2)-,,(g-,/~- (Q))<B}. 

To conclude the proof of Theorem 1.3(b), we will apply the following elementary 
counting lemma to each of the last two terms. 
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Lemma. Let a, b, B > 0 and 2 > 1 be constants, and let 

Z(B)= {m~Z:  2m a + )~- 'b  < B}. 

l f  B2 < 4ab,  then Z(B)=0 .  l f  B2 >=4ab, then 

B 2 
- 1 < 4~ Z ( B ) -  log~ ~ =< 1 + log~(4). 

Proof. Notice that  

m~ Z(B)cc, a 2 Z ' -  B 2m + b <= O 

2b < _ 2 , , < . B + ~  
r  - - 2a 

In particular,  if B2<  4 ab, then there are no values of m, so ~ X(B)= O. 
Now we assume that  B 2 >__4 a b. Then every m~N(B) satisfies the inequality 

b/B < 2" < B/a, so 

4~Z(B)<:~ m~TZ: logz ~ < r n  <logz _-< 1 +loga  ~-~. 

Similarly, if 2 b/B < 2" < B/2 a, then m will be in Z(B), so 

> ( 2 b <  2 ~ }  4ab'BZ ~ Z ( B ) =  #Xm~7Z: logz ~ - =  m <loga _ >= -- 1 +logz  

This concludes the proof  of the Lemma. 
Resuming the proof  of Theorem 1.3(b), we use the Lemma twice (and the 

assumption that B 2 >  4/~(cg)) to conclude that 
B z 

- 2 </t(cg) v(Cg,/~; B ) -  2 log,2 4 ~ <  2 + 2 log~2(4). 

(Note that  /q(cg)=/;+ (Q)I;i-(Q) by definition.) Since 2 log,~ 4 = log, 4 ~  1.05, this 
is s tronger than the desired result. 
(c) Since/~ and ho are both Weil height functions with respect to ample divisors, 
there is a constant  c > 0  such that  

c - l h , ( P ) < [ i ( P ) < c h o ( P )  for all PeS(F~). 

Hence continuing with the notat ion from (b), we have 

v (c~, ho; c - 1 B) < v (qg, ~i; B) < v (~, h , ;  c B), 

so (c) follows immediately from (b). [ ]  

Proof o f  Theorem 1.4. From Theorem 1.2(a), a point  has canonical height 0 
if and only if it is in S(K)f~,; and from Theorem 1.3(a), a chain ~ has no points 
with canonical height less than 2 ~ .  Hence using Theorem 1.3(b), we find 

::~:{P~S(K): ]~(P)~_~B}= :~zS(K)fin-}- 2 ~.. t 
r162 Pe~" 

0 < 4B(c~)<B 2 '~(P)<B 
B 2 

0 < 4~ / ( f f )  < B 2 

From Theorem 1.2(b), the set S(K)fin is finite; and from Theorem 1.3(b), the 
error e(c~) satisfies l e (~) l<4 .  [ ]  



Rational points on K3 surfaces: A new canonical height 367 

Proof of Corollary 1.5 Let PeS(K) be a point whose chain cd(P) is stable under 
the action of Gal(K/K),  and let 

be the stabilizer of P. We consider two cases, according to whether or not 
~/e is trivial. 

Suppose first that # l : ~ e > l .  If it contains an element of the form (a, crz)k, 
o n e - t o - o n e  

k+0 ,  then ~ v  has finite index inside ~ .  Since ~'/d,,, ,cd(P), this implies 

that c#(p) is finite, so (ii) holds. Otherwise ~',, must contain an element of the 
form z%z-', since these are the only other elements in ,~'. Let ~,e~'p be such 
an element of order 2, and notice that ~(~,) = - i. 

Now if PeS(K), then P satisfies (i) and we're done with this case; so we 
may as well assume that there is some y~GaI(K/K)  with 7P=~P. On the other 
hand, we know that y P ~ ( P ) ,  say 7P=(~P for some q~e~. Since ~hP=P, we 
also have ? P =  ~b,pP. Using the fact that z(gb(p)=y~(~b);~(~O) = -7.(~b) and replac- 
ing ~b by ~b,p if necessary, we may assume that 

7P=c~P, ~((~b)=l, and {(~b)4=O. 

(Note {(~b)= 0 ~  = e~yP  = ~bP = P, contrary to our assumptions.) 
We next observe that height functions are Galois invariant. (See, e.g., [12, 

VIII.5.10].) Hence 

/~+ (P) =/~+ (ye) = f~+ (q~P) = c~ 1(r (P), since Z (q~) = 1. 

But ~r162 so we conclude that f~+(P)=0, and from Theorem t.l(vii) that 
(d(P) is finite. Thus P again satisfies (ii). 

It remains to consider the case that ~'p is trivial. In this case, for every 
7~Gal( /~/K) there is a unique c ~ d  such that 7P=c~P. We thus get a well- 
defined homomorphism 

Gal ( K / K )  ~ ~4, y ~-, dp~, 

whose kernel is precisely Gal(K/K(P)). Hence K(P) is a Galois extension of 
K, and its Galois group injects into ~ .  But the only finite subgroups of d 
are groups of order 1 or  2. Therefore either K(P)=K, which is condition (i); 
or else [K(P):K]=2, which is the first part of condition (iii). It remains to 
show that in this last case, the other parts of condition (iii) are true. 

If we write Gal(K(P)/K)={e, y}, then we know that q~ has order 2, so q~ 
= t - , a i r  for some ~ s d ,  je{1,  2}. It follows that 

y(~ P)=~(y P)=~dp~P=(~j(z P), so 

7 (pj(z P)) = p j ( 7  ('r P)) = pj( f f j ( 'C P)) = pj(z P). 

Therefore p~(zP) is fixed by Gal(K(P)/K), hence pj(zP)~Z(K). This proves 
the second part of condition (iii); and the third part is immediate, since we 
are considering the case where # d p  = 1. []  
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5 A numerical  example  

In this section we will choose a part icular  K 3 surface and calculate the heights 
of some of its rat ional  points. By changing coordinates,  we may as well asssume 
that  our bilinear form gives the usual flag manifold in p2 • DE, 

L(x, y) = x 1 y,  + x2 Y2 + x3 Y3. 

We intersect the flag manifold with a " randomly  chosen" surface of type (2, 2) 
given by the equation 

Q(x,y) x~yZ_t._3XlX2 2 2 2 2 = y l + x z y l + 4 x l y l y 2 + 3 X a X z y l y 2 - - 2 x ~ y l y 2  
2 2 2 2 2 y2+5X1X3 - x l  Y2 + 2 x2 Y 2 -  X, x3 Y2 - 4  x2 x3 YlY3 

- 4 x 2 x 3 Y 1  y3+ 7 x 2 y z y 3 + 4 x 2 y 2 Y 3 + X ,  x2y2 + 3x2y  2. 

Then our surface is the locus in p2 • p2 given by the two equations 

S: L(x, y) = Q (x, y) = 0. 

A brief (5 hours on a Macintosh Ilcx) search reveals that  there are twelve 
rat ional  points on S with multiplicative height less than or equal to 40. 

{([0, 1, 1], [1, 1, - 1]), (El, 0, 0], [0, 0, 1]), ([0, 1, 0], [0, 0, 1]), 
([1, o, - U, [o, l, o]), ([o, o, U, [o, 1, o]), ([o, o, 1], D, o, o]), 
([3, 1, 3], [ - -3 ,  3, 2]), ([1, 0, 0], [0, 7, 1]), ([8, 6, 9], [ - 6 ,  5, 2]), 

([1, 0, -- 1], [9, 1, 9]), ([3, 8, 11], El, 1, - 1]), ([12, 1, - 2 0 ] ,  [2, - 4 ,  1])} 

These twelve points lie in six distinct chains, each of which is (undoubtedly) 
infinite, al though two of them are one sided. More  precisely, ([0, 1, 0], [0, 0, 1]) 
is on the ramification locus of ~r t, so is fixed by a l ;  and ([0,0, 1], [1 ,0 ,0 ] )  
is on the ramification locus of ~z 2, so is fixed by cr 2. To illustrate the rapid 
growth of points in a given chain, we will look at the chain generated by ([0, 1, 0], 
[0, 0, 1]), which begins 

~2 1]) - - . ( [ i ,  0, P l  - - ' -~([1,  0 ,  0 ] ,  [ 0 ,  0 ,  0"1 03, [0, 7, 1]) 

al  E~,([1645, - 3 4 4 ,  2408], [0, 7, 1])---,. 

In Table 1 we have listed the first few points in the chain generated by 
P , .  As expected, the coordinates grow extremely rapidly. 

Table 1 

e 

0- 2 
0-10"2 
0" 2 G 1 0" 2 
(0-10"5) 2 

(o-10-2)3 

1,(0, i ,  02, 1,0, o, i ] )  
(I-t, o, 03, I_0, o, 1]) 
(1,1, o, 02, 1,0, 7, 13) 
(1,,1645, -344,  24082, 1,0, 7, 1]) 
([1645, -344,  24082, 1,- 1.3. lO 13, 5.6. lO "~2, 9.7.1012]) 
(1,,2.2.1049, -3.0.1049, 4.6.1049], r -  1.3. lO x3, 5.6.1012, 9.7. ]0 '2])  
([-2.2.1049, -3.0.1049, 4.6.1049], 1,,2.2.10186, 1.6.10 la6, 6.4.10184]) 
( [ -  7.9.10695, t.0" 10696, 1.5.10695], ['2.2' 10186, 1.6.10186, 6.4- 10184]) 
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Table  2 
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d(~) )~ ((;b) he+ (~b P~) h e (dpPt) a-ehE~ aChE 
(:(4,)>0) (~(4~)_--< O) 

e 0 1 0 0 0 0 
a~ 1 - 1 0 0 0 
crtcr 2 - 2  1 - 1.94591 7.26224 0.5214 
er2a~a2 3 --1 27.1139 --0.524316 0.5216 
(aia2) 2 --4 1 - 1.13758 104.912 0.5408 
a_,(a~ az) 2 5 - 1 396.612 -- 1.66497 0.5478 
(a~ ~2) 3 -- 6 1 -- 2.22648 1486.82 0.5503 
cr2 (~  a2) 3 7 1 5552.05 - 1.44477 0.5506 

Fo r  any poin t  P =(x ,  y)e]p2 x ~)2 we normalize  our  height functions by tak- 
ing the usual Weil height on  F z and  setting 

hE+(P)=ah(x)-h(y) and he-(P)=-h(x)+uh(y) .  

In Table  2 we have computed  the heights of the first few elements in the chain 
generated by PI. 

F r o m  Table 2 we see tha t  

na+(P0~2.1 and  f i - (P1)~0.55.  

We are comput ing  these values by the formula 

~'_+ (p) = ~ + e(4,) f;_+ x(4,) (~ b p) = a :7 ~(,t,) hE~ ~(~, (4)P) + O(a ; t(4~)). 

In order  to make  the er ror  t e rm on the r ight-hand-side of this equa t ion  small, 
we need to choose the p lus /minus  sign so tha t  -T-{(~b)<0. So for each 0, Table  2 
provides an app rox ima t ion  only to /~-(Pd, not to n c+ (/'1). However,  since our  
po in t / ' 1  satisfies a 1 ( / 1 ) =  P~, it follows from the general theory that  

This allows us to approximate  bo th  canonical  heights from Table  2. 
In order  to compute  /;-(/ '1) to d decimal places, we would need to choose 

q~ so tha t  c~-Ie('~)l,~10 -e. Taking qS=(alcr2)", this means  that  we would need 
to compute  (crlo'z)nP1 with n>O.87d+O(1) in order  to get d decimal places 
of accuracy. This is completely infeasible for even modera te  values of d, since 
(some of) the coordinates  of (~1~2)"P1 will have a round  ~2n~10:t'lg" digits. 
It seems worthwhile  to consider some other  method  of comput ing  the canonical  
heights /~+ and  ~- ,  possibly by decomposing  them into canonical  local height  
functions, as is done for abelian varieties. (See [9, Chap.  11] for the general  
theory on  abel ian varieties, and  [13] for the Si lverman-Tate  a lgor i thm which 
allows one to efficiently compute  canonical  heights on  elliptic curves.) We will 
consider this quest ion of local decomposi t ion  and  a computa t iona l  a lgor i thm 
in a subsequent  paper. 
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6 Integral points and Vojta's conjecture 

A brief look at Table I in the previous section reveals a somewhat surprising 
pattern. Suppose we agree to write points P e S ( Q )  in the normalized form 

(*) P=([Xl ,X2 ,X3] , [y~ ,y2 ,Y3]  ) with x l , x z , x 3 , y l , y z , y 3 ~ Z  

and gcd(Xl, x2, x3)=gcd(yl ,  Y2, Y3)= 1. 

Then the larger points in Table 1 seem to satisfy 

IXII~IX21~IX3[ and lyl l '~IyzI ,~ly31.  

This is similar to a phenomenon which occurs for elliptic curves. Thus suppose 
we take an elliptic curve 

E: y 2 z = 4 x 3 - - g 2 x z Z - - g 3 z 3  

defined over II) and a sequence of distinct points P,,= [x.,  y., z . ]eE(Q) written 
as above in normalized form. Such a point is integral if I z . l= l .  A famous 
theorem of Siegel says that there are only finitely many integral points. But 
Siegel actually proved the considerably stronger result that 

lim log min {Ix.l, [Y.I, Iz.f} = i. 
, ~  l~ max{Ix, I, [Y,I, Ix, I} 

(See [12, IX.3.3].) 
The proof of Siegel's theorem uses the Thue-Siegel-Roth theorem. The follow- 

ing higher dimensional analogue of the Thue-Siegel-Roth theorem has been 
conjectured by Paul Vojta. 

Conjecture (Vojta, [15]) Let K be a number field, E, a finite set of  places of  
K, V/K a smooth projective variety, AeDiv(V) an ample divisor, D~Div(V) an 
effective divisor with at worst normal crossings. There is a proper Zariski closed 
subset Z =  Z(V, D ) c  V so that fi~r every e>O, 

~ 2o(P,v)+ha~v(n)<=e, ha(P)+O(1) fora l l  P e V ( K ) ,  Pq~Z. 

Here 9fir is a canonical divisor on V,, and 2D(', v) is a local height function on 
V for the divisor D and absolute value v. (Cf. [9, Chap. 10].) The O(1) constant 
depends on K, Z,, F,, A, D, e. 

Remark. Vojta states his conjecture with Z = Z ( K ,  Z, V, A, D, e), and says that 
the components of Z, other than individual points, can be chosen to depend 
only on V and D. We have merely adjusted the O(1) to accomodate the finitely 
many isolated points in the original Z. 

Taking the special case of Vojta's conjecture applied to K3 surfaces, we 
can prove the following result, which (conjecturally) explains the pattern in 
Table 1. 

Proposition 6.1 Let S / ~  be a K 3 surface as described in Sect. 1, and normalize 
the coordinates of  P~S(~)  as described above in (,). Let h be a height function 
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on S corresponding to any ample divisor. Assume that Vojta's conjecture is true 
for S. Then there is a f inite union of  curves Z c S so that 

lim log rain {Ix, (P)L, Lx2(P)I, ]x3(P)l} = 1. 
e~s(e)\z log max {Ix1 (P)I, I x2(P)l, ] x3(r)]} 
h ( P )  ~ ov, 

A similar statement holds with x~, x2, x 3 replaced by y~, Y2, Y3. 

Proof  Let f e ~  IX1, X2, X3] be a non-zero linear form, and let H = { f  = 0} c p2 
be the corresponding hyperplane section. We observe that  the local height of 
a point  t = I ts ,  t2, t3] 6 F  2 relative to the divisor H is given by the simple formula 

{,, /a, ,. } )w ' .n ( t , v )=l~  max ~ (~  j - -  ' f ( O , ,  " 

(See [15, p. 8].) On the other hand, if tep2((l~) is normalized, then 

hR,2 u ( t )= log  max {t tl 1, ]t2[, It3]} + 0(1), 

where the 0(1) depends only on the linear form f defining H. 
We are going to apply Vojta 's conjecture with 

V=S ,  A = D I + D 2 ,  and D = ~ * H .  

We observe first that  

c~hD, =hD2+h~+ +O(1)=ho2+f i  + +O(1)>ho2+O(1 ) since /~+ >0.  

(Note we could not conclude directly from general principles that h m >>hD2, 
since D~ is not ample.) Hence if we write P = ( x ,  y) normalized as above, then 

hs,a(P)=hs.D,(P)+hs.D2(P)+O(1) 

<=(~+ 1)hs.o,(P)+O(1) 

<=4hs.,,H(P)+O(1), since D1~r~*H, 

= 4  he:re(x)+ O(I) 

= 4  log max {Ix11, Ix2 I, ]x31} + O(1). 

Now we apply Vojta 's conjecture, using the field Q and the set consisting 
of the archimedean absolute value {oo }. The canonical bundle on a K 3 surface 
is trivial, so ~.s=0.  Hence there is a proper  Zariski closed subset Z ~ S  so 
that  

2s,~.~u(P, oo)<ehs,a(P)+O(1) for all P~S(II)), P(~Z. 

Now 2S.~.H = 2r2morc I + O(1) by functoriality. So combining Vojta 's  inequality 

with the formula for 2F, u and the estimate for hs.a(P) derived above, we find 
that  

( 1 - 4 e )  log max {]Xl ], ix2], ]x3l} -<log ]f(x)[ + 0(1). 
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This holds for all P = ( x ,  y)r  where Z c S  is fixed, and the O(1) depends on 
S, f, and e. 

Applying this result three times, taking successively f=X1, f=X2, and 
f =  X 3, we conclude that 

(I - 4  e)log max {Ix 1 [, Ix2[, [x31} 

<=logmin{Ixl[,[xz[,[x3[}+O~(1), foral l  PeS(ff)), PCZ. 

Hence 

( h ~ )  logmin{lxrl, lx2l, lxsl} ~1,  fo ra l l  PeS(~), PCZ. 
1 - - 4 e - - O ,  <=logmax{lxll, lXzl, Lx3l} 

Now let h(P)~oo with PeS(~), P~Z. This gives 

1 - - 4 e <  lim inf log min {Ix11, Ix2], IX3  l} 

e~stQ)\z log max {I xl  l, Ix21, Ix31} 
h ( P )  ~ o~ 

<,.  logmin{Ixll,)x2l, lx3)} 
_ tam s u p  ~ _ _  ~ v  < I. 
-e,stQ)\z I g m a  ~ ~ , X 2 ] , l X 3 1  ~ - -  

h (P) ~ 

Since this holds for every e > 0, the limit exists and equals 1. [] 

Remark. A proof  of Vojta's conjecture, even for K3 surfaces, seems difficult, 
al though possibly not  hopeless in view of the recent advances made  by Vojta 
[-16] and Faltings [4]. A more tractable problem might  be to show that on 
the K 3 surfaces studied in this paper, if one fixes a chain c~ of rational points, 
then the conclusion of Proposit ion 6.1 holds if the limit is taken over points 
in cg. Note  that this does not  reduce to Siegel's theorem (i.e. integral points 
on a curve), since we have shown that cg is Zariski dense in S. But one might 
hope to use the additional structure provided by the group of automorphisms 
d acting on ~ and Pic(S), just  as the group structure on an abelian variety 
is exploited in the proofs of Faltings and Vojta. 
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