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1. Elliptic integrals

The subject of elliptic curves has its roots in the differential and integral calculus, which

was developed in the 17th and 18th century and became the main subject of what is nowa-

days a ‘basic mathematical education’. In calculus, one tries to integrate the differentials

f(t)dt associated with, say, a real-valued function f on the real line. As is well known,

such integrals are related to the area of certain surfaces bounded by the graph of f . Ex-

plicit integration of the differential f(t)dt, which amounts to finding an anti-derivative F

satisfying dF/dt = f , can only be performed for a very limited number of ‘standard inte-

grals’. These include the integrals of polynomial differentials tkdt with k ∈ Z≥0, rational

differentials as (t − α)−k with k ∈ Z>0 and a few ‘exponential differentials’ as etdt and

sin t dt. Over the complex numbers, any rational differential can be written as a sum of

elementary differentials.

Exercise 1. Show that every rational function f ∈ C(t) can be written as unique C-linear combination

of monomials tk with k ∈ Z≥0 and fractions (t − α)−k with α ∈ C and k ∈ Z≥1. Use this representation

to write
∫

f(t)dt as a sum of elementary functions. [Hint: partial fraction expansion.]

Even if one restricts to polynomial or rational functions f , already the problem of com-

puting the length of the graph of f , an old problem known as the ‘rectification’ of plane

curves, leads to the non-elementary differential
√

1 + f ′(t)2dt. If R ∈ C(x, y) is a rational

function and f ∈ C[t] a polynomial that is not a square, the differential R(t,
√
f(t))dt is

called hyperelliptic. We can and will always suppose that f is separable, i.e., it has no mul-

tiple roots. If f is of degree 1, one can transform R(t,
√
f(t))dt into a rational differential

by taking
√
f(t) as a new variable. If f is quadratic, one can apply a linear transformation

t 7→ at+ b to reduce to the case f(t) = 1− t2. We will see in a moment that the resulting

integrals are closely related to the problem of computing lengths of circular arcs or, what

amounts to the same thing, inverting trigonometric functions. If f is of degree 3 or 4 and

squarefree, the differential R(t,
√
f(t))dt is said to be elliptic.

Exercise 2. Show that, for c 6= 0, the length of the ellipse with equation y2 = c2(1 − x2) in R2 equals

2

∫ 1

−1

√
1 + (c2 − 1)t2

1 − t2
dt = 2

∫ π/2

−π/2

√
1 + (c2 − 1)sin2φ dφ,

and that the differential

√
1+(c2−1)t2

1−t2
dt is elliptic for c2 6= 1.

Elliptic differentials lead naturally to the study of elliptic functions and elliptic curves.

In a similar way, the case of f of higher degree gives rise to hyperelliptic curves. More

generally, it has gradually become clear during the 19th century that an algebraic differen-

tial R(t, u)dt, with R a rational function and t and u satisfying some polynomial relation

P (t, u) = 0, should be studied as an object living on the plane algebraic curve defined

by the equation P (x, y) = 0. For hyperelliptic differentials, this is the hyperelliptic curve

given by the equation y2 = f(x).
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As an instructive example, we consider the differential ω = dt/
√

1 − t2 related to the arc

length of the unit circle. The reader can easily check that the graph of the function f(t) =√
1 − t2 on the real interval [−1, 1] is a semicircle, and that we have ω =

√
1 + f ′(t)2dt.

We attempt to define a map

(1.1) φ : z 7−→
∫ z

0

ω =

∫ z

0

dt√
1 − t2

as a function on C. Note that ω has integrable singularities at the points t = ±1.

There are two problems with the map φ. First of all, there is no canonical definition

of a square root
√

1 − t2 for t ∈ C. One can select a specific square root for t ∈ [−1, 1]

or t on the imaginary axis, when 1 − t2 is real and positive, but such extensions do not

yield an obvious choice for, say, t = ±2. A rather uncanonical way out is the possibility of

making a branch cut . This means that one defines φ not on C, but on a subset of C, such

as C \ [−1, 1], on which
√

1 − t2 admits a single-valued branch.

If one makes the proposed branch cut and chooses a branch of ω, a second problem

arises: two different paths of integration can give rise to different values of φ(z), so the

map φ is not well-defined.

-1 10

z

Γ

γ

γ

1

2

The difference between any two values of φ(z) for the paths γ1 and γ2 in the picture is

the value of the integral
∮
ω along a simple closed curve Γ around the two singular points

t = ±1 of ω. One can compute this contour integral in various ways.

Exercise 3. Apply the residue theorem to evaluate
∮
Γ

ω. [Answer: ±2π.]

As the value of the real integral
∫ 1

−1
ω is the length of a semicircle of radius 1, one easily

sees that
∮
ω has value ±2π, with the sign depending on the choice of the square root√

1 − t2 along the path of integration. From the topology of C \ [−1, 1], it is clear that the

values of φ(z) computed along different paths always differ by a multiple of 2π.

There is a canonical reparation of the definition of φ that makes φ into a well-defined

map on a ‘natural domain’ for ω. Rather than defining φ on C minus some branch cut,

one considers the set

X = {(x, y) ∈ C2 : y2 = 1 − x2}.

This set comes with a natural projection πx : X → C defined by (x, y) 7→ x. Given any

point t ∈ C, the fiber π−1
x (t) consists of the points (t, u) ∈ C2 for which u is a square root

of 1 − t2. For t 6= ±1, there are exactly 2 such points, and one says that the projection
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πx : X → C is generically 2-to-1. For the branch points t = ±1 there is only one point in

the fiber.

As the complex curve X is a subset of C2, one cannot immediately picture X. There

are two approximate solutions. The first consists of drawing C as a 1-dimensional object

and representing πX as in the picture below. One disadvantage of this method is that the

points (±1, 0) on X appear to be of a special nature. The symmetry in x and y in the

definition of X shows that this cannot be the case.

Exercise 4. Draw the corresponding picture for the map πy : X → C sending (x, y) to y. Where are the

points (±1, 0) in this picture?

-1 1

1-1

-1 1
C

X

π
x

Another, usually somewhat more complicated way to visualize X is to take two copies of C

and ‘glue them along a branch cut’ as suggested in the picture. In the space obtained,

paths passing through the branch cut in one copy of C emerge on the ‘opposite side’ of the

branch cut in the other copy. A moment’s reflection shows that, topologically, the resulting

surface is homeomorphic to a cylinder. The path Γ becomes the simplest incontractible

path on X. It is immediate from the picture that every path 0 → z in C that does not pass

through the branch points ±1 can uniquely be lifted to a path x0 = (0, 1) → (z, w), where

w is a square root of 1−z2 that is determined by the path 0 → z. The function t→
√

1 − t2,

which has no natural definition on C, has by construction a natural definition on X: it is

the function (t, u) → u. It is now also clear how one should integrate the differential dt/u,

which we denote again by ω, along any path in X. We arrive at a definition of φ on X

rather than C, which is given by

φ(x) =

∫ x

x0

ω =

∫ x

x0

dt

u
for x ∈ X ⊂ C2.

The integral is taken along X, and as we have a choice of paths its value is only determined

up to multiples of 2π. This means that φ(z) is well defined as an element of the factor

group C/2πZ of C. The elements of this group can be viewed as the complex numbers in

the infinite strip {z : −π ≤ Re(z) ≤ π}, where for any r ∈ R, the elements −π + ir and

π+ ir on the boundary are identified. Topologically, one notes that just like X, the group

C/2πZ is a cylinder. The following theorem is therefore not so surprising.

1.2. Theorem. The integration of the differential ω induces a bijection φ : X
∼−→ C/2πZ.

We leave it to the reader to give a complete proof of the theorem, as indicated in the

exercises, and to show that φ is in a natural way a homeomorphism of topological spaces.
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Theorem 1.2 has a number of interesting consequences. It shows that the set X, which

is the algebraic curve in C2 defined by the equation x2+y2 = 1, is in a natural way a group.

From the map φ, which is defined by means of an integral, it is not immediately clear what

the sum of two points on X should be. However, in this case we know from calculus that

integration of the real differential ω = dt/
√

1 − t2 yields the function arcsin t, a somewhat

artificially constructed inverse to the sine function. In fact, our carefully constructed map

φ has an inverse which is much easier to handle. From the observation that πx ◦ φ−1 is

in fact the sine function and the identity φ−1(0) = (0, 1), the following theorem is now

immediate.

1.3. Theorem. The inverse φ−1 : C/2πZ → X of the bijection φ in 1.2 is given by

φ−1(z) = (sin z, cos z).

It follows from 1.3 that we may describe the natural addition on X by the formula

(sinα, cosα) + (sin β, cos β) = (sin(α + β), cos(α + β)). From the addition formulas for

the sine and cosine functions one deduces that the group law on X is in fact given by the

simple polynomial formula

(1.4) (x1, y1) + (x2, y2) = (x1y2 + x2y1, y1y2 − x1x2).

The unit element of X is the point (0, 1), and the inverse of (x, y) ∈ X is the point (−x, y).
This shows that X is in fact an algebraic group: for every subfield of K ⊂ C, such as Q

or Q(i), the set X(K) ⊂ K2 of K-valued points of X is an abelian group. A picture of

the real locus X(R) = {(x, y) ∈ R2 : x2 + y2 = 1} explains why X is known as the circle

group.

Exercise 5. Draw a picture of X(R) and give a geometric description of the group law.

As we have constructed the circle group by analytic means, via the construction of φ, it is

not immediately obvious that formula 1.4 defines a group structure on X(K) for arbitrary

fields K. Clearly, there is no ‘analytical parametrization’ φ−1 of X if we replace C by a

field of positive characteristic, such as the finite field Fp. Therefore, the following theorem

does require a proof.

1.5. Theorem. Let K be a field. Then formula 1.4 defines a group structure on the set

X(K) = {(x, y) ∈ K2 : x2 + y2 = 1}.
Proof. It is straightforward but unenlightening to check the group axioms from the

definition. One can however observe that under the injective map X(K) → SL2(K) given

by (x, y) 7→
(
y −x
x y

)
, the operation given by 1.4 corresponds to the well known matrix

multiplication. It follows that 1.4 defines a group structure on X(K). �

Exercise 6. Let K be a field of characteristic 2. Show that the projection πx : X(K) → K mapping (x, y)

to x is a group isomorphism.

As is shown by the preceding exercise, one has to be careful when interpreting pictures over

the complex numbers—such as that of the generically 2-to-1 projection πx : X(C) → C

above—in positive characteristic.
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We now replace the differential dt/
√

1 − t2 in the preceding example by an elliptic dif-

ferential dt/
√
f(t) for some squarefree polynomial f of degree 3 or 4. We will see that

the complex ‘unit circle’ X = {(x, y) : x2 + y2 = 1} gets replaced by the elliptic curve

E = {(x, y) : y2 = f(x)}, and the map φ−1 : z → (sin z, cos z) by a map z 7→ (P (z), P ′(z))

for some elliptic function P . As in the case of the circle, the analytic parametrization by

elliptic functions will equip E with a group structure. In the next section, we will give a

geometric description of the group law and derive explicit algebraic addition formulas.

For a quadratic polynomial f a simple transformation t 7→ at+ b suffices to map the

roots of f to ±1, yielding a differential with f(t) = 1− t2. In the elliptic case, the situation

is more complicated. One can apply Möbius transformations t 7→ at+b
ct+d

with ad− bc 6= 0,

which act bijectively on the compactified complex plane P1(C) = C ∪ {∞}, commonly

referred to as the Riemann sphere.

1.6. Lemma. Under a Möbius transformation t 7→ at+b
ct+d

, elliptic differentials transform

into elliptic differentials.

Proof. It suffices to check this for a differential ω = dt/
√
f(t), with f(t) =

∑4
k=0 rkt

k of

degree 3 or 4. One finds that ω is transformed into

ω∗ =
1√

f(at+bct+d )
d(
at+ b

ct+ d
) =

(ad− bc) dt√∑4
k=0 rk(at+ b)k(ct+ d)4−k

.

The polynomial g(t) =
∑4
k=0 rk(at+ b)k(ct+ d)4−k is of degree at most 4. We leave it to

the reader to verify that the degree is at least 3, so that ω∗ is again elliptic. �

Exercise 7. Show that if the polynomial f in the preceding proof is of degree 4, the transformed differential

has a polynomial g of degree 3 if and only if the Möbius transformation maps ∞ to a zero of f .

Möbius transformations can be used to map three of the roots of f to prescribed values in

P1(C). Different choices lead to different normal forms for elliptic differentials.

Exercise 8. Show that every elliptic differential R(t,
√

f(t)) can be transformed by a Möbius transfor-

mation into a differential for which f has one the following shapes:

f(t) = t(t − 1)(t − λ) f(t) = t3 + at + b f(t) = (1 − t2)(1 − k2t2).

[The corresponding normal forms are named after Legendre, Weierstrass and Jacobi.]

As an example of an elliptic differential, we consider the differential ω = dt/
√

1 − t4 related

to the rectification of the lemniscate. In order to find the analogue of 1.2 for ω, we start

as in 1.1 and try to define a map

ψ : z 7−→
∫ z

0

ω =

∫ z

0

dt√
1 − t4

.

This time ω has integrable singularities in the 4th roots of unity, and it becomes single-

valued if we make make branch cuts [−1, i] and [−i, 1]. The picture in the complex plane

is as follows.

8
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In order to obtain a natural domain for ω, we consider the algebraic curve E in C2 with

equation

E = {(x, y) : y2 = 1 − x4} ⊂ C2.

As in our previous example, the projection πx : E → C on the x-coordinate is generically

2-to-1 with branch points at ±1 and ±i. A topological model for E can be obtained by

glueing two copies of C along our two branch cuts.

-1
C

π
x

E

1-i i

As ψ(z) converges for z → ∞, it makes sense to view ψ as a map on the Riemann sphere

P1(C). This means that we have to modify the picture above and add two ‘points at

infinity’ to E, one coming from each copy of C in our topological picture. We write E

again for the completed curve. We see from the picture that the glueing of two spheres

along two branch cuts yields a doughnut-shaped surface known as a torus. On this surface,

there are two independent incontractible paths. Under πx, they are mapped to the paths

γ1 and γ2 in our earlier picture. One can show that the homotopy classes of these paths

generate the fundamental group π(E) = Z × Z of E.

γ

γ

1

2

Exercise 9. Show that γ1γ2γ−1
1 γ−1

2 is a contractible path on E.

It follows that the values of ψ are uniquely determined as elements of the factor group

C/(Zλ1 + Zλ2), where the periods λ1 and λ2 are defined as λi =
∮
γi

ω for i = 1, 2. From

our initial picture we see that the path γ1 maps to γ2 onder multiplication by −i. As

1 − t4 is invariant under this transformation, we deduce that we have λ2 = −iλ1. The

9
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subgroup Λ = Zλ1+Zλ2 is a rectangular lattice in C, and the factor group C/Λ is therefore

topologically a torus. We have the following analogue of 1.2.

1.7. Theorem. The integration of the differential ω = dx
y

along the completed curve E

induces a bijection ψ : E
∼−→ C/(Zλ1 + Zλ2).

For a complete proof of 1.7, and for similar results for other elliptic differentials, we refer

to the exercises.

As a consequence of 1.7, we see that the elliptic curve E carries a natural group

structure. Let the inverse function ψ−1 : C/(Zλ1 + Zλ2)
∼−→ E be given by ψ−1(z) =

(P (z), Q(z)). As the derivative of ψ in (x, y) with respect to x is by construction equal

to 1/y, the derivative of P in z = ψ((x, y)) equals y = Q(z). We conclude that as in the

previous example, the inverse of ψ is of the form ψ−1(z) = (P (z), P ′(z)) for some elliptic

function P . As E has two points at infinity, the ‘lemniscatic P -function’ P (z) has a pole

in two values of z in C/(Zλ1 + Zλ2). At all other points, it is holomorphic. From the

equation of E, it is clear that P is a solution to the differential equation

(P ′)2 = 1 − P 4.

As a function on C, it has even stronger periodicity properties than the sine function: it

is double-periodic with independent periods λ1 and λ2.

Exercise 10. Define p =
∫ 1

−1
dt/

√
1 − t4 ≈ 2.622057556, the elliptic analogue of π =

∫ 1

−1
dt/

√
1 − t2.

Show that we can take λ1 = p + ip and λ2 = p − ip in 1.7, and that the elliptic function P has poles in

λ1/2 and λ2/2. Are these poles simple?

Just as the sine and cosine functions are more convenient to handle than the arcsine and

arccosine functions arising from the integration of dt/
√

1 − t2, the functions P and P ′

constructed above are easier to study than the function ψ(z) =
∫ z
dt/

√
1 − t4. By clever

substitutions in the integral defining ψ, one can prove Fagnano’s duplication formula

P (2z) =
2P (z)P ′(z)

1 + P (z)4
,

which dates back to 1718. Euler extended this result in 1752 and found the general addition

formula

(1.8) P (z1) + P (z2) =
P (z1)P

′(z2) + P ′(z1)P (z2)

1 + P (z1)2P (z2)2
.

for the lemniscatic P -function.

The next section is devoted to the analysis of analytic functions on an arbitrary

torus. We will show directly that all tori come with functions satisfying algebraic addition

formulas.

10
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Exercises.

11. Adapt the statement in exercise 1 for rational functions f with real coefficients and show

that
∫
f(t)dt can be expressed in terms of ‘real elementary functions’.

12. Show that the map φ in 1.1 is well-defined as a map on the complex upper half plane

H = {z ∈ C : Imz > 0}, provided that we fix a branch of
√

1 − t2 on H. Show that for the

branch that is positive on iR>0, we obtain a bijective map φ : H → S to the semi-infinite

strip S = {z ∈ C : Imz > 0 and −π/2 < Rez < π/2}. Derive theorem 1.2 from this

statement.

[Hint: determine the image of the real axis under φ.]

*13. Show that the map φ in 1.2 is an isomorphism of complex analytic spaces, i.e., a biholomorphic

map between open Riemann surfaces.

14. A lemniscate of Bernoulli is the set L of pointsX in the Euclidean plane for which the product

of the distances XP1 and XP2, with P1 and P2 given points at distance P1P2 = 2d > 0, is

equal to d2.

a. Show that for a suitable choice of coordinates, the equation for L is (x2 +y2)2 = x2−y2

or, in polar coordinates, r2 = cos 2φ. Sketch this curve.

b. Show that the arclength of the ‘unit lemniscate’ in (a) equals 2p, with p defined as in

exercise 10. [Note the similarity with the arclength of the unit circle, which equals 2π.]

15. This exercise gives a ‘proof by algebraic manipulation’ of Fagnano’s duplication formula for

the lemniscatic P -function.

a. Show that the substitution t = 2v/(1+ v2) transforms the differential dt/
√

1 − t2 to the

rational differential 2dv/(1 + v2).

b. Show that the substitution t2 = 2v2/(1 + v4) transforms the differential dt/
√

1 − t4 to

the differential
√

2dv/
√

1 + v4, and that the subsequent substitution v2 = 2w2/(1−w4)

leads to the differential 2dw/
√

1 − w4.

c. Derive the relation t = 2w
√

1 − w4/(1 + w4) for variables in (b), and use this to prove

Fagnano’s formula.

16. On the complex upper half plane H, we can uniquely define a function

φ(z) =

∫ z

0

dt√
(1 − t2)(4 − t2)

by integrating along paths in H. We use the branch of
√

(1 − t2)(4 − t2) that is positive on

iR>0. Define A,B ∈ C by A = limz→1 φ(z) and A+ B = limz→2 φ(z).

a. Show that A is real and B purely imaginary, and that we have limz→∞ φ(z) = B.

b. Show that the map φ extends to a bijection between the completion of the elliptic curve

y2 = (1 − x2)(4 − x2) and the torus C/Λ with Λ = Z · 4A+ Z · 2B.

17. Prove theorem 1.7. [Hint: imitate the previous exercise.]

*18. Show that the map ψ in 1.7 is an isomorphism of complex analytic spaces, i.e., a biholomor-

phic map between compact Riemann surfaces.

11
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2. Elliptic functions

In this section, we will develop the basic theory of double-periodic functions encountered

in the previous section.

A lattice in C is a discrete subgroup of C of rank 2. It has the form Λ = Zλ1 + Zλ2

for some R-basis {λ1, λ2} of C. One often writes Λ = [λ1, λ2]. The factor group T = C/Λ

is called a complex torus. A fundamental domain for T is a connected subset F ⊂ C for

which every z ∈ C can uniquely be written as z = f + λ with f ∈ F and λ ∈ Λ. Note that

any translate of a fundamental domain is again a fundamental domain. For every choice

{λ1, λ2} of a Z-basis of Λ, the set

F = {r1λ1 + r2λ2 : r1, r2 ∈ R, 0 ≤ r1, r2 < 1} ⊂ C

is a fundamental domain for T .

ω

F

A

D

ω
1

2

B

C

An elliptic function with respect to Λ is a meromorphic function f on C that satisfies

f(z + λ) = f(z) for all λ ∈ Λ. Such a function is uniquely determined by its values on

a fundamental domain. An elliptic function factors as f : C → C/Λ = T → P1(C), so

we can identify the set of elliptic functions with respect to Λ with the set M(T ) of mero-

morphic functions on T = C/Λ. Sums and quotients of meromorphic functions are again

meromorphic, so the set M(T ) is actually a field, the elliptic function field corresponding

to T .

As T is compact, any holomorphic function f ∈ M(T ) is bounded on T . This means

that f comes from a bounded holomorphic function on C, so by Liouville’s theorem f is

constant. We conclude that any non-constant elliptic function has at least one pole.

Exercise 1. Show that for any non-constant f ∈ M(T ), the map f : T → P1(C) is surjective.

The most convenient way to describe the zeroes and poles of a function f ∈ M(T ) is to

define its associated divisor . The divisor group Div(T ) is the free abelian group generated

12
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by the points of T . Equivalently, a divisor

D =
∑

w∈T

nw[w] ∈ Div(T ) =
⊕

w∈T

Z

is a finite formal sum of points of T with integer coefficients.

The divisor group Div(T ) comes with canonical surjective homomorphisms to T and Z.

The summation map Σ : Div(T ) → T sends
∑

w∈T nw[w] to
∑
w∈T nww. The degree map

deg : Div(T ) → Z sends
∑
w∈T nw[w] to

∑
w∈T nw. The kernel of the degree map is the

subgroup Div0(T ) ⊂ Div(T ) of divisors of degree zero.

The order ordw(f) ∈ Z of a non-zero function f ∈ M(T )∗ at a point w ∈ T is the

minimum of all k for which the coefficient ck in the Laurent expansion f(z) =
∑
k ck(z−w)k

of f around w is non-zero. If we view poles as zeroes of negative order, ordw(f) ∈ Z is

simply the order of the zero of f in w.

A meromorphic function f ∈ M(T )∗ has only finitely many zeroes and poles on the

compact torus T , so the divisor map

div : M(T )∗ −→ Div(T )

f 7−→ (f) =
∑

w∈T

ordw(f)[w]

is a well-defined homomorphism. The divisors in Div(T ) coming from elliptic functions

are called principal divisors. We will prove that a divisor is principal if and only if it is in

the kernel of both Σ and deg.

2.1. Theorem. Let T = C/Λ be a torus. Then there is an exact sequence of abelian

groups

1 −→ C∗ −→ M(T )∗
div−→ Div0(T )

Σ−→ T −→ 1.

As only constant functions on T are without zeroes and poles, the sequence is exact at

M(T )∗. The proof of the exactness at Div0(T ) consists of two parts. We first prove that

principal divisors are of degree zero and in the kernel of the summation map. These are

exactly the statements (ii) and (iii) of the lemma below.

2.2. Lemma. Let f be a non-zero elliptic function on T . Then the following holds.

(i)
∑
w∈T resw(f) = 0.

(ii)
∑
w∈T ordw(f) = 0.

(iii)
∑
w∈T ordw(f) · w = 0 ∈ T .

Proof. Let F be a fundamental domain for T , and suppose—after translating F when

necessary—that none of the zeroes and poles of f lies on the boundary ∂F of F . Then the

expressions of the lemma are the values of the contour integrals

1

2πi

∮

∂F

f(z)dz,
1

2πi

∮

∂F

f ′(z)

f(z)
dz,

1

2πi

∮

∂F

z
f ′(z)

f(z)
dz.

13
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The first two integrals vanish since, by the periodicity of f and f ′/f , the integrals along

opposite sides of the parallellogram F coincide; as these sides are traversed in opposite

directions, their contributions to the integral cancel.

The function z f
′(z)
f(z)

is not periodic, but we can still compute the contribution to the

integral coming from opposite sides AB and DC = {z + λ2 : z ∈ AB} of F , as indicated

in the earlier picture. We find
∫
AB

z f
′(z)
f(z) dz +

∫
CD

z f
′(z)
f(z) dz =

∫
AB

z f
′(z)
f(z) dz −

∫
AB

(z + λ2)
f ′(z)
f(z) dz = −λ2

∫
AB

f ′(z)
f(z) dz.

As the integral 1
2πi

∫
AB

f ′(z)
f(z) dz is the winding number of the closed path described by f(z)

if z ranges from A to B along ∂F , 1
2πi times the value of the displayed integral is an integral

multiple of λ2, hence in Λ. The same holds for the other half
∫
BC

+
∫
DA

of the integral,

which yields an integral multiple of λ1. The complete integral now assumes a value in Λ,

and (iii) follows.

Assertion (ii) of the lemma shows that an elliptic function has as many zeroes as it has

poles on T , if we count multiplicities. The number of zeroes (or, equivalently, poles) of an

elliptic function f , counted with multiplicity, is called the order of f . Equivalently, it is

the degree of the polar divisor
∑
w max(0,− ordw(f)) · (w) of f . It follows from (i) that

the order of an elliptic function cannot be equal to 1.

Exercise 2. Define the order of a meromorphic function on P1(C), and show that functions of arbitrary

order exist.

In order to complete the proof of 2.1, we need to show that a divisor of degree zero that is

in the kernel of Σ actually corresponds to a function on T . This means that we somehow

have to construct these functions.

Function theory provides us with two methods to construct meromorphic functions

with prescribed zeroes or poles. An additive method consists in writing down a series

expansion for the ‘simplest elliptic function’ associated to the lattice Λ, the Weierstrass-

℘-function ℘Λ(z). This is an even function of order 2 on T , which has a double pole at

0 ∈ T . It is given by

(2.3) ℘(z) = ℘Λ(z) =
1

z2
+

∑

λ∈Λ\{0}

(
1

(z − λ)2
− 1

λ2

)
.

In order to show that the defining series converges uniformly on compact subsets of C \Λ,

one uses the following basic lemma.

2.4. Lemma. The Eisenstein series Gk(Λ) =
∑
λ∈Λ\{0} λ

−k is absolutely convergent for

every integer k > 2.

The proof of 2.4 is elementary. One can estimate the number of lattice points in annuli

around the origin, which grows linearly in the ‘size’ of the annuli. Note that the values

Gk(Λ) equal zero if k > 2 is odd, since then the terms for λ and −λ cancel. �

Exercise 3. Prove lemma 2.4.

14
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From the lemma, one deduces that ℘Λ is a well-defined meromorphic function on C with

double poles at the elements of Λ. Some elementary calculus leads to the Laurent expansion

(2.5) ℘(z) =
1

z2
+

∞∑

n=1

(2n+ 1)G2n+2(Λ)z2n

for ℘(z) around the origin. In order to show that ℘Λ is periodic modulo Λ, one notes first

that the derivative ℘′(z) =
∑
λ∈Λ(z − λ)−3 is clearly periodic modulo Λ. For ℘ itself, it

follows that for λ ∈ Λ we have ℘(z + λ) = ℘(z) + cλ. To prove that we have cλ = 0 for

generators λ = λi of Λ, and therefore for all λ, we take z = −λi/2 and use that ℘ is an

even function.

A second method to construct periodic functions proceeds multiplicatively, by writing

down a convergent Weierstrass product

σ(z) = σΛ(z) = z
∏

λ∈Λ\{0}

(1 − z

λ
)e(z/λ)+ 1

2
(z/λ)2

for a function having simple zeroes at the points in Λ.

Exercise 4. Show that the product expansion for the σ-function converges uniformly on compact subsets

of C. [Hint: pass to the logarithm and use 2.4.]

By 2.3, termwise differentiation of the logarithmic derivative

(2.6)
d logσ(z)

dz
=
σ′(z)

σ(z)
=

1

z
+

∑

λ∈Λ\{0}

(
1

z − λ
+

1

λ
+

z

λ2

)

yields the relation d2 log σ(z)
dz2 = −℘(z). As ℘(z) is periodic, we can find aλ, bλ ∈ C for each

λ ∈ Λ such that we have σ(z + λ) = eaλz+bλσ(z) for all z ∈ C. One sometimes says that

σ(z) is a theta function with respect to the lattice Λ.

We are now in a position to finish the proof of 2.1. We still need to show that every

divisor D =
∑
w nw[w] that is of degree 0 and in the kernel of the summation map is the

divisor of an elliptic function. Write Σ(D) =
∑
w nww = λ ∈ Λ. If λ is non-zero, we

add the trivial divisor [0] − [λ] to D to obtain a divisor satisfying
∑

w nww = 0. Now the

function fD =
∏
w σ(z − w)nw has divisor

∑
w nw[w], and for any λ ∈ Λ we find

fD(z + λ) = eaλ

∑
w
nww+bλ

∑
w
nwσ(z) = fD(z).

Therefore fD is in M(T )∗. This finishes the proof of 2.1.

The factor group Jac(T ) = Div0(T )/div[M(T )∗] of divisor classes of degree zero is the

Jacobian of T . The content of theorem 2.1 may be summarized by the statement that T

is canonically isomorphic to its Jacobian.

The actual construction of elliptic functions in the proof of 2.1 shows that the field

M(T ) can be given explicitly in terms of functions related to the ℘-function. The precise

statement is as follows.
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2.7. Theorem. The elliptic function field corresponding to T = C/Λ equals

M(T ) = C(℘Λ, ℘
′
Λ).

This is a quadratic extension of the field C(℘Λ) of even elliptic functions.

Proof. Any elliptic function f is the sum f(z) = f(z)+f(−z)
2 + f(z)−f(−z)

2 of an even and

an odd elliptic function, and for odd f the function f℘′ is even. It follows that ℘′ generates

M(T ) over the field of even elliptic functions, and that this extension is quadratic.

Let f ∈ M(T )∗ be even. We need to show that f is a rational expression in ℘ = ℘Λ.

We note first that ordw(f) is even at ‘2-torsion points’ w satisfying w = −w ∈ T : this

follows from the fact that the derivatives of odd order of f are odd elliptic functions, and

such functions have non-zero order at a point w = −w ∈ T . We can therefore write

(f) =
∑

w∈T
cw([w] + [−w]) =

∑
w∈T

cw([w] + [−w] − 2[0]).

We can assume that no term with w = 0 occurs in the last sum. As the functions f and∏
w(℘(z) − ℘(w))nw have the same divisor, their quotient is a constant. �

Exercise 5. Let f ∈ M(T ) have polar divisor 2 · (0). Prove: f = c1℘ + c2 for certain c1, c2 ∈ C.

The function ℘′ is an odd elliptic function with polar divisor 3 · (0), so it is of order 3.

Its 3 zeroes are the 3 points λ1/2, λ2/2 and λ3/2 = (λ1 + λ2)/2 of order 2 in T = C/Λ.

The even function (℘′)2 has divisor
∑3
i=1[2 · (λi/2)− 2 · (0)], so the preceding proof and a

look at the first term 4z−6 of the Laurent expansion of (℘′)2 around 0 show that we have

a differential equation

(2.8) (℘′(z))2 = 4

3∏

i=1

(℘(z) − ℘(λi/2)).

The coefficients of the cubic polynomial in 2.8 depend on the lattice Λ in the following

explicit way.

2.9. Theorem. The ℘-function for Λ satisfies a Weierstrass differential equation

(℘′
Λ)2 = 4℘3

Λ − g2℘Λ − g3

with coefficients g2 = g2(Λ) = 60G4(Λ) and g3 = g3(Λ) = 140G6(Λ). The discriminant

∆(Λ) = g2(Λ)3 − 27g3(Λ)2 does not vanish.

Proof. The derivation of the differential equation is a matter of careful administration

based on the Laurent expansion around z = 0 in (2.5). From the local expansions ℘(z) =

z−2 + 3G4z
2 + O(z4) and ℘′(z) = −2z−3 + 6G4z + 20G6z

3 +O(z5) one easily finds

(℘′(z))2 = 4z−6 − 24G4z
−2 − 80G6 + O(z2)

4℘(z)3 = 4z−6 + 36G4z
−2 + 60G6 + O(z2).

16
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It follows that (℘′(z))2 − 4℘3 + 60G4℘ + 140G6 is a holomorphic elliptic function that

vanishes at the origin, so it is identically zero. For the non-vanishing of the discriminant

∆(Λ) = g2(Λ)3 − 27g3(Λ)2

= 16 · (℘(λ1

2 ) − ℘(λ2

2 ))2 · (℘(λ1

2 ) − ℘(λ3

2 ))2 · (℘(λ2

2 ) − ℘(λ3

2 ))2,

one observes that the function ℘(z) − ℘(λi/2) is elliptic of order 2 with a double zero at

λi/2, so it cannot vanish at λj/2 for j 6= i. �

Exercise 6. Show that the non-constant solutions to the differential equation (y′)2 = 4y3 − g2y − g3

corresponding to a lattice Λ are the functions ℘Λ(z − z0) with z0 ∈ C. What are the constant solutions?

It follows from 2.9 that the map W : z 7→ (℘(z), ℘′(z)) maps T to a complex curve in

C2 with equation y2 = 4x3 − g2x − g3. This is exactly the kind of map we have been

considering in section 1. If g2 and g3 are real, one can sketch the curve in R2. For a

Weierstrass polynomial having three real roots the picture looks as follows.

x

2.521.510.5-0.5-1

y

4

2

0

-2

-4

In order to deal with the poles of the map W , we pass to the projective completion of our

curve in P2(C). This is by definition the zero set in P2(C) of the homogenized equation

Y 2Z = 4X3 − g2XZ
2 − g3Z

3; it consists of the ‘affine points’ (x : y : 1) coming from

the original curve and the ‘point at infinity’ (0 : 1 : 0). One can view the lines through

the origin in R3 as the points of the real projective plane P2(R), and draw the following

picture of the completed curve. The point at infinity in this picture is the single line in

the plane Z = 0.

17
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2.10. Theorem. Let Λ ⊂ C be a lattice. Then the Weierstrass map

W : z 7−→
{

(℘(z) : ℘′(z) : 1) for z 6= 0

(0 : 1 : 0) for z = 0

induces a bijection between the torus T = C/Λ and the complex elliptic curve EΛ with

projective Weierstrass equation

EΛ : Y 2Z = 4X3 − g2(Λ)XZ2 − g3(Λ)Z3.

Proof. By 2.9, the torus C/Λ is mapped to the curve EΛ. We have to show that every

affine point P = (x, y) on EΛ is the image of a unique point z ∈ T \ {0}. The divisor of

the function ℘(z)− x is of the form (w) + (−w)− 2(0) for some w ∈ T that is determined

up to sign. For w = −w ∈ T we have y = 0, and z = w is the unique point mapping to P .

Otherwise, we have ℘′(w) = ±y 6= 0, and exactly one of w and −w maps to P . �

2.11. Corollary. The Weierstrass parametrization 2.10 induces a group structure on the

set EΛ(C) of points of the elliptic curve EΛ. The zero element of EΛ(C) is the ‘point at

infinity’ OE = (0 : 1 : 0), and the inverse of the point (X : Y : Z) is (X : −Y : Z). Any

three distinct points in EΛ(C) that are collinear in P2(C) have sum OE .

Proof. It is clear that W (0) = OE is the zero element for the induced group structure on

EΛ(C), and that the inverse of the point (℘(z) : ℘′(z) : 1) is (℘(−z) : ℘′(−z) : 1) = (℘(z) :

−℘′(z) : 1). It remains to show that three collinear points in EΛ(C) have sum zero. Let

L : aX + bY + cZ = 0 be the line passing through three such points, and consider the

associated elliptic function f = a℘+ b℘′ + c. If b is non-zero, the divisor of f is of the form

(f) = (w1) + (w2) + (w3) − 3(0) for certain wi ∈ T . We have w1 + w2 + w3 = 0 ∈ T by

2.1 (iii), and since the Weierstrass parametrization W maps the wi to the three points of

intersection of L and EΛ, these points have sum OE . For b = 0 and a 6= 0, we are in the

case of a ‘vertical line’ with affine equation x = −c/a. The point OE is on this line. The

function f = a℘+ c now has divisor (f) = (w1) + (w2) − 2(0), and the same argument as

above shows that the 2 affine points of intersection of L and EΛ are inverse to each other.

The case a = b = 0 does not occur since then the line L is the line at infinity Z = 0, which

intersects EΛ only in OE . �

Exercise 7. Define multiplicities for the points of intersection of EΛ with an arbitrary line L, and show

that with these multiplicities the ‘sum of the points in L ∩ EΛ’ is always equal to OE .

Corollary 2.11 shows that the group law on EΛ(C) has a simple geometric interpretation.

In order to find the sum of 2 points P and Q in EΛ(C), one finds the third point R = (a, b)

of intersection of the line through P and Q with E. One than has P + Q = −R, so the

sum of P and Q equals (a,−b).
From the geometric description, one can derive an explicit addition formula for the

points on EΛ or, equivalently, addition formulas for the functions ℘ and ℘′. Let P =

(℘(z1), ℘
′(z1)) and Q = (℘(z2), ℘

′(z2)) be points on EΛ. If P and Q are inverse to each

18
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other, we have z1 = −z2 mod Λ and P +Q is the infinite point OE . Otherwise, the affine

line through P and Q is of the form y = λx+ µ with

λ =
℘′(z1) − ℘′(z2)

℘(z1) − ℘(z2)
=

4℘(z1)
2 + 4℘(z1)℘(z2) + 4℘(z2)

2 − g2
℘′(z1) + ℘′(z2)

.

The second expression, which is obtained by multiplication of numerator and denominator

of the first expression by ℘′(z1) + ℘′(z2) and applying 2.9, is also well-defined for P = Q;

in this case it yields the slope of the tangent line in P . As the cubic equation

4x3 − g2x− g3 − (λx+ µ)2 = 0

has roots ℘(z1), ℘(z2) and ℘(z1 + z2), we find the x coordinate of P +Q to be

(2.12) ℘(z1 + z2) = −℘(z1) − ℘(z2) +
1

4

(
℘′(z1) − ℘′(z2)

℘(z1) − ℘(z2)

)2

(z1 6= ±z2 mod Λ).

In the case P = Q, one can use the second expression for λ to find the x-coordinate ℘(2z1)

of 2P as a rational function in ℘(z1).

Exercise 8. Write ℘(2z) as a rational function in ℘(z). Show that this duplication formula for the

℘-function also follows from the limit form

℘(2z) = −2℘(z) +
1

4

(
℘′′(z)

℘′(z)

)2

of 2.12 and the differential equation ℘′′ = 6℘2 − 1
2
g2, which is obtained by differentiating 2.9.

As in the previous section, we find that the addition formulas on the elliptic curve EΛ are

algebraic formulas involving the coefficients g2 and g3 of the defining Weierstrass equation.

We say that an elliptic curve E with Weierstrass equation y2 = 4x3 − g2x− g3 is defined

over a subfield K ⊂ C if g2 and g3 are in K. If E is defined over a field K ⊂ C, the set

E(K) of K-valued points is a subgroup of E(C). We will especially be interested in the

case where K is the field of rational numbers. When working over Q, it is often convenient

to choose variables X = 4x and Y = 4y satisfying the equation Y 2 = X3 − 4g2 − 16g3.

In this case the determination of the group E(Q) is a highly non-trivial problem that

has its roots in antiquity. The observation that two (not necessarily distinct) points on a

cubic curve can be used to find a third point already goes back to Diophantus. His method,

which is basically a method for adding points, is known as the chord-tangent method .
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Exercises.

9. Let f be a non-constant meromorphic function on C. A number λ ∈ C is said to be a period

of f if f(z + λ) = f(z) for all z ∈ C. Let Λ be the set of periods of f .

a. Prove that Λ is a discrete subgroup of C.

b. Deduce that Λ is of one of the three following forms:

Λ = {0} Λ = Zλ (λ 6= 0) Λ = Zλ1 ⊕ Zλ2 (with C = Rλ1 + Rλ2)

10. Let ℘ be the ℘-function associated to Λ. Show that the function z 7→ e℘(z) is holomorphic

on C \ Λ and periodic modulo Λ, but not elliptic.

11. Let f be a meromorphic function with non-zero period λ and define q = q(z) = e2πiz/λ.

Prove that there exists a meromorphic function f̂ on C∗ satisfying f(z) = f̂(q), and show

that we have ordq(f̂) = ordz(f) for all z ∈ C.

12. Let Λ be a lattice and ℘ and σ the associated complex functions. Prove the identity

℘(z) − ℘(a) = −σ(z − a)σ(z + a)

σ(a)2σ(z)2
(a 6∈ Λ).

13. (Degeneracy of the ℘-function.) Let λ be an element in C \ R and t a real number.

a. Prove the identities

lim
t→∞

℘[t,λt](z) =
1

z2
and lim

t→∞
℘[1,λt](z) =

1

sin2(πz)
+

3

π2

for z ∈ C∗ and z ∈ C \ Z, respectively.

b. What are the degenerate forms of the function σ(z) corresponding to the two cases

above, and which identities replace the one in the previous exercise?

c. Find the degenerate analogues of 2.10, and explain why these two forms of degeneracy

are called additive and multiplicative, respectively.

14. Determine the general solution of the Weierstrass differential equation (y′)2 = 4y3 − g2y− g3
in the degenerate case g3

2 = 27g2
3 .

15. Show that the derivative of the ℘-function satisfies ℘′(z) = − σ(2z)

σ(z)4
.

16. Let Λ = [λ1, λ2] be a lattice with associated Weierstrass function ℘, and consider the Weier-

strass functions ℘1 and ℘2 associated to the lattices Λ1 = 1
2
Λ and Λ2 = [ 1

2
λ1, λ2]. Prove the

identities

℘1(z) = 4℘(2z) and ℘2(z) = ℘(z) + ℘(z + 1
2
λ1) − ℘( 1

2
λ1).

What are the corresponding identities for ℘′
1 and ℘′

2?

17. Prove: 4℘(2z) = ℘(z) + ℘(z + 1
2
λ1) + ℘(z + 1

2
λ2) + ℘(z + 1

2
λ3).

18. Define the Weierstrass ζ-function for the lattice Λ = Zλ1 + Zλ2 in C as in (2.6) by ζ(z) =
d
dz

log σ(z).
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a. Show that there exists a linear function η : Λ → C such that ζ(z + λ) = ζ(z) + η(λ) for

λ ∈ Λ and z ∈ C, and that η(λ) = 2ζ(λ/2) if λ 6= 2Λ.

The numbers ηi = η(λi) (i = 1, 2) are the quasi-periods of ζ(z).

b. Prove the Legendre relation η1λ2 − η2λ1 = ±2πi.

[Hint: the right hand side equals
∮
ζ(z)dz around a fundamental parallelogram.]

c. Prove: σ(z + λ) = ±eη(λ)(z+λ/2)σ(z).

19. (Weil reciprocity law.) For an elliptic function f and a divisor D =
∑

w∈T
nw · (w) ∈ Div(T )

on the complex torus T , we let f(D) =
∏

w
f(w)nw ∈ C. Prove that for any two elliptic

functions f and g with disjoint divisors, we have

f((g)) = g((f)).

[Hint: write f and g as products of σ-functions.]

20. Let Gk =
∑

λ∈Λ′
λ−k be the Eisenstein series of order k, and define G2 = G1 = 0 and

G0 = −1.

a. Show that (k − 1)(k − 2)(k − 3)Gk = 6
∑k

j=0
(j − 1)(k − j − 1)GjGk−j for all k ≥ 6.

[Hint: ℘′′ = 6℘2 − 30G4.]

b. Show that G8 = 3
7
G2

4, G10 = 5
11
G4G6 and G12 = 25

143
G2

6 + 18
143

G3
4 and that, more

generally, every Eisenstein series can be computed recursively from G4 and G6 by the

formula

(k2 − 1)(k − 6)Gk = 6

k−4∑

j=4

(j − 1)(k − j − 1)GjGk−j .

21. Let Λ be a lattice for which g2(Λ) and g3(Λ) are real. Prove that Λ is either a rectangular

lattice spanned by a real and a totally imaginary number, or a rhombic lattice spanned by

a real number λ1 and number λ2 satisfying λ2 + λ2 = λ1. Show that these cases can be

distinguished by the sign of ∆(Λ), and that we have group isomorphisms

EΛ(R) ∼=
{

R/Z× Z/2Z for ∆(Λ) > 0;

R/Z for ∆(Λ) < 0.

22. Let L(nO) be the vector space of meromorphic functions on the torus T = C/Λ having a

pole of order at most n in O. Prove:

dimC(L(nO)) =
{
n for n > 0;

1 for n = 0.

23. (Riemann-Roch for the torus.) For a divisor D on the torus T , let L(D) be the vector space

consisting of f = 0 and the meromorphic functions f 6= 0 on T for which the divisor (f) +D

is without polar part. Prove:

dimC(L(D)) =

{
deg(D) for deg(D) > 0;

0 for deg(D) < 0.

What can you say if D is of degree 0?
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3. Complex elliptic curves

We have seen in the previous section that every complex torus T = C/Λ is ‘isomorphic’

to the elliptic curve EΛ with Weierstrass equation y2 = 4x3 − g2(Λ)x − g3(Λ). The

uniformization theorem 3.8 in this section states that conversely, every complex Weierstrass

equation y2 = 4x3 − g2x− g3 of non-zero discriminant ∆ = g3
2 − 27g2

3 comes from a torus.

This correspondence is actually an equivalence of categories. In order to make this into a

meaningful statement, we have to define the maps in the categories of complex tori and

complex elliptic curves, respectively.

We will first define a set Hom(T1, T2) of maps between complex tori called isogenies

and study its structure. At the end of this section, we will describe the corresponding al-

gebraic maps between complex Weierstrass curves, which are again called isogenies. These

maps will turn out be an important tool in studying the arithmetic of elliptic curves over Q.

3.1. Lemma. Let ψ : C/Λ1 → C/Λ2 be a continuous map between complex tori. Then

there exists a continuous map φ : C → C such that the diagram

C
φ−→ Cycan

ycan

C/Λ1
ψ−→ C/Λ2

commutes. The map φ is uniquely determined up to an additive constant in Λ2.

Proof. Choose φ(0) such that the diagram commutes for z = 0. If z ∈ C is arbitrary,

choose a path γ : 0 → z in C. Let γ : ψ(0̄) → ψ(z̄) be the path in C/Λ2 obtained by

reducing modulo Λ1 and applying ψ. As the natural map C → C/Λ2 is a covering map, γ

can uniquely be lifted under this map to a path in C starting in φ(0), and we define φ(z)

as the end point of this map. The value φ(z) is independent of the choice of the path γ

since C is simply connected, and it is clear that φ is continuous. If φ′ is another map for

which the diagram commutes, then their difference φ − φ′ is a continuous map C → Λ2,

so it is constant. �

If the map φ in lemma 3.1 is a holomorphic function, we call ψ an analytic map between

the tori. An analytic map ψ : C/Λ1 → C/Λ2 is called an isogeny if it satisfies ψ(0) = 0.

An analytic map ψ is the composition of the isogeny ψ−ψ(0) with a translation over ψ(0).

3.2. Theorem. Let ψ : C/Λ1 → C/Λ2 be an isogeny. Then there exists α ∈ C such that

we have

ψ(z mod Λ1) = αz mod Λ1 and αΛ1 ⊂ Λ2.

Conversely, every α ∈ C satisfying αΛ1 ⊂ Λ2 gives rise to an isogeny C/Λ1 → C/Λ2.

Proof. Let φ : C → C be the lift of ψ satisfying φ(0) = 0. For every λ1 ∈ Λ1, the

holomorphic function φ(z) − φ(z + λ1) has values in Λ2, so it is constant. It follows that

φ′(z) is a holomorphic function with period lattice Λ1, so by Liouville’s theorem it is

constant. For φ itself we find φ(z) = αz for some α ∈ Z. As Λ1 maps to zero in C/Λ2, we

have αΛ1 ⊂ Λ2. Conversely, it is clear that any α of this form induces an isogeny. �
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3.3. Corollary. Every complex isogeny is a homomorphism on the group of points. The

set of isogenies Hom(C/Λ1,C/Λ2) carries a natural group structure. �

We say that two complex tori are isogenous if there exists a non-zero isogeny between

them. Note that a non-zero isogeny is always surjective.

Exercise 1. Take Λ1 = Z + Z i and Λ2 = Z + Z iπ. Prove: Hom(C/Λ1,C/Λ2) = 0.

For a non-zero isogeny ψ : T1 = C/Λ1 → T2 = C/Λ2, we define the degree of ψ as

deg(ψ) = # kerψ = #[(α−1Λ2) mod Λ1] = [Λ2 : αΛ1].

The degree of the zero isogeny is by definition equal to 0.

For ψ of degree n > 0, we have inclusions of lattices nΛ2

n⊂ αΛ1

n⊂ Λ2. This shows

that multiplication by n/α maps Λ2 to a lattice of index n in Λ1. The corresponding

isogeny ψ̂ : T2 → T1 is the dual isogeny corresponding to ψ. Note that ψ̂ ◦ψ and ψ ◦ ψ̂ are

multiplication by n on T1 and T2, respectively.

Exercise 2. Show that being isogenous is an equivalence relation on the set of complex tori, and that

there are uncountably many isogeny classes of complex tori.

Two complex tori C/Λ1 and C/Λ2 are isomorphic if there is an invertible isogeny between

them, i.e., an isogeny of degree 1. This happens if and only if Λ2 = αΛ1 for some α ∈ C∗.

In that case we say that Λ1 and Λ2 are isomorphic or homothetic. For homothetic lattices

Λ1 and Λ2 we have g2(Λ2) = α−4g2(Λ1) and g3(Λ2) = α−6g3(Λ1) for some α, so the

j-invariant

j(Λ) = 1728
g2(Λ)3

g2(Λ)3 − 27g3(Λ)2
= 1728

g2(Λ)3

∆(Λ)

of a lattice is defined on isomorphism classes of lattices. Note that j(Λ) is well-defined

since ∆(Λ) does not vanish. The factor 1728 = 123 is traditional; it is related to the

Fourier expansion of the j-function.

3.4. Lemma. Two lattices are homothetic if and only if their j-invariants coincide.

Proof. We still need to show that the equality j(Λ1) = j(Λ2) implies that Λ1 and Λ2 are

homothetic. From the equality j(Λ1) = j(Λ2) we easily derive that there exists α ∈ C∗

such that we have g2(Λ2) = α−4g2(Λ1) and g3(Λ2) = α−6g3(Λ1). Then Λ2 and αΛ1 have

the same values of g2 and g3, so the ℘-functions ℘Λ2
and ℘αΛ1

coincide. In particular,

their sets of poles Λ2 and αΛ1 coincide. �

Every lattice Λ = [λ1, λ2] is homothetic to a lattice [1, z] with z = λ2/λ1 in the complex

upper half plane, so we can view j as a function j : H → C. The Eisenstein series

Gk(z) = Gk([1, z]) are holomorphic on H by 2.4, so j is again a holomorphic function

on H.
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Two lattices [1, z1] and [1, z2] are homothetic if and only if we have z2 = az1+b
cz1+d

for

some matrix
(
a b
c d

)
∈ GL2(Z). The identity

(3.5) Im

(
az + b

cz + d

)
= (ad− bc)

Im(z)

|cz + d|2

shows that only the matrices in SL2(Z) map H to itself. We conclude that j : H → C is

constant on SL2(Z)-orbits, and that the induced function j : SL2(Z) \H → C on the orbit

space is injective.

3.6. Theorem. The map j : SL2(Z) \ H → C is a bijection.

The main ingredient in the proof of 3.6 is the construction of a fundamental domain for

the action of SL2(Z) on H. The following statement is sufficient for our purposes.

3.7. Lemma. Every SL2(Z)-orbit in H has a representative in the set

D = {z ∈ H : |z| ≥ 1 and − 1/2 ≤ Re(z) < 1/2}.

Proof. Pick z ∈ H. As the elements cz + d with c, d ∈ Z form a lattice in C, the

numerator |cz + d|2 in (3.5) is bounded from below, so there exists an element z0 in the

orbit of z for which Im(z) is maximal. Applying a translation matrix
(
1 k
0 1

)
mapping z0 to

z0 + k when necessary, we may assume that Re(z0) is in [−1/2, 1/2). From the inequality

Im(−1/z0) = |z0|−2Im(z0) ≤ Im(z0) we find |z0| ≥ 1, so z0 is in D. �

Exercise 3. Find a representative in D for the SL2(Z)-orbit of 1+2i
100

.

Proof of 3.6. It remains to show that the image j[H] of the j-function is all of C. As j

is a non-constant holomorphic function on H, its image j[H] is open in C. We will show

that j[H] is also closed in C. By the connectedness of C, this proves what we want.

Let j = limn→∞ j(zn) be a limit point of j[H] in C. By picking the zn suitably inside

their SL2(Z)-orbit, we may assume that all zn lie in D. If the values of Im(zn) remain

bounded, the sequence {zn}n lies in a bounded subset of D, and we can pick any limit

point z ∈ H of the sequence to find j(z) = j ∈ j[H].

If the values of Im(zn) are not bounded, we can pass to a subsequence and assume

limn→∞ Im(zn) = +∞. From the definition of g2 and g3 in theorem 2.9 we now find

lim
n→∞

g2(zn) = 60 · 2
∞∑

m=1

1

m4
=

4π4

3
and lim

n→∞
g3(zn) = 140 · 2

∞∑

m=1

1

m6
=

8π6

27
,

so ∆(zn) = g2(zn)
3 − 27g3(zn)

2 tends to 0. This implies limn→∞ |j(zn)| = +∞, contra-

dicting the assumption that j(zn) converges. �

The main corollary of 3.6 is the following theorem. It enables us to translate many state-

ments over complex elliptic curves into analytic facts.
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3.8. Uniformization theorem. Given any two integers g2, g3 ∈ C with g3
2 − 27g2

2 6= 0,

there exists a lattice Λ ⊂ C with g2(Λ) = g2 and g3(Λ) = g3. In particular, every complex

elliptic curve comes from a complex torus in the sense of 2.7.

Proof. Pick a lattice Λ with j-invariant j(Λ) = g3
2/(g

3
2 − 27g2

3). As in the proof of 3.4, we

find that there exists α ∈ C satisfying g2(Λ) = α4g2 and g3(Λ) = α6g3. Now the lattice

αΛ does what we want. �

A complex elliptic curve E in Weierstrass form, or briefly Weierstrass curve, can be spec-

ified as a pair (g2, g3) of coefficients in the corresponding equation y2 = 4x3 − g2x − g3.

We require that the discriminant ∆(E) = g3
2 − 27g2

2 does not vanish and define the j-

invariant of E as j(E) = 1728 g3
2/∆(E). Weierstrass curves are said to be isomorphic if

their j-invariants coincide. As we have already seen, Weierstrass curves with coefficients

(g2, g3) and (g′2, g
′
3) are isomorphic if and only if there exists α ∈ C satisfying g′2 = α4g2

and g′3 = α6g3.

Exercise 4. Show that a Weierstrass curve E is isomorphic to a Weierstrass curve defined over Q(j(E)).

An isogeny between Weierstrass curves is for us simply a map coming from an isogeny

between the corresponding complex tori. Its degree is the degree of the corresponding

isogeny between tori. With this definition, the categories of complex tori and the category

of Weierstrass curves, each with the isogenies as their morphisms, become equivalent in

view of 3.8.

Our definition of an isogeny ψ : E → Ẽ between curves parametrized by C/Λ and

C/Λ̃ means that ψ fits in a commutative diagram

C/Λ
z→αz−→ C/Λ̃yW

yW̃
E

ψ−→ Ẽ.

Here W and W̃ denote the Weierstrass parametrizations, and α ∈ C satisfies αΛ ⊂ Λ̃. We

see that ψ can be described in terms of Weierstrass ℘-functions as

ψ : (℘(z), ℘′(z)) 7−→ (℘̃(αz), ℘̃′(αz)).

As z 7→ ℘̃(αz) and z 7→ ℘̃′(αz) are elliptic functions on C/Λ, they are rational expressions

in ℘(z) and ℘′(z). Thus ψ is actually an algebraic map E → Ẽ that is everywhere defined.

It is a morphism of curves in the sense of algebraic geometry.

3.9. Theorem. Let ψ : E → Ẽ be an isogeny of degree n > 0 between Weierstrass curves.

Then there exist α ∈ C and monic coprime polynomials A,B ∈ C[X] of degree n and n−1,

respectively, such that ψ is given on the affine points of E by the algebraic map

ψ : (x, y) 7−→
(

A(x)

α2B(x)
,
A′(x)B(x) − A(x)B′(x)

α3B(x)2
y

)
.
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Proof. We may suppose that ψ corresponds to a diagram as above. As ℘(αz) is even and

periodic modulo Λ, there exist c ∈ C and monic coprime polynomials A,B ∈ C[X], say of

degree a and b, for which we have the identity

℘̃(αz) = c
A(℘(z))

B(℘(z))
.

Comparison of the orders and leading coefficients of the poles of these functions in z = 0

yields equalities c = α−2 and 2 = 2a− 2b; in particular we have a = b+ 1. Now consider

the commutative diagram
C/Λ

ψ−→ C/Λ̃y℘
y℘̃

P1(C)
ψx−→ P1(C),

in which we write ψ again for the isogeny between tori corresponding to ψ. By definition

of the degree, ψ is n to 1. The vertical maps are generically 2 to 1, meaning that for

all but finitely many x ∈ P1(C), the fibers ℘−1(x) and ℘̃−1(x) consist of 2 elements.

This implies that the composition ℘̃ ◦ ψ is generically 2n to 1, and consequently the map

ψx : P1(C) → P1(C), which maps x to A(x)/(α2B(x)), is generically n to 1. This easily

yields a = n, as desired. Differentiation of the identity for ℘̃(αz) with respect to z yields

the value of the y-coordinate of ψ. �

Exercise 5. Let A, B ∈ C[X] be coprime polynomials of degree a and b. Show that the map on P1(C)

defined by x 7→ A(x)/B(x) is generically max(a, b) to 1.

3.10. Example. Let Λ = [λ1, λ2] be any lattice, and define Λ̃ = [ 1
2
λ1, λ2]. Then Λ is of

index 2 in Λ̃, and the natural map T = C/Λ → T̃ = C/Λ̃ is an isogeny of degree 2. Its

kernel is generated by the 2-torsion element 1
2
λ1 ∈ C/Λ. On the associated Weierstrass

curve E : y2 = 4x3 − g2x− g3, this corresponds to a point of the form (a, 0). The equation

can be written correspondingly as y2 = (x− a)(4x2 + 4ax+ g3
a

).

In order to find the polynomials A and B from 3.9 in this case, we have to express the

Weierstrass function ℘̃(z) associated to Λ̃ as a rational function in the Weierstrass function

℘(z) associated to Λ. From exercise 2.16, we have the useful identity

℘̃(z) = ℘(z) + ℘(z + 1
2λ1) − ℘( 1

2λ1).

It is now straightforward from the addition formula (2.12) to evaluate

℘̃ = −2a+
℘′2

4(℘− a)2
= −2a+

℘2 + a℘+ g3
4a

℘− a
=
℘2 − a℘+ 2a2 + g3

4a

℘− a
.

As expected, A and B are monic of degrees 2 and 1. Rewriting g3
4a

= a2 − g2
4

, we can write

the complete isogeny in algebraic terms as

(x, y) 7−→ (x̃, ỹ) =

(
x+

12a2 − g2
4(x− a)

,
(
1 − 12a2 − g2

4(x− a)2
)
y

)
.

We refer to the exercises for a proof that (x̃, ỹ) is a point on the Weierstrass curve Ẽ with

equation y2 = 4(x+ 2a)(x2 − 2ax+ g2 − 11a2).
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Exercise 6. Show that the isogeny in 3.10 is given by (x, y) 7→ (x + xT − a, y + yT ), where (xT , yT ) =

(x, y) + (a, 0) in the group E(C).

Theorem 3.9 shows that isogenies between elliptic curves, which we defined originally as

analytic maps between tori, turn out be algebraic maps, i.e., given by rational functions

in the coordinates. Conversely, one can show that all algebraic maps between Weierstrass

curves are analytic, so that algebraic and analytic maps come down to the same thing.

This equivalence is a simple example of a ‘GAGA-phenomenon’, an abbreviation referring

to a 1956 paper of Serre, Géométrie algébrique et géométrie analytique, which is devoted

to similar equivalences.

An even simpler example of the phenomenon indicated above is the classification in

theorem 2.7 of the meromorphic functions on a torus T . Such functions, which are by

definition analytic maps T → P1(C), turn out to be rational functions in the coordinates

when viewed as maps on the associated Weierstrass curve. The function field M(T ) =

C(℘, ℘′) of T is therefore isomorphic to the function field M(E) of rational functions in

the affine coordinates on E. This field is usually defined as the field of fractions of the

coordinate ring C[x, y]/(y2 − 4x3 + g2x + g3), which is the ring of polynomial functions

on the affine part of E. From an algebraic point of view, M(E) is a quadratic extension

C(x,
√

4x3 − g2x− g3) of the rational function field C(x).

The function field M(P1(C)) of meromorphic functions on the Riemann sphere is also

algebraic: it is the rational function field C(x).

Every isogeny ψ : T → T̃ between complex tori induces a map ψ∗ : M(T̃ ) → M(T )

in the opposite direction mapping an elliptic function f ∈ M(T̃ ) to f ◦ψ. If ψ is non-zero,

this is an injective homomorphism of fields.

3.11. Theorem. Let ψ : T → T̃ be an isogeny of degree n > 0. Then the field extension

ψ∗[M(T̃ )] ⊂ M(T ) is an algebraic extension of degree n.

Proof. As M(T ) and M(T̃ ) are quadratic extensions of C(℘) and C(℘̃), respectively,

it suffices to show that C(℘) is algebraic of degree n over ψ∗[C(℘̃)]. In view of 3.9, this

follows from the following lemma. �

3.12. Lemma. Let A,B ∈ C[X] be coprime polynomials of degree a and b. If A and B

are not both constant, then C(x) is an algebraic of degree max(a, b) of C(A(x)
B(x) ).

Proof. Write Y = A(x)
B(x) , then x is a zero of the polynomial F = A(X)−Y B(X) ∈ C[X,Y ]

of degree max(a, b) in X with coefficients in C(Y ).It remains to show that F is irreducible.

As F is of degree 1 in Y , it can only be reducible if there is a polynomial in C[X] \ C

dividing it; this is excluded by the coprimality assumption on A and B. �

It is a general fact from algebraic geometry that degrees of maps can be read off from the

degrees of the corresponding function field extension. Over C or Q, the degree of a map

is the cardinality of all but finitely many fibers.

Exercise 7. Check this fact for the projections πx and πy of a Weierstrass curve E on the axes. *Can

you generalize the argument to arbitrary rational functions E → P1(C)?
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Exercises.

8. The multiplicator ring of a lattice Λ is defined as O = O(Λ) = {α ∈ C : αΛ ⊂ Λ}. Show

that O is a subring of C isomorphic to the endomorphism ring End(C/Λ) of the torus C/Λ.

Show also that we have O(Λ) = Z unless Λ is homothetic to a lattice of the form [1, λ], with

λ ∈ C \ R the zero of an irreducible quadratic polynomial aX2 + bX + c ∈ Z[X], and that

in this exceptional case we have O(Λ) = Z[ D+
√

D
2

] with D = b2 − 4ac < 0.

[In the exceptional case, we say that C/Λ has complex multiplication by O.]

9. Show that the subrings of C that are lattices correspond bijectively to the set of negative

integers D ≡ 0, 1 mod 4 under the map D 7→ O(D) = Z[ D+
√

D
2

]. Show that there exists a

ring homomorphism O(D1) → O(D2) if and only if D1/D2 is a square in Z.

[One calls O(D) the quadratic order of discriminant D.]

*10. Show that the isomorphism classes of complex tori with complex multiplication by O corre-

spond bijectively to the elements of the Picard group Pic(O) of O.

11. Show that the degree map deg : End(C/Λ) → Z is a multiplicative function, and that there

is a commutative diagram

End(C/Λ)
∼−→ O(Λ) ⊂ Cydeg

yz 7→zz

Z
id−→ Z ⊂ R.

12. Compute the structure of the group Hom(C/Λ1,C/Λ2) for each of the following choices of

Λ1 and Λ2:

a. Λ1 = Λ2 = Z + Z i;

b. Λ1 = Z + Z i and Λ2 = Z + Z 2i;

b. Λ1 = Z + Z i and Λ2 = Z + Z
√
−2.

13. Show that every group Hom(C/Λ1,C/Λ2) is a free abelian group of rank at most 2. Show

that the rank is non-zero if C/Λ1 and C/Λ2 are isogenous, and that it is 2 if and only if

C/Λ1 and C/Λ2 have complex multiplication by rings O1 and O2 having the same field of

fractions.

14. A non-zero isogeny ψ : T1 → T2 is said to be cyclic if kerψ is a cyclic subgroup of T1. Show

that complex tori are isogenous if and only if there exists a cyclic isogeny between them.

Show also that a torus admitting a cyclic endomorphism (different from the identity) has

complex multiplication.

15. Show that the set D ⊂ H in 3.7 contains a unique representative of every SL2(Z)-orbit if we

remove the elements on its boundary satisfying |z| = 1 and Re(z) > 0.

*16. Let f : E → Ẽ be a rational map between Weierstrass curves, i.e., a map of the form

(x, y) 7→ (f1(x, y), f2(x, y)) for functions f1, f2 ∈ M(E) with the property that the image of

(x, y) lies in Ẽ(C) whenever it is defined. Show that f can be defined on all points of E, and

that it corresponds to an analytic map of the corresponding tori.
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17. Determine the Weierstrass polynomial W (X) of the curve Ẽ in example 3.10 by proving the

following statements.

a. W (X) = 4(X − ℘̃( 1
2
λ2))(X − ℘̃( 1

4
λ1))(X − ℘̃( 1

4
λ1 + 1

2
λ2)).

b. We have ℘̃( 1
2
λ2)) = −2a.

c. The function 4(℘(z) − a)(℘(z + 1
2
λ1) − a) is constant with value 12a2 − g2.

d. We have (℘̃( 1
4
λ1) − a)2 = 4(℘( 1

4
λ1) − a)2 = 12a2 − g2.

e. W (X) = 4(X + 2a)((X − a)2 + g2 − 12a2) = 4(X + 2a)(X2 − 2aX + g2 − 11a2).

18. Show that after a linear change of variables X = 4(x − a) and Y = 4y, the equation of the

Weierstrass curves E in 3.10 becomes Y 2 = X(X2+αX+β) with α = 12a and β = 48a2−4g2.

Show that a similar change of variables then reduces the 2-isogenous curve to the form

Y 2 = X(X2 − 2αX + α2 − 4β).
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4. Weak Mordell-Weil theorem

Let K be a number field , i. e., a finite field extension of Q, and E an elliptic curve defined

over K. Then the main structural theorem for the group E(K) is the following.

4.1. Mordell-Weil theorem. The group E(K) is finitely generated.

By the structure theorem for finitely generated abelian groups, this means that we have

E(K) ∼= T ⊕ Zr,

for a finite abelian group T , the torsion subgroup of E(K), and an integer r ≥ 0, called

the rank of E over K.

As we can choose an embedding K → C, we may view E(K) as a countable subgroup

of the group E(C), which is isomorphic as an abelian group to (R/Z) × (R/Z). This is

however not too informative with respect to the group structure of E(K) (exercise 1), and

4.1 is an essentially algebraic theorem.

All proofs of 4.1 proceed in two steps. One first shows that for some integer m ≥ 2, the

group E(K)/mE(K) can be embedded in some ‘easier’ abelian group A, and that its image

in A is finite. This is the weak Mordell-Weil theorem. Next, one uses a concept of heights

of points in E(K) to show that E(K) can be generated by a set of points representing the

finitely many cosets of ME(K) in E(K), together with some finite set of points of ‘small’

height.

Already in the simplest case K = Q, to which we will restrict in this section, the proof

of 4.1 is not so obvious. The group A into which we will embed E(Q)/2E(Q) is more

‘explicit’ than the Galois cohomology groups one encounters for arbitrary K and m, but

proving the finiteness of the image of E(Q)/2E(Q) in A in all cases requires the finiteness

theorems from algebraic number theory, which we do not want to assume. The price we

pay for this is that we obtain a more restricted result than the full weak Mordell-Weil

theorem for elliptic curves over Q. Our first result is the following.

4.2. Proposition. Let E/Q be an elliptic curve over Q, and suppose all 2-torsion points

of E are defined over Q. Then E(Q)/2E(Q) is a finite group.

We assume that our elliptic curve E over Q is given by a Weierstrass equation

E : Y 2 = W (X), W (X) = X3 + aX2 + bX + c ∈ Q[X].

The assumption in 4.2 is that the separable polynomialW splits into linear factors in Q[X].

Our proof does extend to the general case, where no assumption is made on the roots of

W , but this generalization needs the basic results from algebraic number theory. More

precisely, it needs the fact rings of integers in number fields have finite class groups and

finitely generated unit groups. Under our assumption on W , one can keep all arithmetic

‘inside Q’ and use the explicit structure of Q∗/Q∗2 instead. As we will see in 4.9, an

adaptation of this approach using 2-isogenies leads to a proof of 4.2 in the case that W has
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at least one rational root. It is based on the explicit formulas from complex analysis that

we derived in 3.10. This 2-isogeny-method is often more suitable for actual computations

by hand of E(Q)/2E(Q).

The group law on E(Q) is given by algebraic formulas that are not so easily handled, but

they follow from the geometric interpretation that any three collinear points on E add up

to zero. Thus, three affine points (xi, yi) ∈ E(Q) for i = 1, 2, 3 have sum zero if there is

an affine line Y = lX + m of which the intersection with E consists of the three points

(counting multiplicity):

(∗) W (X)− (lX +m)2 = (X − x1)(X − x2)(X − x3).

As we will be dealing with E(Q)/2E(Q), we can work with points ‘up to inversion’, which

are determined by their x-coordinate only. To find an exponent 2 group into which we can

embed E(Q)/2E(Q), we consider the ring cubic Q-algebra R = Q[X]/(W (X)). Depending

on the number nW of rational roots of W , we have ring isomorphisms

R ∼=





a cubic number field if nW = 0;

Q × F with F a quadratic number field if nW = 1;

Q × Q × Q if nW = 3.

In the latter two cases, the corresponding projection homomorphisms πe : R → Q map

X = (X mod W (X)) ∈ R to a rational root e of W . We can reduce the identity (*) in

Q[X] modulo W to obtain

(∗∗) (x1 −X)(x2 −X)(x3 −X) = (lX +m)2 ∈ R.

For a polynomial g(X) ∈ Q[X], its reduction g(X) ∈ R is a unit if and only if g is coprime

to W . If xi − X is not in R∗, then xi = e is a root of W and (xi, yi) = (e, 0) is a 2-

torsion point of E. In this case, the element e−X generates the kernel of the projection

πe : R→ Q. Thus, we have a map

E(Q)\E(Q)[2]
ϕ−→ R∗/R∗2 (x, y) 7→ x−X mod R∗2,

which has the property that for three points on the left with sum zero, the product of the

images on the right is 1.

The map ϕ admits a natural extension to a group homomorphism ϕ : E(Q) → A =

R∗/R∗2. In order to define ϕ on a 2-torsion point (e, 0) ∈ E(Q) we let We ∈ Q[X] be the

quadratic polynomial defined by W = (X − e)We, and define ϕ on E(Q) by

ϕ(P ) =





1 if P = 0E ;

x−X mod R∗2 if P = (x, y) with y 6= 0;

e−X +We(X) mod R∗2 if P = (e, 0) ∈ E[2](Q);

Note that e − X + We(X) is in R∗ as πe(e − X + We(X) = We(e) is non-zero by the

separability of W , whereas for every other surjection π : R → F to a field F the identity

(X − e)We(X) = 0 implies π(e−X +We(X) = e− π(X) 6= 0.

Proposition 4.2 follows from the next three lemmas, in which it is proved step by step

that ϕ induces a bijection between E(Q)/2E(Q) and a finite subgroup of R∗/R∗2.
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4.3. Lemma. The map ϕ: E(Q) → R∗/R∗2 is a homomorphism of groups.

Proof. We first remark that ϕ(−P ) = ϕ(P ) = ϕ(P )−1. Therefore, we only need to show

that for points P1, P2, P3 ∈ E(Q) with sum 0E we have ϕ(P1)ϕ(P2)ϕ(P3) = 1. In the case

that one of the Pi is 0E this follows from the equality ϕ(−P ) = ϕ(P ). Assume all Pi are

affine, and put Pi = (xi, yi). Equation (∗∗) above gives ϕ(P1)ϕ(P2)ϕ(P3) = 1 if no Pi is

2-torsion.

Suppose that there is exactly one 2-torsion point among the Pi, say P1 = (x1, 0) =

(e, 0). Then we can write the line through the Pi as Y = l(X − e), and by taking out a

factor (X − e) in the equation (∗) we obtain

We(X) − l2(X − e) = (X − x2)(X − x3).

From We(X)(X− e) = 0 ∈ R we have We(X)(x2 −X)(x3 −X) = We(X)2. With (∗∗) one

sees that

(e−X +We(X))(x2 −X)(x3 −X) = (l2(X − e)2 +We(X)2) = (l(X − e) +We(X))2.

The only case left is the case that there are at least two 2-torsion points among the three

affine points P1, P2, P3 with sum 0E . This can only happen if the Pi are three distinct

2-torsion points. Then W (X) = (X − x1)(X − x2)(X− x3), and we have the isomorphism

of rings

R
∼−→ Q × Q × Q X 7→ (x1, x2, x3).

Let us write down the image of ϕ(Pi) for i = 1, 2, 3:

ϕ(x1, 0) 7→ ( (x1 − x2)(x1 − x3), x1 − x2, x1 − x3 )

ϕ(x2, 0) 7→ ( x2 − x1, (x2 − x3)(x2 − x1), x2 − x3 )

ϕ(x3, 0) 7→ ( x3 − x1, x3 − x2, (x3 − x1)(x3 − x2) )

Since the product in each column is a square, we have proved Lemma 4.3. �

4.4. Lemma. The kernel of ϕ is 2E(Q).

Proof. Suppose that P = (x, y) lies in the kernel of ϕ. We are looking for a pointQ ∈ E(Q)

with P = 2Q. In view of equation (∗∗), this means that we would like to write x−X in

R as the square of the quotient of two linear polynomials in X.

Let us first show that x−X is a square in R. If P is not 2-torsion, this is exactly the

property ϕ(P ) = 1. If P is 2-torsion, the same is true since πx(x−X) = 0 is a square, and

so are the other projections π(x− X) = π(x−X +Wx(X) as P = (x, 0) is in the kernel

of ϕ.

We can now write x − X = (p2X
2

+ p1X
2

+ p0)
2. Since X satisfies no polynomial

relation of degree less than three, x−X is not the square of a constant or a linear polynomial

in X, so p2 6= 0. For s, t ∈ Q consider the element

(sX + t)(p2X
2

+ p1X + p0) ∈ R
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By using the equation W (X) = 0 we can rewrite this expression as a degree 2 polynomial

in X. For fixed p0, p1, p2 the coefficient of X
2

is a linear homogeneous expression in s

and t. Thus, there exists a pair (s, t) 6= (0, 0) for which this coefficient vanishes. Since

p2 6= 0 we have s 6= 0. Thus, we can take s = −1 and we obtain

(t−X)(p2X
2

+ p1X + p0) = lX +m

for certain l,m ∈ Q. Squaring gives

(t−X)2(x−X) = (lX +m)2.

But now the monic cubic polynomial (lX +m)2 − (t−X)2(x−X) is divisible by W (X)

so it must be equal to W (X). It follows that Q = (t, lt+m) is an element of E(Q), and

that P is 2Q or −2Q. �

4.5. Lemma. Suppose that W (X) ∈ Z[X] and that e ∈ Z is a root of W (X). Let R→ Q

be the ring homomorphism R→ Q sending X to e and let ϕe be the composite map

ϕe : E(Q)
ϕ−→ R∗/R∗2 −→ Q∗/Q∗2

Then ϕe has finite image. More particularly, for (α mod Q∗2) in the image we have:

(1) for all p -We(e) the number ordp(α) is even;

(2) if W (X) has no real roots that are smaller than e, then α > 0.

Proof. Suppose that α = ϕe(P ) with P = (x, y) ∈ E(Q). If P = (e, 0) then α =

(We(e) mod Q∗2), so (1) holds. To see (2) in this case, note that We(X) is a monic

quadratic polynomial, so that We(e) < 0 implies that We(X) has a real root smaller

than e.

Now suppose that x 6= e so that α = (x−e mod Q∗2). If d is the denominator of x then

d3 is the denominator of W (x) and since y2 = We(x) we see that 2 | ordp(d) = − ordp(x−e)
for all prime numbers p | d. Now let p be a prime number with n = ordp(x−e) odd. If n < 0

then ordp(x) = n and ordp(W (x)) = 3n, so that ordp(y
2) is odd. Therefore, n > 0, and

since y2 = (x− e)We(x) we see that ordp(We(x)) is odd, and therefore positive. Reducing

modulo p, and using that x ≡ e mod p we see that p |We(e). The condition in (2) means

that We(t) > 0 for t ∈ R with t < e, so if x < e then we would have y2 < 0. This shows

(1) and (2).

It follows that ϕe(E(Q)) is finite because an element α ∈ Q∗/Q∗2 is determined by

its sign and, for every prime number p, the parity of ordp(α). �

4.6. Lemma. If W (X) has 3 rational roots then the map ϕ: E(Q) → R∗/R∗2 has finite

image.

Proof. By scaling x and y we may assume that W (X) ∈ Z[X] (see exercise 9). By Gauss’s

lemma this also implies that the roots e1, e2, e3 of W (X) are integers. If we identify R
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with Q × Q × Q as in the end of the proof of Lemma 4.3, then we see that the map ϕ

consists of three components ϕe1 , ϕe2 , ϕe3 , each of which has finite image by 4.5. �

This completes our proof of Proposition 4.2. The proof that the image of ϕ is finite without

conditions on the roots of W (X) is very similar to the proof of Lemma 4.5 if one knows

enough about arithmetic in number fields (see exercise 8).

Let us show how to make the upper bounds for E(Q)/2E(Q) that one obtains from

the finiteness proof a bit more explicit. If W (X) ∈ Z[X] then we say that a prime number

p is “bad,” or that E has bad reduction modulo p, if the reduction W (X) of W (X) modulo

p has a double root. For such a prime p the polynomial W (X) ∈ Fp(X) has exactly 1 or

2 roots, in which case we say that p is “instable” or “semi-stable” respectively.

4.7. Corollary. Suppose that W (X) ∈ Z[X] and that W (X) has three roots in Q. Let

nss and nis be the number of semi-stable and instable primes for W (X). Then

dimF2
(E(Q)/2E(Q)) = 2 + r with r ≤ nss + 2nis − 1.

Proof. For any prime number p let Hp ⊂ F2 × F2 × F2 be the sub-F2-vector space of

vectors (a1, a2, a2) satisfying

(1) a1 + a2 + a3 = 0;

(2) ai = 0 if there is no j 6= i with ei ≡ ej mod p.

We also define Hp for p = ∞ by replacing (2) with

(2′) ai = 0 if ei is the smallest real root of W (X).

It follows from what we have proved already that ϕ induces an injective homomorphism

E(Q)/2E(Q) → H∞ ×
∏

p prime

Hp.

The statement now follows from the fact that

dimF2
(Hp) =





0 if p is “good”;

1 if p is semi-stable or p = ∞;

2 if p is instable prime. �

Once we know that E(Q) is finitely generated, we also know that the number r above is

the rank of E. The rank itself is invariant under scaling of the elliptic curve, but the bound

given above is not. Thus, the bound works best when applied to a “minimal” Weierstrass

equation.

Let us consider again the case that W (X) has at least one rational root. If W (X) also has

a quadratic irreducible factor then the argument we alluded to before requires arithmetic

in a quadratic number field. One can avoid this by using isogenies of degree 2. The idea of
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this second method is that the multiplication-by-2-map E
2−→ E breaks up as a product

of two isogenies E → E ′ → E which are each of degree 2. One then shows that the

maps E(Q) → E′(Q) and E′(Q) → E(Q) have finite cokernel. It turns out that this last

cokernel is exactly the image of ϕe in Lemma 4.5, which we already know is finite.

One can make this argument precise by giving explicit formulas, which one recovers

from complex analysis. We assume that W (X) has a rational root. After translating we

can assume that this root is 0:

E : Y 2 = W (X), W (X) = X(X2 + aX + b) ∈ Q[X].

In order to find an equation for the isogenous curve E ′, consider the Weierstrass parame-

trization for E with period lattice Λ = Zλ1 + Zλ2 which maps the 2-torsion point λ1/2 ∈
C/Λ to (0, 0) ∈ E(C):

C/Λ → E(C) z 7→ (4℘(z) − 4℘(λ1/2)), 4℘′(z)).

Put Λ′ = Zλ1/2 + Zλ2, then we want E′(C) to be C/Λ′ and we need an isogeny ψ such

that the diagram
C/Λ −→ C/Λ′y

y
E(C)

ψ−→ E′(C).

commutes. From Section 3 we see that E ′ can be taken to be the curve

E′ : Y 2 = W (X), W (X) = X(X2 − 2aX + a2 − 4b) ∈ Q[X]

and that ψ is given by

ψ : E → E′ (x, y) 7→
(
x2 + ax+ b

x
, (1 − b/x2)y

)
,

with ψ(0E) = ψ((0, 0)) = 0E′ . Since the formula for ψ is defined with rational coefficients

we obtain a group homomorphism E(Q)
ψ−→ E′(Q).

4.8. Lemma. Let ϕ0 be the map in 4.5 for the curve E ′. Then the sequence

E(Q)
ψ−→ E′(Q)

ϕ0−→ Q∗/Q∗2

is exact

Proof. For (x′, y′) ∈ E′(Q) with x′ 6= 0 we have (x′
2

+ ax′ + b)/x′ = (y′/x′)2, so that

indeed Im(ψ) ⊂ Ker(ϕ0). To show equality, suppose that P ′ = (x′, y′) ∈ Ker(ϕ0) ⊂ E′(Q).

If P ′ = (0, 0) then ϕ0(P
′) = W0(0) = a2 − 4b is square, which means that x2 + ax+ b has

a rational root e, and P = ψ(e, 0). If P ′ = (x′, y′) 6= (0, 0), then x′ = t2 with t ∈ Q∗. To

find P = (x, y) ∈ E(Q) with ψ(P ) = P ′ substitute y = tx and solve (1 − b
x2 )tx = y′, i.e.,
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solve x2 − (y′/t)x − b = 0. This equation can be solved if (y′/t)2 + 4b is a square. But

(y′/t)2 = x′
2 − 2ax′ + a2 − 4b = (x′ − a)2 − 4b so indeed (y′/t)2 + 4b is a square, and a

point P = (x, y) exists with ψ(P ) = P ′. �

We deduce that the homomorphism ψ: E ′(Q) → E(Q) has finite cokernel. Under the

Weierstrass parametrization for E ′ the element λ2/2 ∈ C/Λ′ maps to (0, 0) ∈ E′(C). If we

apply the same process to the curve E ′ we find a curve E′′ corresponing to C/ 1
2
Λ which

is just E scaled by a factor 2. One then checks that the following diagram commutes

C/Λ −→ C/Λ′ −→ C/ 1
2Λ

2−→ C/Λy
y

y
y

E(C)
ψ−→ E′(C)

ψ′

−→ E′′(C)
∼−→ E(C).

The map E′′(C) → E(C) is just scaling (x, y) 7→ (x/4, y/8). All vertical maps are isomor-

phisms of groups, and we deduce that the E(C) → E(C) is multiplication by 2.

4.9. Proposition. If W (X) has a rational root then E(Q)/2E(Q) is finite.

Proof. The muliplication by 2 map on E(Q) is a composition

E(Q)
ψ−→ E′(Q)

ψ′

−→ E′′(Q)
∼−→ E(Q).

For each map the index of the image is finite, so E(Q)/2E(Q) is finite as well. �
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Exercises.

1. Let E(C) be the group of points of a complex elliptic curve. Show that E(C) contains a

countably infinite subgroup H such that

a. H is a torsion group and H/2H is trivial;

b. H is torsionfree and H/2H is trivial

c. H is torsionfree and H/2H is infinite;

2. Let A be a commutativeK-algebra of finite dimension overK. The norm mapNA/K : A→ K

maps a ∈ A to the determinant of the K-linear endomorphism x 7→ xa of A.

a. Show that the norm induces a homomorphism A∗ → K∗.

Let f ∈ K[X] be of degree d ≥ 1, and put A = K[X]/(f). Suppose f is separable and factors

over an algebraic closure K of K as f = (X−e1)(X−e2) · · · (X−ed) with e1, e2, . . . , ed ∈ K.

b. Show that for g ∈ K[X] we have

NA/K(g mod f) = g(e1)g(e2) · · · g(ed).

c. Show that the image of ϕ : E(Q) → R∗/R∗2 in 4.2 is contained in the kernel of the map

R∗/R∗2 −→ Q∗/Q∗2 induced by the norm map NR/Q: R→ Q.

3. Find the 2-power torsion and sets of representatives for E(Q)/2E(Q) for the following elliptic

curves E:

a. Y 2 = X(X − 3)(X + 4);

b. Y 2 = X(X − 1)(X + 3);

c. Y 2 = X(X + 1)(X − 14).

4. Show that E(Q)[4] is a group of order at most 8.

5. Let p be an odd prime number. Consider the elliptic curve E: Y 2 = X3 − p2X.

a. Compute the image of the 2-torsion of E under ϕ.

b. Show that for all P ∈ E(Q) there is a 2-torsion point Q such that ϕ(P−Q) = (d1, d2, d3)

with every di a divisor of 2.

c. Show that the rank r of E is at most 2.

d. *For primes p with p ≡ 3 mod 8 show that r = 0.

6. Find the 2-power torsion and sets of representatives for E(Q)/2E(Q) for the elliptic curve

E: Y 2 = X(X2 + 1). Try to do this both with arithmetic in Q(i) and with isogenies.

7. *Assuming that for each number field the class group is finite and the unit group of the ring

of integers is finitely generated, show that Mordell’s theorem also holds if the 2-torsion is not

rational.

8. In the proof of Lemma 4.4 we reduced to the case that a and b are integers by “scaling”.

This exercise is intended to make this more precise. Let u ∈ Q∗, and consider E′: Y 2 =

X3+u2aX2+u4bX+cu6. Show that we have isomorphisms E(Q)
∼−→ E′(Q) and R

∼−→ R′ =

Q[X]/(X3 + u2aX2 + u4bX + cu6) such that the diagram

E(Q)
ϕ−→ R∗/R∗2y

y
E′(Q)

ϕ′

−→ R′∗/R′∗2
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is commutative. How does the discriminant change if we pass from E to E ′? Can you do the

same for a map X 7→ uX + v rather than X 7→ uX?

9. Give an analogue of Corollary 4.7 in the case that W (X) has exactly one root in Q by using

the proof of Proposition 4.9.

38


