
Searching for Rational Points

on Genus 2 Jacobians

Michael Stoll
Universität Bayreuth

BIRS

December 5, 2008



Motivation

Let C : y2 = f(x) be a curve of genus 2 over Q, with Jacobian J.

We will assume that C(AQ) 6= ∅.

Task: Find generators of J(Q)!

1. 2-Descent on J gives upper bound on rank

2. Search for points on J(Q) gives lower bound on rank

3. Hope that bounds agree

4. Use heights to saturate the known subgroup

We focus on step 2 in this talk,

but we will also have to review step 1.



Example

In general, let π : J → K ⊂ P3 denote the map to the Kummer Surface.

Consider

C : y2 = −3x6 + x5 − 2x4 − 2x2 + 2x + 3

Then J(Q) = 〈P 〉 ∼= Z, with

π(P ) = ( 1 9590364691 6063888932 6549967292 5293963968 :

−2 1590165086 8859123654 3393895911 1405158848 :

2 0932294618 1096750411 6135621826 2182813188 :

9 1247794946 8811884895 4941275692 2959999369)

Naive height h(P ) = 94.31440−
Canonical height ĥ(P ) = 95.26287−



General Point Search

How can we search for rational points of height ≤ H

on a d-dimensional variety X ⊂ PN−1?

The obvious way: Project to some Pd, check which P ∈ Pd(Q) lift to X(Q).

Complexity: Hd+1.

This can be combined with sieving using information mod p.

Example: J → K → P2. Find points in K(Q) lifting to J(Q).

This is implemented (j-points), small constant in front of H3.

Takes about 1 hour for H = 104 (degree 6; faster for degree 5).

Good for finding small points quickly.



Using Lattices

Pick a good prime p.

For each P ∈ X(Fp), construct a lattice LP ⊂ ZN

that contains coordinate vectors of all rational points reducing to P

and look for small vectors in LP .

Let t1, . . . , td be local coordinates near a lift P0 ∈ X(Qp) of P .

There is a vector-valued power series u ∈ Zp[[t1, . . . , td]]
N

such that the residue class of P is {u(pt1, . . . , pts) : t1, . . . , td ∈ Zp}.

Write u =
∑

i1,...,id≥0

ui1,...,id
ti11 · · · t

id
d and set

LP = ZN ∩
∑

i1,...,id≥0

Zp · pi1+···+idui1,...,id
.

Generically, (ZN : LP ) = pρ(d,N); ρ(d,N) =
N−1∑
j=0

max{k :
(k+d−1

d
)
≤ j}.



Complexity

(ZN : LP ) = pρ(d,N) with ρ(d,N) =
N−1∑
j=0

max{k :
(k+d−1

d
)
≤ j}.

Can expect small vectors to be of height about pρ(d,N)/N .

Hence: Take p À HN/ρ(d,N).

Since #X(Fp) ≈ pd, the complexity is ≈ HdN/ρ(d,N).

Surface in P3 gives H2.

Surface in P15 gives H32/45.

For J ⊂ P15, note that height gets squared,

so we get H64/45 in terms of the Kummer Surface height.

But: Constant too large to be faster than the simple method!



Covering Spaces

To make progress, we need some means of making the points smaller.

This can be achieved using covering spaces of J.

There is a finite set of (for example) 2-coverings Xj → J

such that every point in J(Q) lifts to some Xj(Q).

Also, the height goes down from H to H1/4.

The 2-descent computation (that we did for the upper rank bound)

gives us a set that classifies the Xj.

But: It is not easy to use this to construct explicit models (in P15).



2-Descent

Recall: C : y2 = f(x).

Define A = Q[θ] = Q[T ]/(f(T )).

There is a group homomorphism

µ : DivC(Q)→ PicC(Q)→ A×

Q×(A×)2
,

∑
P

nPP 7−→
∏
P

(
x(P )− θ

)nP

We can compute a finite subgroup S of A×/Q×(A×)2

that contains µ
(
J(Q)

)
.

Each element δ ·Q×(A×)2 ∈ S gives rise

to one or two 2-covering spaces Xδ of J.



Application to Point Search

Given δ, construct a K3 Surface Yδ:

Write z = z0 + z1θ + · · ·+ z5θ5 ∈ A. Then

δz2 = Qδ,0(z) + Qδ,1(z)θ + · · ·+ Qδ,5(z)θ
5 .

with quadratic forms Qδ,j ∈ Q[z0, . . . , z5].

Define Yδ ⊂ P(A) = P5 : Qδ,3 = Qδ,4 = Qδ,5 = 0 .

Xδ
//

πδ

��

Kδ

��

Yδ
oo

δz2

��zzuuuuuuuuuuuuuuuuuuuuuu

J // K //_________ P2

Complexity for points of height ≤ H in P2 is H3/4.



Algorithm

Input: C, δ ∈ A× and H.

1. Select a good Q-basis for δ of A.

2. Compute the quadratic forms Qδ,j w.r.t. this basis.

3. Let Yδ ⊂ P(A) be the K3 Surface Qδ,3 = Qδ,4 = Qδ,5 = 0.

4. For good primes p1, . . . , pk with p1 · · · pk À H3/8,

compute Pj = {P ∈ Yδ(Fpj) : P gives point in J(Fpj)}.

5. Compute the sets Λj = {LP : P ∈ Pj}.

6. For each lattice L = L1 ∩ · · · ∩ Lk with Lj ∈ Λj,

find small vectors in L and check if they give a point in J(Q).

Return this point when one is found, and stop.

7. Return “No point found.”



Example

Consider y2 = x5 − 41.

The rank of J(Q) should be 1, but there are no small points.

The nontrivial element of S is represented by

δ = 38903213θ4+81019029θ3+248047293θ2+260114981θ+1085600973

We find equations for Yδ (in ‘good’ coordinates):

−2z1z4 + 2z2z5 + z2
3 = 0

z2
1 − 2z1z5 + 2z2z3 + 4z2z4 − 2z3z4 − 4z3z5 + 2z4z5 − 3z2

5 = 0

−z2
0 − 4z1z2 − 4z1z4 − 2z1z5 + z2

2 − 2z2z4
− 4z2

3 − 6z3z4 − 8z3z5 + 5z2
4 − 8z4z5 + 6z2

5 = 0

The point (−2197 : −142 : 656 : 566 : −703 : −92) ∈ Yδ(Q)

gives a generator of J(Q);

the image on K is (77228944 : 39966176 : 39032976 : 7200361913).



Beyond 2-Coverings

In many cases, Pic1
C is a nontrivial 2-covering of J.

We can use 2-descent on Pic1
C to construct some 4-coverings of J.

Recall the map

µ : C(3)(Q)→ Pic1
C(Q)→ A×

Q×(A×)2

P1 + P2 + P3 7−→ (x(P1)− θ)(x(P2)− θ)(x(P3)− θ) .

We can compute a finite subset S of A×/Q×(A×)2

that contains µ
(
Pic1

C(Q)
)
.

Each element δ ·Q×(A×)2 ∈ S gives rise to a 2-covering space Xδ of Pic1
C.



A Diagram

We define Zδ ⊂ P(A) : Qδ4
= Qδ,5 = 0.

Then Xδ is the variety of lines in Zδ.

Let Wδ be the universal family over Xδ.

Wδ
P1

uukkkkkkkkkkkkkkkkkkkkkk

��

4:1

((RRRRRRRRRRRRRRRRRRRR

Xδ

πδ

��

Zδ

δz2

��

C(3)
P1

uulllllllllllllllllll
8:1

((QQQQQQQQQQQQQQQQQQQ

Pic1
C

��

P3

J

If height on P3 is comparable

with height on Xδ ⊂ P15,

then we gain a factor of 16

in the exponent of H.

Threefold in P5: H3·6/7

Gives complexity H9/56.



Algorithm

Input: C, δ ∈ A× and H.

1. Select a good Q-basis for δ of A.

2. Compute the quadratic forms Qδ,j w.r.t. this basis.

3. Let Zδ ⊂ P(A) be given by Qδ,4 = Qδ,5 = 0.

4. For good primes p1, . . . , pk with p1 · · · pk À H3/56?,

compute Pj = {P ∈ Zδ(Fpj) : P lifts to Wδ(Fpj)}.

5. Compute the sets Λj = {LP : P ∈ Pj}.

6. For each lattice L = L1 ∩ · · · ∩ Lk with Lj ∈ Λj,

find small vectors in L and check if they give a point in C(3)(Q).

Return this point when one is found, and stop.

7. Return “No point found.”



Example

Consider the example from the beginning:

C : y2 = −3x6 + x5 − 2x4 − 2x2 + 2x + 3

There is one nontrivial element of S:

δ = −768θ5 − 113θ4 + 295θ3 + 825θ2 + 30θ − 337 .

Equations for Zδ are

z2
0 − 2z0z1 + 2z0z3 + 4z0z4 + z2

1 − 6z1z2 − 2z1z5 + z2
2 + 2z2z5 − z2

3 + 2z3z4 + 2z2
5 = 0

z2
0 − 2z0z2 + 2z0z4 − 2z1z2 + 2z1z4 − 2z2z4 + 2z2z5 − 2z3z5 − z2

4 − 2z4z5 + 4z2
5 = 0

Find point (181 : 7 : 22 : 138 : −61 : 6) on Zδ.

Image in P3 is 35028x3 + 59577x2 + 49066x + 13929.



What Next?

Idea from Wednesday:

Try to write Xδ explicitly as Xδ ⊂ G(P1, P5) ⊂ P14.

If the height there is comparable to the “4Θ height” on Xδ,

then searching for points on Xδ ⊂ P14 leads to:

Surface in P14: H2·15/40 = H3/4

Gain in exponent of height: 8

So the complexity would be H3/32.

This might extend the range of “findable” points.



Application

The information we obtain can be used to verify that C(Q) = ∅.

Given:

• An explicit embedding ι : C → J (∈ Pic1
C(Q)),

• Explicit generators of J(Q),

we can run a Mordell-Weil Sieve computation.

It uses local information to put conditions on the image of C(Q) in J(Q);

when these conditions are contradictory, this gives a proof of C(Q) = ∅.

Conjecturally, this should always work.


