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Introductory Remarks

Introductory Remarks

Our understanding of the distribution of rational points
on algebraic surfaces is far from complete:

Type of Surface Rational Points
rational and ruled ubiquitous

abelian surface finitely generated group
general type not Zariski dense (conjecturally)

elliptic surfaces various types of behavior
K3 and Enriques ???

The analysis of rational points on abelian surfaces relies
on the group law. Similarly, elliptic surfaces have their
fiber-by-fiber group laws, and rational surfaces have very
large automorphism groups (Aut(X) = PGL3).

In each case, geometric maps allow us to propogate ra-
tional points. It is thus natural to look at classes of K3
surfaces admitting such maps.
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A Class of K3 Surfaces

Let S be a K3 surface given by the intersection of a
(2, 2)-form and a (1, 1)-form in P2 × P2.

Explicitly, the variety S is defined by a pair of bihomo-
geneous polynomials,

L(x,y) =
∑

0≤i≤2

∑

0≤j≤2

Aijxiyj,

Q(x,y) =
∑

0≤i≤j≤2

∑

0≤k≤`≤2

Bijk`xixjyky`.

The natural projections

p1, p2 : S −→ P2, p1(x,y) = x, p2(x,y) = y,

have degree two, since if we fix one variable, the other
is the intersection of a line and a conic in P2.
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Noncommuting Involutions

Any double cover of varieties p : V → W induces a
(rational) involution σ : V → W that exchanges the
sheets. Thus σ is defined (generically) by

p−1(p(Q)) =
{
Q, σ(Q)

}
.

We thus obtain two involutions

σ1, σ2 : S −→ S

corresponding to p1, p2 : S → P2. These involutions do
not commute, and their composition

σ2 ◦ σ1 ∈ Aut(S)

has infinite order. We denote the subgroup they gener-
ate by

A = 〈σ1, σ2〉 ⊂ Aut(S).
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Orbits of Points

The set of surfaces S (up to isomorphism) forms an 18-
dimensional family, and a Zariski open subset of this
family consists of nonsingular sufaces such that the pro-
jections p1 and p2 are flat (i.e., no fiber is a a curve).
We restrict attention to these surfaces.

Given any point P ∈ S, we denote the orbit of P via
the group of automorphisms A by

A(P ) =
{
φ(P ) : φ ∈ A}

.

If S is defined over K and P ∈ S(K), then

A(P ) ⊂ S(K).

This divides the study of S(K) into:
• Given P , describe its A-orbit A(P ).
• Describe the A-orbits.

I will concentrate primarily on the first question.
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Some Arithmetic Results Concerning A-Orbits . . .

Assume that S is defined over a number field K. We
say that P ∈ S is A-periodic if A(P ) is finite.

Theorem 1.{
P ∈ S(K) : P is A-periodic

}
is a finite set.

More generally,
{
P ∈ S(K̄) : P is A-periodic

}
is a

set of bounded height.

Theorem 2. Let P ∈ S(K) be a point with
#A(P ) = ∞, and let h : S(K̄) → R be the height
function associated to OS(1, 1). Then

#
{
Q ∈ A(P ) : h(Q) ≤ B

}
=

2

µ
logα B + O(1),

where µ ∈ {1, 2} and α = 2 +
√

3.
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. . . and a Geometric Result

Theorem 3. Let P ∈ S be a point with infinite
A-orbit. Then

A(P ) is Zariski dense in S.

Here’s the plan for the rest of this talk:
• Discuss the geometry of S.
• Construct canonical heights on S.
• Sketch the proofs of Theorems 1 and 2.
• Illustrate Vojta’s conjecture for S.
• Describe K3 analogues of classical conjectures.
• Briefly discuss other families of K3 surfaces.
• Additional material (as time permits).
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The Geometry of S

The key to understand the geometry of S is to describe
the action of the involutions on Pic(S).

Let

D1 = S ∩ (H × P2) and D2 = S ∩ (P2 ×H)

be divisors corresponding to OS(1, 0) and OS(0, 1).

Proposition. In Pic(S) we have

σ∗1D1 = D1 σ∗1D2 = 4D1 −D2

σ∗2D1 = −D1 + 4D2 σ∗2D2 = D2.

The proof is an elementary calculation using intersection
theory.
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Diagonalizing the Action of A on Pic(S)⊗ R
We diagonalize the action of σ1 and σ2 on Pic(S) ⊗ R
by letting

α = 2 +
√

3

and defining divisors

E+ = αD1 −D2 and E− = −D1 + αD2.

Proposition. In Pic(S)⊗ R we have

σ∗1E+ = α−1E− σ∗1E− = αE+

σ∗2E+ = αE− σ∗2E− = α−1E+.

Amusing exercise: Use χ : A ³ {±1} to give an action
of A on Z. There is a 1-cocycle ` : A → Z such that

φ∗E± = α±`(φ)E±χ(φ) for all φ ∈ A.
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The Geometry of S (continued)

The divisors E+ and E− are on the boundary of the
effective cone, but they are not themselves effective.

Proposition. Let

D = n1D1 + n2D2 ∈ Div(S).

The following are equivalent:
(1) D is effective.
(2) D is ample.
(3) D · E+ > 0 and D · E− > 0.
(4) n1 > −αn2 and n2 > −αn1.

Corollary. If rank Pic(S) = 2 and C ⊂ S is an
irreducible curve, then

pa(C) ≥ 2.
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Canonical Heights—Construction

A general construction, due essentially to Tate, says that
if φ : V → V is a morphism of varieties and if

φ∗D = mD for some D ∈ Pic(V ) and m > 1,

then the limit

ĥV,D(P ) = lim
k→∞

m−khV,D
(
φk(P )

)

exists and satisfies

ĥV,D(P ) = hV,D(P ) + O(1)

ĥV,D
(
φ(P )

)
= mĥV,D(P ).

We apply Tate’s construction to

(σ2σ1)
∗E+ = α2E+ and (σ1σ2)

∗E− = α2E−

to create two canonical heights

ĥ+ and ĥ−.
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Canonical Heights—Properties

Theorem. There are unique functions

ĥ+, ĥ− : S(K̄) −→ R

satisfying

ĥ±(P ) = hE±(P ) + O(1),

ĥ±(σ1P ) = α∓1ĥ∓(P ),

ĥ±(σ2P ) = α±1ĥ∓(P ).

Further, these canonical heights satisfy:

ĥ := ĥ+ + ĥ− is a Weil height for an ample divisor.

ĥ±(P ) ≥ 0 for all P ∈ S(K̄).

ĥ+(P ) = 0 ⇐⇒ ĥ−(P ) = 0 ⇐⇒ A(P ) is finite.
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Canonical Heights and Periodic Points

The last chain of equivalences

ĥ+(P ) = 0 ⇐⇒ ĥ−(P ) = 0 ⇐⇒ A(P ) is finite (∗)
probably looks familiar. It’s an analogue of the classical
result for abelian varieties:

ĥA,D(P ) = 0 ⇐⇒ P ∈ Ators (D ample)

However, (∗) is not immediate, because E+ and E− are
not ample. So for example, the set

{
P ∈ S(K) : ĥ+(P ) < B

}

may be infinite.

The sum ĥ := ĥ+ + ĥ− is relative to an ample divisor,
so to prove (∗), it suffices to prove the first equivalence

ĥ+(P ) = 0 ⇐⇒ ĥ−(P ) = 0.
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Proof that ĥ+(P ) = 0 ⇐⇒ ĥ−(P ) = 0

Suppose that ĥ+(P ) = 0, and let τ = σ2 ◦ σ1. Then

ĥ(τnP ) := ĥ+(τnP ) + ĥ−(τnP )

= α2nĥ+(P ) + α−2nĥ−(P )

= α−2nĥ−(P ) −−−−→
n→∞ 0

Hence {
τnP : n ≥ 0

}

is a set of bounded height relative to an ample divisor,
so it is a finite set.

Then

ĥ−(P ) = α2n
︸︷︷︸

α2n→∞
as n→∞

· ĥ−(τnP )︸ ︷︷ ︸
finitely many

values for n≥0

.

Hence ĥ−(P ) = 0. ¤
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Proof of Finiteness of A-periodic Points

Theorem 1.{
P ∈ S(K) : P is A-periodic

}
is a finite set.

More generally,
{
P ∈ S(K̄) : P is A-periodic

}
is a

set of bounded height.

Proof.

#A(P ) finite ⇐⇒ ĥ+(P ) = ĥ−(P ) = 0

⇐⇒ ĥ(P ) = 0

⇐⇒ hD1+D2
(P ) = O(1).

Hence {
P ∈ S(K) : P is A-periodic

}

is a set of bounded height. ¤
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Proof of Formula Counting Points in Orbits

Theorem 2. Let h = 1
α−1hD1+D2

. Then

#
{
Q ∈ A(P ) : h(Q) ≤ B

}
=

2

µ
logα B + O(1),

where µ ∈ {1, 2} and α = 2 +
√

3.

Proof. h(Q) = ĥ+(Q) + ĥ−(Q) + O(1).

So writing A = 〈τ〉 ∪ 〈τ〉σ1, we have

h(τnP ) = α2nĥ+(P ) + α−2nĥ−(P ) + O(1),

h(τnσ1P ) = α2n−1ĥ−(P ) + α−2n+1ĥ+(P ) + O(1).

This reduces the proof to an elementary estimate for

#{n ∈ Z : C1γ
n + C2γ

−n ≤ B}
as a function of B. ¤
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The Canonical Height of an A-Orbit
More precisely, the dependence of the counting function
in Theorem 2 on the point P is given by

#
{
Q ∈ A(P ) : h(Q) ≤ B

}

=
1

µ
logα

B2

ĥ+(P )ĥ−(P )
+ O(1),

where the O(1) is independent of P .

The quantity

Ĥ(P ) = ĥ+(P )ĥ−(P )

depends only on the A-orbit of P , so it is a natural
canonical height of the orbit.

Proposition. Let O be any A-orbit. Then

2

√
Ĥ(O) ≤ min

P∈O
ĥ(P ) ≤ 2α

√
Ĥ(O).

Canonical Heights on K3 Surfaces – 16–



K3 Surfaces with Noncommuting Involutions

Vojta’s Conjecture for K3 Surfaces

Let S be any surface with trivial canonical class and
let D be an ample effective divisor. Vojta’s conjecture
implies that the set of integral points(

S r |D|)(R) is not Zariski dense.

Vojta’s precise statement limits the integrality of points.
For our K3 surfaces in P2 × P2, say over Q, we write
points P ∈ S(Q) as

P =
(
[x0, x1, x2], [y0, y1, y2]

)

with xi, yi ∈ Z, gcd(xi) = 1, gcd(yi) = 1.

Vojta Conjecture. There is a Z ( S so that

lim
P∈(SrZ)(Q)

h(P )→∞

log min
{|x0|, |x1|, |x2|

}

log max
{|x0|, |x1|, |x2|

} = 1.
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Vojta’s Conjecture: An Example
Example. Let S be the surface defined by

L(x,y) = x0y0 + x1y1 + x2y2,

Q(x,y) = x2
0y

2
0 + 4x2

0y0y1 − x2
0y

2
1 + 7x2

0y1y2 + 3x0x1y
2
0 + 3x0x1y0y1

+ x0x1y
2
2 + x2

1y
2
0 + 2x2

1y
2
1 + 4x2

1y1y2 − x0x2y
2
1

+ 5x0x2y0y2 − 4x1x2y
2
1 − 4x1x2y0y2 − 2x2

2y0y1 + 3x2
2y

2
2.

φ φ
(
[0, 1, 0], [0, 0, 1]

)
e

(
[0, 1, 0], [0, 0, 1]

)
σ2

(
[1, 0, 0], [0, 0, 1]

)
σ1σ2

(
[1, 0, 0], [0, 7, 1]

)
σ2σ1σ2

(
[1645,−344, 2408], [0, 7, 1]

)
(σ1σ2)

2
(
[1645,−344, 2408], [−13. · 1013, 5.6 · 1012, 9.7 · 1012]

)
σ2(σ1σ2)

2
(
[2.2 · 1049,−3.0 · 1049, 4.6 · 1049], [−13. · 1013, 5.6 · 1012, 9.7 · 1012]

)
(σ1σ2)

3
(
[2.2 · 1049,−3.0 · 1049, 4.6 · 1049], [2.2 · 10186, 1.6 · 10186, 6.4 · 10184]

)
σ2(σ1σ2)

3
(
[−7.9 · 10695, 1.0 · 10696, 1.5 · 10695], [2.2 · 10186, 1.6 · 10186, 6.4 · 10184]

)

It is striking how the three x-coordinates have the same
order of magnitude, and similarly for the y-coordinates
(as predicted by Vojta’s conjecture).
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Vojta’s Conjecture for Orbits

The proof of Vojta’s conjecture, even for K3 surfaces
S ⊂ P2 × P2, is currently out of reach. Might it be
easier if we restrict attention to points lying in an orbit?

Speculation. Siegel, Vojta, and Faltings developed
geometric and Diophantine approximation methods to
study integral and rational points on curves and, more
generally, on subvarieties of abelian varieties. These
techniques rely on the group law. Might it be possi-
ble to use the group of automorphisms A in place of the
group law on an abelian variety to prove:

Vojta Conjecture for Orbits. Fix Q ∈ S(Q)
with #A(Q) = ∞. Then

lim
P∈A(Q)

log min
{|x0|, |x1|, |x2|

}

log max
{|x0|, |x1|, |x2|

} = 1.
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K3 Analogues of Some Classical Conjectures

In the following, all K3 surfaces are S ⊂ P2 × P2

with A = 〈σ1, σ2〉 ⊂ Aut(S). We define

S[A] =
{
P ∈ S : A(P ) is finite

}
.

K3 Uniform Boundedness Conjecture. There
is a constant c = c(K) such that for all K3 surfaces
S/K,

#S[A](K) ≤ c.

K3 Manin–Mumford Conjecture. Let C ⊂ S be
a curve such that φ(C) 6= C for all φ ∈ A. Then

C ∩ S[A] is finite.

(Weak) K3 Lehmer Conjecture. Fix S/K. There
are constants c = c(S/K) > 0 and δ = δ(S/K) so that

ĥ(P ) ≥ c

[L : K]δ
for all L/K and P ∈ S(L)r S[A].
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K3 Analogues of Classical Conjectures (continued)

K3 Lang Height Conjecture. There is a constant
c = c(K) such that for all K3 surfaces S/K,

ĥ(P ) ≥ ch(S) for all P ∈ S(K)r S[A].

(Here h(S) is the height of S as a point in the moduli
space of K3 surfaces.)

K3 Serre Image-of-Galois Conjecture. For any
subgroup B ⊂ A, let

SB := {P ∈ S(K̄) : B is the stabilizer of P in A},
and define

ρB : Gal
(
K(SB)/K

) −→ SymmGp(SB).

There is a constant c = c(S/K) so that for all subgroups
B ⊂ A of finite index,(

SymmGp(SB) : Image(ρB)
)

< c
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A Family of K3 Surfaces with Three Involutions

Let

S ⊂ P1 × P1 × P1

be a (smooth) hypersurface defined by a (2, 2, 2)-form.

Then each of the projections (1 ≤ i < j ≤ 3)

pij : S −→ P1 × P1, (x1,x2,x3) = (xi,xj)

is a double cover, so induces an involution

σij : S −→ S.

The group of automorphisms

A = 〈σ12, σ13, σ23〉
has a subgroup of index two that is isomorphic to Z?Z,
the free product of two copies of Z.
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A Family of K3 Surfaces with Three Involutions

The orbit A(P ) of a point P ∈ S is (generally) a tree
of valency 3.

σ13σ12(P ) σ23σ12(P ) σ12σ13(P ) σ23σ13(P ) σ12σ23(P ) σ13σ23(P )

σ12(P ) σ13(P ) σ23(P )

P
```````````````````

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ

@
@

@
@@

¡
¡

¡
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@

@
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¡
¡

¡
¡¡

@
@

@
@@

¡
¡

¡
¡¡

¤
¤¤
C
CC

¤
¤¤
C
CC

¤
¤¤
C
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¤
¤¤
C
CC

¤
¤¤
C
CC

¤
¤¤
C
CC

The orbit structure of points on these surfaces is remi-
niscent of the orbit structure associated to Markoff num-
bers, which are (integer) solutions to the Markoff equa-
tion

x2 + y2 + z2 = 3xyz.
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Canonical Heights and Counting Points

The arithmetic properties of this family of K3 surfaces
was first studied by Arthur Baragar and Lan Wang.

The Picard group of S has rank at least 3, generated by
the three pullbacks

Dij = p∗ij(hyperplane).

Diagonalizing the action of specific φ ∈ A on the sub-
group of Pic(S) generated by the Dij yields heights that
are canonical relative to 〈φ〉.

Theorem. (Baragar) There is an open set U ⊂ S so
that if P ∈ S(K) satisfies A(P ) ⊂ U , then

#
{
Q ∈ A(P ) : h(Q) ≤ B

} À¿ B.

(Here h is a height with respect to D12 +D13 +D23.)
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Canonical Vector Heights

Baragar has defined a notion of canonical vector
height. This is a divisor class-valued function

ĥ : S(K) −→ Pic(S/K)⊗ R
such that for all

P ∈ S(K), D ∈ Pic(S/K)⊗ R, σ ∈ Aut(S),

we have

ĥ(P ) ·D = hD(P ) + O(1),

ĥ(σP ) = σ∗ĥ(P ).

Baragar proves that ĥ exists on K3 surfaces with Picard
number 2, and recently, he and van Luijk have shown
that canonical vector heights do not exist on certain K3
surfaces of Picard number 3.
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Proof of Theorem 3

Theorem 3. Let P ∈ S be a point with infinite
A-orbit. Then A(P ) is Zariski dense in S.

Proof sketch. If A(P ) is not Zariski dense, write

A(P ) = C1 ∪ C2 ∪ · · · ∪ Cn, a union of irreducible curves.

Let τ = σ2σ1 ∈ A. For each Ci we have

∞ = #
(A(P ) ∩ Ci) = #

(
τA(P ) ∩ Ci) = #

(A(P ) ∩ τ−1Ci).

Hence τ−1Ci equals some Cj, so τ permutes C1, . . . , Cn.

Thus there is a k ≥ 1 such that τkC1 = C1.

E± · C1 = E± · τkC1 =
(
τk)∗E± · C1 = α±2kE± · C1.

Therefore E+ · C1 = E− · C1 = 0.
But E+ + E− is ample, which is a contradiction. ¤
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Computing ĥ± on S ⊂ P2 × P2

If you like to do computations, see:

G. Call and J.H. Silverman, Computing
the canonical height on K3 surfaces, Math.
Comp. 65 (1996), 259–290.

• Criteria to check that S is nonsingular.
• Criteria to check that σ1 and σ2 are morphisms.
• Algorithms for the involutions σ1 and σ2.
• Algorithms for local height functions λ̂+ and λ̂−.

This allows the practical computation of canonical heights

ĥ±(P ) =
∑

v∈MK

λ̂±(P ; v).

Let P =
(
[0, 1, 0], [0, 0, 1]

)
be on the earlier surface S.

ĥ+(P ) = 0.14758 and ĥ−(P ) = 0.55076.
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