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The Hasse principle

Let X be a variety over a number field k. Write Ak for the ring of
adèles of k. The set of adelic points of X is X (Ak); the set of
rational points X (k) is contained in it, under the diagonal embedding.
If X is a complete variety, then

X (Ak) =
∏
v

X (kv )

where the product is over all places v of k .

Some classes of varieties satisfy the Hasse principle: that is,

X (Ak) 6= ∅ ⇒ X (k) 6= ∅.

In this case, it is straightforward to decide whether X has rational
points, since the condition on the left is a finite computation.
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Failure of the Hasse principle

Unfortunately, many interesting classes of varieties do not satisfy the
Hasse principle. In particular, K3 surfaces do not.

For example, the diagonal quartic surface

X 4
0 + X 4

1 = 6X 4
2 + 12X 4

3

has points in every completion of Q, but no rational points.

Manin showed that one can use the Brauer group of X to define a
subset of X (Ak) which must contain X (k). If this set is empty, we
say that there is a Brauer–Manin obstruction to the Hasse principle
for X . This accounted for all counterexamples to the Hasse principle
known then.
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The Brauer group of the function field

Every field K has a Brauer group Br(K ), the group of equivalence
classes of central simple algebras over K . In particular, this is true of
the function field k(X ).

We might hope to be able to evaluate an element of Br k(X ) at a
point of X , to obtain an element of Br k .

Just as a rational function cannot be evaluated at every point of a
variety, so a typical element of Br k(X ) cannot be evaluated
everywhere – it is ramified along some divisor.
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The Brauer group of a variety

Let X be a smooth, geometrically irreducible variety over k . The
Brauer group of X , written Br X , can be informally defined as the
subgroup of Br k(X ) of those elements which can be evaluated
everywhere. These algebras are called Azumaya algebras.

We will be interested only in algebraic elements of Br X , that is, those
which are split by an extension of k. These can be described in Galois
cohomology as

Br1 X = ker
(
H2(k , k(X̄ )×)→ H2(k ,Div X̄ )

)
.

Equivalently, a class α in H2(k , k(X̄ )×) lies in Br1 X if and only if, for
all points P ∈ X , we can represent α by a cocycle taking values in
O×X ,P .
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The Brauer group of a variety

Example

Let l/k be a quadratic extension, and suppose that f is a rational function
on X whose divisor is a norm from l , say (f ) = Nl/kD. Then the
quaternion algebra A = (l/k, f ) is an Azumaya algebra on X .

To see this, let P be any point of X . If f is invertible at P, then A
can be evaluated at P to get A(P) = (l/k, f (P)).

Otherwise, there is some divisor D ′ ∼ D which avoids P; let
(g) = D ′ − D. Then the algebra (l/k , fNl/kg) is isomorphic to A and
can be evaluated at P.
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The Brauer–Manin obstruction

Let v be a place of k . Recall from class field theory that there is a
canonical injection invv : Br kv → Q/Z, such that the sequence

0→ Br k →
⊕

v

Br kv

P
V invv−−−−−→ Q/Z

is exact.

If A is an Azumaya algebra on X and Pv ∈ X (kv ), then A can be
evaluated at Pv to get an element of Br kv . So A gives maps

X (kv )→ Q/Z, Pv 7→ invv A(Pv )

for each v .

Combining these two facts, we get. . .
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The Brauer–Manin obstruction

X (k) −−−−→ X (Ak)

A
y A

y
Br k

−−−−→

⊕
v Br kv

−−−−→ Q/Z

We deduce that, if (Pv ) ∈ X (Ak) is the diagonal image of a rational
point, then

∑
v invv A(Pv ) = 0.

Given a subset B of Br X , define

X (Ak)B :=
{

(Pv ) ∈ X (Ak)
∣∣∣ ∑

v

invv A(Pv ) = 0 for all A ∈ B
}

.

We have shown that X (k) ⊂ X (Ak)Br X .
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Comments

If X (Ak)B is empty, we say there is a Brauer–Manin obstruction to
the Hasse principle coming from B. If X (Ak)B is not the whole of
X (Ak), we say there is a Brauer–Manin obstruction to weak
approximation.

Given A ∈ Br X , it is often possible to compute X (Ak)A effectively.

We have constant Azumaya algebras Br k ⊂ Br X , but the condition
they impose is vacuous. So the Brauer–Manin obstruction is
determined by Br X/Br k .

We will show how to compute generators for the algebraic part,
Br1 X/Br k , and the associated obstruction.
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Computing the algebraic Brauer group

Recall that the algebraic part of the Brauer group, Br1 X , can be
described as a Galois cohomology group

Br1 X = ker
(
H2(k , k(X̄ )×)→ H2(k ,Div X̄ )

)
.

On the face of it this is not very useful, as H2(k, k(X̄ )×) is not
something we want to be computing with.

However, we only need to know generators for Br1 X/Br k . Write the
homomorphism above as a composition

H2(k , k(X̄ )×)
f−→ H2(k,Princ X̄ )

g−→ H2(k ,Div X̄ ).

The kernel-cokernel exact sequence for this composition of maps is

0→ ker f → Br1 X → ker g → coker f

and we can identify these groups.
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Computing the algebraic Brauer group

0→ ker f → Br1 X → ker g → coker f

Using the exact sequence

0→ k̄× → k(X̄ )× → Princ X̄ → 0

shows that ker f = im(Br k), and that coker f = H3(k, k̄×) = 0 .

The exact sequence

0→ Princ X̄ → Div X̄ → Pic X̄ → 0

shows that ker g is the image of the boundary map
∂ : H1(k ,Pic X̄ )→ H2(k ,Princ X̄ ). Since Div X̄ is an induced
module, this map is injective.

So there is an isomorphism Br1 X/Br k ∼= H1(k ,Pic X̄ ).
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Computing the algebraic Brauer group

We have an isomorphism Br1 X/Br k ∼= H1(k ,Pic X̄ ). If Pic X̄ is
finitely generated, then we can hope to understand this group. If
Pic X̄ is also free, then Br1 X/Br k is finite.

If we know explicitly a finite, Galois-stable set of generators for Pic X̄ ,
and the Galois action on them, then computing H1(k ,Pic X̄ ) is
straightforward.

On a diagonal quartic surface, there are 48 straight lines. We can
write down their equations, and they generate Pic X̄ .

The Galois group of the field of definition of the 48 lines is always a
subgroup of the “generic” Galois group, which is an extension of C2

by C2 × C4 × C4. Going through all the possible Galois actions finds
all possibilities for Br1 X/Br k. It is always killed by 8, and has 2-rank
at most 7.
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all possibilities for Br1 X/Br k. It is always killed by 8, and has 2-rank
at most 7.
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Finding the Azumaya algebras

Getting our hands on explicit generators for H1(k ,Pic X̄ ) is only the
first step to computing the algebraic Brauer–Manin obstruction. We
now need to turn them into explicit generators for Br1 X/Br k .

The isomorphism H1(k ,Pic X̄ ) ∼= Br1 X/Br k arose as a composition
of various maps:

H1(k,Pic X̄ )
∂−→ H2(k,Princ X̄ )

g←− H2(k, k(X̄ )×).

The first of these, ∂, is a boundary map in cohomology and is
straightforward to compute: lift from Pic X̄ to Div X̄ and take the
coboundary. Note that there is a choice of lifts here, giving different
but cohomologous images.

Computing g−1 involves lifting from Princ X̄ to k(X̄ )×, a potentially
slow operation. Moreover, lifting just anyhow will not give us a
cocycle – to do that, we need to make effective the fact that
H3(k , k̄×) = 0.
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Using a small splitting field

Some of these problems become easier if the elements of H1(k ,Pic X̄ )
we’re looking at are split by a small extension l/k .

H1(k,Pic X̄ )
∂−−−−→ H2(k,Princ X̄ )

g←−−−− H2(k , k(X̄ )×)

inf

x inf

x inf

x
H1(l/k,Pic Xl) −−−−→ H2(l/k,Princ Xl) ←−−−− H2(l/k , k(Xl)

×)

∼
x ∼

x ∼
x

N Pic Xl
〈σ−1〉

N−−−−→ Princ X
N Princ Xl

←−−−− k(X )×

Nk(Xl )×

If l/k is cyclic, things get even more straightforward.

But we have introduced a new problem: we probably don’t know a set
of divisors defined over l which generate Pic Xl .
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Theoretical results on the evaluation map

Let A be an Azumaya algebra on X , and fix a finite place v . We will apply
some geometry to understand the evaluation map

X (kv )→ Q/Z P 7→ invv A(P).

We saw in the demonstration that, at primes of good reduction, the
invariant was everywhere zero. For each P ∈ X (kv ), we could always
find one of our representative algebras (−1, f ) such that f (P) was a
unit in kv .

Of course, we could spoil this: we could change our algebra by a
constant algebra ramified at v . The invariant would still be constant,
but not necessarily zero.

Martin Bright (University of Bristol) Computing Brauer–Manin obstructions Banff 2008 20 / 26



Theoretical results on the evaluation map

Let A be an Azumaya algebra on X , and fix a finite place v . We will apply
some geometry to understand the evaluation map

X (kv )→ Q/Z P 7→ invv A(P).

We saw in the demonstration that, at primes of good reduction, the
invariant was everywhere zero. For each P ∈ X (kv ), we could always
find one of our representative algebras (−1, f ) such that f (P) was a
unit in kv .

Of course, we could spoil this: we could change our algebra by a
constant algebra ramified at v . The invariant would still be constant,
but not necessarily zero.

Martin Bright (University of Bristol) Computing Brauer–Manin obstructions Banff 2008 20 / 26



Smooth models

It is much easier to investigate the behaviour of A(P) when P reduces to
a smooth point. What does this mean for diagonal quartic surfaces?

Consider the diagonal quartic surface

X : a0X 4
0 + a1X 4

1 + a2X 4
2 + a3X 4

3 = 0

where ai ∈ Q. We may clearly assume that the ai are coprime
integers, and that none of them is divisible by a fourth power.
Reducing the equation modulo p gives a surface over Fp which may
be singular.

But this is only one model of X ; we can easily produce others.

Suppose, say, that p divides a0 but none of the other ai . We can
replace Xi by pXi for i = 1, 2, 3 and then remove the resulting power
of p, giving a new surface isomorphic (over Q) to X .
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Smooth models

In this way we obtain up to four different models. It is not difficult to
show that any point in X (Qp) reduces to a smooth point modulo p in
at least one of these models.

Geometrically, we have shown that there exists a model X/Zp for X ,
obtained by blowing up our original one, such that any point of
X (Qp) extends to a smooth point of X (Zp). The different equations
describe the components of this model.

In fact, this can be accomplished for any smooth variety over Qp;
such a model is called a weak Néron model.
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Unramified places

Theorem

Let X be a smooth, geometrically irreducible variety over kv . Let
A ∈ Br1 X be an Azumaya algebra split by an unramified extension of kv .
Let X/Ov be a smooth model of X , with Z an irreducible component of
the special fibre. Then invv A(P) is constant on the set of points P
reducing to Z.

In particular, this is true at primes where X has good reduction. At a
prime of good reduction, the Galois module Pic X̄ is unramified.

This is because the inertia group, by definition, acts trivially on the
reduction of X modulo p. So each of the 48 lines on X must be
taken to a line with the same reduction modulo p.

But the 48 lines all have distinct reductions – after all, the reduction
of X is a smooth diagonal quartic surface, so contains 48 straight
lines.
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Tamely ramified places

Now suppose that A is split by a totally, tamely ramified Galois
extension l/kv of degree n. There are isomorphisms

Br(l/kv ) ∼= k×v /Nl× ∼= Ov/NO×l ∼= F×/(F×)n

where F is the residue field of kv .

This tells us that, if we have a 2-cocycle describing an element of
Br(l/kv ), and if it takes unit values, then its class is determined by its
reduction modulo v .

With a little work, we can deduce that invv A(P) only depends on the
residue class of P. In fact, we can say more. . .

Martin Bright (University of Bristol) Computing Brauer–Manin obstructions Banff 2008 24 / 26



Tamely ramified places

Now suppose that A is split by a totally, tamely ramified Galois
extension l/kv of degree n. There are isomorphisms

Br(l/kv ) ∼= k×v /Nl× ∼= Ov/NO×l ∼= F×/(F×)n

where F is the residue field of kv .

This tells us that, if we have a 2-cocycle describing an element of
Br(l/kv ), and if it takes unit values, then its class is determined by its
reduction modulo v .

With a little work, we can deduce that invv A(P) only depends on the
residue class of P. In fact, we can say more. . .

Martin Bright (University of Bristol) Computing Brauer–Manin obstructions Banff 2008 24 / 26



Tamely ramified places

Now suppose that A is split by a totally, tamely ramified Galois
extension l/kv of degree n. There are isomorphisms

Br(l/kv ) ∼= k×v /Nl× ∼= Ov/NO×l ∼= F×/(F×)n

where F is the residue field of kv .

This tells us that, if we have a 2-cocycle describing an element of
Br(l/kv ), and if it takes unit values, then its class is determined by its
reduction modulo v .

With a little work, we can deduce that invv A(P) only depends on the
residue class of P. In fact, we can say more. . .

Martin Bright (University of Bristol) Computing Brauer–Manin obstructions Banff 2008 24 / 26



Tamely ramified places

Theorem

Let X be a smooth, geometrically irreducible variety over kv , and let
A ∈ Br1 X be an Azumaya algebra split by a tamely ramified Galois
extension l/kv of degree n. Let X/Ov be a smooth model of X , with Z a
geometrically irreducible component of the special fibre. Then, after
possibly modifying A by a constant algebra, there is a Z-torsor T under
µn such that the following diagram commutes.

X (kv )Z
A−−−−→ Br l/kvy y∼=

Z (F) −−−−→
T

F×/(F×)n
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Consequences for diagonal quartics

On a diagonal quartic surface X , the 48 lines are all defined over
some 2-power degree extension of the base field; so this extension is
either unramified or tamely ramified except at 2.

So, if p 6= 2, evaluating the Brauer–Manin obstruction at p comes
down to studying some torsors under µn on the reduction of X at p.

If X has good reduction, then the reduction is again a smooth quartic
surface, so the only torsors under µn are constant; we see again that
the Brauer–Manin obstruction there is constant.

If the reduction of X is a cone, then consider a straight line L in that
cone. There are no non-constant torsors under µn on L, even after
removing the vertex; so we deduce that the Brauer–Manin evaluation
map is constant on the set of points of X (Qp) reducing to points on
L.
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