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Rational points on varieties, part II (surfaces)
Ronald van Luijk
WONDER, October 31, 2013

1. PICARD GROUP AND CANONICAL DIVISOR

Criterion for ¢y, being a closed immersion in terms of linear system L [5, Remark 11.7.8.2],
[6, Theorem A3.2.1].

Ampleness on curves [5, Proposition IV.3.1 and Corollary IV.3.2], [6, A3.2.2].

Kodaira dimension [5, Section V.6], [6, Section F5.1].

Kodaira dimension for curves [6, Example F5.1.1].

Classification of surfaces [5, Section V.6], [6, F5.1].

General type or very canonical [5, Section V.6], [6, F5.2], [10, Section I1.2].
Bombieri-Lang conjecture [6, Section F5.2], [10, Section I.3].

Batyrev—Manin conjectures [2, 15], [6, Section F5.4].

Heuristics for number of rational points on surface of degree d in P3.

2. EXERCISES

Suppose X C P" is a projective variety (so irreducible) over k of positive dimension.
Denote the inclusion X C P" by ¢. Let H' € DivP" be a hyperplane that does not contain
X, and set H = (*(H') (so H is a hyperplane section on X).
(a) Welet Lpn(H') and Lx(H) denote the usual k-subspaces of the function fields k(P™)
and k(X), respectively. Show that restriction yields a natural linear map

i Lpn(H') — Lx(H).

(b) Show by examples that the linear map ¢* of (1) need not be injective and ¢* need
not be surjective, either. [Hint: for the failure of surjectivity, search through some
examples of [5, Section I1.7].]

(c¢) Show that for every integer m we have

—00 (m < 0),
K(X,mH)=1<0 (m=0),
dimX (m > 0).

Find all sequences n,eq,es,...,e; of integers at least 2, such that complete intersections
in P™ of hypersurfaces of degrees e, es, ..., e; are not of general type and have dimension
at most 3.

Let f: P(r,s) x PX(t,u) — P3(z,y, z,w) be the Segre embedding, given by
([r:s]y[t:u]) — [rt:ru: st: sul.
(a) Which linear system L on P! x P! is this map associated to?
(b) Show that the image X of f is given by yz = zw and show that f induces an
isomorphism onto its image.
(¢) Find an a € Q such that aH is a canonical divisor on X for every hyperplane section

H of X.
(d) Show that there exists a constant ¢ such that

#{P € X(Q) : Hps(P) < B} ~cB*log B

as B goes to oc.

3. NEXT TIME

Extended moving lemma and intersection numbers constant within divisor classes [6,
A2.3.1].
Intersection pairing on Pic X when X is normal and projective surface [5, Theorem V.1.1],
[6, Section A2.3], [7, Appendix B].
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o Self intersection: C - D = degy L(D) ® O¢ restricted to C = D [5, Lemma V.1.3].

e X C P" a surface, H € Div X a hyperplane section, C C X a curve. Then H?> = H - H =
deg X [6, A2.3], and H - C = degC. [5, Exercise V.1.2].

e Adjunction formula 2¢(C) —2 = C - (C 4+ Kx) for smooth curve C' on smooth projective
surface X [5, Proposition V.1.5], [6, Theorem A4.6.2].

e Riemann-Roch for surfaces [5, Theorem V.1.6], [6, Theorem A4.6.3].

e Kodaira Vanishing [5, Remark I1.7.15, Exercise V.4.12], [6, Remark A4.6.3.2].

e Let f: S — S be a surjective morphism of smooth, irreducible, projective surfaces that
is generically finite of degree d. Then for any D, D’ € DivS’, we have (f*D) - (f*D’) =
d(D - D') [3, Proposition 1.8] for characteristic zero, [6, A2.3.2] for f finite, combine [11,
Propositions 5.2.32 and 9.2.11] for the general case.

e Blow-up [3, Section IL.1], [5, Section 1.4], [6, A1.2.6.(f)].

— effect on Pic
— effect on canonical divisor
— self intersection
— numerical conditions for being an exceptional curve
— self intersection of strict transforms
e algebraic and numerical equivalence
— difference is torsion
— when all the same?
e ample + (divisor with no base points) = ample
e cubic surfaces
— embedding
— 27 lines
e del Pezzo surfaces
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