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The Hasse principle

@ Let X be a variety over a number field k. Write Ay for the ring of
adeles of k. The set of adelic points of X is X(Ay); the set of
rational points X(k) is contained in it, under the diagonal embedding.
If X is a complete variety, then

X(Aw) =[] X(k)

where the product is over all places v of k.
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The Hasse principle

@ Let X be a variety over a number field k. Write Ay for the ring of
adeles of k. The set of adelic points of X is X(Ay); the set of
rational points X(k) is contained in it, under the diagonal embedding.
If X is a complete variety, then

X(a) = [T X(k)

where the product is over all places v of k.
@ Some classes of varieties satisfy the Hasse principle: that is,

X(Ag) # 0 = X (k) # 0.

In this case, it is straightforward to decide whether X has rational
points, since the condition on the left is a finite computation.
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Failure of the Hasse principle

@ Unfortunately, many interesting classes of varieties do not satisfy the
Hasse principle. In particular, K3 surfaces do not.
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Failure of the Hasse principle

@ Unfortunately, many interesting classes of varieties do not satisfy the
Hasse principle. In particular, K3 surfaces do not.

@ For example, the diagonal quartic surface
Xg + X = 6X3 +12X3

has points in every completion of @@, but no rational points.
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Failure of the Hasse principle

@ Unfortunately, many interesting classes of varieties do not satisfy the
Hasse principle. In particular, K3 surfaces do not.

@ For example, the diagonal quartic surface
Xg + X = 6X3 +12X3

has points in every completion of @@, but no rational points.

@ Manin showed that one can use the Brauer group of X to define a
subset of X(Ay) which must contain X(k). If this set is empty, we
say that there is a Brauer—Manin obstruction to the Hasse principle
for X. This accounted for all counterexamples to the Hasse principle
known then.
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The Brauer group of the function field

e Every field K has a Brauer group Br(K), the group of equivalence
classes of central simple algebras over K. In particular, this is true of
the function field k(X).

Martin Bright (University of Bristol) Computing Brauer—Manin obstructions Banff 2008 6 /26



The Brauer group of the function field

e Every field K has a Brauer group Br(K), the group of equivalence
classes of central simple algebras over K. In particular, this is true of
the function field k(X).

@ We might hope to be able to evaluate an element of Br k(X) at a
point of X, to obtain an element of Br k.
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The Brauer group of the function field

@ Every field K has a Brauer group Br(K), the group of equivalence
classes of central simple algebras over K. In particular, this is true of

the function field k(X).

@ We might hope to be able to evaluate an element of Br k(X) at a
point of X, to obtain an element of Br k.

@ Just as a rational function cannot be evaluated at every point of a
variety, so a typical element of Br k(X) cannot be evaluated
everywhere — it is ramified along some divisor.
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The Brauer group of a variety

@ Let X be a smooth, geometrically irreducible variety over k. The
Brauer group of X, written Br X, can be informally defined as the
subgroup of Br k(X) of those elements which can be evaluated
everywhere. These algebras are called Azumaya algebras.

Martin Bright (University of Bristol) Computing Brauer—Manin obstructions Banff 2008

7/26



The Brauer group of a variety

@ Let X be a smooth, geometrically irreducible variety over k. The
Brauer group of X, written Br X, can be informally defined as the
subgroup of Br k(X) of those elements which can be evaluated
everywhere. These algebras are called Azumaya algebras.

@ We will be interested only in algebraic elements of Br X, that is, those
which are split by an extension of k. These can be described in Galois

cohomology as

Bri X = ker (H?(k, k(X)*) — H?(k, Div X)).
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The Brauer group of a variety

@ Let X be a smooth, geometrically irreducible variety over k. The
Brauer group of X, written Br X, can be informally defined as the
subgroup of Br k(X) of those elements which can be evaluated
everywhere. These algebras are called Azumaya algebras.

@ We will be interested only in algebraic elements of Br X, that is, those
which are split by an extension of k. These can be described in Galois
cohomology as

Bri X = ker (H?(k, k(X)*) — H?(k, Div X)).

o Equivalently, a class a in H?(k, k(X)*) lies in Bry X if and only if, for
all points P € X, we can represent « by a cocycle taking values in

X
X,P
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The Brauer group of a variety

Example

Let //k be a quadratic extension, and suppose that f is a rational function
on X whose divisor is a norm from /, say (f) = N,/ D. Then the
quaternion algebra A = (//k, f) is an Azumaya algebra on X.
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The Brauer group of a variety

Example

Let //k be a quadratic extension, and suppose that f is a rational function
on X whose divisor is a norm from /, say (f) = N,/ D. Then the
quaternion algebra A = (//k, f) is an Azumaya algebra on X.

@ To see this, let P be any point of X. If f is invertible at P, then A
can be evaluated at P to get A(P) = (I/k, f(P)).
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The Brauer group of a variety

Example

Let //k be a quadratic extension, and suppose that f is a rational function
on X whose divisor is a norm from /, say (f) = N,/ D. Then the
quaternion algebra A = (//k, f) is an Azumaya algebra on X.

@ To see this, let P be any point of X. If f is invertible at P, then A
can be evaluated at P to get A(P) = (//k, f(P)).

o Otherwise, there is some divisor D' ~ D which avoids P; let
(g) = D' — D. Then the algebra (//k, fN;/.g) is isomorphic to A and
can be evaluated at P.
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The Brauer—Manin obstruction

@ Let v be a place of k. Recall from class field theory that there is a
canonical injection inv, : Brk, — Q/Z, such that the sequence

Doyvinvy
s

0—>Brk—>€BBrkv Q/Z

is exact.
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The Brauer—Manin obstruction

@ Let v be a place of k. Recall from class field theory that there is a
canonical injection inv, : Brk, — Q/Z, such that the sequence

Doyvinvy
s

0—>Brk_>@5rkv Q/Z

is exact.

o If Ais an Azumaya algebra on X and P, € X(k,), then A can be
evaluated at P, to get an element of Br k,. So A gives maps

X(k,) — Q/Z, P, — inv, A(P,)

for each v.
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The Brauer—Manin obstruction

@ Let v be a place of k. Recall from class field theory that there is a
canonical injection inv, : Brk, — Q/Z, such that the sequence

Doyvinvy
s

0—>Brk_>@5rkv Q/Z

is exact.

o If Ais an Azumaya algebra on X and P, € X(k,), then A can be
evaluated at P, to get an element of Br k,. So A gives maps

X(k,) — Q/Z, P, — inv, A(P,)

for each v.

@ Combining these two facts, we get. ..
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The Brauer—Manin obstruction

X(k) —— X(Ax)

4| 4|

Br k @, Brk,
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The Brauer—Manin obstruction

X(k) —— X(Ax)

4| 4|

Brk —— @, Brk, —— Q/Z
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The Brauer—Manin obstruction

X(k) —— X(Ax)

4| 4|

Brk —— @, Brk, —— Q/Z

e We deduce that, if (P,) € X(Ax) is the diagonal image of a rational
point, then _ inv, A(P,) = 0.
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The Brauer—Manin obstruction

X(k) —— X(Ax)

4| 4|

Brk —— @, Brk, —— Q/Z

e We deduce that, if (P,) € X(Ax) is the diagonal image of a rational
point, then _ inv, A(P,) = 0.
@ Given a subset B of Br X, define

X(A)E = {(PV) € X(Ay) ) Y inv, A(P,) =0 for all A € B}.

We have shown that X (k) C X(Ax)BX.
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Comments

o If X(Ax)B is empty, we say there is a Brauer-Manin obstruction to
the Hasse principle coming from B. If X(Ak)B is not the whole of
X(Ag), we say there is a Brauer—Manin obstruction to weak
approximation.
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Comments

o If X(Ax)B is empty, we say there is a Brauer-Manin obstruction to
the Hasse principle coming from B. If X(Ak)B is not the whole of
X(Ag), we say there is a Brauer—Manin obstruction to weak
approximation.

e Given A € Br X, it is often possible to compute X (A, )4 effectively.
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Comments

o If X(Ax)B is empty, we say there is a Brauer-Manin obstruction to
the Hasse principle coming from B. If X(A)B is not the whole of
X(Ag), we say there is a Brauer—Manin obstruction to weak
approximation.

e Given A € Br X, it is often possible to compute X (A)* effectively.

@ We have constant Azumaya algebras Br k C Br X, but the condition
they impose is vacuous. So the Brauer—Manin obstruction is
determined by Br X/ Br k.
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Comments

o If X(Ax)B is empty, we say there is a Brauer-Manin obstruction to
the Hasse principle coming from B. If X(Ax)B is not the whole of
X(Ay), we say there is a Brauer—Manin obstruction to weak
approximation.

e Given A € Br X, it is often possible to compute X (A)* effectively.

@ We have constant Azumaya algebras Br k C Br X, but the condition
they impose is vacuous. So the Brauer—Manin obstruction is
determined by Br X/ Br k.

@ We will show how to compute generators for the algebraic part,

Bri X/ Br k, and the associated obstruction.
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Computing the algebraic Brauer group

@ Recall that the algebraic part of the Brauer group, Bri X, can be
described as a Galois cohomology group

Bri X = ker (H?(k, k(X)*) — H?(k, Div X)).

On the face of it this is not very useful, as H?(k, k(X)*) is not
something we want to be computing with.
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Computing the algebraic Brauer group

@ Recall that the algebraic part of the Brauer group, Bri X, can be
described as a Galois cohomology group

Bri X = ker (H?(k, k(X)*) — H?(k, Div X)).

On the face of it this is not very useful, as H?(k, k(X)*) is not
something we want to be computing with.

@ However, we only need to know generators for Bry X/ Br k. Write the
homomorphism above as a composition

H2(k, k(X)) & H?(k, Princ X) £ H2(k, Div X).
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Computing the algebraic Brauer group

@ Recall that the algebraic part of the Brauer group, Bri X, can be
described as a Galois cohomology group

Bri X = ker (H?(k, k(X)*) — H?(k, Div X)).

On the face of it this is not very useful, as H?(k, k(X)*) is not
something we want to be computing with.

@ However, we only need to know generators for Bry X/ Br k. Write the
homomorphism above as a composition

H2(k, k(X)) & H?(k, Princ X) £ H2(k, Div X).
@ The kernel-cokernel exact sequence for this composition of maps is
0 — kerf — Br1 X — ker g — coker f

and we can identify these groups.
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Computing the algebraic Brauer group

0— kerf = Bri X — kerg — cokerf
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Computing the algebraic Brauer group

0— kerf = Bri X — kerg — cokerf

@ Using the exact sequence

0 — k* — k(X)* — Princ X — 0

shows that ker f = im(Br k), and that coker f = H3(k,k*) =0 .
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Computing the algebraic Brauer group

Brk—Bri X — kerg —0

@ Using the exact sequence
0 — k* — k(X)* — Princ X — 0

shows that ker f = im(Br k), and that coker f = H3(k,k*) =0 .
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Computing the algebraic Brauer group

Brk—Bri X — kerg —0

@ Using the exact sequence
0 — k* — k(X)* — Princ X — 0
shows that ker f = im(Br k), and that coker f = H3(k,k*) =0 .
@ The exact sequence

0 — PrincX — DivX — PicX — 0

shows that ker g is the image of the boundary map
0 : H'(k,Pic X) — H2(k, Princ X). Since Div X is an induced

module, this map is injective.
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Computing the algebraic Brauer group

Brk — Br; X — H'(k,PicX) — 0

@ Using the exact sequence
0 — k* — k(X)* — Princ X — 0
shows that ker f = im(Br k), and that coker f = H3(k,k*) =0 .
@ The exact sequence

0 — PrincX — DivX — PicX — 0

shows that ker g is the image of the boundary map
0 : H'(k,Pic X) — H2(k, Princ X). Since Div X is an induced

module, this map is injective.
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Computing the algebraic Brauer group

Brk — Br; X — H'(k,PicX) — 0

@ Using the exact sequence
0 — k* — k(X)* — Princ X — 0
shows that ker f = im(Br k), and that coker f = H3(k,k*) =0 .
@ The exact sequence

0 — PrincX — DivX — PicX — 0

shows that ker g is the image of the boundary map
0 : H'(k,Pic X) — H2(k, Princ X). Since Div X is an induced
module, this map is injective.

@ So there is an isomorphism Bry X/ Br k = H*(k, Pic X).
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Computing the algebraic Brauer group

o We have an isomorphism Bry X/ Br k = H(k,Pic X). If Pic X is
finitely generated, then we can hope to understand this group. If
Pic X is also free, then Bry X/ Br k is finite.
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Computing the algebraic Brauer group

o We have an isomorphism Br; X/ Br k = H(k,Pic X). If Pic X is
finitely generated, then we can hope to understand this group. If
Pic X is also free, then Bry X/ Br k is finite.

o If we know explicitly a finite, Galois-stable set of generators for Pic X,
and the Galois action on them, then computing H(k, Pic X) is
straightforward.
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Computing the algebraic Brauer group

o We have an isomorphism Br; X/ Br k = H(k,Pic X). If Pic X is
finitely generated, then we can hope to understand this group. If
Pic X is also free, then Br; X/ Br k is finite.

o If we know explicitly a finite, Galois-stable set of generators for Pic X,
and the Galois action on them, then computing H(k, Pic X) is
straightforward.

@ On a diagonal quartic surface, there are 48 straight lines. We can
write down their equations, and they generate Pic X.
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Computing the algebraic Brauer group

o We have an isomorphism Br; X/ Br k = H(k,Pic X). If Pic X is
finitely generated, then we can hope to understand this group. If
Pic X is also free, then Br; X/ Br k is finite.

o If we know explicitly a finite, Galois-stable set of generators for Pic X,
and the Galois action on them, then computing H(k, Pic X) is
straightforward.

@ On a diagonal quartic surface, there are 48 straight lines. We can
write down their equations, and they generate Pic X.

@ The Galois group of the field of definition of the 48 lines is always a
subgroup of the “generic” Galois group, which is an extension of
by (5 x G4 x C4. Going through all the possible Galois actions finds
all possibilities for Bry X/ Br k. It is always killed by 8, and has 2-rank
at most 7.
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Finding the Azumaya algebras

o Getting our hands on explicit generators for H*(k, Pic X) is only the
first step to computing the algebraic Brauer—Manin obstruction. We
now need to turn them into explicit generators for Br; X/ Br k.
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Finding the Azumaya algebras

o Getting our hands on explicit generators for H*(k, Pic X) is only the
first step to computing the algebraic Brauer—Manin obstruction. We
now need to turn them into explicit generators for Br; X/ Br k.

@ The isomorphism H(k,Pic X) 22 Bry X/ Br k arose as a composition
of various maps:

H(k, Pic X) 2 H2(k, Princ X) & H2(k, k(X)X).
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Finding the Azumaya algebras

o Getting our hands on explicit generators for H*(k, Pic X) is only the
first step to computing the algebraic Brauer—Manin obstruction. We
now need to turn them into explicit generators for Br; X/ Br k.

@ The isomorphism H(k,Pic X) 22 Bry X/ Br k arose as a composition
of various maps:

HY(k, Pic X) & H2(k, Princ X) < H2(k, k(X)X).

o The first of these, , is a boundary map in cohomology and is
straightforward to compute: lift from Pic X to Div X and take the

coboundary. Note that there is a choice of lifts here, giving different
but cohomologous images.
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Finding the Azumaya algebras

o Getting our hands on explicit generators for H*(k, Pic X) is only the
first step to computing the algebraic Brauer—Manin obstruction. We
now need to turn them into explicit generators for Br; X/ Br k.

@ The isomorphism H(k,Pic X) 22 Bry X/ Br k arose as a composition
of various maps:

HY(k, Pic X) & H2(k, Princ X) < H2(k, k(X)X).

o The first of these, , is a boundary map in cohomology and is
straightforward to compute: lift from Pic X to Div X and take the
coboundary. Note that there is a choice of lifts here, giving different
but cohomologous images.

o Computing g~ ! involves lifting from Princ X to k(X)*, a potentially
slow operation. Moreover, lifting just anyhow will not give us a

cocycle — to do that, we need to make effective the fact that
H3(k,k*) = 0.
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Using a small splitting field

@ Some of these problems become easier if the elements of H(k, Pic X)
we're looking at are split by a small extension //k.

HY(k,PicX) —2— H2(k,PrincX) «—5— H2(k,k(X)*)
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Using a small splitting field

@ Some of these problems become easier if the elements of H(k, Pic X)
we're looking at are split by a small extension //k.

HY(k,PicX) —2— H2(k,PrincX) «—5— H2(k,k(X)*)

o] o] o]

HY(I/k,Pic X)) —— H?(I/k,Princ X)) ——— H2(I/k, k(X))*)
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Using a small splitting field

@ Some of these problems become easier if the elements of H(k, Pic X)
we're looking at are split by a small extension //k.

HY(k,PicX) —2— H2(k,PrincX) «—5— H2(k,k(X)*)

o] o] o]
H(1/k,Pic X;) —— H2(I/k,Princ X)) —— H2(I/k, k(X;)*)
| | |

v Pic X, N Princ X k(X)*
(o—1) N Princ X, Nk(X)*

e If I/k is cyclic, things get even more straightforward.
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Using a small splitting field

@ Some of these problems become easier if the elements of H(k, Pic X)
we're looking at are split by a small extension //k.

HY(k,PicX) —2— H2(k,PrincX) «—5— H2(k,k(X)*)

infT infT infT
H(1/k,Pic X)) —— H2(I/k,Princ X;) «——— H2(I/k, k(X))

n Pic X N Princ X k(X)*

(o—1) NPrinc X; Nk (X)) %

e If I/k is cyclic, things get even more straightforward.

@ But we have introduced a new problem: we probably don't know a set
of divisors defined over / which generate Pic X|.
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Magma demo
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Theoretical results on the evaluation map

Let A be an Azumaya algebra on X, and fix a finite place v. We will apply
some geometry to understand the evaluation map

X(k,) — Q/Z P — inv, A(P).
@ We saw in the demonstration that, at primes of good reduction, the
invariant was everywhere zero. For each P € X(k,), we could always

find one of our representative algebras (—1, f) such that f(P) was a
unit in k.
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Theoretical results on the evaluation map

Let A be an Azumaya algebra on X, and fix a finite place v. We will apply
some geometry to understand the evaluation map

X(k,) — Q/Z P — inv, A(P).

@ We saw in the demonstration that, at primes of good reduction, the
invariant was everywhere zero. For each P € X(k,), we could always
find one of our representative algebras (—1, f) such that f(P) was a
unit in k.

@ Of course, we could spoil this: we could change our algebra by a
constant algebra ramified at v. The invariant would still be constant,
but not necessarily zero.
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Smooth models

It is much easier to investigate the behaviour of A(P) when P reduces to
a smooth point. What does this mean for diagonal quartic surfaces?

@ Consider the diagonal quartic surface
X o agXy 4+ aiX{ + ax Xy +a3Xy =0

where a; € Q. We may clearly assume that the a; are coprime
integers, and that none of them is divisible by a fourth power.

Reducing the equation modulo p gives a surface over [F, which may
be singular.
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Smooth models

It is much easier to investigate the behaviour of A(P) when P reduces to
a smooth point. What does this mean for diagonal quartic surfaces?

@ Consider the diagonal quartic surface
X o agXy 4+ aiX{ + ax Xy +a3Xy =0

where a; € Q. We may clearly assume that the a; are coprime
integers, and that none of them is divisible by a fourth power.
Reducing the equation modulo p gives a surface over [F, which may
be singular.

@ But this is only one model of X; we can easily produce others.

Martin Bright (University of Bristol) Computing Brauer—Manin obstructions Banff 2008 21 /26



Smooth models

It is much easier to investigate the behaviour of A(P) when P reduces to
a smooth point. What does this mean for diagonal quartic surfaces?

@ Consider the diagonal quartic surface
X o agXy 4+ aiX{ + ax Xy +a3Xy =0

where a; € Q. We may clearly assume that the a; are coprime
integers, and that none of them is divisible by a fourth power.
Reducing the equation modulo p gives a surface over [F, which may
be singular.

@ But this is only one model of X; we can easily produce others.

@ Suppose, say, that p divides ag but none of the other a;. We can
replace X; by pX; for i = 1,2, 3 and then remove the resulting power
of p, giving a new surface isomorphic (over Q) to X.
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Smooth models

@ In this way we obtain up to four different models. It is not difficult to
show that any point in X(Q,) reduces to a smooth point modulo p in
at least one of these models.
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Smooth models

@ In this way we obtain up to four different models. It is not difficult to
show that any point in X(Q)) reduces to a smooth point modulo p in
at least one of these models.

@ Geometrically, we have shown that there exists a model X/Zp for X,
obtained by blowing up our original one, such that any point of
X(Qp) extends to a smooth point of X'(Zp). The different equations
describe the components of this model.
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Smooth models

@ In this way we obtain up to four different models. It is not difficult to
show that any point in X(Q)) reduces to a smooth point modulo p in
at least one of these models.

@ Geometrically, we have shown that there exists a model X/Zp for X,
obtained by blowing up our original one, such that any point of
X(Qp) extends to a smooth point of X'(Zp). The different equations
describe the components of this model.

@ In fact, this can be accomplished for any smooth variety over Qp;
such a model is called a weak Néron model.
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Unramified places

Theorem

Let X be a smooth, geometrically irreducible variety over k,. Let
A € Br1 X be an Azumaya algebra split by an unramified extension of k, .
Let X/O, be a smooth model of X, with Z an irreducible component of

the special fibre. Then inv, A(P) is constant on the set of points P
reducing to Z.
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prime of good reduction, the Galois module Pic X is unramified.
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Let X be a smooth, geometrically irreducible variety over k,. Let
A € Br1 X be an Azumaya algebra split by an unramified extension of k, .
Let X/O, be a smooth model of X, with Z an irreducible component of

the special fibre. Then inv, A(P) is constant on the set of points P
reducing to Z.

@ In particular, this is true at primes where X has good reduction. At a
prime of good reduction, the Galois module Pic X is unramified.

@ This is because the inertia group, by definition, acts trivially on the
reduction of X modulo p. So each of the 48 lines on X must be
taken to a line with the same reduction modulo p.
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Unramified places

Theorem

Let X be a smooth, geometrically irreducible variety over k,. Let

A € Br1 X be an Azumaya algebra split by an unramified extension of k, .
Let X /O, be a smooth model of X, with Z an irreducible component of
the special fibre. Then inv, A(P) is constant on the set of points P
reducing to Z.

@ In particular, this is true at primes where X has good reduction. At a
prime of good reduction, the Galois module Pic X is unramified.

@ This is because the inertia group, by definition, acts trivially on the
reduction of X modulo p. So each of the 48 lines on X must be
taken to a line with the same reduction modulo p.

@ But the 48 lines all have distinct reductions — after all, the reduction

of X is a smooth diagonal quartic surface, so contains 48 straight
lines.
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Tamely ramified places

@ Now suppose that A is split by a totally, tamely ramified Galois
extension //k, of degree n. There are isomorphisms

Br(//k,) = k) /NI* =2 O, /NOS = F* /(F*)"

where F is the residue field of k,, .
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Tamely ramified places

@ Now suppose that A is split by a totally, tamely ramified Galois
extension //k, of degree n. There are isomorphisms

Br(//k,) = kX /NI* = O, /NOF = F* /(F¥)"

where T is the residue field of k,.

@ This tells us that, if we have a 2-cocycle describing an element of
Br(//ky), and if it takes unit values, then its class is determined by its
reduction modulo v.
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Tamely ramified places

@ Now suppose that A is split by a totally, tamely ramified Galois
extension //k, of degree n. There are isomorphisms

Br(//k,) = kX /NI* = O, /NOF = F* /(F¥)"

where T is the residue field of k,.

@ This tells us that, if we have a 2-cocycle describing an element of
Br(//ky), and if it takes unit values, then its class is determined by its
reduction modulo v.

e With a little work, we can deduce that inv, A(P) only depends on the
residue class of P. In fact, we can say more. ..
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Tamely ramified places

Theorem

Let X be a smooth, geometrically irreducible variety over k,, and let

A € Br1 X be an Azumaya algebra split by a tamely ramified Galois
extension |/k, of degree n. Let X /O, be a smooth model of X, with Z a
geometrically irreducible component of the special fibre. Then, after
possibly modifying A by a constant algebra, there is a Z-torsor T under
W, such that the following diagram commutes.

X(k,)z —2— Brl/k,

L

Z(F) —— FX/(F)"
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Consequences for diagonal quartics

@ On a diagonal quartic surface X, the 48 lines are all defined over
some 2-power degree extension of the base field; so this extension is
either unramified or tamely ramified except at 2.
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@ On a diagonal quartic surface X, the 48 lines are all defined over
some 2-power degree extension of the base field; so this extension is
either unramified or tamely ramified except at 2.

@ So, if p # 2, evaluating the Brauer—Manin obstruction at p comes
down to studying some torsors under p, on the reduction of X at p.
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some 2-power degree extension of the base field; so this extension is
either unramified or tamely ramified except at 2.

@ So, if p # 2, evaluating the Brauer—Manin obstruction at p comes
down to studying some torsors under p, on the reduction of X at p.

@ If X has good reduction, then the reduction is again a smooth quartic
surface, so the only torsors under u,, are constant; we see again that
the Brauer—Manin obstruction there is constant.
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Consequences for diagonal quartics

@ On a diagonal quartic surface X, the 48 lines are all defined over
some 2-power degree extension of the base field; so this extension is
either unramified or tamely ramified except at 2.

@ So, if p # 2, evaluating the Brauer—Manin obstruction at p comes
down to studying some torsors under p, on the reduction of X at p.

@ If X has good reduction, then the reduction is again a smooth quartic
surface, so the only torsors under u,, are constant; we see again that
the Brauer—Manin obstruction there is constant.

o If the reduction of X is a cone, then consider a straight line L in that
cone. There are no non-constant torsors under w,, on L, even after
removing the vertex; so we deduce that the Brauer-Manin evaluation

map is constant on the set of points of X(Qp) reducing to points on
L.
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