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NOTES
Edited by Ed Scheinerman

Irreducible Cubics Modulo Five

Hendrik Lenstra

Abstract. Finite fields are finite, and they are fields, and as a result one can combine algebraic

arguments with counting arguments in their study. This was illustrated in a lecture given at the

2009 April Fools’ meeting of the Leiden bachelor seminar. Here is the text of that lecture.

INTRODUCTION. On a recent algebra test, I asked the students to factor the poly-

nomial h = X 3 − 3X 2 − X − 3 into irreducible factors in the polynomial ring F5[X ],
with F5 denoting the field of integers modulo 5. Keeping the interests of the students

in mind, I always make sure that I can do a test problem myself without thinking too

much, and in the present case the following solution had been built in. From

h = (X 3 − X) − 3 · (X 2 + 1) = X · (X − 1) · (X + 1) − 3 · (X − 2) · (X + 2)

one sees that h can be written as the sum of two polynomials with the property that

each element of F5 = {0, 1, 2, −2, −1} is a zero of one of them but not of the other.

As a consequence, the polynomial h has no zero in F5, and since its degree is only 3,

it is irreducible.

Generally, if f , g ∈ F5[X ] are such that deg f = 3, deg g = 2, and f · g = u ·
∏

x∈F5
(X − x) for some nonzero element u ∈ F5, then by the same argument the sum

h = f + g is irreducible in F5[X ]; and in addition, it has a particularly brief irre-

ducibility proof. Which irreducible cubics in F5[X ] are lucky enough to admit such an

easy proof?

A BIJECTIVE MAP. Let me do some counting. Denote by S the set of pairs ( f, g)

with the properties just mentioned. Writing down an element of S is equivalent to

writing down, first, a subset of size 2 of F5, which is going to be the set of zeroes of

g as well as the complement of the set of zeroes of f , and second, a pair of nonzero

elements of F5, which are going to be the leading coefficients of f and g. Thus, the

cardinality of S equals
(

5

2

)

· 42 = 160.

Next denote by T the set of irreducible polynomials in F5[X ] of degree 3. To count

T , let F̄5 be an algebraic closure of F5, and let F125 = {x ∈ F̄5 : x125 = x} be the

unique subfield of F̄5 of cardinality 53 = 125. Each polynomial in T with leading

coefficient 1 is the irreducible polynomial, over F5, of precisely 3 elements of F125

that are not in F5. Since there are 4 possibilities for the leading coefficient, this yields

#T = 4 · (125 − 5)/3, which also equals 160.

Theorem. There is a bijection S → T sending ( f, g) to f + g.

In other words, each irreducible cubic in F5[X ] admits a unique irreducibility proof

of the type described.
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I proved already that one has f + g ∈ T for any ( f, g) ∈ S. Since S and T have

the same size, the theorem will follow if I prove that the map is injective. So, suppose

that ( f0, g0), ( f1, g1) ∈ S satisfy f0 + g0 = f1 + g1. If gcd(g0, g1) = 1, then since g0

divides f1g1, it already divides f1 and therefore also f1 − g0, and likewise g1 divides

f0 − g1; but now the polynomial f0 − g1 = f1 − g0 of degree 3 is divisible by each of

the two coprime polynomials g0 and g1, hence also by their product g0g1; this cannot

be, since g0g1 has degree 4. It follows that g0 and g1 have a zero in common, so that

g0g1 has at most three zeroes in F5. Thus, at least two elements of F5 are not among

the zeroes of g0g1, and these must be among the common zeroes of f0 and f1. That

gives at least three zeroes for the polynomial f0 − f1 = g1 − g0, but since the latter

has degree at most 2 it must be the zero polynomial. Therefore one has f0 = f1 and

g0 = g1, which proves the theorem.

GENERATING IRREDUCIBLE CUBICS. The theorem may be seen as providing

a good way of generating irreducible cubics in F5[X ], since drawing an element of S

is easy, as is the evaluation of the map S → T . If the element of S is drawn from the

uniform distribution, then all irreducible cubics are found with the same probability.

One may wonder whether the same purpose can similarly be achieved for other degrees

or over other finite fields. Instead of pursuing this problem, I shall address a different

algorithmic issue that is suggested by the theorem.

Suppose that an irreducible cubic h ∈ F5[X ] is given. How can one quickly deter-

mine the unique pair ( f, g) ∈ S with f + g = h? There is a lovely method for doing

this. To illustrate it, I am faced with the problem of having to write down an irre-

ducible cubic h to start with. Generating h by means of the method just described is

not very convincing; nobody will be impressed if I can write h as f + g if I computed

h as f + g in the first place. Thus, I need a different method for generating h, and

I will use a very straightforward one: namely, I will pick h = aX 3 + bX 2 + cX + d

coefficient by coefficient.

The leading coefficient a should be nonzero, so it has four possibilities. For b there

are five possibilities. With c one has to be careful, since, as I will prove below, aX 3 +
bX 2 + cX + d is automatically reducible if b2 = 3ac. Given a and b, there are exactly

four values of c with b2 �= 3ac, and for each of them, as I will also prove below, exactly

two elements of F5 are not of the form ax3 + bx2 + cx , with x ∈ F5. Letting −d be

one of these two elements, one finds a polynomial h = aX 3 + bX 2 + cX + d that has

no zeroes in F5, and as it is cubic, it is automatically irreducible. Note that the total

number of possibilities equals 4 · 5 · 4 · 2 = 160, in accordance with my earlier count.

Figure 1 serves as an illustration. I identify the elements of F5 with the vertices of

a regular pentagon, as in Figure 1a, and I graph a function i defined on F5 by writing

i(x) at vertex x , for each x ∈ F5. For the map x �→ 2x3 − x2, which arises if I choose

a = 2, b = −1, c = 0, I did this in Figure 1b. The map misses indeed exactly two

values, namely −1 and −2. The two resulting irreducible polynomials are

h0 = 2X 3 − X 2 + 1, h1 = 2X 3 − X 2 + 2.

The graphs of h0 and h1, viewed as maps F5 → F5, are shown in Figures 1c and 1d.

THE ALGORITHM. Figure 2 shows an algorithm that, given h ∈ T , finds ( f, g) ∈
S with f + g = h, where S and T are as in the theorem. I explain the several steps,

using the polynomials h0 and h1 just constructed as examples.

One obtains the function |h| by omitting the signs of the values of h. The map |h|
has exactly one symmetry axis, as illustrated with dotted lines in Figures 1c and 1d; so,
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(a) The field F5. (b) The map x �→ 2x3 − x2.
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(c) h0(x) = 2x3 − x2 + 1. (d) h1(x) = 2x3 − x2 + 2.

Figure 1. The graphs of three functions F5 → F5.

r = (reflection point of |h| on F5)

Y = {symmetry points of h on F5}

Z = {antisymmetry points of h on F5}

s = (leading coefficient of h)

t = (coefficient of X 2 in h) − 2 · r · s

f = s ·
∏

x∈Y

(X − x), g = t ·
∏

x∈Z

(X − x)

Figure 2. An algorithm for writing h = f + g.

reflecting the graph in the symmetry axis affects only the signs. Each symmetry axis

passes through one of the vertices of the pentagon; the element of F5 identified with

this vertex is the reflection point r . So, in the case h = h0 one has r = −1, and for

h = h1 one finds r = −2.

Bringing back in the signs, one can distinguish vertices where the reflection in the

symmetry axis does not change the sign from vertices where the reflection does change

the sign. The former are called the symmetry points, the latter the antisymmetry points.

For example, r is among the symmetry points. Since 0 is not assumed as a value, F5

is the disjoint union of the set Y of symmetry points and the set Z of antisymmetry

points. For h = h0 one sees Y = {0, −2, −1} and Z = {1, 2}, whereas h = h1 yields

Y = {2, −2, −1} and Z = {0, 1}.
The polynomials f and g to be computed have Y and Z as their respective sets

of zeroes. The algorithm includes formulas for their leading coefficients s and t , and

these lead to

h0 = 2X (X + 2)(X + 1) − 2(X − 1)(X − 2),

h1 = 2(X − 2)(X + 2)(X + 1) + 2X (X − 1).

TWO LEMMAS. Two familiar lemmas from the theory of finite fields will help ex-

plain why everything works as stated.
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Lemma 1. For any finite field k, the map from {h ∈ k[X ] : deg h < #k} to the set of

functions k → k that sends h to the function x �→ h(x) is bijective.

Since no two distinct polynomials of degree less than #k can coincide at #k distinct

points, the map is certainly injective. Surjectivity follows by counting.

Lemma 2. If k is a finite field and h ∈ k[X ] satisfies deg h < #k − 1, then
∑

x∈k h(x) = 0.

By linearity, it suffices to prove the lemma for h = X j , with 0 ≤ j < #k − 1. The

case j = 0 is trivial, so let j > 0. Choose u ∈ k with u �= 0 and u j �= 1. Since x �→ ux

permutes k, one has
∑

x∈k x j =
∑

x∈k(ux) j , so (u j − 1) ·
∑

x∈k x j = 0 and therefore
∑

x∈k x j = 0, as desired.

COUNTING CUBICS. There are 4 · 5 · 1 · 5 = 100 cubic polynomials aX 3 + bX 2 +
cX + d ∈ F5[X ] with b2 = 3ac. The identity

aX 3 + bX 2 +
b2

3a
X + d = a

(

X +
b

3a

)3

−
b3

27a2
+ d

and the fact that the map x �→ x3 permutes F5 combine to prove that these cubics all

permute F5. Consequently, each of them has a zero in F5 and is therefore reducible, as I

asserted above. Together with the 4 · 5 = 20 first-degree polynomials aX + b ∈ F5[X ],
which also permute F5, they account by Lemma 1 for all 120 permutations of F5. Again

by Lemma 1, any other polynomial of degree less than 5 in F5[X ] fails to permute F5.

In particular, any cubic polynomial aX 3 + bX 2 + cX ∈ F5[X ] with b2 different from

3ac misses at least one value. I claim that it misses at least two values. Suppose not.

Then there are four elements of F5 where it assumes four distinct values. By Lemma 2,

the value it assumes at the fifth element equals minus the sum of the other four values;

but that must be the missing value, as, again by Lemma 2, the sum of all elements of

F5 vanishes. Therefore the cubic does permute F5 after all, which is a contradiction.

Thus, if b2 �= 3ac, then aX 3 + bX 2 + cX misses at least two values, and therefore

gives rise to at least two irreducible cubics aX 3 + bX 2 + cX + d. Since one cannot

expect to generate more than 160 irreducible cubics, equality holds throughout. Thus,

the coefficient-wise generation of irreducible cubics has all the properties stated.

It is of interest to notice that the value of the expression b2 − 3ac completely deter-

mines the fibre sizes of a cubic polynomial h = aX 3 + bX 2 + cX + d ∈ F5[X ] when

viewed as a map F5 → F5: they are 1, 1, 1, 1, 1 if b2 − 3ac = 0; they are 2, 2, 1, 0,

0 if b2 − 3ac ∈ {1, −1}; and they are 3, 1, 1, 0, 0 if b2 − 3ac ∈ {2, −2}. One may

prove this by relating the number of fibres of size 2 to the discriminant of the deriva-

tive 3aX 2 + 2bX + c of h. Alternatively, one may define two cubic polynomials h,

h∗ ∈ F5[X ] to be equivalent if there are a0, b0, a1, b1 ∈ F5 with a0 and a1 nonzero such

that h(a0 X + b0) = a1 · h∗ + b1, and relate the three possibilities given to the three

equivalence classes.

JUSTIFYING THE ALGORITHM. Let h ∈ F5[X ] be an irreducible cubic, and let

f , g be the polynomials produced by the algorithm. I will now explain why one does

have ( f, g) ∈ S and h = f + g. Since h has no zero in F5, the value set of |h| is

contained in {1, 2}; actually, it equals {1, 2}, since if all values of h were the same up

to sign, then by Lemma 2 the sign would be the same as well, and h would be constant
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on F5, in contradiction with Lemma 1. A moment’s reflection shows that any map

defined on F5 of which the image has size 2 has exactly one symmetry axis.

Denote by r the reflection point, and write ĥ = h(2r − X). Since reflection in the

symmetry axis is given by x �→ 2r − x , one has |ĥ(x)| = |h(x)| for all x ∈ F5, so ĥ2

and h2 define the same function on F5. Hence there exists v ∈ F5[X ] with

h2 − ĥ2 = v ·
∏

x∈F5

(X − x).

Since h2 and ĥ2 are polynomials of degree 6 with the same leading coefficient, one has

actually v ∈ F5. Comparing the leading coefficients and the values at r , one discovers

h �= ±ĥ, so that v is nonzero.

Define F = (h − ĥ)/2 and G = (h + ĥ)/2. Then one has deg F = 3 and F · G =
(v/4) ·

∏

x∈F5
(X − x), and consequently deg G = 2 and (F, G) ∈ S. Since one also

has F + G = h, it remains to verify F = f and G = g. The zeroes of F are those

x ∈ F5 for which h(x) = ĥ(x), so they coincide with the elements of Y . In particular,

Y has size 3, consisting of r and two elements adding up to 2r . Since the leading coef-

ficient of F equals the leading coefficient s of h, one concludes F = f . Similarly, the

zeroes of G are those x ∈ F5 for which h(x) = −ĥ(x), which are the elements of Z .

Comparing coefficients of X 2 in F + G = h, one finds that the leading coefficient of

G equals the element t computed by the algorithm, so that G = g. This completes the

proof.

The argument given provides an independent proof of the surjectivity of the map

S → T and, combined with the injectivity proof, of the equality #T = #S = 160.
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A Short Proof of Combinatorial
Nullstellensatz

Mateusz Michałek

Abstract. In this note we give a short, direct proof of the combinatorial Nullstellensatz.

The following theorem is due to Alon [1].

Theorem 1 (Combinatorial Nullstellensatz [1]). Let F be an arbitrary field, and let

P(x1, . . . , xn) be a polynomial in F[x1, . . . , xn]. Suppose the degree deg(P) of P

is
∑n

i=1 ki , where each ki is a nonnegative integer, and suppose the coefficient of

x
k1
1 x

k2
2 · · · xkn

n in P is nonzero. Then for any subsets A1, . . . , An of F satisfying |Ai | ≥
ki + 1 for i = 1, 2, . . . , n, there are a1 ∈ A1, . . . , an ∈ An so that P(a1, . . . , an) �= 0.
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