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Let K be a number field and S a finite set of non-Archimedean places of K.
Let us fix natural numbers g and d. In [4], G.Faltings proved that the set of
isomorphism classes of Abelian varieties over K, with good reduction outside S,
and with a polarization of degree d, is finite. (The truth of such a statement
had been suggested by A.N. Parshin [8].)

In what follows, we improve slightly on Faltings’ result by omitting the
assumption about polarization. Our proof is based on the quaternion trick [10,
11].

I am very grateful to A.N. Parshin, P. Deligne and V.G. Berkovich for helpful discussions.

1. Theorem. The set of isomorphism classes of g-dimensional Abelian varieties
over K, with good reduction outside S, is finite.

2. Lemma. Let a: X —Z be an isogeny of Abelian varieties over a field F of
characteristic 0. Then there exist an isogeny of Abelian varieties (over F)
n: XY, an embedding I: X — X8, and a commutative square

X————I.———>X8
Z Y

where Y has a polarization of degree dividing 2'°%™X and the kernel of Z—Y is
a finite group scheme of order dividing 22%4™X,
3. Proof of Theorem 1 (modulo Lemma 2)

3.1. Proposition. Let X be an Abelian variety over K. The Abelian varieties over
K, which are K-isogenous to X, are in finite number (up to K-isomorphism).
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3.2. Proof. Let T be the finite set of places of bad reduction of X. By [7], the
set of places of bad reduction of any Abelian variety isogenous to X8 coincides
with T. Therefore, by Faltings’ finiteness theorem ([4], Satz 6, p.363) the set of
Abelian varieties over K, isogenous to X® and having a polarization whose
degree divides 2!6%4™X i finite (up to isomorphism). We choose a finite set
Y, ..., Y, of Abelian varieties over K such that any Abelian variety, isogenous
to X® and having a polarization whose degree divides 2!°%™* s isomorphic to
some Y;. For each i (1<i<r) we choose an isogeny ¢;: ¥,—»X? and put

D=22dimx H deg l[/i'
i=1
Now, by Lemma 2 for any Abelian variety Z over K, isogenous to X8,
there exists (for some i) a homomorphism Z— Y, whose kernel is a finite group
scheme of order dividing 22%™*, Consider the composition

B: Z— Y, -2 X®.

Ker B is a finite group scheme of order dividing 22%™X degy; which divides in
turn D.

We denote by B the image of f which is an Abelian subvariety in X8 The
map S induces an isogeny Z—B of degree dividing D. Therefore, B is an
Abelian subvariety of X, isogenous to X, hence B is stably isogenous to X
[11], 4.2.1. (An Abelian variety is called stably isogenous to an Abelian variety
A, if it is isogenous to 4 and isomorphic to an Abelian subvariety in A" for
some n.) As is known ([11], 4.2.1, 4.2.2), the set of Abelian varieties, stably
isogenous to X, is finite (up to isomorphism). Now, the finiteness of the set of
coverings of the Abelian variety with a fixed degree implies Proposition 3,
because we have constructed the isogeny Z— B of degree dividing D.

3.3. End of the Proof of Theorem 1. We have shown that each isogeny class of
Abelian varieties over K contains only a finite number of elements (up to an
isomorphisms). One only has to use that the set of isogeny classes of Abelian
varieties over K with a given dimension and good reduction everywhere
outside S is finite ([4], Satz 5, S. 362).

3.4. Remark. The finiteness of the set of Abelian varieties, stably isogenous to a
given Abelian variety, is an easy corollary of the following well-known state-
ment: for any order in a semi-simple finite-dimensional Q-algebra A, the set of
ideal classes of A is finite.

3.5. Corollary (to Statement 3.1). Let A and C be Abelian varieties over K.
Then there exists only finitely many Abelian varieties B over K (up to isomor-
phism) which can be inserted into a short exact sequence

0—-A4A—->B-C-0.

Indeed, such a B is isogenous to A x C.

3.6. Corollary (to Statement 3.1). Let A be an Abelian variety over K. Then
there exists a natural number r such that for any Abelian variety B, isogenous to
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A, an isogeny A— B exists which can be inserted into a commutative triangle

B

Here r is considered to be multiplication by r in A.

4. Proof of Lemma 2. Let us fix a polarization [5, 6] v: X — X*. Here X' is the
dual of X. Let a: X—>Z be an isogeny, W=Kera and m be the order of the
finite group scheme W. We set A=mv: X —>X". Then W lies in the kernel Ker 4
of the polarization 2. We denote by n the order of the finite group scheme
Ker A and choose a quadruple of integers a, b, ¢, d € Z such that

0%£s=a’+b?*+c?>+d*=—1modn.

We denote by I the “quaternion”

a —b —c —d
b a d ¢
I= eM,(Z)e M,(End X)=End X*.
¢c —d a b
d ¢ —-b a
We have:
s 0 00 -1 0 0 O
0 s 0O 0-1 0 O
I'l= =
00 s 0 0 0 -1 o |™odn
0 0 0 s 0O 0 0 -1

The polarization 1 defines a polarization

/18: X8—>Xt8=(X8)t
of X8 and we have:
Ker A% =(Ker 1)8.

4.1. The group subscheme WcKeri® and the Abelian variety Y=Y(W, 1)
=X8W are constructed in ([11], §2) from the set of data
{A, WcKer 4, a, b, c,d}, see below. They enjoy the following properties:

The group subscheme W is isotropic with respect to the Riemann form on
Ker4® and is “almost maximal”. This implies that the polarization
A8: X8 (X® descends to a polarization u: Y—Y* and degpu divides 2!64imX,
We denote by n: X8—X8/W =Y the natural isogeny and by

I: X-X*xX*=X8
the embedding defined as follows

x> {(x, x, x, x), I(x, x, x, X)).
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Then WcKer(nl: X—>X®—Y) and Ker nl/W is a finite group scheme of
order dividing 22%™*  Thus, the isogeny n and the embedding I can be inserted
into the commutative square

X ——I—>X8

.

X/W——Y

where Ker(X/W-Y) is a finite group scheme of order dividing 224™¥ To
prove Lemma 2, we only have to note that Z~ X /W, as W is the kernel of the
isogeny a: X »Z.

5. The quaternion trick. For the convenience of the reader we recall the
construction of the group subscheme W cKerA® from ([11], §2). Since
char F=0, the finite commutative group schemes over F are finite Abelian
groups provided with an action of the Galois group G=Gal(F/F) of F, i.e. they
are finite Galois modules. (F is an algebraic closure of F.) Then Ker 1 is a
finite Galois submodule of order n in the group X(F) of F-points of X, and
W is a submodule in KerA. We note that I'Iv= —v for any ve(Kerd)*; in
particular Iv=0<>v=0 in (Ker 1)*. We have the Riemann form

e: Ker A x Ker J—>F*

which is a non-degenerate skew-symmetric bilinear pairing, equivariant with
respect to the action of the Galois group [5, 6]. The Galois module Ker A8 is a
direct sum of eight copies of the Galois module Ker 4, and the Riemann form

eg: Ker 28 x Ker A8 > F*
corresponding to the polarization A® is a direct orthogonal sum of eight copies
of e. We denote by
WtcKerlc X(F)
the orthogonal complement of W in Ker A with respect to the Riemann form e;
it is a Galois submodule of Ker A. The product of the orders of the groups W

and W+ is equal to the order n of Ker 4, i.e. to the degree of the polarization A.
We define the Galois submodule

WcKer 18 =(Ker 4)8 =(Ker A)* x (Ker 1)*
as the sum
W=W,+W,

of two Galois submodules.
Here W, and W, are the Galois modules isomorphic to W* and (W*)*,
respectively, defined as follows:
W, ={(x, Ix)|xe W*<(Ker 1)*} =(Ker 1)* x (Ker })*
=(Ker )8 =Ker A8,
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W,={(y, —1y)|lye (WH* =(Ker 1)*} =(Ker 1)* x (Ker 1)*
=(Ker )®=Ker 8.

It is clear that W, and W, are isotropic and mutually orthogonal with respect
to the Riemann form eg. Therefore, W=W, + W, is an isotropic Galois sub-
module in KerA® with respect to the Riemann form. This implies that the
polarization A® descends to a polarization u on Y=X8W. Let us investigate
the degree of pu.

5.1. The product of the orders of the groups W, and W, is equal to the square-
root of the order of the group (Ker A)®=Ker 8. Hence, if W, n W, ={0}, then
W is a maximal isotropic subgroup of Ker A%, and the polarization A® descends
to a principal polarization on X8/W. (This condition is satisfied if W={0}, W
=Ker 4, or if deg A is odd. See 5.3.)

In general, the intersection W, "W, is isomorphic to the group W, where
W, is a subgroup of elements of period <2 in WnW+*. In particular, W,
belongs to the group elements of period <2 in X (F), hence its order divides
224imX " and the order of the group W, nW,~ W, divides 28%™X This implies
that the order of the isotropic Galois submodule

W =W, + W,cKer i®

is the square-root of the order of Ker A® divided by a power of 2. This power is
not greater than 8dim X. This implies in turn that A® descends to a polariza-
tion of degree dividing 2!6%mX,

5.2. Let us find for what x e X (F)
Ix=((x, x, x, x), I(x, x, x, x))e W.

First of all, for any xe W
IxeW,cW,+W,=W.
Moreover,
IxeW,<xeW.
I claim that
IxeW=2xeW.

It is enough to prove that Ixe W = [(2x)e W,. Let us put

y=(x, x,x, x)e X (F)*=X*(F)
and let
Ix=(y, IY)5W=W1+W2~

Then, by the definitions of W, and W,, we can find
ue W*c(Ker A)* < X (F)* = X*(F),
ve(Wh)* c(Ker A)*c X (F)* = X*(F)
such that
Ix=(y,1y)=(, Tu)+ (v, —Iv),
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ie.
utv=y, Iu—-v)=Iy.
Hence,
Iu—v)=Iu+v)
and

1(20)=0.
Since ve(Ker A)*, then 2v=0 (Sect. 5).
This implies that

1Qx)=21x=2(u,Iu)eW,, 2xeW.
Thus, )
WcKer(nl: X -5 X8 — X8/W)ciWc X (F).

It follows that the kernel of
X/W-X8W

is killed by multiplication by 2, hence its order divides

92dim(X/W) _ 92dimX_

5.3 Let us examine in more detail the case where W=Ker A. Then

X/W=X/Keri=X', W'={0}.

It is clear that
W ={(x, Ix)|x €(Ker 1)*} =(Ker 1)* x (Ker })* =(Ker 1)® =Ker 1°

is a maximal isotropic subgroup in KerA® and Y(W,1)=X?®/W is an Abelian
variety with a principal polarization. The natural isomorphism

Q: X*xX*>X*x X4=X8
(u, v)— (u, Iu)+(0, v)=(u, Iu+v)
induces isomorphisms (W = ¢ ((Ker A)* x {0}) = ¢(X* x {0}))

X8/W~X*/(Ker A)* x X*=(X/Ker 1)* x X*
—(XY)* x X4 =(X x X')*,

In particular, the Abelian variety (X x X")* has always a principal polarization.
This statement is true over a field of any characteristic; the proof is the same,
except that we have to use finite group schemes (over fields) instead of finite
groups.

According to Deligne ([2], 1.22, 1.27) the existence of a principal polariza-
tion on (X x X*)* makes it possible to omit the assumption about polarizations in
the statement of the finiteness theorem for Faltings height ([4], §3, Satz 1).

5.3.1. Remark. Let r be a natural number such that Ker 4 is killed by multipli-
cation by r. Let us assume that there is an integer ae Z with
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a’= —1(modr).
The polarization A defines a polarization
lz: XZ-*(X')Z =(X2)t
of the Abelian variety X?2=X x X. Here
Ker A2=(Ker 1)?,
and the Riemann form
e,: Ker A2 x Ker A - F*

is a direct orthogonal sum of two copies of the Riemann form e.
Let us define a finite Galois submodule V, isomorphic to Ker 4, as follows
(compare with [9], §4, Proof of Statement 4):

V={(x, ax)|xeKer 1} =(Ker 1)>=Ker 12,

Clearly, V is isotropic with respect to e, and its order is equal to the square-
root of the order of Ker A%, i.e. V is a maximal isotropic subgroup in Ker 12.

This implies that X2/V has a principal polarization. On the other hand, we
have an isomorphism

[iXxX->XxX=X2
(x, Y= (x,ax)+(0, y)=(x,ax+y)
and
V=f(Kerix{0})=f(X x{0}).

Thus, we obtain isomorphisms
X2 V~(X/Ker ) x X=X'x X=X x X"

In particular, X x X* has a principal polarization if —1(modr) is a square.
Similarly, if —1 modr is not a square but can be represented as a sum of two
squares, then (X x X")? has a principal polarization.

5.3.2. Example. Let X be an Abelian surface in a projective space P* over the
field of complex numbers [14]. Then O(1) induces a polarization

A XX
with
Ker Ax(Z/57)*

([14], Th. 5.2, p.76; Th.6.1, p.78). Since

-1

=1,

)
the four-dimensional Abelian variety X x X* has a principal polarization.
[Concerning polarizations on Abelian surfaces see [13]. In particular, there is
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a natural isomorphism of the Néron-Severi groups
NS(X)~NS(X"),
preserving intersection indices and Euler characteristics ([13], Th.1).]

54. Let A be an Abelian variety over the number field K. Let 4, be the kernel
of the multiplication by n in A(K) for any n=1. It is well known that 4, is a
finite Galois submodule of A(K). There is a natural embedding

EndA®Z/nZ—EndA,.

5.4.1. Corollary (to Statement 3.1). There exists a natural number r such that,
for each n=1 and Galois submodule W < A,, an isogeny u: A— A exists such that

rWcud,cW.

In particular, if n is relatively prime to r, then ud,=W.
5.4.2. Proof. Let r be as in (3.6). Let us put B=A/W and consider the
commutative diagram

A——> A/W=B

AJA,=A.

Since the preimage of B, in A(K) is equal to n~! W, we have vB,=W. By (3.6)
there exists a homomorphism f: A—»B with Kerfc A, and fA4,>rB,. Let us
ut

’ u=vfeEndA.
We have

B,oBA,orB,.
This implies that

W=vB,ov(fA,)=uA,,
uA,=v(fA,)>v(rB,)=r(vB,)=W,
Woud,orWw.

Replacing u by u+mn for sufficiently large m, we can assume that u is an
isogeny.
5.4.3. Corollary. For all but finitely many prime | the following statements hold
true.

a) The Z/lZ-algebra E,=End A ® Z/IZ is semisimple;

b) If W is a Galois submodule in A, then there exists ueE, such that u>=u
and uA,=W, ie. (1—u)A, is a complement of W in A,. In particular, A, is a
semisimple Galois module.

5.4.4. Proof. a) is well-known (see for instance [11], 3.2.).
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Let r be as in (5.4.1) and let us assume that E, is semisimple and ! is
relatively prime to r. By (5.4.1) there is

veEndAQZ/IZ=E,

such that v4,=W. Let I be the left ideal in E, generated by v.
By semisimplicity there is an idempotent u, generating I. Clearly, ud,=W.

5.4.5. Corollary. For all but finitely many prime | the endomorphism algebra of
the Galois module A, is precisely E,.

5.4.6. Proof. Assuming the semisimplicity of E, one has only to apply (5.4.3) to
the Abelian variety 4 x A and to the graphs of endomorphisms of the Galois
module 4, lying in A, x A;=(A4 x A), (see [11], 3.4).

5.4.7. Remark. Applying (5.4.1) to Ax A and to the graphs of endomorphisms
of the Galois module A, lying in (4 x A), one easily obtains the following
refinement of the Faltings’ theorem on homomorphisms [4] (compare with

[12]):

For any Abelian variety A over the number field K there exists a natural
number r satisfying the following conditions.

If an endomorphism u, of a Galois module A, can be extended to an
endomorphism of the Galois module A,,, then there exists an endomorphism u of
A coinciding with u, on A,.

6. The characteristic p case
Let F be a field of characteristic p>0. The construction of (5.3) can be made
over F. This implies the following improvement of Lemma2 (over F).

Let a: X—Z be an F-isogeny of Abelian varieties over F. There exist an
isogeny of Abelian varieties (over F) 6: X® Y, and embedding i: X - X®=
X x X7, x+(x, 0) and a commutative square

x—*t ,x8
al Jé
Z—Y

where Y=2Z*x(Z"* is an Abelian variety with a principal polarization and Z—Y
=Z x(Z3 x(Z"*), z+=(z, 0) is an embedding.

Indeed, let us choose an isogeny y: X’ —Z3 x(Z")* and define
5: XB=Xx X" >Z x(Z*x(Z))=Y
by the formula d(x, u)=(ax, yu).

Now, let Ai: X—> X' be a polarization such that there exists an F-isogeny
B: Y- X" with A=pa. This implies that W=Ker« is a finite group subscheme
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of KerA. Let n=degA. Then KerA and W are killed by multiplication by n.
Let us choose a quadruple of integers a, b, ¢, d with

s=a’+b*+c*+d*= —1(modn).

In what follows we discuss the construction of Sect.5 over F, i.e. the con-
struction of “almost maximal isotropic” group subscheme W of Ker A%, canoni-
cal isogeny n: X8> X8/W=Y(W, ) and a polarization u on Y(W, A) of small
degree. When n=deg A is prime to p, or F is perfect, the arguments of Sect.5
can be applied mutatis mutandis; but when p divides n and F is not perfect we
have to prove that the quotient X®/W is an Abelian variety defined over F.
The general theory of Abelian varieties only implies that X8/W is defined over
a field F' which is a finite purely inseparable extension of F. But if X®/W is
defined over F so are = and u as F'-homomorphisms between Abelian varieties
defined over F and all is OK. We shall prove (see below) that X®/W is defined
over F if p#2. So, the construction of Sect. 5 can be made over F if one of the
following conditions holds:

a) F is perfect;

b) n is prime to p;

c) pF2;

d) n is odd (corollary of b)+c)).

We shall begin from the construction of W. Let us put
V=Ker(f: X=X"->Z)cX.
Since A=A'=d'f#!, we have V =Ker A.

6.0. Lemma. Let F be an algebraic closure of F, X= XQ®F, Z=ZQ®F. Let
2 X- X' be the polarization induced by A and W=X QF= Ker(oc X-Z),V
=V®F=Ker(f': X>Z")<Ker 1 be the kernels of the isogenies & and B in-
duced by a and B respectively. Let L be an ample invertible sheaf on X inducing
4 and e=e®: Ker A x Ker A-G,, be the skew-symmetric non-degenerate pairing
arising from the theta group of L (Mumford [5], §23). Then V coincides with
the orthogonal complement W+ of W in Ker A with respect to e.

Proof. At the beginning let us assume that W is isotropic, i.e. Wc W*. Then
one may descend A to a polarization v: Z—Z' on Z=X/W and A=&va. Since
A=o' B, A=a'B' and *(ﬁ‘—vo‘z) 0. Since & is an isogeny, ﬂ‘—vcx and V=Ker f
=Ker(va: X->X/W=Z-2Z"). But Kerv—Wl/WcX/W Z ([5], §23, Lem-
ma 2). This implies that W*=Ker f'=

In general, let us replace 4 by ni. Then B is replaced by np, A by ni, Ker
by n~'KerZcX, V and W* by n='Vand n~! W+ respectively and W becomes
isotropic. This implies that n=' V=n~! W+ and therefore V' =W",

Let us put Y=2Z*x(Z")* and define the isogeny y¥: X®=X*x X*—

4x(Z"*=Y by the formula

‘/J(xl’ X5 X3, X4, X5, X6y X7, xs)

=(axy, ax,, 0X3, AX4, fXs, fXg, X4, fXg).
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Clearly, Kery=W*x V*<=(Ker 4)* x (Ker ))*=Ker A%. In particular, Kery is
killed by multiplication by n. Let I, I'e M_(Z)<End X* be as in Sect. 5. Recall
that I[I'=I'" =se Z<=M,(Z)cEnd X*. Let us consider the “2 x 2 matrix”

— 1 It 4 _ s
= (1 S+2>€M2(M4(Z))CM2(EndX )=End X8.

Clearly, J: X8> X?8 is an isogeny, whose kernel is killed by multiplication by 2.
Notice that s+2=1(modn) and

=) Y

11
Let us denote by I, the isogeny (I I): X3=X*xX*>X*x X*=X?8. The

isogeny (0 I') X8=X*xX*>X*x X*=X? induces the automorphism of

Kery. This implies that J and I, induce the homomorphisms of the finite
group schemes Ker—Ker A8 which have the same image. Let us denote this
image by W. Clearly, W is a finite group subscheme of KerA® and J and I,
induce epimorphisms Ker 18— W such that their kernels are killed by multipli-
cation by 2. This implies (as in 5.1) that the order of W is the square root of
the order of Ker A® divided by a power of 2 and this power is not greater than
8dimX. Lemma 6.0 and the epimorphism I,: Kery—W allow to check that
W®FcKeri® x F=KerA® is isotropic with respect to the pairing Ker A8
xKerA2*>G,, arising from the theta group attached to the polarization
A8: X8 (X®). This implies that W®F is an “almost maximal” isotropic
group subscheme of Keri® and one may descend A® to a polarization
i Y(W, )=X8/W—-Y(W, A (as in Sect.5). Let 7: X3—X8/W=Y(W, ) be the
canonical isogeny. The map J induces the isogeny

J:Y=Y@F=X8/(Kery @F)-» X /(WR F)=Y(W, A)

whose kernel is killed by multiplication by 2.

Clearly, Y(W, A), %, i and j are defined over some finite purely inseparable
extension F' of F. This implies the existence of an Abelian variety Y(W, 1)
over F' with a polarization g, an F'-isogeny n': X®*@F' —Y (W, A) with the
kernel WQ®F’ such that u' is a descent of the polarization A'® on X®Q®F’
(obtained from A®) with respect to ' and the existence of F'-isogeny
JYR®F ->Y(W,A) whose kernel is killed by multiplication by 2. Clearly,
Y (W, AY is defined over F if degn’ or degj is prime to p. But degn’ divides n®
and degj’ is a power of 2. So, all is OK if n is prime to p or p%2 or F is
perfect.

The following finiteness theorems are valid in characteristic p.

6.1. Theorem (cf. [11], 4.1). The set of g-dimensional Abelian varieties over a
finite field R is finite (up to isomorphism).

6.2. Theorem (cf. [11], §6; [12]). Let X be an Abelian variety over a finitely
generated field E of characteristic p>2. Then, the set of Abelian varieties Y
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over E, such that there exists an isogeny Y —X of degree prime to p is finite (up
to isomorphism ).

7. Applications to abelian schemes over curves

In this Sect. B is a smooth connected (not necessarily complete) curve over the
field of complex numbers C, and

f: X-B

is an Abelian scheme over B. For each C-point se B(C)=B"", let X denote the
fibre f~!(s) which is an Abelian variety over C. The first homology groups
H,(X,, Z) constitute a locally constant sheaf (a local system) V=R, f,Z on B*"
which is a family of Hodge structures of weight —1 (Deligne [1]). The
endomorphisms of this family are exactly the endomorphisms of the Abelian
scheme X/B [1]. We shall say that X/B satisfies condition (%) if all the
endomorphisms of V (viewed as a local system) preserve the Hodge structure,
and, consequently, are endomorphisms of X/B. This condition is similar to
condition (x) of Faltings [3] who considered endomorphisms of V antisym-
metric with respect to a fixed principal polarization on X. Clearly, condition
(**) is invariant under isogenies. If X satisfies (x*), then each power X"/B also
satisfies (#*). (All the products are taken over B.)

If X satisfies (#*) then there is a one-to-one correspondence between iso-
morphism classes of Abelian B-schemes, isogenous to X and (B, s)-invariant
Z-lattices in H, (X, Q) and the set of these classes is finite because the global
monodromy group of V is semisimple ([1], 4.2.9).

Faltings [3] proved that the set of principally polarized Abelian schemes of
a fixed relative dimension over B satisfying (x*) is finite (up to isomorphism).
(In fact, he proved a stronger assertion about Abelian schemes satisfying (x)).
Otherwise, if there is a relatively ample invertible sheaf on X (a polarization),
then a slight generalization of (5.3) yields the principally polarized Abelian
scheme Y/B=(X x X")*, isogenous to X8 If X satisfies (), then Y also
satisfies (x*). Now, Faltings’ finiteness theorem ([3], p.344) implies the follow-
ing statement.

7.1. Theorem. Let B be a smooth connected curve over the field of complex
numbers, and g be a natural number. There exist only finitely many Abelian
schemes X/B of relative dimension g satisfying (%) such that there exists a
relatively ample invertible sheaf on X.
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