Computing Brauer-Manin obstructions on diagonal quartic surfaces

Martin Bright
University of Bristol

Arithmetic of K3 surfaces, Banff, 2008

Outline

(1) Introduction

- The Hasse principle
- The Brauer group
- The Brauer-Manin obstruction
(2) Computing the Brauer-Manin obstruction
- Computing the algebraic Brauer group
- Finding the Azumaya algebras
- Magma demo
(3) Theoretical results on the evaluation map
- Smooth models
- Unramified places
- Tamely ramified places

Outline

(1) Introduction

- The Hasse principle
- The Brauer group
- The Brauer-Manin obstruction
(2) Computing the Brauer-Manin obstruction
- Computing the algebraic Brauer group
- Finding the Azumaya algebras
- Magma demo
(3) Theoretical results on the evaluation map
- Smooth models
- Unramified places
- Tamely ramified places

The Hasse principle

- Let X be a variety over a number field k. Write \mathbb{A}_{k} for the ring of adèles of k. The set of adelic points of X is $X\left(\mathbb{A}_{k}\right)$; the set of rational points $X(k)$ is contained in it, under the diagonal embedding. If X is a complete variety, then

$$
X\left(\mathbb{A}_{k}\right)=\prod_{v} X\left(k_{v}\right)
$$

where the product is over all places v of k.

The Hasse principle

- Let X be a variety over a number field k. Write \mathbb{A}_{k} for the ring of adèles of k. The set of adelic points of X is $X\left(\mathbb{A}_{k}\right)$; the set of rational points $X(k)$ is contained in it, under the diagonal embedding. If X is a complete variety, then

$$
X\left(\mathbb{A}_{k}\right)=\prod_{v} X\left(k_{v}\right)
$$

where the product is over all places v of k.

- Some classes of varieties satisfy the Hasse principle: that is,

$$
X\left(\mathbb{A}_{k}\right) \neq \emptyset \Rightarrow X(k) \neq \emptyset
$$

In this case, it is straightforward to decide whether X has rational points, since the condition on the left is a finite computation.

Failure of the Hasse principle

- Unfortunately, many interesting classes of varieties do not satisfy the Hasse principle. In particular, K3 surfaces do not.

Failure of the Hasse principle

- Unfortunately, many interesting classes of varieties do not satisfy the Hasse principle. In particular, K3 surfaces do not.
- For example, the diagonal quartic surface

$$
X_{0}^{4}+X_{1}^{4}=6 X_{2}^{4}+12 X_{3}^{4}
$$

has points in every completion of \mathbb{Q}, but no rational points.

Failure of the Hasse principle

- Unfortunately, many interesting classes of varieties do not satisfy the Hasse principle. In particular, K3 surfaces do not.
- For example, the diagonal quartic surface

$$
X_{0}^{4}+X_{1}^{4}=6 X_{2}^{4}+12 X_{3}^{4}
$$

has points in every completion of \mathbb{Q}, but no rational points.

- Manin showed that one can use the Brauer group of X to define a subset of $X\left(\mathbb{A}_{k}\right)$ which must contain $X(k)$. If this set is empty, we say that there is a Brauer-Manin obstruction to the Hasse principle for X. This accounted for all counterexamples to the Hasse principle known then.

The Brauer group of the function field

- Every field K has a Brauer group $\operatorname{Br}(K)$, the group of equivalence classes of central simple algebras over K. In particular, this is true of the function field $k(X)$.

The Brauer group of the function field

- Every field K has a Brauer group $\operatorname{Br}(K)$, the group of equivalence classes of central simple algebras over K. In particular, this is true of the function field $k(X)$.
- We might hope to be able to evaluate an element of $\operatorname{Br} k(X)$ at a point of X, to obtain an element of $\mathrm{Br} k$.

The Brauer group of the function field

- Every field K has a Brauer group $\operatorname{Br}(K)$, the group of equivalence classes of central simple algebras over K. In particular, this is true of the function field $k(X)$.
- We might hope to be able to evaluate an element of $\operatorname{Br} k(X)$ at a point of X, to obtain an element of $\operatorname{Br} k$.
- Just as a rational function cannot be evaluated at every point of a variety, so a typical element of $\operatorname{Br} k(X)$ cannot be evaluated everywhere - it is ramified along some divisor.

The Brauer group of a variety

- Let X be a smooth, geometrically irreducible variety over k. The Brauer group of X, written $\operatorname{Br} X$, can be informally defined as the subgroup of $\operatorname{Br} k(X)$ of those elements which can be evaluated everywhere. These algebras are called Azumaya algebras.

The Brauer group of a variety

- Let X be a smooth, geometrically irreducible variety over k. The Brauer group of X, written $\operatorname{Br} X$, can be informally defined as the subgroup of $\operatorname{Br} k(X)$ of those elements which can be evaluated everywhere. These algebras are called Azumaya algebras.
- We will be interested only in algebraic elements of $\mathrm{Br} X$, that is, those which are split by an extension of k. These can be described in Galois cohomology as

$$
\operatorname{Br}_{1} X=\operatorname{ker}\left(H^{2}\left(k, k(\bar{X})^{\times}\right) \rightarrow H^{2}(k, \operatorname{Div} \bar{X})\right) .
$$

The Brauer group of a variety

- Let X be a smooth, geometrically irreducible variety over k. The Brauer group of X, written $\operatorname{Br} X$, can be informally defined as the subgroup of $\operatorname{Br} k(X)$ of those elements which can be evaluated everywhere. These algebras are called Azumaya algebras.
- We will be interested only in algebraic elements of $\mathrm{Br} X$, that is, those which are split by an extension of k. These can be described in Galois cohomology as

$$
\operatorname{Br}_{1} X=\operatorname{ker}\left(H^{2}\left(k, k(\bar{X})^{\times}\right) \rightarrow H^{2}(k, \operatorname{Div} \bar{X})\right) .
$$

- Equivalently, a class α in $H^{2}\left(k, k(\bar{X})^{\times}\right)$lies in $\operatorname{Br}_{1} X$ if and only if, for all points $P \in X$, we can represent α by a cocycle taking values in $\mathcal{O}_{X, P}^{\times}$.

The Brauer group of a variety

Example

Let I / k be a quadratic extension, and suppose that f is a rational function on X whose divisor is a norm from l, say $(f)=N_{l / k} D$. Then the quaternion algebra $\mathcal{A}=(I / k, f)$ is an Azumaya algebra on X.

The Brauer group of a variety

Example

Let I / k be a quadratic extension, and suppose that f is a rational function on X whose divisor is a norm from l, say $(f)=N_{l / k} D$. Then the quaternion algebra $\mathcal{A}=(I / k, f)$ is an Azumaya algebra on X.

- To see this, let P be any point of X. If f is invertible at P, then \mathcal{A} can be evaluated at P to get $\mathcal{A}(P)=(I / k, f(P))$.

The Brauer group of a variety

Example

Let I / k be a quadratic extension, and suppose that f is a rational function on X whose divisor is a norm from l, say $(f)=N_{l / k} D$. Then the quaternion algebra $\mathcal{A}=(I / k, f)$ is an Azumaya algebra on X.

- To see this, let P be any point of X. If f is invertible at P, then \mathcal{A} can be evaluated at P to get $\mathcal{A}(P)=(I / k, f(P))$.
- Otherwise, there is some divisor $D^{\prime} \sim D$ which avoids P; let $(g)=D^{\prime}-D$. Then the algebra $\left(I / k, f N_{l / k} g\right)$ is isomorphic to \mathcal{A} and can be evaluated at P.

The Brauer-Manin obstruction

- Let v be a place of k. Recall from class field theory that there is a canonical injection $\operatorname{inv}_{v}: \operatorname{Br} k_{v} \rightarrow \mathbb{Q} / \mathbb{Z}$, such that the sequence

$$
0 \rightarrow \operatorname{Br} k \rightarrow \bigoplus_{v} \operatorname{Br} k_{v} \xrightarrow{\sum_{v} \operatorname{inv}_{v}} \mathbb{Q} / \mathbb{Z}
$$

is exact.

The Brauer-Manin obstruction

- Let v be a place of k. Recall from class field theory that there is a canonical injection $\operatorname{inv}_{v}: \operatorname{Br} k_{v} \rightarrow \mathbb{Q} / \mathbb{Z}$, such that the sequence

$$
0 \rightarrow \mathrm{Br} k \rightarrow \bigoplus_{v} \operatorname{Br} k_{v} \xrightarrow{\sum_{v} \text { inv }_{v}} \mathbb{Q} / \mathbb{Z}
$$

is exact.

- If \mathcal{A} is an Azumaya algebra on X and $P_{v} \in X\left(k_{v}\right)$, then \mathcal{A} can be evaluated at P_{v} to get an element of $\operatorname{Br} k_{v}$. So \mathcal{A} gives maps

$$
X\left(k_{v}\right) \rightarrow \mathbb{Q} / \mathbb{Z}, \quad P_{v} \mapsto \operatorname{inv}_{v} \mathcal{A}\left(P_{v}\right)
$$

for each v.

The Brauer-Manin obstruction

- Let v be a place of k. Recall from class field theory that there is a canonical injection $\operatorname{inv}_{v}: \operatorname{Br} k_{v} \rightarrow \mathbb{Q} / \mathbb{Z}$, such that the sequence

$$
0 \rightarrow \mathrm{Br} k \rightarrow \bigoplus_{v} \operatorname{Br} k_{v} \xrightarrow{\sum_{v} \text { inv }_{v}} \mathbb{Q} / \mathbb{Z}
$$

is exact.

- If \mathcal{A} is an Azumaya algebra on X and $P_{v} \in X\left(k_{v}\right)$, then \mathcal{A} can be evaluated at P_{v} to get an element of $\operatorname{Br} k_{v}$. So \mathcal{A} gives maps

$$
X\left(k_{v}\right) \rightarrow \mathbb{Q} / \mathbb{Z}, \quad P_{v} \mapsto \operatorname{inv}_{v} \mathcal{A}\left(P_{v}\right)
$$

for each v.

- Combining these two facts, we get...

The Brauer-Manin obstruction

The Brauer-Manin obstruction

$$
\begin{array}{ll}
X(k) \longrightarrow & X\left(\mathbb{A}_{k}\right) \\
\mathcal{A} \downarrow & \mathcal{A} \downarrow \\
\mathrm{Br} k \longrightarrow & \bigoplus_{v} \operatorname{Br} k_{v} \longrightarrow \mathbb{Q} / \mathbb{Z}
\end{array}
$$

The Brauer-Manin obstruction

$$
\begin{array}{ll}
X(k) \longrightarrow X\left(\mathbb{A}_{k}\right) \\
\mathcal{A} \downarrow & \mathcal{A} \downarrow \\
\operatorname{Br} k \longrightarrow \bigoplus_{v} \operatorname{Br} k_{v} \longrightarrow \mathbb{Q} / \mathbb{Z}
\end{array}
$$

- We deduce that, if $\left(P_{v}\right) \in X\left(\mathbb{A}_{k}\right)$ is the diagonal image of a rational point, then $\sum_{v} \operatorname{inv}_{v} \mathcal{A}\left(P_{v}\right)=0$.

The Brauer-Manin obstruction

$$
\begin{array}{ll}
X(k) \longrightarrow X\left(\mathbb{A}_{k}\right) \\
\mathcal{A} \downarrow & \mathcal{A} \downarrow \\
\operatorname{Br} k \longrightarrow \bigoplus_{v} \operatorname{Br} k_{v} \longrightarrow \mathbb{Q} / \mathbb{Z}
\end{array}
$$

- We deduce that, if $\left(P_{v}\right) \in X\left(\mathbb{A}_{k}\right)$ is the diagonal image of a rational point, then $\sum_{v} \operatorname{inv}_{v} \mathcal{A}\left(P_{v}\right)=0$.
- Given a subset B of $\operatorname{Br} X$, define

$$
X\left(\mathbb{A}_{k}\right)^{B}:=\left\{\left(P_{v}\right) \in X\left(\mathbb{A}_{k}\right) \mid \sum_{v} \operatorname{inv}_{v} \mathcal{A}\left(P_{v}\right)=0 \text { for all } \mathcal{A} \in B\right\} .
$$

We have shown that $X(k) \subset X\left(\mathbb{A}_{k}\right)^{\operatorname{Br} X}$.

Comments

- If $X\left(\mathbb{A}_{k}\right)^{B}$ is empty, we say there is a Brauer-Manin obstruction to the Hasse principle coming from B. If $X\left(\mathbb{A}_{k}\right)^{B}$ is not the whole of $X\left(\mathbb{A}_{k}\right)$, we say there is a Brauer-Manin obstruction to weak approximation.

Comments

- If $X\left(\mathbb{A}_{k}\right)^{B}$ is empty, we say there is a Brauer-Manin obstruction to the Hasse principle coming from B. If $X\left(\mathbb{A}_{k}\right)^{B}$ is not the whole of $X\left(\mathbb{A}_{k}\right)$, we say there is a Brauer-Manin obstruction to weak approximation.
- Given $\mathcal{A} \in \operatorname{Br} X$, it is often possible to compute $X\left(\mathbb{A}_{k}\right)^{\mathcal{A}}$ effectively.

Comments

- If $X\left(\mathbb{A}_{k}\right)^{B}$ is empty, we say there is a Brauer-Manin obstruction to the Hasse principle coming from B. If $X\left(\mathbb{A}_{k}\right)^{B}$ is not the whole of $X\left(\mathbb{A}_{k}\right)$, we say there is a Brauer-Manin obstruction to weak approximation.
- Given $\mathcal{A} \in \operatorname{Br} X$, it is often possible to compute $X\left(\mathbb{A}_{k}\right)^{\mathcal{A}}$ effectively.
- We have constant Azumaya algebras $\operatorname{Br} k \subset \operatorname{Br} X$, but the condition they impose is vacuous. So the Brauer-Manin obstruction is determined by $\mathrm{Br} X / \mathrm{Br} k$.

Comments

- If $X\left(\mathbb{A}_{k}\right)^{B}$ is empty, we say there is a Brauer-Manin obstruction to the Hasse principle coming from B. If $X\left(\mathbb{A}_{k}\right)^{B}$ is not the whole of $X\left(\mathbb{A}_{k}\right)$, we say there is a Brauer-Manin obstruction to weak approximation.
- Given $\mathcal{A} \in \operatorname{Br} X$, it is often possible to compute $X\left(\mathbb{A}_{k}\right)^{\mathcal{A}}$ effectively.
- We have constant Azumaya algebras $\operatorname{Br} k \subset \operatorname{Br} X$, but the condition they impose is vacuous. So the Brauer-Manin obstruction is determined by $\mathrm{Br} X / \mathrm{Br} k$.
- We will show how to compute generators for the algebraic part, $\mathrm{Br}_{1} X / \mathrm{Br} k$, and the associated obstruction.

Outline

(1) Introduction

- The Hasse principle
- The Brauer group
- The Brauer-Manin obstruction
(2) Computing the Brauer-Manin obstruction
- Computing the algebraic Brauer group
- Finding the Azumaya algebras
- Magma demo
(3) Theoretical results on the evaluation map
- Smooth models
- Unramified places
- Tamely ramified places

Computing the algebraic Brauer group

- Recall that the algebraic part of the Brauer group, $\mathrm{Br}_{1} X$, can be described as a Galois cohomology group

$$
\operatorname{Br}_{1} X=\operatorname{ker}\left(H^{2}\left(k, k(\bar{X})^{\times}\right) \rightarrow H^{2}(k, \operatorname{Div} \bar{X})\right) .
$$

On the face of it this is not very useful, as $H^{2}\left(k, k(\bar{X})^{\times}\right)$is not something we want to be computing with.

Computing the algebraic Brauer group

- Recall that the algebraic part of the Brauer group, $\mathrm{Br}_{1} X$, can be described as a Galois cohomology group

$$
\operatorname{Br}_{1} X=\operatorname{ker}\left(H^{2}\left(k, k(\bar{X})^{\times}\right) \rightarrow H^{2}(k, \operatorname{Div} \bar{X})\right) .
$$

On the face of it this is not very useful, as $H^{2}\left(k, k(\bar{X})^{\times}\right)$is not something we want to be computing with.

- However, we only need to know generators for $\mathrm{Br}_{1} X / \mathrm{Br} k$. Write the homomorphism above as a composition

$$
H^{2}\left(k, k(\bar{X})^{\times}\right) \xrightarrow{f} H^{2}(k, \operatorname{Princ} \bar{X}) \xrightarrow{g} H^{2}(k, \operatorname{Div} \bar{X}) .
$$

Computing the algebraic Brauer group

- Recall that the algebraic part of the Brauer group, $\mathrm{Br}_{1} X$, can be described as a Galois cohomology group

$$
\operatorname{Br}_{1} X=\operatorname{ker}\left(H^{2}\left(k, k(\bar{X})^{\times}\right) \rightarrow H^{2}(k, \operatorname{Div} \bar{X})\right) .
$$

On the face of it this is not very useful, as $H^{2}\left(k, k(\bar{X})^{\times}\right)$is not something we want to be computing with.

- However, we only need to know generators for $\mathrm{Br}_{1} X / \mathrm{Br} k$. Write the homomorphism above as a composition

$$
H^{2}\left(k, k(\bar{X})^{\times}\right) \xrightarrow{f} H^{2}(k, \operatorname{Princ} \bar{X}) \xrightarrow{g} H^{2}(k, \operatorname{Div} \bar{X}) .
$$

- The kernel-cokernel exact sequence for this composition of maps is

$$
0 \rightarrow \operatorname{ker} f \rightarrow \operatorname{Br}_{1} X \rightarrow \operatorname{ker} g \rightarrow \operatorname{coker} f
$$

and we can identify these groups.

Computing the algebraic Brauer group

$$
0 \rightarrow \operatorname{ker} f \rightarrow \operatorname{Br}_{1} X \rightarrow \quad \operatorname{ker} g \quad \rightarrow \operatorname{coker} f
$$

Computing the algebraic Brauer group

$$
0 \rightarrow \operatorname{ker} f \rightarrow \operatorname{Br}_{1} X \rightarrow \quad \operatorname{ker} g \quad \rightarrow \operatorname{coker} f
$$

- Using the exact sequence

$$
0 \rightarrow \bar{k}^{\times} \rightarrow k(\bar{X})^{\times} \rightarrow \operatorname{Princ} \bar{X} \rightarrow 0
$$

shows that $\operatorname{ker} f=\operatorname{im}(\operatorname{Br} k)$, and that coker $f=H^{3}\left(k, \bar{k}^{\times}\right)=0$.

Computing the algebraic Brauer group

$$
\operatorname{Br} k \rightarrow \mathrm{Br}_{1} X \rightarrow \quad \operatorname{ker} g \quad \rightarrow 0
$$

- Using the exact sequence

$$
0 \rightarrow \bar{k}^{\times} \rightarrow k(\bar{X})^{\times} \rightarrow \operatorname{Princ} \bar{X} \rightarrow 0
$$

shows that $\operatorname{ker} f=\operatorname{im}(\operatorname{Br} k)$, and that coker $f=H^{3}\left(k, \bar{k}^{\times}\right)=0$.

Computing the algebraic Brauer group

$$
\operatorname{Br} k \rightarrow \mathrm{Br}_{1} X \rightarrow \quad \operatorname{ker} g \quad \rightarrow 0
$$

- Using the exact sequence

$$
0 \rightarrow \bar{k}^{\times} \rightarrow k(\bar{X})^{\times} \rightarrow \operatorname{Princ} \bar{X} \rightarrow 0
$$

shows that $\operatorname{ker} f=\operatorname{im}(\operatorname{Br} k)$, and that coker $f=H^{3}\left(k, \bar{k}^{\times}\right)=0$.

- The exact sequence

$$
0 \rightarrow \operatorname{Princ} \bar{X} \rightarrow \operatorname{Div} \bar{X} \rightarrow \operatorname{Pic} \bar{X} \rightarrow 0
$$

shows that ker g is the image of the boundary map $\partial: H^{1}(k, \operatorname{Pic} \bar{X}) \rightarrow H^{2}(k, \operatorname{Princ} \bar{X})$. Since $\operatorname{Div} \bar{X}$ is an induced module, this map is injective.

Computing the algebraic Brauer group

$$
\operatorname{Br} k \rightarrow \operatorname{Br}_{1} X \rightarrow H^{1}(k, \operatorname{Pic} \bar{X}) \rightarrow 0
$$

- Using the exact sequence

$$
0 \rightarrow \bar{k}^{\times} \rightarrow k(\bar{X})^{\times} \rightarrow \operatorname{Princ} \bar{X} \rightarrow 0
$$

shows that $\operatorname{ker} f=\operatorname{im}(\operatorname{Br} k)$, and that coker $f=H^{3}\left(k, \bar{k}^{\times}\right)=0$.

- The exact sequence

$$
0 \rightarrow \operatorname{Princ} \bar{X} \rightarrow \operatorname{Div} \bar{X} \rightarrow \operatorname{Pic} \bar{X} \rightarrow 0
$$

shows that ker g is the image of the boundary map $\partial: H^{1}(k, \operatorname{Pic} \bar{X}) \rightarrow H^{2}(k, \operatorname{Princ} \bar{X})$. Since $\operatorname{Div} \bar{X}$ is an induced module, this map is injective.

Computing the algebraic Brauer group

$$
\operatorname{Br} k \rightarrow \operatorname{Br}_{1} X \rightarrow H^{1}(k, \operatorname{Pic} \bar{X}) \rightarrow 0
$$

- Using the exact sequence

$$
0 \rightarrow \bar{k}^{\times} \rightarrow k(\bar{X})^{\times} \rightarrow \operatorname{Princ} \bar{X} \rightarrow 0
$$

shows that $\operatorname{ker} f=\operatorname{im}(\operatorname{Br} k)$, and that coker $f=H^{3}\left(k, \bar{k}^{\times}\right)=0$.

- The exact sequence

$$
0 \rightarrow \operatorname{Princ} \bar{X} \rightarrow \operatorname{Div} \bar{X} \rightarrow \operatorname{Pic} \bar{X} \rightarrow 0
$$

shows that ker g is the image of the boundary map $\partial: H^{1}(k, \operatorname{Pic} \bar{X}) \rightarrow H^{2}(k, \operatorname{Princ} \bar{X})$. Since $\operatorname{Div} \bar{X}$ is an induced module, this map is injective.

- So there is an isomorphism $\operatorname{Br}_{1} X / \operatorname{Br} k \cong H^{1}(k, \operatorname{Pic} \bar{X})$.

Computing the algebraic Brauer group

- We have an isomorphism $\operatorname{Br}_{1} X / \operatorname{Br} k \cong H^{1}(k, \operatorname{Pic} \bar{X})$. If $\operatorname{Pic} \bar{X}$ is finitely generated, then we can hope to understand this group. If $\operatorname{Pic} \bar{X}$ is also free, then $\operatorname{Br}_{1} X / \operatorname{Br} k$ is finite.

Computing the algebraic Brauer group

- We have an isomorphism $\operatorname{Br}_{1} X / \operatorname{Br} k \cong H^{1}(k, \operatorname{Pic} \bar{X})$. If $\operatorname{Pic} \bar{X}$ is finitely generated, then we can hope to understand this group. If $\operatorname{Pic} \bar{X}$ is also free, then $\mathrm{Br}_{1} X / \operatorname{Br} k$ is finite.
- If we know explicitly a finite, Galois-stable set of generators for $\operatorname{Pic} \bar{X}$, and the Galois action on them, then computing $H^{1}(k, \operatorname{Pic} \bar{X})$ is straightforward.

Computing the algebraic Brauer group

- We have an isomorphism $\operatorname{Br}_{1} X / \operatorname{Br} k \cong H^{1}(k, \operatorname{Pic} \bar{X})$. If $\operatorname{Pic} \bar{X}$ is finitely generated, then we can hope to understand this group. If $\operatorname{Pic} \bar{X}$ is also free, then $\mathrm{Br}_{1} X / \operatorname{Br} k$ is finite.
- If we know explicitly a finite, Galois-stable set of generators for $\operatorname{Pic} \bar{X}$, and the Galois action on them, then computing $H^{1}(k, \operatorname{Pic} \bar{X})$ is straightforward.
- On a diagonal quartic surface, there are 48 straight lines. We can write down their equations, and they generate Pic \bar{X}.

Computing the algebraic Brauer group

- We have an isomorphism $\operatorname{Br}_{1} X / \operatorname{Br} k \cong H^{1}(k, \operatorname{Pic} \bar{X})$. If $\operatorname{Pic} \bar{X}$ is finitely generated, then we can hope to understand this group. If $\operatorname{Pic} \bar{X}$ is also free, then $\operatorname{Br}_{1} X / \operatorname{Br} k$ is finite.
- If we know explicitly a finite, Galois-stable set of generators for $\operatorname{Pic} \bar{X}$, and the Galois action on them, then computing $H^{1}(k, \operatorname{Pic} \bar{X})$ is straightforward.
- On a diagonal quartic surface, there are 48 straight lines. We can write down their equations, and they generate $\mathrm{Pic} \bar{X}$.
- The Galois group of the field of definition of the 48 lines is always a subgroup of the "generic" Galois group, which is an extension of C_{2} by $C_{2} \times C_{4} \times C_{4}$. Going through all the possible Galois actions finds all possibilities for $\mathrm{Br}_{1} X / \mathrm{Br} k$. It is always killed by 8, and has 2-rank at most 7 .

Finding the Azumaya algebras

- Getting our hands on explicit generators for $H^{1}(k, \operatorname{Pic} \bar{X})$ is only the first step to computing the algebraic Brauer-Manin obstruction. We now need to turn them into explicit generators for $\mathrm{Br}_{1} X / \mathrm{Br} k$.

Finding the Azumaya algebras

- Getting our hands on explicit generators for $H^{1}(k, \operatorname{Pic} \bar{X})$ is only the first step to computing the algebraic Brauer-Manin obstruction. We now need to turn them into explicit generators for $\mathrm{Br}_{1} X / \mathrm{Br} k$.
- The isomorphism $H^{1}(k, \operatorname{Pic} \bar{X}) \cong \operatorname{Br}_{1} X / \operatorname{Br} k$ arose as a composition of various maps:

$$
H^{1}(k, \operatorname{Pic} \bar{X}) \xrightarrow{\partial} H^{2}(k, \operatorname{Princ} \bar{X}) \stackrel{g}{\leftarrow} H^{2}\left(k, k(\bar{X})^{\times}\right) .
$$

Finding the Azumaya algebras

- Getting our hands on explicit generators for $H^{1}(k, \operatorname{Pic} \bar{X})$ is only the first step to computing the algebraic Brauer-Manin obstruction. We now need to turn them into explicit generators for $\mathrm{Br}_{1} X / \mathrm{Br} k$.
- The isomorphism $H^{1}(k, \operatorname{Pic} \bar{X}) \cong \operatorname{Br}_{1} X / \operatorname{Br} k$ arose as a composition of various maps:

$$
H^{1}(k, \operatorname{Pic} \bar{X}) \xrightarrow{\partial} H^{2}(k, \operatorname{Princ} \bar{X}) \stackrel{g}{\stackrel{g}{~}} H^{2}\left(k, k(\bar{X})^{\times}\right) .
$$

- The first of these, ∂, is a boundary map in cohomology and is straightforward to compute: lift from $\operatorname{Pic} \bar{X}$ to $\operatorname{Div} \bar{X}$ and take the coboundary. Note that there is a choice of lifts here, giving different but cohomologous images.

Finding the Azumaya algebras

- Getting our hands on explicit generators for $H^{1}(k, \operatorname{Pic} \bar{X})$ is only the first step to computing the algebraic Brauer-Manin obstruction. We now need to turn them into explicit generators for $\mathrm{Br}_{1} X / \mathrm{Br} k$.
- The isomorphism $H^{1}(k, \operatorname{Pic} \bar{X}) \cong \operatorname{Br}_{1} X / \operatorname{Br} k$ arose as a composition of various maps:

$$
H^{1}(k, \operatorname{Pic} \bar{X}) \xrightarrow{\partial} H^{2}(k, \operatorname{Princ} \bar{X}) \stackrel{g}{\stackrel{g}{~}} H^{2}\left(k, k(\bar{X})^{\times}\right) .
$$

- The first of these, ∂, is a boundary map in cohomology and is straightforward to compute: lift from $\operatorname{Pic} \bar{X}$ to $\operatorname{Div} \bar{X}$ and take the coboundary. Note that there is a choice of lifts here, giving different but cohomologous images.
- Computing g^{-1} involves lifting from Princ \bar{X} to $k(\bar{X})^{\times}$, a potentially slow operation. Moreover, lifting just anyhow will not give us a cocycle - to do that, we need to make effective the fact that $H^{3}\left(k, \bar{k}^{\times}\right)=0$.

Using a small splitting field

- Some of these problems become easier if the elements of $H^{1}(k, \operatorname{Pic} \bar{X})$ we're looking at are split by a small extension $/ / k$.

$$
H^{1}(k, \operatorname{Pic} \bar{X}) \xrightarrow{\partial} H^{2}(k, \operatorname{Princ} \bar{X}) \quad g \quad H^{2}\left(k, k(\bar{X})^{\times}\right)
$$

Using a small splitting field

- Some of these problems become easier if the elements of $H^{1}(k, \operatorname{Pic} \bar{X})$ we're looking at are split by a small extension $/ / k$.

\[

\]

$$
H^{1}\left(I / k, \operatorname{Pic} X_{I}\right) \longrightarrow H^{2}\left(I / k, \operatorname{Princ} X_{l}\right) \longleftarrow H^{2}\left(I / k, k\left(X_{l}\right)^{\times}\right)
$$

Using a small splitting field

- Some of these problems become easier if the elements of $H^{1}(k, \operatorname{Pic} \bar{X})$ we're looking at are split by a small extension $/ / k$.

$$
\begin{aligned}
& H^{1}(k, \operatorname{Pic} \bar{X}) \xrightarrow{\partial} H^{2}(k, \operatorname{Princ} \bar{X}) \stackrel{g}{\longleftrightarrow} H^{2}\left(k, k(\bar{X})^{\times}\right) \\
& \mathrm{inf} \uparrow \quad \mathrm{inf} \uparrow \quad \mathrm{inf} \uparrow \\
& H^{1}\left(I / k, \operatorname{Pic} X_{I}\right) \longrightarrow H^{2}\left(I / k, \operatorname{Princ} X_{l}\right) \longleftarrow H^{2}\left(I / k, k\left(X_{I}\right)^{\times}\right) \\
& \sim \uparrow \quad \sim \uparrow \\
& \frac{{ }_{N} \operatorname{Pic} X_{I}}{\langle\sigma-1\rangle} \quad \xrightarrow{N} \quad \frac{\operatorname{Princ} X}{N \text { Princ } X_{I}} \quad \longleftarrow \quad \frac{k(X)^{\times}}{N k\left(X_{I}\right)^{\times}}
\end{aligned}
$$

- If I / k is cyclic, things get even more straightforward.

Using a small splitting field

- Some of these problems become easier if the elements of $H^{1}(k, \operatorname{Pic} \bar{X})$ we're looking at are split by a small extension $/ / k$.

$$
\begin{aligned}
& H^{1}(k, \operatorname{Pic} \bar{X}) \xrightarrow{\partial} H^{2}(k, \operatorname{Princ} \bar{X}) \stackrel{g}{\longleftrightarrow} H^{2}\left(k, k(\bar{X})^{\times}\right) \\
& \mathrm{inf} \uparrow \quad \inf \uparrow \quad i n f \uparrow \\
& H^{1}\left(I / k, \operatorname{Pic} X_{I}\right) \longrightarrow H^{2}\left(I / k, \operatorname{Princ} X_{l}\right) \longleftarrow H^{2}\left(I / k, k\left(X_{l}\right)^{\times}\right) \\
& \sim \uparrow \quad \sim \uparrow \\
& \frac{{ }_{N} \operatorname{Pic} X_{I}}{\langle\sigma-1\rangle} \quad \xrightarrow{N} \quad \frac{\operatorname{Princ} X}{N \text { Princ } X_{I}} \quad \longleftarrow \quad \frac{k(X)^{\times}}{N k\left(X_{I}\right)^{\times}}
\end{aligned}
$$

- If I / k is cyclic, things get even more straightforward.
- But we have introduced a new problem: we probably don't know a set of divisors defined over / which generate Pic X_{l}.

Magma demo

Outline

(1) Introduction

- The Hasse principle
- The Brauer group
- The Brauer-Manin obstruction
(2) Computing the Brauer-Manin obstruction
- Computing the algebraic Brauer group
- Finding the Azumaya algebras
- Magma demo
(3) Theoretical results on the evaluation map
- Smooth models
- Unramified places
- Tamely ramified places

Theoretical results on the evaluation map

Let \mathcal{A} be an Azumaya algebra on X, and fix a finite place v. We will apply some geometry to understand the evaluation map

$$
X\left(k_{v}\right) \rightarrow \mathbb{Q} / \mathbb{Z} \quad P \mapsto \operatorname{inv}_{v} \mathcal{A}(P)
$$

- We saw in the demonstration that, at primes of good reduction, the invariant was everywhere zero. For each $P \in X\left(k_{v}\right)$, we could always find one of our representative algebras $(-1, f)$ such that $f(P)$ was a unit in k_{v}.

Theoretical results on the evaluation map

Let \mathcal{A} be an Azumaya algebra on X, and fix a finite place v. We will apply some geometry to understand the evaluation map

$$
X\left(k_{v}\right) \rightarrow \mathbb{Q} / \mathbb{Z} \quad P \mapsto \operatorname{inv}_{v} \mathcal{A}(P)
$$

- We saw in the demonstration that, at primes of good reduction, the invariant was everywhere zero. For each $P \in X\left(k_{v}\right)$, we could always find one of our representative algebras $(-1, f)$ such that $f(P)$ was a unit in k_{v}.
- Of course, we could spoil this: we could change our algebra by a constant algebra ramified at v. The invariant would still be constant, but not necessarily zero.

Smooth models

It is much easier to investigate the behaviour of $\mathcal{A}(P)$ when P reduces to a smooth point. What does this mean for diagonal quartic surfaces?

- Consider the diagonal quartic surface

$$
X: \quad a_{0} X_{0}^{4}+a_{1} X_{1}^{4}+a_{2} X_{2}^{4}+a_{3} X_{3}^{4}=0
$$

where $a_{i} \in \mathbb{Q}$. We may clearly assume that the a_{i} are coprime integers, and that none of them is divisible by a fourth power. Reducing the equation modulo p gives a surface over \mathbb{F}_{p} which may be singular.

Smooth models

It is much easier to investigate the behaviour of $\mathcal{A}(P)$ when P reduces to a smooth point. What does this mean for diagonal quartic surfaces?

- Consider the diagonal quartic surface

$$
X: \quad a_{0} X_{0}^{4}+a_{1} X_{1}^{4}+a_{2} X_{2}^{4}+a_{3} X_{3}^{4}=0
$$

where $a_{i} \in \mathbb{Q}$. We may clearly assume that the a_{i} are coprime integers, and that none of them is divisible by a fourth power. Reducing the equation modulo p gives a surface over \mathbb{F}_{p} which may be singular.

- But this is only one model of X; we can easily produce others.

Smooth models

It is much easier to investigate the behaviour of $\mathcal{A}(P)$ when P reduces to a smooth point. What does this mean for diagonal quartic surfaces?

- Consider the diagonal quartic surface

$$
X: \quad a_{0} X_{0}^{4}+a_{1} X_{1}^{4}+a_{2} X_{2}^{4}+a_{3} X_{3}^{4}=0
$$

where $a_{i} \in \mathbb{Q}$. We may clearly assume that the a_{i} are coprime integers, and that none of them is divisible by a fourth power. Reducing the equation modulo p gives a surface over \mathbb{F}_{p} which may be singular.

- But this is only one model of X; we can easily produce others.
- Suppose, say, that p divides a_{0} but none of the other a_{i}. We can replace X_{i} by $p X_{i}$ for $i=1,2,3$ and then remove the resulting power of p, giving a new surface isomorphic ($\operatorname{over} \mathbb{Q}$) to X.

Smooth models

- In this way we obtain up to four different models. It is not difficult to show that any point in $X\left(\mathbb{Q}_{p}\right)$ reduces to a smooth point modulo p in at least one of these models.

Smooth models

- In this way we obtain up to four different models. It is not difficult to show that any point in $X\left(\mathbb{Q}_{p}\right)$ reduces to a smooth point modulo p in at least one of these models.
- Geometrically, we have shown that there exists a model $\mathcal{X} / \mathbb{Z}_{p}$ for X, obtained by blowing up our original one, such that any point of $X\left(\mathbb{Q}_{p}\right)$ extends to a smooth point of $\mathcal{X}\left(\mathbb{Z}_{p}\right)$. The different equations describe the components of this model.

Smooth models

- In this way we obtain up to four different models. It is not difficult to show that any point in $X\left(\mathbb{Q}_{p}\right)$ reduces to a smooth point modulo p in at least one of these models.
- Geometrically, we have shown that there exists a model $\mathcal{X} / \mathbb{Z}_{p}$ for X, obtained by blowing up our original one, such that any point of $X\left(\mathbb{Q}_{p}\right)$ extends to a smooth point of $\mathcal{X}\left(\mathbb{Z}_{p}\right)$. The different equations describe the components of this model.
- In fact, this can be accomplished for any smooth variety over \mathbb{Q}_{p}; such a model is called a weak Néron model.

Unramified places

Theorem

Let X be a smooth, geometrically irreducible variety over k_{v}. Let $\mathcal{A} \in \operatorname{Br}_{1} X$ be an Azumaya algebra split by an unramified extension of k_{v}. Let $\mathcal{X} / \mathcal{O}_{v}$ be a smooth model of X, with Z an irreducible component of the special fibre. Then $\operatorname{inv}_{v} \mathcal{A}(P)$ is constant on the set of points P reducing to Z.

Unramified places

```
Theorem
Let X be a smooth, geometrically irreducible variety over }\mp@subsup{k}{v}{}\mathrm{ . Let
A \in }\mp@subsup{\textrm{Br}}{1}{}X\mathrm{ be an Azumaya algebra split by an unramified extension of }\mp@subsup{k}{v}{}\mathrm{ .
Let }\mathcal{X}/\mp@subsup{\mathcal{O}}{v}{}\mathrm{ be a smooth model of X, with Z an irreducible component of
the special fibre.Then inv}v\mathcal{A}(P)\mathrm{ is constant on the set of points } reducing to \(Z\).
```

- In particular, this is true at primes where X has good reduction. At a prime of good reduction, the Galois module $\operatorname{Pic} \bar{X}$ is unramified.

Unramified places

```
Theorem
Let X be a smooth, geometrically irreducible variety over }\mp@subsup{k}{v}{}\mathrm{ . Let
A \in }\mp@subsup{\textrm{Br}}{1}{}X\mathrm{ be an Azumaya algebra split by an unramified extension of }\mp@subsup{k}{v}{}\mathrm{ .
Let }\mathcal{X}/\mp@subsup{\mathcal{O}}{v}{}\mathrm{ be a smooth model of X, with Z an irreducible component of
the special fibre. Then inv}v\mathcal{A}(P)\mathrm{ is constant on the set of points } reducing to \(Z\).
```

- In particular, this is true at primes where X has good reduction. At a prime of good reduction, the Galois module $\operatorname{Pic} \bar{X}$ is unramified.
- This is because the inertia group, by definition, acts trivially on the reduction of X modulo p. So each of the 48 lines on X must be taken to a line with the same reduction modulo p.

Unramified places

Theorem

Let X be a smooth, geometrically irreducible variety over k_{v}. Let $\mathcal{A} \in \operatorname{Br}_{1} X$ be an Azumaya algebra split by an unramified extension of k_{v}. Let $\mathcal{X} / \mathcal{O}_{v}$ be a smooth model of X, with Z an irreducible component of the special fibre. Then $\operatorname{inv}_{v} \mathcal{A}(P)$ is constant on the set of points P reducing to Z.

- In particular, this is true at primes where X has good reduction. At a prime of good reduction, the Galois module $\operatorname{Pic} \bar{X}$ is unramified.
- This is because the inertia group, by definition, acts trivially on the reduction of X modulo p. So each of the 48 lines on X must be taken to a line with the same reduction modulo p.
- But the 48 lines all have distinct reductions - after all, the reduction of X is a smooth diagonal quartic surface, so contains 48 straight lines.

Tamely ramified places

- Now suppose that \mathcal{A} is split by a totally, tamely ramified Galois extension I / k_{v} of degree n. There are isomorphisms

$$
\operatorname{Br}\left(I / k_{v}\right) \cong k_{v}^{\times} / N I^{\times} \cong \mathcal{O}_{v} / N \mathcal{O}_{l}^{\times} \cong \mathbb{F}^{\times} /\left(\mathbb{F}^{\times}\right)^{n}
$$

where \mathbb{F} is the residue field of k_{v}.

Tamely ramified places

- Now suppose that \mathcal{A} is split by a totally, tamely ramified Galois extension I / k_{v} of degree n. There are isomorphisms

$$
\operatorname{Br}\left(I / k_{v}\right) \cong k_{v}^{\times} / N I^{\times} \cong \mathcal{O}_{v} / N \mathcal{O}_{l}^{\times} \cong \mathbb{F}^{\times} /\left(\mathbb{F}^{\times}\right)^{n}
$$

where \mathbb{F} is the residue field of k_{v}.

- This tells us that, if we have a 2-cocycle describing an element of $\operatorname{Br}\left(I / k_{v}\right)$, and if it takes unit values, then its class is determined by its reduction modulo v.

Tamely ramified places

- Now suppose that \mathcal{A} is split by a totally, tamely ramified Galois extension I / k_{v} of degree n. There are isomorphisms

$$
\operatorname{Br}\left(I / k_{v}\right) \cong k_{v}^{\times} / N I^{\times} \cong \mathcal{O}_{v} / N \mathcal{O}_{l}^{\times} \cong \mathbb{F}^{\times} /\left(\mathbb{F}^{\times}\right)^{n}
$$

where \mathbb{F} is the residue field of k_{v}.

- This tells us that, if we have a 2-cocycle describing an element of $\operatorname{Br}\left(I / k_{v}\right)$, and if it takes unit values, then its class is determined by its reduction modulo v.
- With a little work, we can deduce that $\operatorname{inv}_{v} \mathcal{A}(P)$ only depends on the residue class of P. In fact, we can say more...

Tamely ramified places

Theorem

Let X be a smooth, geometrically irreducible variety over k_{v}, and let $\mathcal{A} \in \mathrm{Br}_{1} X$ be an Azumaya algebra split by a tamely ramified Galois extension I / k_{v} of degree n. Let $\mathcal{X} / \mathcal{O}_{v}$ be a smooth model of X, with Z a geometrically irreducible component of the special fibre. Then, after possibly modifying \mathcal{A} by a constant algebra, there is a Z-torsor T under μ_{n} such that the following diagram commutes.

$$
\begin{array}{ccc}
X\left(k_{v}\right) Z & \xrightarrow{\mathcal{A}} & \mathrm{Br} I / k_{v} \\
\downarrow & & \\
& & \\
Z(\mathbb{F}) & & \\
\hline
\end{array} \mathbb{F}^{\times} /\left(\mathbb{F}^{\times}\right)^{n} .
$$

Consequences for diagonal quartics

- On a diagonal quartic surface X, the 48 lines are all defined over some 2-power degree extension of the base field; so this extension is either unramified or tamely ramified except at 2.

Consequences for diagonal quartics

- On a diagonal quartic surface X, the 48 lines are all defined over some 2-power degree extension of the base field; so this extension is either unramified or tamely ramified except at 2.
- So, if $p \neq 2$, evaluating the Brauer-Manin obstruction at p comes down to studying some torsors under $\boldsymbol{\mu}_{n}$ on the reduction of X at p.

Consequences for diagonal quartics

- On a diagonal quartic surface X, the 48 lines are all defined over some 2-power degree extension of the base field; so this extension is either unramified or tamely ramified except at 2.
- So, if $p \neq 2$, evaluating the Brauer-Manin obstruction at p comes down to studying some torsors under μ_{n} on the reduction of X at p.
- If X has good reduction, then the reduction is again a smooth quartic surface, so the only torsors under μ_{n} are constant; we see again that the Brauer-Manin obstruction there is constant.

Consequences for diagonal quartics

- On a diagonal quartic surface X, the 48 lines are all defined over some 2-power degree extension of the base field; so this extension is either unramified or tamely ramified except at 2.
- So, if $p \neq 2$, evaluating the Brauer-Manin obstruction at p comes down to studying some torsors under $\boldsymbol{\mu}_{n}$ on the reduction of X at p.
- If X has good reduction, then the reduction is again a smooth quartic surface, so the only torsors under μ_{n} are constant; we see again that the Brauer-Manin obstruction there is constant.
- If the reduction of X is a cone, then consider a straight line L in that cone. There are no non-constant torsors under $\boldsymbol{\mu}_{n}$ on L, even after removing the vertex; so we deduce that the Brauer-Manin evaluation map is constant on the set of points of $X\left(\mathbb{Q}_{p}\right)$ reducing to points on L.

