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Abstract. We present a new method to show that a principal homogeneous
space of the Jacobian of a curve of genus two is nontrivial. The idea is to

exhibit a Brauer-Manin obstruction to the existence of rational points on a
quotient of this principal homogeneous space. In an explicit example we apply
the method to show that a specific curve has infinitely many quadratic twists
whose Jacobians have nontrivial Tate-Shafarevich group.

1. Introduction

By Faltings’ Theorem every curve of genus 2 defined over a number field k has
only finitely many rational points. Several methods have been developed to find
all rational points of a given curve C, such as the method of Chabauty-Coleman,
the Mordell-Weil sieve, and combinations of these with covering techniques. All
these methods require that we know the finitely generated abelian group J(k) of
rational points on the Jacobian J of C, at least up to a subgroup of finite index.
The torsion subgroup of J(k) is generally easy to find (see [7], sections 8.1–2) and
the problem is therefore to find the rank r of J(k). The rank can be read off from
the size of the group J(k)/2J(k) once the torsion subgroup is known. This group
fits into an exact sequence

0 → J(k)/2J(k) → Sel(2)(J/k) → X(J/k)[2] → 0,

where Sel(2)(J/k) is the 2-Selmer group of J/k and X(J/k)[2] is the 2-torsion
subgroup of the Tate-Shafarevich group X(J/k) of J/k. The 2-Selmer group is
computable (see [20]). It is, however, not even known whether the Tate-Shafarevich
group is always finite. Many papers have been devoted to exhibiting nontrivial
elements of X(J/k). In this paper we will follow a new method, suggested by
Michael Stoll, which leads to the following result, our main theorem.

Theorem 1.1. Let S be the union of {5} with the set of primes that split completely
in the field

Q

(√
−1,

√
2,
√

5,

√
−3(1 +

√
2),

√
6(1 +

√
5)

)
.

Then for all n that are products of elements of S, the 2-part of the Tate-Shafarevich
group of the Jacobian of the curve defined by

y2 = −6n(x2 + 1)(x2 − 2x− 1)(x2 + x− 1)

is nontrivial.
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Our method uses the fact that every element of Sel(2)(J/k) can be represented
by an everywhere locally solvable 2-covering of J . A 2-covering of J is a surface X
together with a morphism π : X → J , defined over k, such that over the algebraic
closure k̄ there exists an isomorphism Xk̄

∼= Jk̄ making the following diagram
commutative.

Xk̄

∼=
//

π
  

AA
AA

AA
AA

Jk̄

[2]

��

Jk̄

The image of X in X(J/k) is trivial if and only if X has a rational point. Unfortu-
nately, the easiest way to describe X in general is as the intersection of 72 quadrics
in P15 (see [7], section 2.3 for the statement). The isomorphism in the diagram
above is determined up to translation of J by a 2-torsion point. Since multipli-
cation by −1 commutes with these translations, it induces a unique involution ι
on X. Our strategy to prove that X has no rational points is to show there is a
Brauer-Manin obstruction to the existence of rational points on X/ι, or rather on
a minimal nonsingular model V of this quotient variety. Note that V is a twist of
the Kummer surface associated to J .

We will consider curves of genus 2 given in the most general form y2 = f(x),
where deg f = 6. In the case deg f = 5, the methods of this paper may be applied
after changing coordinates so that there is no rational Weierstrass point at infinity.
The methods of [6] can also be used in that case; that article uses a del Pezzo
surface which is a quotient of our surface V .

The goal of this paper is twofold. In addition to proving the main theorem, we
will analyze the geometry of V . By [7], chapter 16, the surface V can be embedded
in P5 as the complete intersection of three quadrics. In this reference this is only
done when V is a trivial twist, but we will see that it holds for any twist. In this
embedding, V contains 32 lines that generically generate the Néron-Severi group of
V . We will also investigate the intersection pairing among these lines and exhibit 15
pairs of elliptic fibrations, each associated to one of the nontrivial 2-torsion points
of J . In section 2 we will find the fields of definition of these lines and elliptic
fibrations together with explicit equations for them. Then in section 3, we will
use the information we have acquired in section 2 to exhibit an explicit example
for which we are able to show a Brauer-Manin obstruction. This will be the most
important part of the proof of the main theorem.

We thank Michael Stoll for suggesting this project to us, Nils Bruin and Victor
Flynn for helpful suggestions and explanations, William Stein for letting us use
his computers, CRM in Montreal and MSRI for their hospitality and financial
support, those who have supported us through their grants, and the magma group
for developing their software. Also, the first author thanks the Nuffield Foundation
for funding his research with a grant in their Awards to Newly Appointed Lecturers
program, which supported him at CRM in the fall of 2005, and the University of
Waterloo. The second author also thanks PIMS, Simon Fraser University, the
University of British Columbia, and Universidad de los Andes. We thank Mike
Roth for pointing out an error in an earlier version of this work.
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2. The geometry of the surface

In this section we will investigate the geometry of the K3 surfaces that arise as
the quotients of the principal homogeneous spaces under the Jacobian as described
in the introduction. These K3 surfaces are twists of the Kummer surface associated
to the Jacobian. In [7], sect. 16.2, it is remarked that the Kummer surface itself,
i.e., the trivial twist, contains 32 lines. We will give a direct proof that all twists
contain 32 lines. We will analyze the Galois action on the set of these lines. We
will also describe certain elliptic fibrations, coming in pairs associated to pairs of
roots of f . In the next section these will be used to find Brauer-Manin obstructions
to the existence of rational points on some of these surfaces. In this section we will
rarely use the fact that these K3 surfaces are twists of the Kummer surface. Given
that our goal is to actually implement an algorithm, we will keep everything very
explicit, including our proofs. We will, however, refer to [7] at times in order not
to lose the context our work should be seen in.

2.1. The surface. Let k be a field and W a vector space over k of dimension
r ≥ 1. We let P(W ) denote the projective space (W − {0})/k∗ associated to

W . The homogeneous coordinate ring of P(W ) is the symmetric algebra S(Ŵ ) =⊕
n≥0 S

n(Ŵ ), where Ŵ = Homk(W,k) is the dual of W . Let (x1, . . . , xr) be

a basis of Ŵ . This basis yields an isomorphism P(W ) → Pr−1
k that sends the

element w ∈ W to [x1(w) : . . . : xr(w)]. Thus the xi determine a coordinate

system on P(W ). The symmetric algebra S(Ŵ ) is isomorphic to the polynomial
ring k[x1, . . . , xr].

Let f ∈ k[X] be a separable polynomial of degree 6, and set Af = k[X]/f . We
will also denote the image of X in Af by X. Consider δ ∈ A∗

f and set

Vf,δ =
{
q ∈ Af : ∃c0, c1, c2 such that δq2 = c2X

2 + c1X + c0
}
.

Let Vf,δ denote the subset of P(Af ) corresponding to Vf,δ. We will soon see that
Vf,δ is an algebraic set. For any c ∈ k∗ we obviously have Acf = Af , Vcf,δ = Vf,δ,
and Vcf,δ = Vf,δ. We will often leave any subscript out of the notation that is clear

from the context. Let (a0, . . . , a5) be the canonical basis of Â associated to the

basis (1,X, . . . ,X5) of A, so that any q ∈ A can be written as q =
∑5
i=0 ai(q)X

i.
As above the ai determine a coordinate system on P(A). Writing out δq2, we see

that there are quadratic forms C0, . . . , C5 in the homogeneous coordinate ring S(Â)
of P(A), depending on f and δ, such that ai(δq

2) = Ci(q) for any q ∈ A. We have
q ∈ V if and only if we have Ci(q) = 0 for 3 ≤ i ≤ 5. This implies that V is an
algebraic set in P(A), defined over k by the three quadrics C3, C4, and C5. We will
express the Ci in a new coordinate system, inspired by [7], Chapter 16.

For any field extension k′ of k we write Ak′ = A⊗k k′, viewed as a vector space
over k′, so that we have P(Ak′) ∼= P(A)k′ . We write Ā and V̄ for Ak̄ and Vk̄
respectively, where k̄ is a fixed algebraic closure k. Let Ω denote the set of roots of
f in k̄. Then l = k(Ω) is the splitting field of f . For ω ∈ Ω we let ϕω denote the

l-algebra homomorphism Al → l given by X 7→ ω. The ϕω form a basis of Âl and
therefore induce a coordinate system on P(Al).
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Remark 2.1. Let (Pω)ω be the canonical basis of Al associated to the basis (ϕω)ω
of Âl. Then for each q ∈ Al we have

Ci(q) = ai(δq
2) = ai

(
∑

ω

ϕω(δq2)Pω

)
=
∑

ω

ai(Pω)ϕω(δ)ϕω(q)2,

which implies Ci =
∑
ω ai(Pω)δωϕ

2
ω, with δω = ϕω(δ). Note that we have ϕω =∑5

i=0 ω
iai, so we can also write the Ci in terms of the coordinates ai. We can make

the constants ai(Pω) explicit by setting P ′
ω =

∏
θ∈Ω\{ω}(X − θ). Then Pω equals

the Legendre polynomial P ′
ω(ω)−1P ′

ω.

For all ω ∈ Ω we set λω = ϕω(P ′
ω) = P ′

ω(ω) with P ′ as in Remark 2.1. For
j = 0, 1, 2, set

Qj =
∑

ω

ωjλ−1
ω δωϕ

2
ω.

Convention 1. From now on we will assume that the characteristic of k
is different from 2.

Proposition 2.2. The algebraic set Vf,δ is a smooth, geometrically integral com-
plete intersection of the three quadrics Q0, Q1, and Q2. It is a K3 surface of degree
8.

Proof. Suppose that f =
∑6
i=0 fiX

i. The set V is defined by the quadrics C3, C4, C5,
so it is also defined by

Q′
0 = C5, Q′

1 = C4−f5f−1
6 C5, and Q′

2 = C3−f5f−1
6 C4+(f2

5 f
−2
6 −f4f−1

6 )C5.

From the equations −f5f−1
6 =

∑
ω ω and 2f4f

−1
6 =

∑
ψ 6=ω ψω we find that Q′

i = Qi
for i = 0, 1, 2. Note that the 3 × 3 minors of the Jacobian matrix are equivalent
to Vandermonde matrices after scaling the columns. It follows that the quadrics
define a smooth complete intersection unless four or more of the scaling factors are
0, which is equivalent to the vanishing of four or more of the ϕi. The vanishing of
the three quadrics would then imply that all of the ϕi vanish. It follows that Vf,δ
is indeed a smooth complete intersection. Every smooth complete intersection of
three quadrics in P5 is a K3 surface of degree 8. �

Remark 2.3. The statement that V is a K3 surface also follows from the fact that V
is the twist by δ of the desingularized Kummer surface associated to the Jacobian
of the curve given by y2 = f ; see [7], Chapter 16.

Corollary 2.4. The Néron-Severi group NS(V ) of V is free, finitely generated, iso-
morphic to PicV , and it has a lattice structure induced by the intersection pairing.

Proof. There are injections PicV →֒ Pic V̄ and Pic0 V →֒ Pic0 V̄ . As V is a com-
plete intersection by Proposition 2.2, we find from [8], Thm. 1.8, that Pic0 V̄ = 0,
so NS(V ) = PicV . The Néron-Severi group of any projective variety is finitely gen-
erated, see [9], ex. V.1.7. Also by [8], Thm. 1.8, we find that Pic V̄ is torsion-free,
so it is free. In general the intersection pairing induces a lattice structure on the
Néron-Severi group modulo torsion (see [10]), which in this case is isomorphic to
PicV .

This theorem also follows from the fact that V is a K3 surface, as shown for char-
acteristic 0 in Prop. VIII.3.2 and on page 120 of [1], and for positive characteristic
in Theorem 5 of [2]. �
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Remark 2.5. Consider the net of quadrics pQ0 + qQ1 + rQ2 vanishing on V . The
curve C in P2(p, q, r) corresponding to singular quadrics is given by the equation
det(pM0 + qM1 + rM2) = 0 of degree 6, where Mi is the symmetric matrix cor-
responding to the quadratic form Qi. For any ω ∈ Ω the quadric hypersurface
corresponding to any point on the line p + ωq + ω2r = 0 is singular at the point
in P(Al) given by ϕθ = 0 for all θ 6= ω. This implies that C consists of 6 lines.
The 15 intersection points are parametrized by pairs (ω, ψ) ∈ Ω2 with ω 6= ψ. The
corresponding quadrics are given by Qωψ = ωψQ0 − (ω + ψ)Q1 +Q2. The hyper-
surface given by Qωψ is singular at every point on the line mωψ given by ϕθ = 0
for θ 6= ω, ψ. This hypersurface is a cone over a cone over a quadric Dωψ in the P3

obtained by projecting P(Al) away from mωψ, and therefore contains two families
of linear three-spaces. Each family cuts out a family of curves on V , given by the
two quadrics Q0, Q1 in these three-spaces. This yields two elliptic fibrations of V ,
both defined over a quadratic extension of k(ωψ, ω + ψ). We will see later which
extension this is. Note that the projection from mωψ induces a 4-to-1 map from
V to Dωψ. The elliptic fibrations factor through this map. Since Dωψ satisfies the
Hasse principle this map may be used to obtain information about the arithmetic
of V .

Let k′ be any field extension of k. For every z ∈ A∗
k′ , let [z] denote the automor-

phism of P(Ak′) induced by multiplication by z. Note that [z] maps Vδ isomorphi-
cally to Vδz−2 , so if δ is a square in A∗

k′ , then Vδ is isomorphic to V1 over k′. For
any commutative ring R let µ(R) denote the kernel of the endomorphism x 7→ x2

of R∗. The scheme SpecA[t]/(t2 − 1) represents the functor from the category of
A-algebras to the category of groups that sends R to µ(R) in the sense that the
elements of µ(R) are parametrized by the maps from SpecR to SpecA[t]/(t2 − 1)
that respect the map to SpecA. Such a map corresponds to the image of t under the
associated homomorphism A[t]/(t2−1) → R. Let µA be the Weil restriction of this
scheme from A to k. Then µA is a k-scheme representing the functor that sends a
field extension m of k to µ(Am). Let µ̃ be the quotient of µA by the automorphism
that is induced by t 7→ −t on SpecA[t]/(t2 − 1). Then for all field extensions m of
k we have µ̃(m) = (µ(Am̄)/〈−1〉)Gm , where Gm is the absolute Galois group of m.

Lemma 2.6. The homomorphism A∗
k′ → Autk′ P(Ak′) that sends z to [z] has kernel

k′∗. It induces an injective homomorphism µ̃(k′) → Autk′ Vk′ .

Proof. Note that for z ∈ µ(Ak′) the automorphisms [z] and [−z] are equal, so the
homomorphism µ̃(k′) → Autk̄ Vk̄ is well defined and has image in Autk′ Vk′ . We
may therefore assume that k′ is algebraically closed, so that µ̃(k′) = µ(Ak′)/〈−1〉.
Let ρ denote the homomorphism z 7→ [z] in question. If ρ(z) is the identity, then
we have z · 1 = 1 in (Ak′ − {0})/k′∗, which implies that z ∈ k′∗. Set HV = {τ ∈
Autk′ P(Ak′) : τ(V ) = V }. Since [z] maps Vδ to Vδz−2 , the restriction ρµ of ρ
to µ(Ak′) factors through HV . Because V is not contained in a hyperplane, the
map H0(P5,OP5(1)) → H0(V,OV (1)) is injective. As every element in Autk′ P5

k′

is determined by its action on H0(P5,OP5(1)), this implies that the restriction
map r : HV → Autk′ Vk′ is injective. Hence, the composition r ◦ ρµ : µ(Ak′) →
Autk′ Vk′ has kernel ker ρµ = µ(Ak′)∩k′∗ = {±1} and therefore induces the injective
homomorphism already mentioned. �

For any ζ ∈ µ(Ak′) we write ζ̃ for the image of ζ in µ̃(k′), and [ζ] or [ζ̃] for the
induced action by multiplication on P(Ak′) and Vk′ . Let T be the Weil restriction
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of the scheme SpecA[t]/(t2 − δ) from A to k and let T̃ be the k-scheme that is the
quotient of T by the automorphism induced by t 7→ −t on SpecA[t]/(t2 − δ). As
for µA and µ̃ above, we can make the identifications

T (m) = {ξ ∈ Am : ξ2 = δ}, and T̃ (m) =
(
{ξ ∈ Am̄ : ξ2 = δ}/〈[−1]〉

)Gm
,

for every extension m of k. Clearly T is a k-torsor under µA, with the transitive
free action of µA(k′) = µ(Ak′) on T (k′) given by multiplication in Ak′ . Similarly,

T̃ is a k-torsor under µ̃.
For any ξ ∈ T (k′) the 2-dimensional subspace

Lξ = {ξ−1(sX + t) : s, t ∈ k′}
of Ak′ corresponds to a line in P(Ak′), defined over k′, which is contained in Vk′ and

which we will denote by Lξ. Since Lξ = L−ξ, this implies that to each ξ̃ ∈ T̃ (k′) we

can associate a unique line Lξ̃, namely Lξ̃ = Lξ, where ξ ∈ T (k̄′) is a lift of ξ̃. Let

Λ(k′) denote the set of all lines Lξ̃ corresponding to some ξ̃ ∈ T̃ (k′). Note that for

any z ∈ µ(Ak̄′) the automorphism [z] maps Lξ to Lξz−1 . This induces an action of
µ̃(k′) on Λ(k′).

Lemma 2.7. The action of µ̃(k′) on Λ(k′) is transitive and free.

Proof. Transitivity follows from the fact that the action of µ(Ak̄′) on T (k̄′) is tran-

sitive and that the map T̃ (k′) → Λ(k′) sending ξ̃ to Lξ̃ is surjective and respects

the action of µ(Ak′). To show that the action is free, we may assume that k′ is al-

gebraically closed. Suppose that for ζ̃ ∈ µ̃(k′) we have ζ̃Lξ = Lξ and let ζ ∈ µ(Ak′)

be a lift of ζ̃. Then multiplication by ζ sends the subspace Lξ to itself, so it also
sends the subspace W = {sX + t : s, t ∈ k′} to itself. In particular this implies
that there are s, t ∈ k′ such that ζ · 1 = sX + t. From the fact that ζ ·X ∈ W we
then find s = 0, so ζ = t is in µ(Ak′)∩k′ = {±1}, which means ζ̃ = 1. We conclude
that the action of µ̃(k′) on Λ(k′) is free. �

Lemma 2.8. The map T (k̄′) → Λ(k̄′) that sends ξ to Lξ induces a bijection

T̃ (k′) → Λ(k′) that respects the action of µ̃(k′) and G(k̄/k).

Proof. It is obvious that we obtain a surjective map T̃ (k′) → Λ(k′) that respects
the action of µ̃(k′) and G(k̄/k). Injectivity then follows from the fact that µ̃(k′)

acts transitively and freely on both T̃ (k′) and Λ(k′), as we saw in Lemma 2.7. �

Remark 2.9. Lemmas 2.7 and 2.8 combined say that T̃ (k̄) and Λ(k̄) are isomorphic
over k as k-torsors under µ̃(k̄).

Convention 2. For the rest of this section we will suppose that l is con-

tained in k′.

By the Chinese Remainder Theorem, the map

ϕk′ : Ak′ →
⊕

ω∈Ω

k′

induced by the ϕω is an isomorphism, defined over l. Note that the induced Galois
action on

⊕
ω k

′ is given by acting on both the indices and the coefficients in k′. In
other words, for σ ∈ G(k̄/k) we have

σ
(
(cω)ω∈Ω

)
=
(
σcσ−1ω

)
ω∈Ω

.
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It follows that µ(Ak′) and µ̃(k′) are isomorphic to
⊕

ω{±1} and (
⊕

ω{±1})/{±1}
respectively.

Lemma 2.10. Either the set Λ(k′) is empty, or it contains exactly 32 lines.

Proof. Since µ̃(k′) has exactly 32 elements, this follows from Lemma 2.7. �

For I ⊂ Ω let ζI denote the unique element in µ(Ak′) with ϕω(ζI) = −1 for

ω ∈ I and ϕω(ζI) = 1 for ω 6∈ I. Note that we have ζ̃I = ζ̃Ω\I . We will also denote

this element by ζ̃π, where π is the partition {I,Ω \ I} of Ω. The map from the set
P(Ω) of all subsets of Ω to µ(Ak′) that sends I to ζI is a bijection. It induces a

bijection from the set Π of partitions of Ω into two sets to µ̃(k′), sending π to ζ̃π.
The inverse π : µ̃(k′) → Π of the latter bijection is given by

π(ζ̃) = {{ω : ϕω(ζ) = 1}, {ω : ϕω(ζ) = −1}} ,
where ζ ∈ µ(Ak′) is a lift of ζ̃. For any π = {I, J} ∈ Π the automorphism [ζ̃π] = [ζI ]
is defined over the fixed field of the group {g ∈ G(k̄/k) : gπ = π}. Note that [ζI ]
acts on P(Al) by sending the coordinate ϕω to ±ϕω, where the sign is negative if
and only if we have ω ∈ I.

For any ω ∈ Ω and ξ ∈ T (k′) we let Pξ,ω denote the point on the line Lξ
corresponding to the set

{ξ−1s(X − ω) : s ∈ k′} ⊂ Ak′ .

For any z ∈ µ(Ak′) the map [z] sends Pξ,ω to Pξz−1,ω. The notation distinguishes
the points Pξ,ω, indexed by two subscripts, from the polynomials Pω from Remark
2.1, which are indexed by only one.

Proposition 2.11. For all ω ∈ Ω and all ξ ∈ T (k′) we have ζωPξ,ω = Pξ,ω. Two
lines L,L′ ∈ Λ(k′) intersect if and only if there exists an ω ∈ Ω such that ζωL = L′,
in which case the intersection point is Pξ,ω = Pξ′,ω, where ξ, ξ′ ∈ T (k′) are such
that L = Lξ and L′ = Lξ′ .

Proof. One easily checks ϕ((ζω − 1)(X − ω)) = 0, so we have X − ω = ζω(X − ω)
for all ω ∈ Ω. This implies that for all ξ ∈ T (k′) we have ζωPξ,ω = Pξζ−1

ω ,ω = Pξ,ω,

which proves the first statement. Let ξ, ξ′ ∈ T (k′) be such that L = Lξ and
L′ = Lξ′ . Suppose there is an ω ∈ Ω such that ζωL = L′. Then L and L′ both go
through the point Pξ,ω = ζωPξ,ω, so they intersect.

Conversely, suppose L and L′ intersect. Then the subspaces Lξ and Lξ′ have
a nonzero intersection, so we can choose s, t, s′, t′ ∈ k′ such that ξ−1(sX + t) =
ξ′−1(s′X+ t′) 6= 0. Applying ϕω we find ϕω(ζ)(sω+ t) = s′ω+ t′ for all ω ∈ Ω, with
ζ = ξ−1ξ′ ∈ µ(Ak′). After replacing ξ′ by −ξ′ if necessary, we may assume that
there are at least three ω ∈ Ω with ϕω(ζ) = 1. Then the equation sx+t = s′x+t′ has
at least three solutions in x, which implies s′ = s and t′ = t. From L 6= L′ we deduce
ζ 6= 1, so there is an ω with ϕω(ζ) 6= 1. The equation ϕω(ζ)(sω+t) = s′ω+t′ = sω+t
then yields sω + t = 0. Since the equation sx + t = 0 has at most one solution in
x, this shows ζ = ζω and ζωL = L′. �

Corollary 2.12. For any line L ∈ Λ(k′) and any elements ζ̃, ζ̃ ′ ∈ µ̃(k′) the lines

ζ̃L and ζ̃ ′L intersect if and only if we have ζ̃ · ζ̃ ′ = ζ̃ω for some ω ∈ Ω.

Proof. By Lemma 2.7 the element ζ̃ ′′ = ζ̃ · ζ̃ ′ = ζ̃−1 · ζ̃ ′ is the unique element in
µ̃(k′) for which we have ζ̃ ′′ · ζ̃L = ζ̃ ′L. By Proposition 2.11 the lines intersect if

and only if we have ζ̃ ′′ = ζ̃ω for some ω ∈ Ω. �
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Put Ā = Ak̄, V̄ = Vk̄, and Λ = Λ(k̄). For any L,L′ ∈ Λ we say that L and

L′ have the same or opposite parity if for the unique ζ̃ ∈ µ̃(k̄) with ζ̃L = L′, the

number of elements of the sets in the partition π(ζ̃) is even or odd respectively. For

any ω, ψ ∈ Ω, let Φωψ denote the subgroup of µ̃(k̄) generated by ζ̃ω and ζ̃ψ.

Lemma 2.13. Let L,L′ ∈ Λ be different lines of the same parity. Then L and L′

do not intersect and there are exactly two lines M and M ′ of the opposite parity
that intersect both L and L′. There are ω, ψ ∈ Ω such that the set {L,L′,M,M ′}
is an orbit of Λ under the action of Φωψ.

Proof. Let I ⊂ Ω be such that ζIL = L′. Then #I is even, so L and L′ do
not intersect by Corollary 2.12. After replacing I by Ω \ I if necessary, there are
ω, ψ ∈ Ω, such that I = {ω, ψ}. From Corollary 2.12 we deduce that the only
lines that intersect both L and L′ are M = ζωL and M ′ = ζψL. Indeed the set
{L,L′,M,M ′} is an orbit under Φωψ. �

Remark 2.14. Remembering that V̄ is a twist of the Kummer surface associated to
the Jacobian J of the curve given by y2 = f(x), we note that the lines of one parity
correspond to the 16 blow-ups of the nodes on the singular surface J/〈−1〉. The
lines of the other parity correspond to the tropes, see [7], Sect. 3.7. The intersection
numbers among these lines are well known.

Definition 2.15. A 4-gon is a set {L,L′,M,M ′} of four lines, such that L and L′

intersect both M and M ′.

By Lemma 2.13 any two lines of the same parity determine a unique 4-gon. All
4-gons arise in this way, because if the lines L and L′ both intersect a line M , then
by Lemma 2.13 both L and L′ are of the opposite parity to M , so L and L′ have
the same parity.

Lemma 2.16. Let ω, ψ ∈ Ω and any I, J ⊂ Ω be such that the lines ζIL and ζJL are
not in the same orbit under Φωψ. Then the cardinalities of the sets I ∩ (Ω \ {ω, ψ})
and J ∩ (Ω \ {ω, ψ}) have different parity if and only if the line ζIL intersects some
line in the orbit under Φωψ of the line ζJL in which case it intersects exactly one
line in this orbit.

Proof. Suppose that the sets I ∩ (Ω\{ω, ψ}) and J ∩ (Ω\{ω, ψ}) are not equal and
that their cardinalities have the same parity. Let π = {π1, π2} ∈ Π be such that

ζ̃π = ζ̃I ζ̃J . Then ζIL and ζJL are in the same orbit under Φωψ if and only if we
have πi ⊂ {ω, ψ} for i = 1 or i = 2. We conclude πi 6⊂ {ω, ψ} for i = 1, 2. From the
parity hypothesis at the beginning of the proof, we deduce that πi∩(Ω\{ω, ψ}) 6= ∅
has even parity for i = 1 and i = 2. It follows that for each ζ̃ ∈ Φωψ the sets in the

partition π(ζζIζJ) = π(ζζπ) contain exactly 2 elements of Ω \ {ω, ψ}, so ζ̃IL does

not intersect any of the lines ζ̃ ζ̃JL in the orbit of ζ̃JL by Corollary 2.12.
Conversely, suppose that I ∩ (Ω \ {ω, ψ}) and J ∩ (Ω \ {ω, ψ}) have different

parity. Then we have π = {K ∪ {θ},Ω \ ({θ} ∪K)} for some θ ∈ Ω \ {ω, ψ} and
K ⊂ {ω, ψ}. Then by Corollary 2.12 the line ζIL intersects exactly one line in the

orbit of ζ̃JL, namely ζ̃K ζ̃JL. �

Lemma 2.17. Let F1 be a 4-gon. Then there are exactly 12 lines in Λ that do not
intersect any line in F1. The set of these 12 lines can be partitioned into three 4-
gons F2, F3, F4 and no other subset of this set is a 4-gon. The set of the remaining
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16 lines can be partitioned into four 4-gons G1, G2, G3, G4 in such a way that, for
every i, j ∈ {1, 2, 3, 4}, each line in Fi intersects exactly one of the lines in Gj
and each line in Gi intersects exactly one of the lines in Fj. For any different
i, j ∈ {1, 2, 3, 4}, no line in Fi intersects a line in Fj and no line in Gi intersects a
line in Gj. There are ω, ψ ∈ Ω such that the Fi and Gi are the orbits of Λ under the
action of Φωψ. If L is a line in F1, then for i ∈ {2, 3, 4} there are θ, θ′ ∈ Ω \ {ω, ψ}
such that Fi is the orbit of ζθθ′L, and for j ∈ {1, 2, 3, 4} there is a θ ∈ Ω \ {ω, ψ}
such that Gj is the orbit of ζθL.

Proof. Let ω, ψ ∈ Ω be such that F1 is an orbit under Φωψ, and let L denote some
line in F1. For any θ, θ′ ∈ Ω\{ω, ψ} the lines ζθθ′L and ζωθθ′L do not intersect any
line in F1 by Lemma 2.16. This gives 12 lines and one checks that the only three
4-gons contained in the set of these 12 lines are of the form

{ζθ1θ2L, ζθ3θ4L, ζωθ1θ2L, ζωθ3θ4L} ,
for some permutation (θi)i of the elements in Ω \ {ω, ψ}. From the equalities
ζθ3θ4L = ζωψθ1θ2L and ζωθ3θ4L = ζψθ1θ2L we deduce that these 4-gons are also
orbits under Φωψ, each containing an element ζθθ′L for some θ, θ′ ∈ Ω \ {ω, ψ}.
The remaining 16 lines do intersect a line in F1 by Lemma 2.16 and the only four
4-gons contained in the set of these 16 lines are of the form

{ζθL, ζωθL, ζψθL, ζωψθL} ,
for some θ ∈ Ω \ {ω, ψ}. Clearly these 4-gons are orbits under Φωψ as well. The
remaining statements follow from Lemma 2.16. �

Definition 2.18. An exhibit is a quadruple S = {S1, S2, S3, S4} of 4-gons such
that the Si are pairwise disjoint and no line in Si intersects a line in Sj for i 6= j.
A gallery is an unordered pair {S1,S2} of exhibits such that

⋃
S∈S1

S and
⋃
S∈S2

S

are disjoint. For any gallery {S1,S2} we say that S2 is the complementary exhibit
of S1.

Remark 2.19. Lemma 2.17 says that each 4-gon is contained in a unique exhibit,
which is contained in a unique gallery. It also implies that the set of galleries is
in bijection with the set of 15 pairs of different elements in Ω. Figure 1 displays
a gallery and the intersections among all the 32 lines in Λ. In Figure 1 we use
the notation I for ζIL for some fixed line L. The elements of Ω are denoted by
ω, ψ, 1, 2, 3, 4. The two exhibits are made up by the 4-gons on the bottom and the
left of the figure respectively.

Lemma 2.20. For each smooth curve C of genus g on a K3 surface, we have
C2 = 2g − 2.

Proof. The adjunction formula gives C ·(C+K) = 2g−2, where K is the canonical
divisor of the surface. The lemma now follows from the fact that the canonical
divisor of a K3 surface is trivial. �

Proposition 2.21. The elements of Λ generate a sublattice of the Néron-Severi
group NS(V̄ ) of rank 17 and discriminant 64.

Proof. Lemma 2.20 implies that L2 = −2 for all L ∈ Λ. From Corollary 2.12 we can
deduce all other intersection numbers among elements of Λ. This gives a 32 × 32
Gram matrix of intersection numbers that has rank 17. The matrix also allows us
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12 34

13 24

2314

1 2 3 4

ω12

ω34

ω13

ω24

ψ

ω

ωψ∅

ω23

ω14

ωψ4ωψ3ωψ1 ωψ2

ψ3 ψ4ψ2ψ1 ω1 ω2 ω3 ω4

Figure 1. the intersections among the 32 lines in Λ

to pick a basis of this sublattice. The Gram matrix with respect to such a basis
turns out to have determinant 64. �

Proposition 2.22. The rank of the Néron-Severi group NS(V̄ ) equals 16+rk NS(J),
where J is the Jacobian of the curve given by y2 = f(x).

Proof. The surface V̄ is isomorphic to the desingularized Kummer surface associ-
ated to J by [7], Chapter 16. The statement therefore follows from [18], Prop. 1. �

Proposition 2.23. Generically the lines in Λ generate a lattice of finite index in
the Néron-Severi group NS(V̄ ).

Proof. Let J be as in Proposition 2.22. Generically we have rk NS(J) = 1, so
rkNS(V̄ ) = 17. By Proposition 2.21 the elements of Λ generate a lattice of rank 17
as well, so this lattice has finite index in NS(V̄ ). �

In fact the finite index in Proposition 2.23 is equal to 1 as we will see in Propo-
sition 2.30. The reason for stating that result separately is that one can compute
the rank of the Néron-Severi group in explicit cases using methods from [21] and
[22].

For any 4-gon S let DS denote the divisor that is the sum of the lines in S.

Lemma 2.24. Let S and S′ be two 4-gons in complementary exhibits. Then the
image of DS +DS′ in Pic V̄ is the class of hyperplane sections.

Proof. Let L be a line in S and let ω, ψ ∈ Ω be such that S is the orbit of L under
Φωψ. By Lemma 2.17, the 4-gon S′ is also an orbit under Φωψ. It follows from
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Lemma 2.16 that there is a θ ∈ Ω \ {ω, ψ} such that S′ is the orbit of ζθL. We
deduce

DS +DS′ = L+ ζωL+ ζψL+ ζψωL+ ζθL+ ζθωL+ ζθψL+ ζθψωL.

One checks that for each L′ ∈ Λ we have (DS + DS′) · L′ = 1. For a hyperplane
section H we also have H · L′ = 1 for all L′ ∈ Λ. Since the intersection pairing on
Pic V̄ is nondegenerate and the lines generically generate a lattice of finite index in
Pic V̄ by Proposition 2.23, we find that genericallyDS+DS′ is a hyperplane section.
By specializing, this implies that DS +DS′ is always a hyperplane section. �

Lemma 2.25. Let S and S′ be two 4-gons in the same exhibit. Then DS and DS′

are linearly equivalent.

Proof. Let S′′ be any 4-gon in the complementary exhibit, and let H denote a
hyperplane section. Then by Lemma 2.24 both DS and DS′ are linearly equivalent
with H −DS′′ . �

Proposition 2.26. Let X be a K3 surface over a field and F a reduced and con-
nected curve on X that satisfies F 2 = 0. Suppose further that the linear system |F |
does not have a base curve. Then there is an elliptic fibration X → P1 whose fibers
are the elements of |F |. Up to an automorphism of P1 this fibration is unique.

Proof. By the adjunction formula we have F · (F + KX) = 2pa − 2, where pa is
the arithmetic genus of F , but F 2 = 0 and KX = 0, so pa = 1. By the Riemann-
Roch theorem for surfaces ([9], Thm. V.1.6), we have h0(OX(F )) − h1(OX(F )) +
h0(OX(KX−F )) = 1/2(F · (F −KX))+1+pa = 2. Now KX = 0, so h0(OX(KX−
F )) = h0(OX(−F )) = 0 because F is a nonzero effective divisor. Let us prove that
h1(OX(F )) = 0. From the exact sequence 0 → OX(−F ) → OX → OF → 0 of
sheaves on X we obtain the exact sequence of cohomology groups

H0(X,OX) → H0(X,OF ) → H1(X,OX(−F )) → H1(X,OX).

Since F is projective, reduced, and connected, H0(X,OF ) consists only of sections
constant on F , and so the map from H0(X,OX) is surjective. On the other hand,
h1(X,OX) = 0 because X is a K3 surface. It follows that h1(X,OX(−F )) = 0. By
Serre duality, we have h1(X,OX(−F )) = h1(X,KX +OX(F )) = h1(X,OX(F )), as
desired. This proves that h0(OX(F )) = 2.

The only maps whose fibers are elements of the linear system F are those as-
sociated to subseries of the complete linear system |F |. Since OX(F ) has a 2-
dimensional space of sections, the only nonconstant maps of this kind are those
associated to the complete linear system. This map is a fibration, for by hypothesis
there is no curve contained in all divisors in the linear system |F |, so F 2 = 0 implies
that no two fibers intersect. �

Lemma 2.27. For any 4-gon S we have D2
S = 0.

Proof. Write DS = D1 +D2 +D3 +D4, where the Di are the geometric irreducible
components of DS , i.e., the four lines of the 4-gon. By Lemma 2.20 each Di has
self-intersection −2. Also, Di ·Di+1 = 1 and Di ·Di+2 = 0, with indices read mod
4. The self-intersection of DS is therefore 4 · −2 + 4 · 2 = 0. �

Lemma 2.28. Let S be an exhibit. Then there is an elliptic fibration of V̄ for
which each 4-gon S ∈ S is a fiber. Up to an automorphism of P1 this fibration is
unique.
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Proof. By Proposition 2.2 the surface V̄ is a K3 surface. By Lemma 2.27 we have
D2
S = 0 for any 4-gon S ∈ S. By Lemma 2.25 the effective divisors DS with S ∈ S

are all contained in the same linear system. The lemma now follows immediately
from Proposition 2.26. �

Remark 2.29. Since the exhibits come in pairs, so do the elliptic fibrations men-
tioned in Lemma 2.28. By Remark 2.19 these pairs of fibrations are parametrized
by the 15 pairs of elements in Ω.

It is known that generically the lines associated to the nodes and the tropes on the
desingularized Kummer surface generate the full Néron-Severi group (cf. Remark
2.14). Together with Propositions 2.21 and 2.23, the following statement is slightly
stronger.

Proposition 2.30. If rk NS(V̄ ) = 17, then the lines in Λ generate the full Néron-
Severi group NS(V̄ ).

Proof. Let L denote the sublattice of NS(V̄ ) generated by the elements of Λ. By
Proposition 2.21, the lattice L has finite index in NS(V̄ ). Suppose this index is not
1. Then from the equality 64 = discL = [NS(V̄ ) : L]2 · disc NS(V̄ ), we find it is
divisible by 2, and disc NS(V̄ ) is a divisor of 64/22 = 16.

Consider the transcendental lattice TV̄ of V̄ , which is the orthogonal complement
of NS(V̄ ) in H2(V̄ ,Z). As the lattice H2(V̄ ,Z) is unimodular, we have |discTV̄ | =
|disc NS(V̄ )|, so discTV̄ is a divisor of 16 as well. However, since V̄ is isomorphic
to the Kummer surface associated to the Jacobian J of the curve y2 = f(x) (see
Remark 2.3), we find from [14], Prop. 4.3, that TV̄ is isomorphic to TJ(2), the
transcendental lattice of J , scaled by a factor of 2. Since TV̄ has rank 22− 17 = 5,
its discriminant is divisible by 25 = 32. From this contradiction we conclude that
the index does equal 1. �

2.2. Fields of definition. Recall that T (F ) = {ξ ∈ AF : ξ2 = δ} for any field
F for which δ is contained in AF and that l = k(Ω) is the splitting field of f .
Also recall that if ω ∈ F is a root of f , then ϕω denotes the map AF → F that
sends g(X) to g(ω). These maps induce the isomorphism ϕ : Al →

⊕
ω∈Ω l given

by X 7→ (ϕω(X))ω = (ω)ω.

Lemma 2.31. For any ξ ∈ T (k̄) and ω, ψ ∈ Ω we have ϕψ(Pξ,ω) = 0 if and only
if ψ = ω.

Proof. This follows from the definition of Pξ,ω and the fact that ξ ∈ Ā is a unit. �

For any object Y to which we can apply every Galois automorphism in G(k̄/k) we
will say that Y is defined over the field extension k′ ⊂ k̄ of k if for all σ ∈ G(k̄/k′)
we have σY = Y . The smallest field over which Y is defined will be called the
field of definition of Y and denoted by k(Y ). Note that every element of T̃ (k′) is
defined over k′, even though it may be represented by an element in T (k′) that is
only defined over a quadratic extension of k′. Note that if Y = (y1, . . . , yn) is a
sequence, then k(Y ) is the composition of all the k(yi). If Z = {z1, . . . , zn} is a
set, then k(Z) may be strictly smaller then the field of definition of the sequence
(z1, . . . , zn), a field that we will denote by k([Z]).

Lemma 2.32. Inside k̄ we have l · k(L) = k([Λ]) for all L ∈ Λ.
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Proof. Suppose σ ∈ G(k̄/k) acts trivially on Λ. Then for all ω ∈ Ω and ξ ∈ T (k̄)
the automorphism σ fixes the intersection point Pξ,ω of Lξ and ζωLξ. The point
Pξ,ω determines ω uniquely by Lemma 2.31. We conclude that σ fixes all ω ∈ Ω, so
σ fixes l and l is contained in k([Λ]). Clearly we also have k(L) ⊂ k([Λ]), so we find
l · k(L) ⊂ k([Λ]). For every other L′ ∈ Λ there is a ζ ∈ µ(Al) such that ζL = L′.
As the automorphism [ζ] is defined over l, we find that L′ is defined over l · k(L),
so k(L′) ⊂ l · k(L). This holds for all L′ ∈ Λ so we find k([Λ]) ⊂ l · k(L) and thus
k([Λ]) = l · k(L). �

For every ω we fix a square root
√
δω of δω = ϕω(δ) in k̄, yielding also a fixed

square root ξ0 = ϕ−1
(
(
√
δω)ω∈Ω

)
of δ. Note that with the Legendre polynomials

Pω of Remark 2.1 we can write ξ0 =
∑
ω

√
δωPω. We define the fields

m′ = l({
√
δω : ω ∈ Ω}), and m = l({

√
δω
√
δψ : ω, ψ ∈ Ω}).

The square root ξ0 of δ trivializes the torsors T and T̃ under µA and µ̃ respectively,
identifying ζ ∈ µA(k̄) = µ(Ā) with ζξ0 ∈ T (k̄). By Remark 2.9 the k-torsors T̃ (k̄)

and Λ(k̄) under µ̃(k̄) are isomorphic over k as well, identifying the class of ξ in T̃ (k̄)
with the line Lξ. Just after Lemma 2.10 we identified the subset I ⊂ Ω with the
element ζI ∈ µA(k̄). Similarly, we write ξI = ζIξ0. We also set L0 = Lξ0 and write
LI = ζIL0 = LξI

. Note that LI = LΩ−I .

Lemma 2.33. Fix σ ∈ G(k̄/k). Then σL0 = LI if and only if I or Ω − I equals
{
σω : ω ∈ Ω , σ

√
δω =

√
δσω

}
.

Proof. This follows immediately from Lemma 2.7 and the equation

σξ0 = ϕ−1

((
σ
√
δσ−1ω

)

ω∈Ω

)
= ζJξ0,

where J is the set given in the lemma. �

Lemma 2.34. We have k([Λ]) = m.

Proof. For every ψ ∈ Ω the element
√
δψξ0 =

∑
ω

√
δψ

√
δωPω is defined over

m, where Pω is the Legendre polynomial introduced in Remark 2.1. The line L0

corresponds to the subspace {(
√
δψξ0)

−1(sX + t) : s, t ∈ m} of Am, so L0 is
defined over m as well and we have k(L0) ⊂ m. From Lemma 2.32 we deduce
k([Λ]) ⊂ m. For the converse, consider σ ∈ G(k̄/k([Λ])). From Lemma 2.33 and
the equation L0 = σL0 we find that either we have σ

√
δω =

√
δω for all ω, or we

have σ
√
δω = −

√
δω for all ω. In both cases we find that σ acts trivially on m, so

we also have m ⊂ k([Λ]). �

Lemma 2.35. Let S = {S1,S2} be a gallery. Then there are ω, ψ ∈ Ω such that
we have

k(S) = k(ω + ψ, ωψ) and k(S1) = k(S2) = k
(
ω + ψ, ωψ,

∏

θ∈Ω\{ω,ψ}

√
δθ

)
.

Proof. Let ω, ψ be such that the 4-gons in the Si are orbits under Φωψ. Write
k′ = k(ω + ψ, ωψ) and suppose we have σ ∈ G(k̄/k′). Then σ fixes the polynomial
(x − ω)(x − ψ), so it permutes ω and ψ. Therefore, σ permutes the orbits under
Φωψ, which are the 4-gons in S1 ∪ S2 (compare Lemma 2.17). Since every 4-gon is
contained in a unique gallery, this implies that σ fixes S, so we have k(S) ⊂ k′. For
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the converse, suppose we have σ ∈ G(k̄/k(S)). Then σ permutes the intersection
points among any two lines in the same 4-gon in S1 ∪S2. These intersection points
are all of the form Pξ,ω or Pξ,ψ for some ξ ∈ T (k̄). By Lemma 2.31 this implies that
σ permutes ω and ψ, so it acts trivially on k′ and we find k′ ⊂ k(S), so k′ = k(S).
For the second equality, set N =

∏
θ∈Ω\{ω,ψ}

√
δθ and consider σ ∈ G(k̄/k′). Then

σ fixes S, so it permutes S1 and S2, and σ sends N to ±N . Let n denote the number
of θ ∈ Ω \ {ω, ψ} for which we have σ

√
δθ = −

√
δσθ. Then σ fixes N if and only if

n is even. Let I ⊂ Ω be such that σξ0 = ζIξ0. Then we have n = #I ∩ Ω \ {ω, ψ}
and σL0 = LI . Suppose that n = 0 or n = 4. Then L0 and σL0 = LI are in the
same orbit under Φωψ, so in the same 4-gon in S1 ∪S2. By Lemma 2.17 each 4-gon
is contained in a unique exhibit, so σ fixes S1 or S2, and thus both. Now suppose
n ∈ {1, 2, 3}. Then σL0 is in a different orbit under Φωψ from L0. By Lemma 2.16
the number n is odd if and only if the line L0 intersects some line in the orbit of σL0,
which, by Lemma 2.17, happens if and only if L0 and σL0 are in opposite exhibits.
We conclude that for all n the automorphism σ fixes S1 and S2 if and only if n is
even, so if and only if σ fixes N . This implies that k(S1) = k(S2) = k′(N). �

Remark 2.36. The first equality of Lemma 2.35 is not surprising as we already
saw in Remark 2.19 that galleries are parametrized by pairs of elements in Ω.
Note that k′ = k(S) = k(ω + ψ, ωψ) is the smallest field over which f factors as
f = f2f4, where f2 has degree 2 and roots ω and ψ. It is the field of definition of
the 2-torsion point (ω, 0)− (ψ, 0) on the Jacobian of the curve y2 = f(x). If we set
A4 = k′[X]/f4 and we let δ′ denote the image of δ under the natural map Ak′ → A4

then the element
∏
θ

√
δθ in Lemma 2.35 is a square root of the norm NA4/k′δ

′ of
δ′ from A4 to k′. The two elliptic fibrations associated to S1 and S2 in Lemma
2.28 are defined over the field k(S1) = k(S2) = k′(

√
NA4/k′δ

′). We will say that
these are the elliptic fibrations associated to the pair (ω, ψ), or to the factorization
f = f2f4. The 4-gons in S1 and S2 that make up the fibers of these fibrations are
orbits of Λ under the group Φωψ. In section 2.3 we will find explicit equations for
these fibrations.

Let Λ1 and Λ2 be the two maximal subsets S of Λ for which all lines in S have
the same parity.

Lemma 2.37. We have k(Λ1) = k(Λ2) = k
(√

N(δ)
)
, where N = NA/k is the

norm from A to k.

Proof. Take σ ∈ G(k̄/k). Let I ⊂ Ω be such that σξ0 = ξI , and set n = #I.
The automorphism σ permutes Λ1 and Λ2, so it fixes both if and only if L0 and
σL0 = LI have the same parity, i.e., if and only if n is even. Note that n also equals
the number of ω ∈ Ω with σ

√
δω = −

√
δσω, so n is even if and only if σ fixes the

element
∏
ω

√
δω =

√
N(δ). We conclude that σ fixes Λ1 and Λ2 if and only if σ

fixes
√
N(δ), which shows that k(Λ1) = k(Λ2) = k

(√
N(δ)

)
. �

Let Aut Λ denote the group of permutations of Λ that respect the intersection
pairing. Let ρ : G(k̄/k) → Aut Λ be the corresponding Galois representation.

Lemma 2.38. The kernel of the representation ρ : G(k̄/k) → Aut Λ is G(k̄/m).

Proof. This follows from Lemma 2.34. �
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Proposition 2.39. All extensions among the fields k ⊂ l ⊂ m ⊂ m′ are Galois
and we have exact sequences

1 → Gal(m′/m) → Gal(m′/l) → Gal(m/l) → 1

1 → Gal(m/l) → Gal(m/k) → Gal(l/k) → 1

1 → Gal(m′/m) → Gal(m′/l) → Gal(m/k) → Gal(l/k) → 1.

(2.1)

Proof. The extension l/k is normal because l is the splitting field of f over k,
and separable because f is. Since [m′ : l] = 64 = 26, and we have assumed that
char k 6= 2, the extension m′/k and all subextensions are separable. The group
Gal(k̄/m) is normal in Gal(k̄/k) because it is the kernel of ρ by Lemma 2.38.
This means that m/k is Galois, and therefore so is m/l. Similarly, the group
Gal(k̄/m′) is normal in Gal(k̄/k) because it is the kernel of the representation
Gal(k̄/k) → AutT (k̄). This implies that m′/k is Galois, which also follows from
the fact that m′ is obtained from l by adjoining a square root of an element in l as
well as the square roots of all conjugates of that element under Gal(l/k). Therefore,
the extensions m′/m and m′/l are Galois, too. The first two exact sequences are the
standard short exact sequences of Galois groups associated to the double extensions
k ⊂ l ⊂ m and l ⊂ m ⊂ m′. They can be combined to give the last sequence. �

Example 2.40. Let F be any field and define the generic fields

m′
g = F (ω1, . . . , ω6, d0, . . . , d5)[T1, . . . , T6]/

(
T 2
j −

5∑

i=0

diω
i
j : 1 ≤ j ≤ 6

)
,

mg = F (ω1, . . . , ω6, d0, . . . , d5, {ǫiǫj : 1 ≤ i, j ≤ 6}),
lg = F (ω1, . . . , ω6, d0, . . . , d5),

kg = F (s1, . . . , s6, d0, . . . , d5),

(2.2)

where ω1, . . . , ω6, d1, . . . , d6 are independent transcendentals, sj denotes the ele-
mentary symmetric polynomial of degree j in the variables ω1, . . . , ω6, and ǫj is the
image of Tj in m′

g. We have kg ⊂ lg ⊂ mg ⊂ m′
g. Set

f =

6∏

j=1

(X − ωj) = X6 − s1X
5 + s2X

4 − s3X
3 + s2X

4 − s5X
5 + s6 ∈ kg[X],

and define A = kg[X]/f . Recall that, by abuse of notation, we also write X for

the image of X in A. Set δ =
∑5
i=0 diX

i ∈ A. The evaluation maps ϕj : A → lg
sending X to ωj induce an isomorphism ϕ : Alg →⊕6

j=1 lg. We have ǫ2j = δj with

δj = ϕj(δ), so the fields lg, mg, and m′
g depend on kg, f and δ exactly as the

corresponding fields without the subscript g for “generic” did before, abbreviating
ωj to j in any index. We will give explicit equations for the intersection points
of the lines in Λg in this generic situation. As in Remark 2.1, let Pj denote the
Legendre polynomial Pj =

∏
i6=j(X − ωi)/(ωj − ωi) ∈ Alg for 1 ≤ j ≤ 6. Then

ϕ−1 sends (cj)
6
j=1 to

∑6
j=1 cjPj . Set ξ0 = ϕ−1

(
(ǫj)j

)
=
∑6
j=1 ǫjPj . Then we have

ξ20 = δ. Let bji ∈ F (ω1, . . . , ω6) be such that Pj =
∑5
i=0 bjiX

i. In Alg we have
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XPj = ωjPj , so we find that the ai-coordinates of the point Pε0,ωr
in terms of the

bji are given by the coefficients of

ξ−1
0 (X−ωr) =

6∑

j=1

ǫ−1
j (X−ωr)Pj =

6∑

j=1

ǫ−1
j (ωj−ωr)Pj =

5∑

i=0




6∑

j=1

ǫ−1
j (ωj − ωr)bji



Xi.

Multiplying all the coefficients by one of the ǫ−1
j shows that the point Pξ0,ωr

is indeed
defined over mg. All other intersection points are obtained by replacing some of
the ǫj by their negatives and r by some r′ ∈ {1, . . . , 6}. By specialization, these
formulas give explicit equations for the intersection points of the lines in Λ over any
field. This also gives all the lines. Note that the group Gal(m′

g/lg) is isomorphic

to
⊕6

j=1 Z/2Z, where the generator of the j-th component sends ǫj to −ǫj . The

group Gal(m′
g/mg) ∼= Z/2Z embeds diagonally into Gal(m′

g/lg), sending every ǫj
to −ǫj . Hence, the group Γ = Gal(mg/lg) is isomorphic to (Z/2Z)6/(Z/2Z). The
group Gal(lg/kg) is isomorphic to S6. There is a section ι′ of the homomorphism
Gal(m′

g/kg) → Gal(lg/kg) that sends an element σ ∈ Gal(lg/kg) to the unique lift
that sends the set {ǫ1, . . . , ǫ6} to itself. The composition ι of ι′ and the restriction
map Gal(m′

g/kg) → Gal(mg/kg) is a section of the homomorphism Gal(mg/kg) →
Gal(lg/kg). Through ι the group Gal(lg/kg) ∼= S6 acts on Γ by conjugation. This

action is induced by permutation of the components of
⊕6

j=1 Z/2Z = Gal(m′
g/lg) in

the obvious way. Since the middle sequence of Proposition 2.39 splits in this generic
case, we find that Gal(mg/kg) is isomorphic to the semidirect product Γ⋊S6, which
has 32 · 6! = 23040 elements.

Proposition 2.41. Generically, the representation ρ : Gal(k̄/k) → Aut Λ is sur-
jective.

Proof. It suffices to show that ρ is surjective in the case of the generic situation
of Example 2.40, so suppose we are in that case. We will use the same notation
as in Example 2.40, including abbreviating ωj to j in indices of lines and points.
Take any τ ∈ Aut Λg and consider the line L0 = Lξ0 . Since Γ = Gal(mg/lg) acts
transitively on Λg, there is a σ1 ∈ Γ with ρ(σ1)(L0) = τ(L0). Then τ ′ = ρ(σ1)

−1τ
fixes L0, so it permutes the six lines Lj that intersect L0. The corresponding six
intersection points are Pξ0,ωj

for 1 ≤ j ≤ 6, so τ ′ induces a unique permutation
of the ωj by Lemma 2.31, which corresponds to an element ψ ∈ Gal(lg/kg). Set

σ2 = ι′(ψ). Then σ2 sends the set {ǫ1, . . . , ǫ6} to itself, so it fixes ξ0 =
∑6
j=1 ǫjPj

as both the ǫj and the Pj are acted on according to their indices. This implies that
ρ(σ2) fixes L0, while it permutes the intersection points Pξ0,ωj

in the same way τ ′

does. Therefore τ ′′ = ρ(σ2)
−1τ ′ fixes L0 and the six lines Lj . For i 6= j the line Lij

is the unique line that intersects Li and Lj that is not equal to L0. This implies
that τ ′′ also fixes Lij . Similarly, the line Lijr is the unique line that intersects
both Lij and Lir that is not equal to Li. This implies that τ ′′ also fixes Lijr. We
conclude that τ ′′ is the identity, so τ = ρ(σ1σ2) and ρ is surjective. �

By Lemma 2.38 and Proposition 2.41 the generic representation ρg : Γ ⋊ S6
∼=

Gal(mg/kg) → Aut Λg ∼= Aut Λ is an isomorphism. We will denote the composition
ρg ◦ ι : S6 → Aut Λ by ι as well.

It will be useful to have names for the elements of Aut Λ. For every set I ⊂ Ω, let
sI ∈ Aut Λ denote the permutation induced by [ζI ]. Note we have sI = sΩ\I and sI
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and sJ commute for every I, J ⊂ Ω. For any permutation σ ∈ S6 = Sym(Ω), let tσ
denote the permutation that sends LI to LσI . For σ, τ ∈ S6 we have tσ ◦ tτ = tστ ,
and

(2.3) tσ ◦ sI = sσI ◦ tσ.
Note that the action of S6 on Λ that we have defined depends on the choice of
L0, or the

√
δω, just as the section ι in Example 2.40 depends on the choice of the

square roots ǫj of the δj . We will state some of the following lemmas under an extra
condition on L0, knowing that the general case may always be obtained by changing
some of the

√
δω to their negatives and changing the LI and tσ accordingly. By

specialization of the generic ωj ∈ m′
g of Example 2.40 to the ω ∈ Ω, and the ǫj to

the corresponding
√
δω, we specialize kg, lg,mg,Λg, and the corresponding generic

representation ρg to k, l,m,Λ, and ρ respectively. Let r denote the associated injec-
tive map from Gal(m/k) to Gal(mg/kg). Then we have the following commutative
diagram.

Gal(mg/kg)
ρg

∼=
// Aut Λg

Gal(m/k)

r

OO

ρ
// Aut Λ

∼=

Lemma 2.42. Let H be a subgroup of Aut Λ and let Hg be the corresponding
subgroup of Aut Λg. Then the fixed field of ρ−1H is exactly the specialization of the
fixed field of ρ−1

g Hg.

Proof. Set H ′ = ρ−1H and H ′
g = ρ−1

g Hg. By the commutative diagram above

we have r−1(H ′
g) = H ′. For every specialization k′ of a subextension k′g of mg

over kg, we have Gal(m/k′) = r−1(Gal(mg/k
′
g)). In other words, the fixed field of

H ′ = r−1(H ′
g) is exactly the specialization of the fixed field of H ′

g. �

For any ω, ψ ∈ Ω, let Ψωψ denote the group generated by sω and sψ. Then Φωψ
acts on Λ through Ψωψ. For any exhibit S, let GS denote the maximal subgroup of
Aut Λ that fixes S and let G[S] denote the maximal subgroup that fixes all 4-gons
in S. We will use Lemma 2.42 to find generators of k([S]), the compositum of the
fields k(S) for all S in some exhibit S. This field will be used in Section 2.3 to find
explicit equations for the elliptic fibration associated to S in Lemma 2.28.

Lemma 2.43. For any exhibit S the group GS has order 768 and the natural
homomorphism from GS to the group Sym(S) of permutations of the 4-gons in S
is surjective. Its kernel is G[S].

Proof. In the generic case of Example 2.40, the field kg(S) has degree 30 by Lemma
2.35. Therefore the group Gal(mg/kg(S)) has order 23040/30 = 768. By Lemma
2.38 and Proposition 2.41, the representation ρg : Gal(mg/kg) → Aut Λg is an
isomorphism, so we find that GS has order 768 as well. Clearly the kernel of the
homomorphism χ : GS → Sym(S) equals G[S]. Let ω and ψ be such that the 4-gons
in S are orbits under Φωψ, and set H = {tσ : σ ∈ Sym(Ω \ {ω, ψ})} ⊂ Aut Λ.
Each h ∈ H sends orbits under the group Φωψ to orbits under the same group,
and as we have h(L0) = L0, the permutation h fixes at least one of these orbits, so
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it fixes the two complementary exhibits associated to the pair (ω, ψ). We deduce
H ⊂ GS . Without loss of generality we will assume that L0 is not contained in
any of the 4-gons of S. Then by Lemma 2.17, for each 4-gon S in S there is a
θ ∈ Ω \ {ω, ψ} such that S is the orbit of Lθ. It follows that each permutation of S
is induced by a permutation of Ω \ {ω, ψ}, so the restriction of χ to H is surjective,
which implies that χ is surjective. �

Lemma 2.44. Let S be an exhibit, let ω, ψ ∈ Ω be such that the 4-gons of S are
orbits under Φωψ, and assume that L0 is contained in one of the 4-gons of S. Let
θ1, θ2, θ3, θ4 be the elements of Ω \ {ω, ψ}. Then G[S] is generated by sω, sψ, and
tσ for σ ∈ 〈 (ω ψ), (θ1 θ2)(θ3 θ4), (θ1 θ3)(θ2 θ4) 〉.

Proof. Set B = 〈 (θ1 θ2)(θ3 θ4), (θ1 θ3)(θ2 θ4) 〉 and let H denote the subgroup of
Aut Λ generated by sω, sψ, t(ω ψ), and tσ for σ ∈ B. Note that every σ ∈ B fixes ω

and ψ. By (2.3) this implies that for every h ∈ H we have hΨωψh
−1 = Ψωψ, so h

sends orbits under Ψωψ to orbits under Ψωψ, i.e., h permutes the 4-gons in S and
its complementary exhibit. The elements sω, sψ, and t(ω ψ) fix each of these 4-gons.
Let S ∈ S be the 4-gon containing L0. We have tσ(L0) = L0 for all σ ∈ B, so h
sends S to S for all h ∈ H. Let S′ ∈ S be a different 4-gon. Then by Lemma 2.17
there are θ, θ′ ∈ Ω \ {ω, ψ} such that sθθ′(S) = S′. For each σ ∈ B we have

tσ(sθθ′(L0))) = sσ(θθ′)(tσ(L0)) = sσ(θθ′)(L0).

For all σ ∈ B we have sθθ′S = sσ(θθ′)S, so tσ also fixes S′. We conclude H ⊂ G[S].
By Lemma 2.43 the order of G[S] equals 768/4! = 32 = #H, so we have H =
G[S]. �

We can now find explicit generators of the field k([S]) in the generic case.

Lemma 2.45. Consider the generic case of Example 2.40. Let {S,S ′} be a gallery,
such that the 4-gons of S are orbits under Φω5ω6

, and assume that L0 is contained
in one of the 4-gons of S. Set N = ǫ1ǫ2ǫ3ǫ4, α1 = ω1ω4 +ω2ω3, α2 = ω1ω3 +ω2ω4,
α3 = ω1ω2 + ω3ω4, β1 = ǫ1ǫ4 + ǫ2ǫ3, β2 = ǫ1ǫ3 + ǫ2ǫ4, and β3 = ǫ1ǫ2 + ǫ3ǫ4.
Then k′g = kg(ω5 +ω6, ω5ω6, α1, α2, α3) is the unique S3-extension of kg({S,S ′}) =
kg(ω5 + ω6, ω5ω6) contained in the S4-extension kg({S,S ′})(ω1, ω2, ω3, ω4). Set
ng = k′g(N). Then the field kg([S]) equals ng(β1, β2, β3) and is an S4-extension
of kg(S) = kg({S,S ′})(N). Its unique S3-subextension is ng, and the quadratic
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subextensions of ng are generated by the βi.

mg

32

UUUUUUUUUUUUUUUUUUUUU

32

rrrrrrrrrrrrrrrrrrrrrrrrrrr

kg([S])

S4

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

lg ng(β1)

iiiiiiiiiiiiiiiiiiii

IIIIIIIIII
ng(β2)

rrrrrrrrrr

ng(β3)

rrrrrrrrrrr

kg({S,S ′})(ω1, ω2, ω3, ω4)

UUUUUUUUUUUUUUUUUUUUU

S4

ng

uuuuuuuuuuu

S3

UUUUUUUUUUUUUUUUUUUUUUUU

k′g
S3

UUUUUUUUUUUUUUUUUUUU kg(S)

2

ssssssssss

kg({S,S ′})

Proof. The first statement is elementary Galois theory. The field kg([S]) is the
fixed field of the group ρ−1

g (G[S]). By Lemma 2.43 this field is an S4-extension of
the fixed field kg(S) of GS , which equals kg(ω5 +ω6, ω5ω6, N) = kg({S,S ′})(N) by
Lemma 2.35. Using Lemma 2.44 one checks that the group ρ−1

g (G[S]) acts trivially
on ng(β1, β2, β3), so we conclude ng(β1, β2, β3) ⊂ kg([S]). Since k′g and kg(S)
intersect in kg({S,S ′}), we find that the compositum ng is an S3-extension of kg(S),
and therefore the unique S3-extension contained in kg([S]). By elementary Galois
theory and group theory this implies that there are three quadratic extensions of ng
contained in kg([S]). Note that ρ−1

g (sω1ω4
) and ρ−1

g (sω1ω3
) act trivially on ng(β1)

and ng(β2) respectively, but nontrivially on β2 and β1 respectively. We conclude
that β1 and β2 generate two different quadratic extensions of ng. By symmetry,
β3 generates a third. This implies [ng(β1, β2, β3) : ng] ≥ 4 =

[
kg([S]) : ng

]
, so we

deduce that kg([S]) = ng(β1, β2, β3). �

The generators of the field k([S]) in any other special case follow immediately.

Corollary 2.46. Let the notation be as in Lemma 2.44. Set N =
√
δ1δ2δ3δ4,

α1 = θ1θ4 + θ2θ3, α2 = θ1θ3 + θ2θ4, α3 = θ1θ2 + θ3θ4, β1 =
√
δ1δ4 +

√
δ2δ3,

β2 =
√
δ1δ3 +

√
δ2δ4, and β3 =

√
δ1δ2 +

√
δ3δ4. Then kg([S]) equals

k(ω + ψ, ωψ,N, α1, α2, α3, β1, β2, β3).

Proof. Since kg([S]) is the fixed field of the group ρ−1(G[S]), it follows from Lemma
2.42 that it suffices to do this in the generic case. This is dealt with in Lemma
2.45. �

2.3. The elliptic fibrations. Let S = {S1, S2, S3, S4} and S ′ = {S5, S6, S7, S8}
be complementary exhibits. By Lemma 2.28 there is an elliptic fibration V̄ → P1

such that the 4-gons in S are some of the fibers. For any S ∈ S this fibration can
be defined over the field k(S). It is possible, however, that none of the fibers is
defined over the field k(S). This implies that the base of the family of fibers is
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not isomorphic to P1 over k(S). As the base curve does become isomorphic to P1

over some extension field, it is isomorphic to a conic. In this section we will give
explicit equations, both for such a conic and for the fibration map in the generic
case of Example 2.40. We will use the notation introduced in that example. The
equations for any special case follow by specialization. Although the expressions
involved become quite large, all computations in this section can still be checked
by hand. We recommend, however, to check them with the magma script provided
[23]. We will first give the elliptic fibration over the field kg([S]), over which the
base curve can be taken to be the projective line.

2.3.1. A fibration over the projective line. After renumbering the elements of Ω,
we may assume that the 4-gons of S are orbits under Φω5ω6

. After applying an
automorphism that sends some of the ǫi to −ǫi (for notation, see Example 2.40),
we may also assume that L0 is contained in one of the 4-gons of S. We renumber
S1, . . . , S4 and S5, . . . , S8, so that S1, . . . , S8 contain the lines L14, L24, L34, L0,
L1, L2, L3, and L4 respectively. In particular this means

S1 = {L14, L23, L145, L235}, S5 = {L1, L15, L16, L156},
S2 = {L13, L24, L135, L245}, S6 = {L2, L25, L26, L256}.

For notational convenience, we let N , αi and βi be as in Lemma 2.45. We also
set

γ1 = α3 − α2, ∆4 =
∏

1≤i<j≤4(ωi − ωj),

γ2 = α1 − α3,

γ3 = α2 − α1, κj =
∏i6=j

1≤i≤4(ωj − ωi), 1 ≤ j ≤ 4,

η =
∑4
i=1 ǫi,

cr = elementary symmetric polynomial in the ωj (1 ≤ j ≤ 4) of degree r.

Note that for 1 ≤ j ≤ 4 and J ⊂ Ω we have ϕj(ξJ ) = ±ǫj , where the sign is
negative if and only if we have j ∈ J . For the evaluation of various linear forms at
the intersection points of the lines in Λ, it will also be convenient to notice that we
have

(2.4)

4∑

j=1

ωrjκ
−1
j =






−c−1
4 r = −1,

0 r = 0, 1, 2,
1 r = 3.

It will turn out that the elliptic fibration associated to S factors through the
projection of P(Ā) to P3 by the coordinates ϕi for 1 ≤ i ≤ 4, i.e., the projection away
from the line given by ϕi = 0 for 1 ≤ i ≤ 4. The image of V̄ under this projection
is the nonsingular quadric Dω5ω6

of Remark 2.5. Note that V̄ is contained in the
inverse image of Dω5ω6

under the indicated projection, which is the cone over the
cone over Dω5ω6

in P(Ā), given by Q = 0 with

(2.5) Q = ω5ω6Q0 − (ω5 + ω6)Q1 +Q2 =

4∑

j=1

κ−1
j δjϕ

2
j ,

as was pointed out in Remark 2.5. Consider the linear forms

l1 =
∑4
j=1 κ

−1
j ǫjϕj , m1 =

∑4
j=1 ωj(2ωj − c1)κ

−1
j ǫjϕj ,

l2 =
∑4
j=1 ωjκ

−1
j ǫjϕj , m2 =

∑4
j=1(2c4ω

−1
j − c3)κ

−1
j ǫjϕj .
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Lemma 2.47. On V̄ we have l1m2 = l2m1. The map χ : V̄ → P1 that sends x to
[l1(x) : m1(x)] = [l2(x) : m2(x)] is an elliptic fibration, defined over kg([S]). The
4-gons S1, S2, S3, S4 are fibers above [−1 : α1], [−1 : α2], [−1 : α3], and [0 : 1]
respectively.

Proof. From (2.4) one easily works out that m1l2 − l1m2 = Q, so on V̄ we find
l1m2 = l2m1. The four equations l1 = m1 = l2 = m2 = 0 are linearly independent,
so the base locus of the map χ is given by ϕi = 0 on V̄ , for 1 ≤ i ≤ 4. Together
with the equations Q0 = Q1 = Q2 = 0 (see Proposition 2.2), this implies that the
base locus of χ is empty. The fiber F0 of χ above [a : b] is the intersection of V̄ with
the three-space given by bli = ami for i = 1, 2. The quadric Q vanishes on this
three-space, in which the fiber F0 is therefore given by Q0 = Q1 = 0. Since every
smooth intersection of two quadrics in P3 is a curve of genus 1, we deduce that χ is
an elliptic fibration, whose fibers all have degree 4. The intersection points of the
lines in S4 are Pξ,ωr

with ξ ∈ {ξ0, ξ56}, and r ∈ {5, 6}. From (2.4) and the identity

(2.6) ǫjϕj
(
ξ−1
I (X − ωr)

)
= ±(ωj − ωr),

where the sign is positive if and only if j 6∈ I, we find that the li vanish on these
points, and thus on the lines in S4. This implies that S4 is contained in the fiber
above [0 : 1]. Since all fibers have degree 4, the union of the lines in S4 is a whole
fiber. The lines in S1 ∪ S2 ∪ S3 do not intersect any line in S4, so they are fibral as
well, which implies that all S ∈ S are fibers of χ. Their images are easily computed
by evaluating the li/mi on the appropriate intersection points Pξ,ω5

of two lines in
the 4-gons, using (2.6) and perhaps a computer algebra package to verify that for
instance the ratio l1(Pξ24,ω5

) : m1(Pξ24,ω5
), which is the ratio between

ω1 − ω5

κ1
− ω2 − ω5

κ2
+
ω3 − ω5

κ3
− ω4 − ω5

κ4

and

ω1(2ω1 − c1)(ω1 − ω5)

κ1
−ω2(2ω2 − c1)(ω2 − ω5)

κ2
+
ω3(2ω3 − c1)(ω3 − ω5)

κ3
−ω4(2ω4 − c1)(ω4 − ω5)

κ4
,

does indeed equal −1 : α2 (see [23]). Since χ is also given by [ηli : ηmi], and
the polynomials ηli and ηmi are fixed by ρ−1

g (G[S]), we find that χ is defined over
kg([S]). �

Remark 2.48. The map χ of Lemma 2.47 is in fact defined over kg(S1). We found
the linear forms li and mi as follows. Using simple linear algebra we found linear
forms h1, h2, h3, h4 vanishing on the lines in S4 ∪ S5, S4 ∪ S6, S3 ∪ S5, and S3 ∪ S6

respectively. The elliptic fibrations given by [h1 : h2] and [h3 : h4] both have the
4-gons in S ′ as fibers, so they differ by an automorphism of the base, which fixes
the points [0 : 1] and [1 : 0] as both fibrations have the same fibers S5 and S6

there. This implies that after the appropriate scaling of the hi we may assume
h1h4 = h2h3. The space of linear forms vanishing on S4 is spanned by h1 and h2.
We can pick a k(S4)-basis l′1 = ah1 +bh2 and l′2 = ch1 +dh2 for some a, b, c, d ∈ mg.
The fibers F1 and F2 of the fibration [h1 : h2] = [h3 : h4] above the points [−b : a]
and [−d : c] respectively are then defined over k(S4), as they are the complement
of S4 inside the hyperplane section given by l′1 and l′2 respectively. The space of
linear forms vanishing on F1 is spanned by l′1 and m′′

1 = ah3 + bh4. For some p, q,
the form m′

1 = pl′1 + qm′′
1 = pl′1 + aqh3 + bqh4 is also defined over k(S4). Set
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m′
2 = pl′2 + cqh3 + dqh4. Then from h1h4 = h2h3 we also find l′1m

′
2 = l′2m

′
1 on V̄ .

For some choice of a, b, c, d, p, q, the given li and mi satisfy l′i = ηli, and m′
i = ηmi.

2.3.2. The fibration over a conic. Let τ ∈ Gal(mg/kg) denote the automorphism
that fixes all the ωj and the ǫj for j ≥ 3, and sends ǫi to −ǫi for i = 1, 2. Then
τ induces the nontrivial automorphism of the quadratic extension kg([S])/ng(β3),
generated by β2. Since τ permutes the 4-gons in S, the elliptic fibration τχ differs
from χ by some automorphism ψ of the base curve P1 by Proposition 2.26, i.e., we
have τχ = ψ ◦ χ. This implies that the image of the map (χ, τχ) : V̄ → P1 × P1 is
contained in the graph of ψ. Under the Segre embedding P1 × P1 → P3 this graph
maps to a conic that we can embed in P2. We will now make this explicit. For
i = 1, 2 we set

pi = 2(τli)li, qi = (τli)mi + (τmi)li + 2α3li
τli, ri = β−1

2 ((τmi)li − (τli)mi).

Let C1 ⊂ P2 be the conic given by γ1γ2p
2 + q2 = β2

2r
2.

Lemma 2.49. There is an elliptic fibration ν1 : V̄ → C1, defined over ng(β3),
given by x 7→ [pi(x) : qi(x) : ri(x)] for i = 1, 2, such that the 4-gons S1, S2, S3, S4

are fibers above [2 : γ1 − γ2 : −γ3β
−1
2 ], [2 : γ1 − γ2 : γ3β

−1
2 ], [0 : β2 : 1], and

[0 : β2 : −1] respectively.

Proof. Note that the images of the Si under χ, given in Lemma 2.47, are τ -invariant.

This implies (τχ)(Si) = τ(χ(τ
−1

Si)) = χ(τSi). Note also that τ acts on the Si as
the permutation (S1 S2)(S3 S4). By Proposition 2.26 the elliptic fibrations τχ and
χ differ by an automorphism of P1. As an automorphism of P1 is determined by
its action on the χ(Si), this allows us to check that the automorphism ψ : [s : t] 7→
[−α3s− t : (α2

3 + γ1γ2)s+ α3t] of P1 satisfies τχ = ψχ. By Lemma 2.47 it suffices
to check that ψ switches the points [−1 : α1] and [−1 : α2] and also the points
[−1 : α3] and [0 : 1] (see [23]). We conclude that (χ, τχ) : V̄ → P1 ×P1 is an elliptic
fibration over the graph of ψ.

Let h : P1 × P1 → P3 denote the modified Segre embedding that sends ([a :
b], [c : d]) to [x : y : z : w] = [ac : ad + bc : β−1

2 (ad − bc) : bd]. Then the
composition g = h ◦ (χ, χτ ) : V̄ → P3 is τ -invariant, so it is defined over ng(β3).
The image of the graph of ψ under h is the conic given by y2 − β2

2z
2 = 4xw

and (α2
3 + γ1γ2)x + α3y + w = 0. The image of this conic under the projection

π : P3 → P2, [x, y, z, w] 7→ [2x : y + 2α3x : z] is C1, so the composition ν1 = π ◦ g
is an elliptic fibration of V̄ over C1. Since π and g are defined over ng(β3), so is
ν1. As χ is given by [li : mi], for i = 1, 2, one checks easily that the fibration ν1 is
given by [pi : qi : ri]. The images of the fibers are easily computed using the images
given in Lemma 2.47 and the fact that we have

(
τ (li/mi)

)
(Si) = (li/mi)

(
τSi
)

as
noted above. �

We will construct an automorphism ψ of P2 such that ψ◦ν1 is an elliptic fibration
from V̄ to a conic C, such that both C and the fibration are defined over kg(S), the
field of definition of the fibration. We know that there is an elliptic fibration over a
conic defined over kg(S) whose fibers include the 4-gons of S. By Proposition 2.26
it is unique up to an isomorphism of the conic, so we know such a ψ exists. We will
do this in two steps by first descending to ng and then to kg(S). Suppose at some
step we have a fibration νi : V̄ → Ci, with Ci a conic, defined over a field Ki that
is Galois over Ki+1 with Galois group Gi. We are looking for an automorphism ψi
of P2 such that νi+1 = ψi ◦ νi : V̄ → Ci+1 with Ci+1 = ψi(Ci) is defined over Ki+1.
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For all g ∈ Gi there is an isomorphism σ(g) : gCi → Ci such that νi = σ(g) ◦ gνi.
Since σ(g)∗ : PicCi → Pic gCi sends the canonical divisor of Ci to that of gCi, the
automorphism σ(g) is induced by a unique automorphism of P2, which we will
also denote by σ(g). These automorphisms satisfy the cocycle condition σ(hg) =
σ(h) ◦ hσ(g). The automorphism ψi that we seek satisfies ψi ◦ σ(g) = gψi, so σ is a
coboundary with values in Aut P2

Ki
.

gCi
gψi

''OOOOOOOOOOOOO

σ(g)

��

V̄

gνi

88qqqqqqqqqqqqq

νi

&&M
MMMMMMMMMMMM νi+1

// Ci+1

Ci

ψi

77ooooooooooooo

We can find ψi as follows. Consider the homomorphism GL3(Ki) → Aut P2
Ki

that maps a matrix M ∈ GL3(Ki) to the automorphism that sends [x : y : z] to
[x′ : y′ : z′] with (x′ y′ z′)t = M(x y z)t. Through this homomorphism we may
identify Aut P2

Ki
with PGL3(Ki).

Our first step will be to lift σ to a cocycle for GL3(Ki). The map det : GL3(Ki) →
K∗
i , M 7→ det(M) induces a homomorphism PGL3(Ki) → K∗

i /K
∗
i
3. For any Gi-

set Ξ, let Z1(Ξ) denote the corresponding set of 1-cocycles with coefficients in Ξ.
We obtain the following diagram.

1

��

1

��

1

��

1 // Z1(µ3(Ki))

��

// Z1(SL3(Ki))

��

// Z1(PSL3(Ki))

��

// H2(µ3(Ki))

��

1 // Z1(K∗
i )

[3]

��

// Z1(GL3(Ki))

det

��

// Z1(PGL3(Ki))

det

��

// H2(K∗
i )

��

1 // Z1(K∗
i
3) // Z1(K∗

i )
// Z1(K∗

i /K
∗
i
3) // H2(K∗

i
3)

Since σ ∈ Z1(PGL3(Ki)) is in fact a coboundary, it maps to zero in H1(PGL3(Ki)),
so it also maps to zero in H2(K∗

i ). Therefore we can lift σ to an element σ′ ∈
Z1(GL3(Ki)). To do this in practice we note that we are working over a generic
field, so we may assume Ki has no cube roots of unity. This implies that SL3(Ki) is
isomorphic to the subgroup PSL3(Ki) of PGL3(Ki), so an element M ∈ GL3(Ki)
is uniquely determined by its determinant and its image in PGL3(Ki). Thus σ′ ∈
Z1(GL3(Ki)) is uniquely determined by its image σ and detσ′ ∈ Z1(K∗

i ), which

is a lift of detσ ∈ Z1(K∗
i /K

∗
i
3). To find σ′ it therefore suffices to find a lift of

detσ ∈ Z1(K∗
i /K

∗
i
3) to Z1(K∗

i ). In our case detσ will always be trivial, so this
step is easy.

The second step is to write σ′ = Z1(GL3(Ki)) as a coboundary, which is possible
as we have H1(GL3(Ki)) = 1 by a generalization of Hilbert 90. For this we use a
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standard trick, discussed in [17], Proposition X.3. For any matrix M we set

bM =
∑

g∈G

σ′(g)(gM).

One checks that we have σ′(h) · hbM = bM . Choosing M carefully so that bM is
invertible, we may take ψi to be the automorphism associated to the matrix b−1

M .
After some simplifications of these automorphisms we get the following lemma,
which can in fact be checked without knowing how we obtained the equations. Let
C2 ⊂ P2(u, v, w) be the conic given by γ1β

2
1u

2 + γ2β
2
2v

2 + γ3β
2
3w

2 and set

ui = β−1
1 (qi + γ2pi) = β−1

1 (τlimi + τmili + 2α1li
τli),

vi = β−1
2 (qi − γ1pi) = β−1

2 (τlimi + τmili + 2α2li
τli),

wi = −β2β
−1
3 ri = β−1

3 (τlimi − τmili).

(2.7)

Lemma 2.50. There is an elliptic fibration ν2 : V̄ → C2, defined over ng, given
by x 7→ [ui(x) : vi(x) : wi(x)] for i = 1, 2, such that the 4-gons S1, S2, S3, S4 are
fibers above [−β−1

1 : β−1
2 : β−1

3 ], [β−1
1 : −β−1

2 : β−1
3 ], [β−1

1 : β−1
2 : −β−1

3 ], and
[β−1

1 : β−1
2 : β−1

3 ] respectively.

Proof. The nontrivial automorphism π of the extension ng(β3)/ng is induced by
the automorphism that fixes all ωj and all ǫj , except for ǫ1 and ǫ3, which are
sent to their negatives. It acts on the Si as the permutation (S1 S3)(S2 S4). The
composition ν2 : V̄ → P2 of ν1 and

ψ : P2 → P2, [p : q : r] 7→ [β−1
1 (q + γ2p) : β−1

2 (q − γ1p) : −β2β
−1
3 r]

is given by x 7→ [ui(x) : vi(x) : wi(x)]. The inverse of ψ is given by

[u : v : w] 7→ [β1u− β2v : γ1β1u+ γ2β2v : γ3β
−1
2 β3w].

Substituting this into the equation for C1, we find that the conic ψ(C1) is equal to
C2. Alternatively, one checks that we have

γ1β
2
1u

2
i + γ2β

2
2v

2
i + γ3β

2
3w

2
i = 4γ3bi

τliliQ,

with b1 = ω1+ω2−ω3−ω4 and b2 = −c4(ω−1
1 +ω−1

2 −ω−1
3 −ω−1

4 ) (see [23]). Since Q
vanishes on V , this also shows that ν2 maps V̄ to C2. As π permutes S, the 4-gons
in S are also fibers of πν2, so ν2 and πν2 differ by an isomorphism on the base by
Proposition 2.26. Therefore, there is a unique isomorphism h : C2 → πC2 = C2 such
that πν2 = h ◦ ν2. Since h fixes the anticanonical divisor on C2, which determines
the embedding of C2 in P2, the isomorphism h comes from a unique automorphism
of P2, which we will also denote by h. With the points ν1(Si) given in Lemma
2.49, one easily computes ν2(Si) = ψ(ν1(Si)) to be as claimed. With the identity

(πν2)(Si) = π(ν2(
π−1

Si)) we check that we have (πν2)(Si) = ν2(Si) for 1 ≤ i ≤ 4,
so h fixes the four points ν2(Si). As these points all lie on C2, no three of them
are collinear. This implies that the action of h on the four points determines h
uniquely, which means that h is the identity, so πν2 = ν2. We conclude that ν2 is
defined over the fixed field ng of π. �

Finally, we let C3 ⊂ P2(x, y, z) be the conic given by

γ1β
2
1(x+γ1∆4y+(α2+α3)z)

2+γ2β
2
2(x+γ2∆4y+(α1+α3)z)

2+γ3β
2
3(x+γ3∆4y+(α1+α2)z)

2 = 0,
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and we set

xi = 2∆4

(
(α2α3 − α2

1)ui + (α1α3 − α2
2)vi + (α1α2 − α2

3)wi
)
,

yi = −γ1ui − γ2vi − γ3wi,

zi = ∆4

(
(γ2 − γ3)ui + (γ3 − γ1)vi + (γ1 − γ2)wi

)
.

(2.8)

Lemma 2.51. There is an elliptic fibration ν3 : V̄ → C3, defined over kg(S), given
by x 7→ [xi(x) : yi(x) : zi(x)] for i = 1, 2, such that the 4-gons of S are fibers of ν3.

Proof. Let π1, π2 ∈ Gal(ng/kg(S)) denote the automorphisms induced by the per-
mutations (ω1 ω2 ω3) and (ω1 ω2) on the ωj respectively and the corresponding
permutation on the ǫj . Then π1 and π2 induce generators of Gal(ng/kg(S)). They
act on S, the αj , βj , γj , and the φj as the permutations (1 2 3) and (1 2) on the
indices, except that π2 also negates the γj . Note also that we have π1(∆4) = ∆4

and π2(∆4) = −∆4. The composition ν3 : V̄ → P2 of ν2 and ψ : P2 → P2, [u : v :
w] 7→ [x : y : z] with

x = 2∆4

(
(α2α3 − α2

1)u+ (α1α3 − α2
2)v + (α1α2 − α2

3)w
)
,

y = −γ1u− γ2v − γ3w,

z = ∆4

(
(γ2 − γ3)u+ (γ3 − γ1)v + (γ1 − γ2)w

)
.

(2.9)

is given by P 7→ [xi(P ) : yi(P ) : zi(P )]. The inverse of ψ is given by

[x : y : z] 7→ [x+γ1∆4y+(α2+α3)z : x+γ2∆4y+(α1+α3)z : x+γ3∆4y+(α1+α2)z].

Substituting this in the equation for C2, we find that the conic ψ(C2) is equal to
C3, so ν3 maps V̄ to C3. Note that for all g ∈ Gal(ng/kg(S)) we have gC3 = C3.
As in the proof of Lemma 2.50, for all g ∈ Gal(ng/kg(S)) there is an automorphism
hg of P2 such that we have gν3 = hg ◦ ν3. Evaluating ψ at the points ν2(Si) given

in Lemma 2.50 and using the identity (gν3)(Si) = g(ψ(ν2(
g−1

Si))), we check that
for all g ∈ Gal(ng/kg(S)) we have (gν3)(Si) = ν3(Si) for 1 ≤ i ≤ 4. It suffices to
check this for g = π1, π2. As in the proof of Lemma 2.50 this implies that for all
g ∈ Gal(ng/kg(S)) the automorphism hg is the identity, so gν3 = ν3. We conclude
that ν3 is defined over kg(S). �

Remark 2.52. Even though the fibration ν3 is defined over kg(S), the polynomials
xi, yi, zi that describe ν3 are not, and neither is the defining equation of C3. The
latter issue is easily resolved by multiplying the given equation for C3 by ∆4 to
obtain an equation defined over k(S). To settle the former, we can replace xi, yi, zi
with Galois-invariant polynomials as follows. Again we descend from the field
kg([S]) to kg(S) in steps. The polynomials li and mi are not defined over kg([S]),
but ηli and ηmi are, as they are fixed by the elements of G[S], see Lemma 2.44.
Scaling by β2

τηη, we find that the polynomials u′i = β2
τηηui, v

′
i = β2

τηηvi, and
w′
i = β2

τηηwi are also defined over ng(β3) and define ν2 as well. Since ν2 is defined
over ng, the polynomials πu′i,

πv′i, and πw′
i, define ν2 as well, where π is the nontrivial

automorphism of ng(β3)/ng as in the proof of Lemma 2.50. This implies that ν2 can
also be defined by [u′′i : v′′i : w′′

i ] with u′′i = u′i+
πu′i, v

′′
i = v′i+

πv′i, and w′′
i = w′

i+
πw′

i

unless these polynomials vanish on V , which in this generic case they do not. One
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checks for instance that we have

β1u
′′
1

β2
=8(ǫ1ǫ2 − ǫ3ǫ4)

(
κ−1

1 δ1ϕ
2
1 + κ−1

4 δ4ϕ
2
4

ω1 − ω4
+
κ−1

2 δ2ϕ
2
2 + κ−1

3 δ3ϕ
2
3

ω2 − ω3

)

+ 4(δ1 + δ2 − δ3 − δ4)(ω1 − ω2 − ω3 + ω4)
(
(ω1 − ω2)κ

−1
1 κ−1

2 ǫ1ǫ2ϕ1ϕ2 + (ω3 − ω4)κ
−1
3 κ−1

4 ǫ3ǫ4ϕ3ϕ4

)
(2.10)

(see [23]). With the same trick we descend to kg(S). The polynomials

x′i = 2∆4

(
(α2α3 − α2

1)u
′′
i + (α1α3 − α2

2)v
′′
i + (α1α2 − α2

3)w
′′
i

)
,

y′i = −γ1u
′′
i − γ2v

′′
i − γ3w

′′
i ,

z′i = ∆4

(
(γ2 − γ3)u

′′
i + (γ3 − γ1)v

′′
i + (γ1 − γ2)w

′′
i

)
.

(2.11)

are defined over ng and ν3 is defined by [x′i : y′i : z′i]. Since ν3 is defined over
kg(S), it is also defined by [gx′i : gy′i : gz′i] for any g ∈ Gal(ng/kg(S)) and therefore
by [x′′i : y′′i : z′′i ] with x′′i =

∑
g∈Gal(ng/kg(S))

gx′i, y
′′
i =

∑
g∈Gal(ng/kg(S))

gy′i, and

z′′i =
∑
g∈Gal(ng/kg(S))

gz′i, unless these polynomials, defined over k(S), vanish on

V . An explicit computation shows that they do not. Over kg(S) we can write
f = f2f4 with f4 = X4 − c1X

3 + c2X
2 − c3X + c4, where the cr are the symmetric

polynomials in the ωj (1 ≤ j ≤ 4) of degree r. The image in A4 = kg[X]/f4 of
δ ∈ A can be written as δ′ = d3X

3+d2X
2+d1X+d0 with di ∈ kg(c1, c2, c3, c4). We

may also consider the di to be independent transcendentals contained in kg (here
the di are not the same as in Example 2.40). Let N denote a square root of the

norm NA4/kg
(δ′) of δ′. Note that as always we have ϕj =

∑5
i=0 ω

i
jai, where the ai

are the original coordinates of P(A). The polynomials x′′i , y
′′
i , and z′′i are quadratic

in the ai with coefficients in the field Q(c1, c2, c3, c4, d0, d1, d2, d3, N). Expressing
them as such takes a file that has size about one megabyte [23]. Note also that
the equations for the fibration do not depend on ω5 and ω6. This shows that
the fibration does indeed factor through the quadric Dω5ω6

in P3 of Remark 2.5,
because that is the image of V̄ under the projection from P(Ā) to P3 using only
the coordinates ϕ1, . . . , ϕ4.

Remark 2.53. In any specific example, we can consider the specialization of the
equations for C3 and the fibration ν3 in Lemma 2.51, or better, Remark 2.52. For
a proper closed subset in the family of all curves of genus 2 and choices of δ these
equations may vanish. Outside this subset, this specialization gives us an elliptic
fibration ν of a surface V over a conic C. If V is everywhere locally solvable, then so
is C. Since C satisfies the Hasse principle, this implies that C has a rational point,
which can be found by standard algorithms. This gives us a rational fiber F0 on
V . The linear system of hyperplanes through F0 is 2-dimensional and determines
an elliptic fibration ν′ of V over P1, given by linear polynomials. The 4-gons that
are fibers of ν′ belong to the complementary exhibit of the exhibit whose 4-gons
are fibers of ν. Applying the same trick again, we also obtain an elliptic fibration
over P1 that is equivalent to ν. On the other hand, even if C is everywhere locally
solvable, V may not be.
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3. Arithmetical applications

In this section we combine the theory of the previous section with the idea of
the Brauer-Manin obstruction. We will give a K3 surface V on which the Brauer-
Manin obstruction blocks the existence of rational points. We also exhibit a family
of curves of genus 2 for each member of which there exists a twist of the Jacobian
that has rational points everywhere locally and that admits a map to V . It follows
that the twists do not have global points and thus that every member of the family
of curves of genus 2 has nontrivial Tate-Shafarevich group.

3.1. The Brauer group and the Brauer-Manin obstruction. To explain the
Brauer-Manin obstruction, we let V be a variety over a number field K. If there is a
place p of K at which V has no points, then of course V has no K-rational points.
But if V has points everywhere locally, we can sometimes use the Brauer group
to prove that it does not have any points defined over K. We begin by defining
the Brauer group of a scheme; this material is taken from the beginning of [13],
Chapter 4.

Definition 3.1. Let R be a ring. Then an Azumaya algebra A over R is a free R-
algebra of finite rank as an R-module such that A⊗R Aop is isomorphic to End(A)
by the map taking a⊗ a′ to the endomorphism x→ axa′.

Definition 3.2. Let V be a scheme. An Azumaya algebra A on V is a coherent
sheaf of OV -algebras whose stalk at every point x of V is an Azumaya algebra over
the local ring of V at x. The Brauer group of V is the semigroup of Azumaya
algebras on V under tensor product modulo the subsemigroup of endomorphism
algebras of locally free sheaves.

The Brauer group of a field K is often defined as the semigroup of finite-
dimensional central simple algebras over K under the operation of tensor product
modulo the subsemigroup {Mn(K) : n ∈ N}. This is a special case of the definition
above. Alternatively, BrK can be thought of as H2(K,Ksep∗), which can be rewrit-
ten asH2

ét
(SpecK,Ksep∗) using the standard equivalence ([13], Example III.1.7) be-

tween étale cohomology of SpecK and Galois cohomology of Gal(Ksep/K)-modules.
We extend this definition to general schemes as follows.

Definition 3.3. For a variety V over a field K, we use V̄ to denote V ⊗K K̄.

Definition 3.4. The cohomological Brauer group BrV of a scheme V isH2
ét

(V,Gm).
If V is defined over a field K, then the algebraic part of the Brauer group Br1 V is
the kernel of the natural map BrV → Br V̄ .

We can use the Brauer group to find obstructions to the existence of points,
but it is difficult to compute. However, we can compute the algebraic part of
the Brauer group. By [13], Prop. IV.2.15, the Brauer group and the cohomological
Brauer group are isomorphic when V is a smooth variety over a field. For V defined
over a number field, the algebraic part of the Brauer group can be computed as
H1(K,Pic V̄ ): this is part of [19], Cor. 2.3.9. As stated in Corollary 2.4, we have
Pic V̄ = NS V̄ , a finitely generated free abelian group.

In this paper, we will only consider the algebraic part of the Brauer group. Now
we explain how to use the Brauer group to show that V has no K-rational points.
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Definition 3.5. Let K be a number field and p a place of K. The local invariant
invp(s) of an element s of the Brauer group of the local field Kp is its image under
the natural homomorphism BrKp → Q/Z ([17], Proposition XII.6).

Recall that this homomorphism is always injective, and that it is surjective if p

is non-archimedean, while its image is generated by 1/2 if p is real and is trivial if
p is complex.

Definition 3.6. For s ∈ BrV , p a place of K, and P ∈ V (Kp), the local invariant
of s at P is the local invariant invp(sP ) of the element sP ∈ BrKp obtained by
pulling back the cohomology class s by the map SpecKp → V whose image is the
point P . More concretely, it is the local invariant of the Azumaya algebra over Kp

whose multiplication table is given by evaluating the elements of the multiplication
table of an Azumaya algebra representing s at the coordinates of P .

Every K-point P of V corresponds to a morphism SpecK → V that induces
a map BrV → BrK by pulling back cohomology. We denote the image of an
element s ∈ BrV under this map by s(P ), yielding a map V (K) → BrK that is
also denoted by s. Similarly for every place p (archimedean or non-archimedean)
of K we get a map sp : V (Kp) → BrKp. We obtain the following commutative
diagram, where the top horizontal map is the diagonal embedding and λs is defined
to be the composition shown.

V (K) //

s

��

∏
p
V (Kp)

Q

p
sp

��

λs

##
FFFFFFFFFFFFFFFFFF

BrK //
⊕

v BrKp P

invp

// Q/Z

The bottom row is exact by class field theory, so the image of the top horizontal
map is contained in λ−1

s (0). If we show that ∩s∈BrV λ
−1
s (0) = ∅, then we may

conclude that there is no K-rational point on V , and we say that the Brauer-
Manin obstruction blocks the existence of rational points on V . It suffices to let s
run over a set of generators of BrV/BrK. Often it is more convenient to consider
only elements of BrV/BrK belonging to a subset B, and then we speak of the
Brauer-Manin obstruction on B blocking the existence of rational points.

Proposition 3.7. Let B be a subgroup of BrV/BrK of order 2 generated by the
element s. Then the Brauer-Manin obstruction on B blocks the existence of rational
points on V if and only if, for all p, the local invariant of s is constant on Kp-points
of V and the constants do not add to 0.

Proof. The sufficiency of this condition is clear. For the necessity, note that, if the
local invariant is not constant on Kp-points for some p, we may choose an arbitrary
collection of local points at other places with invariants adding to α ∈ {0, 1/2} and
then choose a Kp-point whose invariant is equal to α, thus obtaining a system of
points with local invariants adding to 0. In the case where the local invariant is
constant on Kp-points for all p, the necessity of the condition that the constants
not add to 0 is obvious. �
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Now let us explain how to construct K3 surfaces with elements of the Brauer
group that are likely to give nontrivial obstructions. Although it is usually easy
to calculate H1(K,Pic V̄ ), at least when H1(V,OV ) = 0 and so Pic V̄ is finitely
generated, it is difficult to find Azumaya algebras corresponding to nontrivial coho-
mology classes. Doing so requires finding rational divisors in rational divisor classes.
Such divisors always exist if V has points everywhere locally, but in practice it is
not easy to find them. Over an algebraically closed field the effective divisors in a
linear equivalence class constitute a Pn, so the problem reduces to finding a rational
point on a locally solvable Brauer-Severi variety. This can be reduced to solving a
norm equation from a field over which all elements of Pic V̄ are defined, but even
when the splitting field of f is fairly small this is likely to be impractical.

We will follow [4], section 4.4, in using elliptic fibrations on varieties to construct
nontrivial elements of the Brauer group. For a variety with a fibration φ, we define
the vertical Picard group Picφ V̄ to be the subgroup of Pic V̄ spanned by the classes
of components of fibers. The vertical Brauer group Brφ V can then be defined as
H1(K,Picφ V̄ ). (We deviate from the standard notations Picvert and Brvert used in
[4] because it is necessary for us to distinguish between vertical Picard and Brauer
groups coming from different fibrations on the same variety.) The inclusion of
Picφ V̄ into Pic V̄ gives a natural map Brφ V → H1(K,Pic V̄ ), which need not be
either injective nor surjective.

It is shown in [4], Prop. 4.21, that elements of Brφ V are represented by Azumaya
algebras that are pulled back from central simple algebras on the function field of
the target of φ. The stalk of such an Azumaya algebra is constant on all fibers of
φ, so the local invariants of such algebras are too.

Definition 3.8. Let F be any field, and a and b nonzero elements of F . The
symbol (a, b) denotes the central simple F -algebra of rank 4 with basis 1, i, j, k and
multiplication given by i2 = a, j2 = b, ij = k, ji = −k.

Proposition 3.9. If F is a local field, the local invariant of (a, b) is 0 if and only
if the quadratic form x2 − ay2 − bz2 represents 0 nontrivially in F ; otherwise it is
1/2. In particular, if the residue characteristic of F is odd, then the invariant is 0
if and only if at least one of the following conditions holds: a and b both have even
valuation; one of a and b is a square; or ab is a square.

Proof. The first statement is well-known (note in particular that if a or b is a
square then the local invariant is 0). The second follows from the discussion at the
beginning of [17], section XIV.4, which applies just as well to any finite extension
of Qp as to Qp itself. �

Proposition 3.10. Let φ : V → P1 be an elliptic fibration, and suppose that V
has bad fibers of type I4 over (α : 1), where [Q(α) : Q] = 4. Suppose further that
the field of definition of the components of the fiber at (α : 1) is Q(α,

√
c), where

c ∈ Q(α) is of square norm, and that the Q(α)-components of this fiber consist of
two disjoint lines. Then the pullback of the algebra coresQ(α)/Q(c, t − α) ∈ Br Q(t)

to V , where t is the coordinate on the standard affine patch of P1, is an element of
Brφ V .

Proof. This follows immediately from [4], Proposition 4.28. �
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Remark 3.11. Note that the hypotheses entail that the fiber consists of two pairs of
disjoint lines L1,M1 and L2,M2, where all the Li and Mi are defined and conjugate
over one and the same quadratic extension Q(α,

√
c) of Q(α).

For this to be useful to us, we need to know how to compute the local invariants
of the algebra coresQ(α)/Q(c, t−α) ∈ Br Q. The following proposition addresses this
question.

Proposition 3.12. (cf. [5], Lemma 5 (i)) The local invariant of coresQ(α)/Q(c, t−α)
at p is the sum of those of (c, t− α) at places of Q(α) lying above p.

Now we are ready to show how we chose f and δ so that there would be a
nontrivial element of the Brauer group arising from an elliptic fibration.

Definition 3.13. From now on, f will always denote a polynomial which is the
product of three irreducible quadratic polynomials f1, f2, f3 and δ will be an element
of (Q[X]/(f))∗. For given f and δ, let ι be an isomorphism from Q[X]/(f) to
⊕3
i=1Q[X]/(fi) (which exists by the Chinese Remainder Theorem), fix isomorphisms

κi from Q̄[X]/(fi) to Q̄ ⊕ Q̄ (again by the Chinese Remainder Theorem), let υi be
the component of ι(δ) in Q[X]/(fi), and let υik be the kth component of κi(υi).
For convenience define δj so that δ2(i−1)+k = υik (this notation coincides with the
δj of Example 2.40). Also let σi be the nontrivial automorphism of Q[X]/(fi) and
let ri be a fixed root of fi in Q̄.

Theorem 3.14. With f and δ as above, let V be the K3 surface constructed from
f, δ. Suppose further that the splitting field of f is of degree 8; that the norm of
υ1 is a square; that the norms of υ2 and υ3 multiplied by the discriminant of f1
are squares; and that the υi are otherwise generic. Then the field of definition of
the lines of V has degree 32, both elliptic fibrations associated to the factorization
f = (f1)(f2f3) in Remark 2.36 satisfy the conditions of Proposition 3.10, and the
elements of the respective vertical Brauer groups constructed in that proposition map
to the same element of H1(Q,Pic V̄ ) and hence to the same element of BrV/BrK.

Proof. The condition on δ shows that the norm of the projection of δ to Q[X]/(f2f3)
is a square, so the elliptic fibrations are defined over Q by Remark 2.36. As we
did in the discussion just after Lemma 2.32, fix a square root

√
δj of δj for j ∈

{1, . . . , 6} (corresponding to ǫj in Example 2.40). Let us now determine the action
of the absolute Galois group of Q on the lines. By Lemma 2.38, it factors through
the extension m of the splitting field l = Q(r1, r2, r3) of f obtained by adjoining
all elements of the form

√
δi
√
δj . Note that δ1δ2 = υ11υ12 = N(Q[X]/f1)/Q(υ1)

is a square by hypothesis. Similarly, letting ∆1 denote the discriminant of f1,
we find that ∆1δ3δ4 and ∆1δ5δ6 are squares, and thus that δ3δ4 and δ5δ6 are
squares in Q(

√
∆1) = Q(r1). It follows that up to square factors in Q(r1) every

element of the form δiδj is equivalent to δ1δ3, δ1δ5, or δ3δ5. We conclude that
m = l(

√
δ1
√
δ3,

√
δ1
√
δ5). As the υi are otherwise generic, we find that the field m

of definition of the lines has degree 4 over l and therefore degree 32 over Q.
We now describe the Galois group of m over Q in terms of the s, t described in

the discussion following Proposition 2.41. The υi are generic aside from their given
properties, so the field m′ = l(

√
δ1, . . . ,

√
δ6) = m(

√
δ1) has degree 2 over m (cf.

discussion following Lemma 2.32 and Example 2.40). Recall that for a permutation
p ∈ S6, the automorphism tp of m is induced from m′ by sending δj and

√
δj to

δp(j) and
√
δp(j) respectively. For a subset I ⊆ {1, 2, . . . , 6}, the automorphism sI
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of m is induced from m′ by fixing all δj and sending
√
δj to ±

√
δj where the sign

is negative if and only if j ∈ I. We will also refer to the 32 lines on V using the
notation LI introduced before Lemma 2.33.

The automorphism σ1 lifts to an automorphism of m′ that fixes r2 and r3, and
therefore all δj for 3 ≤ j ≤ 6. Because σ1 sends

√
∆1 to −√

∆1, and δ3δ4 and
δ5δ6 are squares up to a factor ∆1, this lift changes the signs of the square roots
of one of δ3 and δ4 and of one of δ5 and δ6. The induced automorphism of m is
then t(12)si,j for some i ∈ {3, 4} and j ∈ {5, 6}. The automorphisms σ2 and σ3

lift to t(34) and t(56) respectively. Together with s{1,2} and s{3,4} these elements
generate a subgroup of Gal(m/Q) of order 32, so they generate the full Galois
group. The orbits of this group on the lines are of order 8 and each orbit contains
two nonintersecting lines from each of the four fibers of one fibration. In particular,
all the four I4 fibers are conjugate, so they are indeed defined over a field of degree
4.

By Remark 2.36 the fibers of the elliptic fibrations are orbits of Λ under the
group generated by s1 and s2 in Aut Λ (only their product s1s2 is in the subgroup
of Aut Λ induced by Galois). Consider first the fibration associated to the exhibit
S that contains a 4-gon S containing L0. Then that 4-gon is S = {L0, L1, L2, L12}.
One easily checks that the subgroup Gal(m/k(S)) is generated by t(34), t(56), and
s{1,2}. This group fixes Q(r1), so we have Q(r1) ⊂ k(S), and in fact the group
Gal(m/Q(r1)) is generated by Gal(m/k(S)) and s{3,4}. Under Gal(m/k(S)) the
4-gon S breaks up into the orbits {L0, L12} and {L1, L2}, each consisting of two
disjoint lines.

Let L be any line in S. The subgroup Gal(m/k(L)) is generated by t(34) and
t(56), which is normal in Gal(m/Q(r1)). Therefore, k(L) is Galois over Q(r1) and

the corresponding Galois group is (Z/2Z)2. Since k(S) is one of the quadratic
subfields, it follows from elementary Galois theory that k(L) can be obtained from
k(S) by adjoining the square root of an element c ∈ Q(r1). As k(S) has degree
4 over Q and Q(r1) is a quadratic subextension, the norm of c from k(S) to Q is
indeed a square. The arguments for the opposite fibration are completely similar.

The final statement of the proposition, that the elements of the vertical Brauer
group obtained in this way give the same element of H1(Q,Pic V̄ ), is proved by a
calculation using magma. The point is to verify that the images of the nontrivial
elements of H1(Q,Picφ V ) and H1(Q,Picφ′ V ) constructed in Proposition 3.10 in
H1(Q,Pic V̄ ) are equal, where φ and φ′ are the two fibrations associated to the
factorization f = (f1)(f2f3) as in Remark 2.36. See [23] for details. �

Remark 3.15. In special cases it is possible for the Picard group of V to have higher
rank than in the generic case (in fact this happens in the example that we present
immediately below). Thus we may have constructed elements, not of H1(Q,Pic V̄ ),
but only of H1(Q, P ), where P , the subgroup of Pic V̄ generated by the classes of
the lines, is a proper subgroup of Pic V̄ . The inclusion P → Pic V̄ gives a map
from H1(Q, P ) to H1(Q,Pic V̄ ), which allows us to consider the elements we have
constructed as elements of the Brauer group. It is possible that our elements could
be in the kernel of this map in some situations. However, they are well-defined
Brauer classes, and so they may be used to attempt to prove that V has no rational
points. If their local invariants do not add to 0, it indicates that they are not in
the kernel.
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Remark 3.16. It is not essential for the method that the element of H1(Q,Pic V̄ )
be obtainable from two different fibrations. However, as was first pointed out by
Swinnerton-Dyer, this means that the local invariants are constant on the fibers
of two different fibrations and are therefore much more likely to be constant than
would otherwise be the case. This greatly facilitated finding the example below.

3.2. An explicit example. Now let us present our example, which was found by
searching over various choices of f1, f2, f3 with small splitting fields Q(i),Q(

√
2),Q(

√
5)

such that the discriminant of f1f2f3 is small and δ such that the field of definition
of the lines would not introduce new bad primes. For the rest of this paper, let
f = (x2 + 1)(x2 − 2x − 1)(x2 + x − 1) = f1(x)f2(x)f3(x), let Af = Q[X]/f(X),

let E be the algebra Q(i) ⊕ Q(
√

2) ⊕ Q(
√

5), fix an isomorphism ι : Af → E as in
Definition 3.13, and let

(3.1) δ = (−2X5 + 3X4 + 5X3 − 8X2 + 7X + 7)/6 ∈ Af ,

so that ι(δ) = (3,−(1 +
√

2), (1 +
√

5)/2). Then f, δ satisfy the conditions of
Theorem 3.14. For nonzero rational t let Ct be the curve y2 = tf(x). Let V be the
K3 surface Vf,δ. Our goal is to prove the main theorem, Theorem 1.1, restated and
slightly reworded here for ease of reading:

Theorem 3.17. Let S be the union of {5} with the set of primes that split com-
pletely in the field of definition of the lines of V , which is

F = Q

(√
−1,

√
2,
√

5,

√
−3(1 +

√
2),

√
6(1 +

√
5)

)
.

Then for all n that are products of elements of S, the 2-part of the Tate-Shafarevich
group of the Jacobian of the curve C−6n is nontrivial.

To do so, we will follow the strategy outlined in the introduction: first we will
show that δ gives an element of the fake Selmer group of the Jacobian of the curve
in question by showing that the corresponding principal homogeneous space of the
Jacobian of C−6n has points everywhere locally. Then we will use the element of the
Brauer group described above to prove that Vf,δ has no rational points and conclude
that the principal homogeneous space has no rational points either. We begin by
summarizing some results from [20] on the fake Selmer group of the Jacobian of a
hyperelliptic curve of genus 2.

Definition 3.18. Let g be a squarefree polynomial of degree 6 over Q and C the
curve y2 = g(x). For any field K of characteristic 0, let HK = ker(N : (Ag ⊗
K)∗/(Ag ⊗K)∗

2
K∗ → K∗/K∗2) with Ag = Q[X]/g(X). (Note that the norm is

well-defined, because deg g is even and so N(K∗) ⊂ K∗2.) Write H instead of

HQ. As in [20], Prop. 5.5, let the fake Selmer group Sel
(2)
fake(Q, JacC) of C be the

subgroup of H consisting of elements that are everywhere locally in the image of
the 2-descent map on the Jacobian of C. Define ∆K , the descent map over K, to
be the function from the set of K-rational points of C which are neither Weierstrass
points nor points at infinity to HK such that ∆K(x0, y0) = 1 ⊗ x0 −X ⊗ 1.

Proposition 3.19. The function ∆K may be extended multiplicatively to a function
from J(K) to HK .

Proof. This is essentially [16], Lemma 2.1, as modified by the discussion in section
2.5; see also [20], sect. 6 for explicit formulas for Weierstrass points. �
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Proposition 3.20. Let S be the set of primes introduced in Theorem 3.17. Then
for all n that are products of elements of S, the fake Selmer group of the Jacobian
of C−6n contains δ. Equivalently, the principal homogeneous space of Jac(C−6n)
corresponding to δ is everywhere locally solvable.

Proof. We need only show that δ is in the image of the local Selmer maps for
primes of bad reduction and ∞. The primes of bad reduction are 2, 3, 5, and
primes dividing n. At a prime p dividing n, we have that δ corresponds under
ι to an element of the form (3, 3a2, 3b2) in E ⊗ Qp. Therefore, δ is contained in

(Af ⊗ Qp)
∗2

Q∗
p, so it is the identity element in HQp

and is in the image of every
homomorphism. Thus δ is in the image of the local 2-descent map. Note also that
every product of elements of S is positive, is equivalent to 1 or 5 in Q∗

p/Q
∗
p
2 for

p = 2, 5, and is a unit locally at 3. It follows that we need only check the assertion
for n = 1, p = 2, 3, 5,∞, and n = 5, p = 2, 3, 5. This can be done by using magma’s
TwoSelmerGroup command to compute the fake Selmer groups of C−6 and C−6·5

and verifying that δ is an element of both. The last statement follows by applying
the fact that the principal homogeneous space over a field K corresponding to δ has
points everywhere locally if and only if δ is in the image of ∆K to all completions
of Q. �

Proposition 3.21. If the image of Jac(Ct)/2 Jac(Ct) under the 2-descent map ∆Q

is properly contained in the fake Selmer group, then Jac(Ct) has nontrivial Tate-
Shafarevich group.

Proof. The map Jac(Ct)/2 Jac(Ct) → Sel
(2)
fake Jac(Ct) factors through the surjec-

tive map from the actual Selmer group Sel(2)(Jac(Ct)) to Sel
(2)
fake Jac(Ct). There-

fore the image of Jac(Ct)/2 Jac(Ct) in Sel(2)(Jac(Ct)) is also properly contained

in Sel(2)(Jac(Ct)). Every element of Sel(2)(Jac(Ct)) not in the image maps to a
nontrivial element of the Tate-Shafarevich group.

�

Now we indicate the relation between the descent map and the K3 surface Vf,δ
that we have defined.

Proposition 3.22. With f and δ as above, let V be the K3 surface constructed
from f, δ. Suppose that V has no rational points. Then δ is not in the image of the
2-descent map for the Jacobian of the curve y2 = f(x).

Proof. Suppose, to the contrary, that δ were in the image; that is, that ∆Q(D) = δ
for some rational divisor D of degree 0. By Riemann-Roch, this divisor may be
taken to be of the form (x1, y1)+ (x2, y2)−H, where H is the hyperelliptic divisor.
Since ∆Q(H) = 1, this means that ∆Q(D) = ∆Q((x1, y1)+(x2, y2)) = (x1−X)(x2−
X) in A∗

f/(A
∗
f )

2Q∗, where we have identified Af ⊗Q Q with Af . In other words, for

some r ∈ Q and q ∈ Af we have δq2 = rx1x2 − r(x1 + x2)X + rX2. In particular,
the point of P5 whose coordinates are the coefficients of q lies on V . �

Remark 3.23. Propositions 3.21 and 3.22 together imply that if δ is an element of

the fake Selmer group Sel
(2)
fake(Q, JacCt) and the corresponding Vf,δ has no rational

points, then Jac(Ct) has nontrivial Tate-Shafarevich group. This also follows from
the fact that Vf,δ = Vtf,δ is a quotient of the homogeneous space of JacCt corre-
sponding to δ. Indeed, this implies that if Vf,δ has no rational points, then neither
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does the homogeneous space, which implies that its image in the Tate-Shafarevich
group is nontrivial.

It is also worth mentioning that the existence of the nontrivial element of X

that we will exhibit is not a consequence of the results of [15] on odd curves, which
we now describe briefly.

Definition 3.24. ([15]) Let C be a curve over Q of genus g. We say that C is
deficient at p, where p is a prime or ∞, if C has no rational divisor of degree g − 1
over Qp. We say that C is even or odd depending on the parity of the number of
places at which C is deficient.

Denote the 2-primary part of X(Jac(C)) by X(Jac(C))[2∞]. Then, if X(Jac(C))[2∞]
is finite, its order is a square if and only if C is even ([15], Theorem 11). It follows
that if C is odd that X(Jac(C))[2∞] is nontrivial. The following proposition proves
that the elements of X that we find are not merely artifacts of the oddness of our
curves.

Proposition 3.25. If n is a product of primes in S, then C−6n is even.

Proof. A curve is never deficient at a prime p of good reduction, for there are always
points over all sufficiently large finite fields of characteristic p and therefore over
unramified extensions of Qp of all sufficiently large degrees. The primes of bad
reduction are 2, 3, 5, and those dividing n. The point (i, 0) on C−6n is defined over
Qp for all p congruent to 1 mod 4, which includes 5 and all primes dividing n. It is
also clear that there are real points on C−6n. As a result, the only primes that need
to be considered are 2 and 3. One checks (for example, using the IsDeficient

command in magma) that C−6n is deficient at those primes. It follows that C−6n

is even. �

We now start to show that V has no rational points, from which it follows that
δ is not in the image of the global 2-descent map. First we will limit the set of
primes to be considered in the calculation of the Brauer-Manin obstruction, then
we will explain how to calculate the invariants there, and after that we will actually
compute the invariants.

Lemma 3.26. Let W be a variety over Q with good reduction at p and let s ∈ BrW .
Then the local invariant of s at p is constant.

Proof. This is a weaker version of Theorem 1 of [5]. �

Lemma 3.27. Let W be an elliptic surface over Q with an Azumaya algebra s given
by cores(c, t− α) as in Proposition 3.10. Let p be a prime of good reduction for W
such that the fiber at infinity of W has smooth Qp-rational points (in particular, this
is true if the fiber at infinity has good reduction mod p). Then the local invariant
of s at p is equal to 0.

Proof. By Lemma 3.26, the local invariant is constant, so it suffices to evaluate it
at one point. Since the fiber at infinity has smooth Qp-rational points, so do all
sufficiently near fibers. In particular, for all sufficiently large integers k the fiber at
p−2k has rational points, and the local invariant is therefore

cores(p−2k − α, c) =
∑

p|p

(p−2k − α, c)p.
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But p−2k − α is a square in all completions at primes above p for all sufficiently
large k, and hence the local invariant is 0 for sufficiently large k. �

Lemma 3.28. Let W be an elliptic surface over Q with an Azumaya algebra
cores(c, t − α), where c has square norm. Suppose that the valuation of α/4pn

is positive at all primes above p at which c is not a square. Then the invariant at
p is 0 on all fibers of coordinate t where v(t) ≤ n.

Proof. We notice that t/(t − α) is a square for all t with v(t) ≤ n, and therefore
that the invariants of (c, t) and (c, t− α) are equal at all primes above p where c is
not a square. They are also equal at primes above p at which c is a square, being
both equal to 0 there, so they are equal at all primes above p. Thus the invariant
at p of cores(c, t− α) is equal to that of cores(c, t) (see Proposition 3.12). But this
is equal to the invariant of (N(c), t), which is 0 because N(c) is a square. �

Lemma 3.29. Let t0 ∈ Qp and n ∈ Z be such that pn/4(t0 − α) has positive
valuation in Q(α)p for all primes p above p where c is not a square locally. Then
the local invariant of the Azumaya algebra cores(c, t− α) is the same for all values
of t in the disc t0 + pnZp.

Proof. It is sufficient to show that (t− α)/(t0 − α) is a square for all t ∈ t0 + pnZp
at all primes p above p where c is not a square. But this is equal to 1+kpn/(t0−α)
for some k ∈ Zp, which by assumption is congruent to 1 mod 4p. It is therefore a
square by Hensel’s lemma. �

Lemma 3.30. It can be effectively determined whether there are Qp-rational points
of V mapping under a given fibration to a given disc D in P1(Qp).

Proof. By changing coordinates, we may assume that the disc is {(Zp : 1)}. Con-
sider the graph of the fibration as a subscheme of P5×P1. It is sufficient to determine
whether there is a standard affine patch A5 of P5 such that the intersection of the
patch A5 ×D of P5 × P1 with the graph of the fibration has Zp-points. Since the
graph is smooth, this can be decided using Hensel’s lemma. �

Theorem 3.31. Let V be a smooth variety with an elliptic fibration φ over P1

satisfying the hypotheses of Proposition 3.10 and let cores(c, t − α) ∈ Brφ be the
Azumaya algebra constructed there. Let p be a prime. Then the set of values of the
local invariant of cores(c, t− α) on V (Qp) can be effectively determined.

Proof. Using Hensel’s lemma or Lemma 3.30 we can check whether V has any Qp-
points. If not, then we are done, so we may assume that V has Qp-points. If V
has good reduction at p, then by Lemma 3.26 the local invariant cores(c, t − α) is
constant, so it suffices to evaluate it at one point of V . Since V is nonsingular, its
Qp-points are dense, so we can find a point for which t− α is bounded away from
0 and ∞. It is then easy to compute the local invariant there.

We will describe the algorithm for calculating the values of the local invariant of
cores(c, t−α) at a prime p of bad reduction for V and then prove that it terminates.
The point is that this local invariant turns out to be locally constant. In fact, we
will show how to find an explicit finite covering of P1(Qp) by discs in the p-adic
topology, such that for each disc the invariant is constant on the set of Qp-points
on V mapping to that disc under the elliptic fibration.

First we show that such a disc exists around each point in P1(Qp), starting with
the point at infinity. After a change of variables we may assume that the fiber
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at t = ∞ is smooth over Qp. If the fiber at ∞ does have points over Qp, then by
Lemma 3.28 we can find an n such that the local invariant is 0 on all points on fibers
above t with v(t) < n. In this case the disc v(t) < n has the desired property. If the
fiber at t = ∞ does not have any Qp-points, then there is a p-adic neighborhood of
∞ ∈ P1(Qp) above which there are no Qp-points either, so the invariant is clearly
constant above any disc contained in this neighborhood.

Now observe that, by Lemma 3.29, every finite t0 has a suitable neighborhood
except for those that are roots of the minimal polynomial of α, so we are reduced
to considering the finite set of these t0. Here the argument will be more subtle. Fix
such t0 and let p be the corresponding place of Q(α), so that the completion map
ρ : Q(α) →֒ Q(α)p sends α to t0. Here we used the obvious embedding Qp →֒ Q(α)p,
which is an isomorphism as α is contained in Qp.

First consider the case that the fiber above t = t0 = ρ(α) does have a point
P over Qp

∼= Q(α)p. Then P must be a smooth point of the Q(α)p-component
it lies on, because by hypothesis each Q(α)-component is smooth. Therefore the
geometric component on which P lies is defined over Q(α)p

∼= Qp, so by hypothesis
all geometric components of the fiber at t = t0 = ρ(α) are defined over Qp, which
means that ρ(c) is a square. For all other places q above p the embedding Qp →֒
Q(α)q does not send t0 to α, so we can find an integer n such that under each such
embedding the element pn/4(t0 − α) has positive valuation in Q(α)q. By Lemma
3.29 the invariant is constant above the disc t0 + pnZp. In the implementation of
this algorithm it will be useful to remember that c is a square in Q(α)p, as this
implies that the local invariant corresponding to the place p is 0 globally. In the
case that the fiber above t = t0 does not have any Qp-points, there is a p-adic
neighborhood of t0 ∈ P1(Qp) above which there are no Qp-points either, so the
invariant is constant above any disc contained in this neighborhood.

The algorithm is as follows. First apply a change of coordinates to P1 if necessary,
so that the fiber at infinity is smooth. Then find a neighborhood of infinity above
which the local invariant is constant. This reduces to considering t in some set of
the form pnZp. For each t0 that maps to α in Q(α)p for some place p above p,
find an appropriate disc around t0. In doing so we may find that the value of the
local invariant corresponding to some p is 0 for all Qp-points of V . Such p can be
ignored in the remainder of the computation. If there are points above any of the
discs found thus far, compute the corresponding local invariants.

We now divide the remaining region of P1(Qp) into discs and place them in a
queue, recording which local invariants we already know to occur. For each disc,
we use Lemma 3.29 to try to discover that the local invariant is constant there. If it
is, and if the local invariant is already known to occur, the disc may be ignored, as
the conclusions do not depend on whether there are rational points there. If it is,
and if the local invariant is not already known to occur, we use Lemma 3.30 to test
whether there are rational points in that disc. If there are rational points on the
disc, we record that the invariant on the disc occurs. The only possible values of
the invariant of an element of BrV/Br Q of order 2 are 0, 1

2 ∈ Q/Z; if both of these
are now known to occur, we are done. On the other hand, if the local invariant is
not constant on the disc, we divide it into p smaller discs and add them to the end
of the queue. In other words, we perform a breadth-first search. The reason for
using breadth-first rather than depth-first search is that local invariants are more
likely to be different on relatively distant points of a p-adic disc, so breadth-first
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search will tend to find different invariants more quickly. When the queue is empty
we are done and have recorded all values of the local invariant.

Now we show that this algorithm terminates. It could fail to do so only if there
is an infinite descending sequence of discs above which there are rational points
but in which the local invariant is not seen to be constant. Let t0 be the unique
point in the intersection of the discs. Then we have shown before that there is a
disc around t0 on which the local invariant of cores(c, t−α) is seen to be constant,
which is a contradiction, so the algorithm does terminate. �

Remark 3.32. This theorem is somewhat special to our situation. If the Azumaya
algebra were constructed using fibers of type I2, for example, this proof would not
apply, and indeed in this case the local invariant associated to a place p above p
need not be locally constant on P1 around a t0 that maps to α in Q(α)p. In such
situations, it is still possible for the invariant to be locally constant. Sometimes
this can be proved by using another Azumaya algebra representing the same Brauer
class, as in [11].

Let us now show how to apply this algorithm in our example.

Proposition 3.33. The Brauer-Manin obstruction blocks the existence of rational
points on the K3 surface V corresponding to (f, δ).

Proof. The surface V is defined by the equations q1 = q2 = q3 = 0, 1 where

q1 = 2x1x2 − 2x1x3 − 2x1x4 + 4x1x6 − x2
2 − 2x2x3 + 4x2x5 − 4x2x6 + 4x3x4

− 4x3x5 + 2x3x6 − 2x2
4 + 2x4x5 − 6x4x6 − 3x2

5 + 14x5x6 − 10x2
6,

q2 = 2x2
1 − 5x1x2 + 9x1x4 + 2x1x5 − 7x1x6 + 9x2x3 + 2x2x4 − 7x2x5 + x2

3

− 7x3x4 + 11x3x6 + 11x4x5 + 8x4x6 + 4x2
5 + 9x5x6 + 19x2

6,

q3 = 21x2
1 − 44x1x2 − 10x1x3 + 84x1x4 + 18x1x5 − 64x1x6 − 5x2

2 + 84x2x3

+ 18x2x4 − 64x2x5 − 38x2x6 + 9x2
3 − 64x3x4 − 38x3x5 + 76x3x6 − 19x2

4

+ 76x4x5 − 58x4x6 − 29x2
5 − 124x5x6 − 183x2

6.

(3.2)

The primes of bad reduction of V are those dividing the discriminant of f , namely
2, 3, 5, and those involved in δ, which are again 2, 3, 5. Each of the fibrations is
defined by two alternative pairs of linear forms (see Lemma 2.51 and following
remarks). We let

l1 = x1 + 13x3 + 17x4 + 68x5 + 123x6,

l2 = x2 − 16x3 − 19x4 − 84x5 − 145x6,

l3 = 2x2 − 8x3 − 8x4 − 42x5 − 68x6,

l4 = −x1 − 4x2 + 9x3 + 5x4 + 46x5 + 61x6,

(3.3)

and then one of the fibrations, which we will denote by F1, is given by (l1 : l2) or
(l3 : l4), while the other, which will be written F2, is given by (l1 : l3) or (l2 : l4).

1One can find a linear change of coordinates after which V can be defined by equations with
smaller coefficients. We preferred to retain the more natural coordinates.
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To verify that the two sets of defining equations for each Fi give the same map,
note that l1l4 − l2l3 = −33q1 − 74q2 + 4q3. We have already seen that F1 satisfies
the hypotheses of Proposition 3.10; now we calculate the local invariant of the
associated Azumaya algebra by means of the algorithm described in Theorem 3.31.
We will show that this Azumaya algebra has local invariant 1/2 at 2 and 0 at all
other primes; the energetic reader may wish to verify that the Azumaya algebra
corresponding to F2 has local invariant 1/2 at 2, 3, and 5, and local invariant 0
elsewhere.

The I4-fibers of F1 lie over the point (129r3 + 187r2 + 285r − 1469)/449, where
r4 − 12r + 13 = 0. The fact that this extension is totally complex implies that the
local invariant at ∞ is 0, because that local invariant is the sum of local invariants
of central simple algebras over C. The components of these fibers are defined over
the extension Q(r,

√
c) where c = −6r3 − 9r2 − 12r + 57 (note that actually c has

minimal polynomial s2−6s+18, so c ∈ Q(i), as expected from the proof of Theorem
3.14).

The fiber at ∞ is the vanishing locus of the polynomials

x1 + 55x3 + 71x4 + 290x5 + 519x6,

x2 − 16x3 − 19x4 − 84x5 − 145x6,

x2
3 + 414x3x4 − 4538x3x5 − 5876x3x6 + 448x2

4 − 3796x4x5+

− 4200x4x6 − 23754x2
5 − 73732x5x6 − 56083x2

6,

7596x3x4 − 83956x3x5 − 108804x3x6 + 8241x2
4 − 70306x4x5+

− 77950x4x6 − 438959x2
5 − 1362754x5x6 − 1036791x2

6,

(3.4)

and it has good reduction outside 2, 3, 5, 397, 449. This can be checked either by a
Groebner-basis computation or by embedding the fiber in P3 as the curve defined by
two quadrics Q1, Q2 and observing that the curve is nonsingular away from primes
dividing the discriminant of det(tM1 +M2), where M1 and M2 are the symmetric
matrices corresponding to Q1, Q2. By Lemma 3.27, the local invariant at every
other prime is 0. We examine these primes in turn.

First we consider p = 2. We find that there are no rational points in the fibers
over t with v2(t) ≤ 1. In fact, none of the affine patches of the graph of the fibration
(see Lemma 3.30) has points mod 23 for such t. On the other hand, the point
[1 : 0 : 5 : 3 : 6 : 1] modulo 8 can be lifted to a 2-adic point on the fiber at 0. Let us
show that the local invariant is 1/2 above all t with v2(t) ≥ 2. Indeed, by Lemma
3.29 it suffices to consider t = 0, 4. There is one prime p of Q(r) above 2, and it is
totally ramified. Therefore it suffices to show that the conics x2 − (t− α)y2 − cz2

are not solvable at p for t = 0, 4. In both cases this can be checked modulo p5.
Next we consider p = 3. This time we find that there are no rational points in

fibers above t with v3(t) ≤ −1, and that this can be checked modulo 32. However,
the point [8 : 0 : 7 : 4 : 2 : 1] modulo 9 can be lifted to a 3-adic point on the
fiber at 4. Let us show that the local invariant is 0 above all t with v3(t) ≥ 0.
Again, by Lemma 3.29 it suffices to consider t = 0, 1, 2. There are two primes of
Q(r) lying above 3, both unramified of degree 2, and c has valuation 1 at both. On
the other hand, α has valuation 0 at both primes and α is not congruent to any
integer modulo either prime. Furthermore, 2−α is a square at both, while −α and
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1−α are squares at neither. In particular, it follows from Lemma 3.9 that the local
invariant at t is 0 above all t ∈ Z3.

For p = 5, the computations are simpler, because c is a square at all primes of
Q(r) lying above 5. Indeed, there is one ramified prime at which the completion is

isomorphic to Q5(
√

5) and c is congruent to 4 mod
√

5, and one unramified prime
of degree 2 at which c is congruent to 2 mod 5, which is a square in F25. Thus the
local invariant is 0 above all t ∈ P1(Q5).

Finally, we need to consider the primes where V has good reduction but the fiber
at infinity has bad reduction, namely 397 and 449. Note that c is a unit at every
place above 397. Also, for every point P whose image tP in P1 is not congruent to α
mod any p above 397, the difference tP −α is a unit at all p above 397. Proposition
3.9 then shows that the local invariant of (c, tP − α) is 0 at all such p, so that the
local invariant of cores(c, tP − α) is 0 by Proposition 3.12. Over F397, the I4-fibers
lie above (47 : 1), (144 : 1), (224 : 1), (379 : 1) (the first coordinates are the roots
of the minimal polynomial of α in F397). Since V has good reduction at 397, every
F397-point on V lifts to a Q397-point, so it suffices to verify that the F397-point
(246 : 16 : 98 : 0 : 1 : 0) maps to (0 : 1) by F1. But by Proposition 3.26, it follows
that the local invariant at 397 is identically 0.

To prove that the local invariant at 449 is 0, it is enough to check that c is a
square at all places of Q(r) above 449: indeed, it is congruent to 204 or 251 at all
of these places. Alternatively, it can be verified that the fiber at infinity contains a
Q449-point lying above (246 : 105 : 375 : 347 : 1 : 0). This completes the proof. �

Theorem 3.17 now follows by combining Propositions 3.20, 3.21, 3.22, and 3.33.

3.3. The Richelot isogeny. Following a suggestion of Nils Bruin and Victor
Flynn, we now study the interaction of the element of X constructed in Theo-
rem 3.17 with the Richelot isogeny on the Jacobian. A Richelot isogeny (cf. [7],
chapter 9) is an isogeny of the Jacobian of a curve of genus 2 to that of another
curve whose kernel is a maximal isotropic subgroup of the 2-torsion with respect
to the Weil pairing. Given a curve of genus 2 with Weierstrass points W1, . . . ,W6,
such subgroups consist of 0 and three divisors of the form Wi −Wj such that no
Wi appears in more than one of them; since Wi −Wj = Wj −Wi in the Jacobian,
they correspond to partitions of the Weierstrass points into three pairs. Letting the
equation of the curve be y2 = f(x), where deg f = 6, the Weierstrass points are
(δi, 0) where δi is a root of f , so such partitions correspond to factorizations of f as
products f1f2f3 of three quadratic factors. The curve whose Jacobian is isogenous
is then defined by the equation y2 = cg1g2g3, where gi = fi+1f

′
i+2 − f ′i+1fi+2, in-

dices are read mod 3, and c is the determinant of the matrix of coefficients of the fi
([7], sect. 9.2). Observe that multiplying one of the fi by a constant k multiplies c,
gi+1, and gi+2 by k. This is compatible with the evident fact that if the Jacobian
of C is isogenous to the Jacobian of C ′ then the Jacobian of the twist of C by k is
isogenous to the Jacobian of the twist of C ′ by k. In particular we find that the
Jacobian of the curve

Ct : y2 = t(x2 + 1)(x2 − 2x− 1)(x2 + x− 1)

is isogenous to that of

C ′
−t : y2 = −t(x2 + 1)(x2 + 2x− 1)(x2 − 4x− 1) = −tg1(x)g2(x)g3(x) = −tg(x).
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In addition we observe that there is only one rational Richelot isogeny on each of
these curves, because the 2-torsion points that are not rational are defined over
extensions of degree 4. A Galois-stable subgroup containing such a point contains
four elements other than the identity, so it cannot have order 4. It follows that the
only rational maximal isotropic subgroup is the one made up of the four rational
points. From now on, we will denote the Richelot isogeny from Jac(Ct) to Jac(C ′

−t)
by φt, or simply by φ.

First we note that X(Jac(C ′
6n)) is also nontrivial for n in the set S described in

Theorem 3.17.

Theorem 3.34. Let S be the set of primes described in Theorem 3.17. Then for
all n which are products of elements of S, the 2-part of the Tate-Shafarevich group
of the Jacobian of the curve y2 = 6ng(x) is nontrivial.

Proof. The proof of this theorem is very similar to that of Theorem 3.17, except that
one uses δ′ = (3, 1 +

√
2, (1 +

√
5)/2) ∈ Q[x]/(g1(x))⊕Q[x]/(g2(x))⊕Q[x]/(g3(x)).

Note that the field of definition of the lines of Vg,δ′ turns out to be the same as that
of Vf,δ, because −1 is a square in the splitting field of g. �

It is natural to ask whether these systematically-occurring elements of X are in
the kernel of the map induced on Tate-Shafarevich groups by φ−6n. It is not clear
whether a general result can be obtained here. We will prove only that they are
not in the kernel for the smallest case n = 1. To do so, we calculate the Selmer
groups of these isogenies in the special case n = 1. See [7], sections 10.2 and 10.4
for the theory of these computations and section 11.4 for a detailed example.

Theorem 3.35. The Selmer groups of the Richelot isogenies on the Jacobians of
the curves y2 = −6f(x) and y2 = 6g(x) are isomorphic to (Z/2)3.

Proof. The primes of bad reduction of both C−6 and C ′
6 are 2, 3, 5. For both Ja-

cobians, generators of the 2-torsion subgroup map to (10, 2), (2,−2) ∈ (Q∗/Q∗2)2.
From equation (10.4.8) of [7] we see that |J(Qp)/φ

′(J ′(Qp))| · |J ′(Qp)/φ(J(Qp))| is
equal to 16, 4, 4, 2 respectively for p = 2, 3, 5,∞. So we have already found gen-
erators of J(Qp)/φ

′(J ′(Qp)) and J ′(Qp)/φ(J(Qp)) except in the case p = 2. We

check that there is a Q2(
√

6)-rational point on C−6 with x-coordinate 3+
√

6 whose

image is (10,−2) up to 2-adic squares. Also, there is a Q2(
√

6)-rational point on

C ′
6 with x-coordinate 5 +

√
6 whose image is (10,−2). These new generators are

independent of the image of the 2-torsion points of C−6 and C ′
6 respectively, so we

have found the full Selmer group of the isogeny for both C and C ′.

p C C ′

2 (5, 1), (2, 2), (1,−1) (5, 1), (2, 2), (1,−1)
3 (1,−1), (−1, 1) (1,−1), (−1, 1)
5 (5, 1), (2, 2) (5, 1), (2, 2)
∞ (1,−1) (1,−1)

It is now straightforward to see that the Selmer groups in both cases are gener-
ated by (5, 1), (2, 2), (1,−1). �

It follows immediately that the Selmer groups contain (1,−1), which is not in
the image of the 2-torsion. We now show that (1,−1) is a nonzero element of the
Tate-Shafarevich group of the Richelot isogeny, from which it will follow that the
elements of X found in Theorem 3.17 and Theorem 3.34 are not in the kernel of the
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maps X(Jac(C−6))[2] → X(Jac(C ′
6))[φ

′] and X(Jac(C ′
6))[2] → X(Jac(C−6))[φ]

induced by the Richelot isogeny for n = 1.

Theorem 3.36. The element of X(Jac(C−6)) described in Theorem 3.17 is not in
the kernel of the map X(Jac(C−6))[2] → X(Jac(C ′

6))[φ
′] induced by the Richelot

isogeny, and similarly for C ′
6.

Proof. We will do this only for C, the calculations for C ′ being essentially identical.
We will first represent the element described in Theorem 3.17 by an explicit cocycle
with values in Jac(C−6)[2], apply φ, and show that the image is the nontrivial
element (1,−1) in Selφ′ .

Recall (Definition 3.13) that we write δi for the components of the image of
δ that gives the nontrivial element of X(Jac(C−6n)) under a fixed isomorphism
Af ⊗ Q̄ → ⊕6

1Q̄ in which Q̄[X]/(fj) corresponds to components 2j − 1 and 2j.
Given σ ∈ Gal(Q̄/Q), write s for the permutation of {1, 2, . . . , 6} induced by σ on
the δj . By remarks in the proof of [16], Proposition 2.2 and in [16], section 2.5, we
can write the element of X as a cocycle with values in µ2(Af ⊗ Q̄)/±1. As in the
discussion preceding Lemma 2.10, we identify Af ⊗ Q̄ with ⊕6

1Q̄ with Galois acting
by σ(a1, . . . , a6) = (σas−1(1), . . . ,

σas−1(6)). Indeed, the cocycle corresponding to

the element of X constructed in Theorem 3.34 is the one that takes σ ∈ Gal(Q̄/Q)
to σα/α, where

α =

(√
(δ1δj)

)6

j=1

=

√
(1, 1,−3(1 +

√
2),−3(1 −

√
2), 3(1 +

√
5)/2, 3(1 −

√
5)/2).

In particular, this cocycle, which we will denote zα, factors through Gal(F/Q),
where F is as in Theorem 3.17.

Now let us write zα as a cocycle with values in J [2]. Following the description
in [16], section 2.5, we see that (ri) ∈ µ2(L

′)/±1 corresponds to a 2-torsion point
T on the Jacobian such that either e(T, (δj , 0)− (δ1, 0)) is equal to rj for all j from
1 to 6 or it is equal to −rj for all j from 1 to 6, where e is the Weil pairing. The
rational 2-torsion divisors are 0 and (δ2k, 0) − (δ2k−1, 0) for k = 1, 2, 3. Since two
2-torsion divisors of the form (δi, 0) − (δj , 0) have Weil pairing 1 or −1 depending
on whether the number of points appearing in both counted with multiplicity is
even or odd, the rational 2-torsion points correspond to the following elements of
µ2(L

′)/±1:

(1, 1, 1, 1, 1, 1), (1, 1,−1,−1, 1, 1), (1, 1, 1, 1,−1,−1), (1, 1,−1,−1,−1,−1).

We claim that the image of zα(σ) under the pairing with the points (δj , 0)− (δ1, 0)
is one of these sequences corresponding to an element of the kernel of the Richelot
isogeny if and only if σ fixes a square root i of −1. Indeed, it is clear that the first
two components of zα(σ) are always 1, while the product of components 3 and 4 is
1 if and only if σ fixes a square root of δ3δ4 = −9, and similarly for components 5
and 6.

These points are the kernel of the Richelot isogeny, which therefore maps zα
to a cocycle that factors through Q(i) and that takes the nontrivial element of
this Galois group to the rational 2-torsion point arising from the factor g1. This
corresponds to the element (1,−1) of the Selmer group of φ′. To see this, note
that (1, i) is a square root of (1,−1), and the action of σ multiplies (1, i) by (1, 1)
if σ fixes i and by (1,−1) otherwise. But the image of the 2-torsion point coming
from g1 under the φ′-Weil pairing is (1,−1), because the pullback of this point
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pairs trivially with the point coming from the factor f1 on J and nontrivially with
the point coming from f2. As a result, the image of zα under the Richelot isogeny
corresponds to the cocycle σ → σ(1, i)/(1, i).

Recall from Definition 3.18 and Proposition 3.19 that the full 2-descent map
∆C′ is a map from Jac(C ′)(Q) to Q[X]/(g). Composing ∆C′ with an isomorphism
from Q[X]/(g) to ⊕3

i=1Q[X]/(gi) obtained from the Chinese Remainder Theorem,
we see that the map takes a point (x0, y0) to (x0 − ρi)

3
i=1; in other words, its

components are defined by the functions x − ρi. We remark that g1 = N(x − ρ1)
and g2 = N(x− ρ2). It follows that if P is a point of Jac(C ′

6), then the image of P
under δR,C′ , the descent map for the Richelot isogeny, is the norm of the first two
components of its image under ∆C′ .

However, using magma’s TwoSelmerGroup command to compute the fake Selmer
group, it is easy to verify that the norm map from the fake Selmer group for full
2-descent to the Selmer group of the Richelot isogeny is an isomorphism for C ′

6. It
follows that the image of an element of X(C ′

6) cannot be the image of a rational
divisor, so (1,−1) belongs to the Tate-Shafarevich group of the Richelot isogeny on
C ′

6. �

Remark 3.37. This proof applies to any twist C ′
6n, where n is a product of elements

of the set S described in Theorem 3.34, for which we know that no rational point
on the Jacobian of C ′

6n maps by δR to (1,−1). However, there is no reason to
expect this to be true in general; if the rank is large, it is very unlikely that the
fake Selmer group for multiplication by 2 would be isomorphic to the Selmer group
of the Richelot isogeny, and the proof would fail.
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