Rational points on varieties, part II (surfaces)
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1. INTRODUCTION

e Introduction to questions about arithmetic geometry [5, 8, 15, 18].
o Counting points on varieties (Batyrev—Manin conjectures) [2, 12], [5, Section F5.4].
e Theorem of Segre-Manin [6, 13, 16, 17] and [10, Theorem 29.4 and 30.1].

2t —yt

Zr—2, 19, Conjecture

Conjecture: For every t € Q there are x,y, z,w € Q such that ¢t =
2.5].

2. PICARD GROUP AND CANONICAL DIVISOR

Smoothness of points is defined by Jacobian criterion, or by regularity of the local ring,
over the algebraic closure [4, Section 1.5], [5, Section A1.4], or over the field of definition
of the point [14, Proposition 3.5.22]. See also Exercise 3 below.
Differentials [3, Chapter 16], [4, Section IL8], [5, Section A1.4], [7, Section XIX.3].

— In particular: if K is a field extension of a field k, then

dimK QK/k Z tI‘d(K/kZ)

with equality if and only if K is separably generated over k, i.e., there is a transcen-
dence basis {x} for K/k, such that K is a separable algebraic extension of k({zx}) [4,
Theorem I1.8.6A], [11, Theorem 59, p. 191]. For more about separably generatedness,
see [3, Section Al.2].

— If X is a smooth and irreducible variety over k, then the function field k(X) is
separably generated over k. (Proof: if X is smooth, then it is geometrically reduced,
so the field extension k(X)/k is separable [14, Proposition 2.2.20]. Since k(X)/k is
finitely generated, this implies that k(X)/k is separably generated [3, Section A1.2].)

e Exterior product and exterior algebra [3, App A2.3], [7, Chapter XIX].
e Discrete valuation rings and regular local rings [1, Chapters 9 and 11, in particular Propo-

sition 9.2 and Theorem 11.22], [3, Sections 10.3 and 11.1].
Localization of a regular local ring at a prime ideal is regular [3, Corollary 19.14], [4,
Theorem I1.8.14A], [11, p. 139].

e Divisors and Picard group [4, Section II.6], [5, Section A2].
e Canonical divisor of complete intersection [4, Proposition 11.8.20, Example 11.8.20.3, Ex-

ercise 11.8.4], [5, Exercise A.2.7].

EXERCISES

Suppose P is a smooth point on a variety X over a field k. Set n = dimX. Let
Z1,%2,...,Ty be local parameters at P, i.e., they generate the maximal ideal of the local
ring Ox p. Let y1,¥2,...,yn be local parameters as well. Show that there exists a function
[ € O% p such that

dry Ndzo N -+ Ndxy = f-dys ANdya A -+ A dyy,.

For any d € {2,3,4,5} and t € {2,3,4,5,6}, and your choice of integer M > 6, count,
for all 0 < m < M, the number of rational points [x : y : 2 : w] € P? of height at most
2™ on the surface given by t(z¢ — w?) = 2¢ — y? that do not lie on the curves given by
24 —w? = 2% — y? = 0. (Give a table for each d.)

Let p > 2 be a prime and set k' = F,(s). Set t = s and let k C k' be the field Fp(t), so
that k' is isomorphic to k[u]/(uP —t). Let k be an algebraic closure of k’. Let C C AZ(z,y)
be the affine curve over k given by

y? =aP —t.

Let P € C(K’) be the point P = (s,0).



(a) Show that C' is irreducible.

(b) Use the Jacobi criterion to show that C' is not smooth at P, and C is smooth at all
other points in C(k).

(c) The local ring Oc, p (over k') is isomorphic to the localization of [z, y]/(—y* 4+ 2P —1)
at the maximal ideal (y,z — s). Show that O¢ p is not regular.

(d) Show that the localization of k[z,y]/(—y? + 2P — t) at the maximal ideal (y,zP — t)

is regular.

(bonus) Suppose X C P" is a smooth complete intersection over k of ¢ hypersurfaces of degrees

(1]
2]

[3]

e1,...,¢e;. Let H € Div X be a hyperplane section of X, i.e., there is a hyperplane H’ of
P™ such that H = H' N X. You may assume that H = H' N X is irreducible, given by
xo = 0, and that for each 4, the function zo/z; € k(X) is a generator of the maximal ideal
of the local ring Ox g.

(a) Show that the canonical class of X is the class of (—n — 14 e;)H if t = 1.

(b) Show that the canonical class of X is the class of (—n — 1+ . e;)H in general.

See [5, Exercise A.2.7].
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