Rational points on varieties, part II (surfaces)

Ronald van Luijk WONDER, October 24, 2013

1. Introduction

- Introduction to questions about arithmetic geometry [5, 8, 15, 18].
- Counting points on varieties (Batyrev–Manin conjectures) [2, 12], [5, Section F5.4].
- Theorem of Segre–Manin [6, 13, 16, 17] and [10, Theorem 29.4 and 30.1].
- Conjecture: For every $t \in \mathbb{Q}$ there are $x, y, z, w \in \mathbb{Q}$ such that $t = \frac{x^4 y^4}{z^4 w^4}$, [9, Conjecture 2.5].

2. Picard group and canonical divisor

- Smoothness of points is defined by Jacobian criterion, or by regularity of the local ring, over the algebraic closure [4, Section I.5], [5, Section A1.4], or over the field of definition of the point [14, Proposition 3.5.22]. See also Exercise 3 below.
- Differentials [3, Chapter 16], [4, Section II.8], [5, Section A1.4], [7, Section XIX.3].
 - In particular: if K is a field extension of a field k, then

$$\dim_K \Omega_{K/k} \ge \operatorname{tr.d.}(K/k)$$

with equality if and only if K is separably generated over k, i.e., there is a transcendence basis $\{x_{\lambda}\}$ for K/k, such that K is a separable algebraic extension of $k(\{x_{\lambda}\})$ [4, Theorem II.8.6A], [11, Theorem 59, p. 191]. For more about separably generatedness, see [3, Section A1.2].

- If X is a smooth and irreducible variety over k, then the function field k(X) is separably generated over k. (Proof: if X is smooth, then it is geometrically reduced, so the field extension k(X)/k is separable [14, Proposition 2.2.20]. Since k(X)/k is finitely generated, this implies that k(X)/k is separably generated [3, Section A1.2].)
- Exterior product and exterior algebra [3, App A2.3], [7, Chapter XIX].
- Discrete valuation rings and regular local rings [1, Chapters 9 and 11, in particular Proposition 9.2 and Theorem 11.22], [3, Sections 10.3 and 11.1].
- Localization of a regular local ring at a prime ideal is regular [3, Corollary 19.14], [4, Theorem II.8.14A], [11, p. 139].
- Divisors and Picard group [4, Section II.6], [5, Section A2].
- Canonical divisor of complete intersection [4, Proposition II.8.20, Example II.8.20.3, Exercise II.8.4], [5, Exercise A.2.7].

EXERCISES

(1) Suppose P is a smooth point on a variety X over a field k. Set $n = \dim X$. Let x_1, x_2, \ldots, x_n be local parameters at P, i.e., they generate the maximal ideal of the local ring $\mathcal{O}_{X,P}$. Let y_1, y_2, \ldots, y_n be local parameters as well. Show that there exists a function $f \in \mathcal{O}_{X,P}^*$ such that

$$dx_1 \wedge dx_2 \wedge \cdots \wedge dx_n = f \cdot dy_1 \wedge dy_2 \wedge \cdots \wedge dy_n.$$

- (2) For any $d \in \{2, 3, 4, 5\}$ and $t \in \{2, 3, 4, 5, 6\}$, and your choice of integer $M \geq 6$, count, for all $0 \leq m \leq M$, the number of rational points $[x:y:z:w] \in \mathbb{P}^3$ of height at most 2^m on the surface given by $t(z^d w^d) = x^d y^d$ that do not lie on the curves given by $z^d w^d = x^d y^d = 0$. (Give a table for each d.)
- (3) Let p > 2 be a prime and set $k' = \mathbb{F}_p(s)$. Set $t = s^p$ and let $k \subset k'$ be the field $\mathbb{F}_p(t)$, so that k' is isomorphic to $k[u]/(u^p t)$. Let \overline{k} be an algebraic closure of k'. Let $C \subset \mathbb{A}^2_k(x, y)$ be the affine curve over k given by

$$y^2 = x^p - t.$$

Let $P \in C(k')$ be the point P = (s, 0).

- (a) Show that C is irreducible.
- (b) Use the Jacobi criterion to show that C is not smooth at P, and C is smooth at all other points in $C(\overline{k})$.
- (c) The local ring $\mathcal{O}_{C,P}$ (over k') is isomorphic to the localization of $k'[x,y]/(-y^2+x^p-t)$ at the maximal ideal (y,x-s). Show that $\mathcal{O}_{C,P}$ is not regular.
- (d) Show that the localization of $k[x,y]/(-y^2+x^p-t)$ at the maximal ideal (y,x^p-t) is regular.
- (bonus) Suppose $X \subset \mathbb{P}^n$ is a smooth complete intersection over k of t hypersurfaces of degrees e_1, \ldots, e_t . Let $H \in \text{Div } X$ be a hyperplane section of X, i.e., there is a hyperplane H' of \mathbb{P}^n such that $H = H' \cap X$. You may assume that $H = H' \cap X$ is irreducible, given by $x_0 = 0$, and that for each i, the function $x_0/x_i \in k(X)$ is a generator of the maximal ideal of the local ring $\mathcal{O}_{X,H}$.
 - (a) Show that the canonical class of X is the class of $(-n-1+e_1)H$ if t=1.
 - (b) Show that the canonical class of X is the class of $(-n-1+\sum_i e_i)H$ in general. See [5, Exercise A.2.7].

References

- [1] M. Atiyah and I. MacDonald, Introduction to commutative algebra, Addison-Wesley, 1969.
- [2] V. Batyrev and Yu. Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Math. Ann. 286 (1990), no. 1-3, 27-43.
- [3] D. Eisenbud, Commutative algebra, with a view toward algebraic geometry, Graduate Texts in Mathematics 150, corrected third printing, Springer, 1999.
- [4] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, corrected eighth printing, Springer, 1997.
- [5] M. Hindry and J. Silverman, Diophantine Geometry. An Introduction, Graduate Texts in Mathematics, 201, Springer, 2000.
- [6] J. Kollár, Unirationality of cubic hypersurfaces, J. Inst. Math. Jussieu 1 (2002), no. 3, 467–476.
- [7] S. Lang, Algebra, third edition, Addison-Wesley, 1997.
- [8] S. Lang, Survey of Diophantine geometry, second printing, Springer, 1997.
- [9] R. van Luijk, Density of rational points on elliptic surfaces, Acta Arithmetica, Volume 156 (2012), no. 2, 189–199.
- [10] Yu. Manin, Cubic Forms, North-Holland, 1986.
- [11] H. Matsumura, Commutative algebra, W.A. Benjamin Co., New York, 1970.
- [12] E. Peyre, Counting points on varieties using universal torsors, Arithmetic of higher dimensional algebraic varieties, eds. B. Poonen and Yu. Tschinkel, Progress in Mathematics 226, Birkhäuser, 2003.
- [13] M. Pieropan, On the unirationality of Del Pezzo surfaces over an arbitrary field, Algant Master thesis, http://www.algant.eu/documents/theses/pieropan.pdf.
- [14] B. Poonen, Rational points on varieties, http://www-math.mit.edu/~poonen/papers/Qpoints.pdf
- [15] B. Poonen and Yu. Tschinkel, Arithmetic of higher dimensional algebraic varieties, Progress in Mathematics **226**, Birkhäuser, 2003.
- [16] B. Segre, A note on arithmetical properties of cubic surfaces, J. London Math. Soc. 18 (1943), 24–31.
- [17] B. Segre, On the rational solutions of homogeneous cubic equations in four variables, Math. Notae 11 (1951), 1–68.
- [18] Sir P. Swinnerton-Dyer, *Diophantine equations: progress and problems*, Arithmetic of higher dimensional algebraic varieties, eds. B. Poonen and Yu. Tschinkel, Progress in Mathematics **226**, Birkhäuser, 2003.