Rational points on varieties, part II (surfaces)
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WONDER, November 14, 2013

1. INTERSECTION THEORY AND BLOWING UP

Extended moving lemma and intersection numbers being constant within divisor classes
[6, A2.3.1].

Intersection pairing on Pic X when X is normal and projective surface [5, Theorem V.1.1],
[6, Section A2.3], [7, Appendix B].

o Self intersection: C' - D = deg L(D) ® O¢ restricted to C = D [5, Lemma V.1.3].
e X C P" a surface, H € Div X a hyperplane section, C C X a curve. Then H?> = H-H =

deg X [6, A2.3], and H - C = degC. [5, Exercise V.1.2].

Adjunction formula 2¢(C) —2 = C - (C + Kx) for smooth curve C' on smooth projective
surface X [5, Proposition V.1.5], [6, Theorem A4.6.2]. If C' is not smooth, then you should
use the arithmetic genus instead.

e Riemann-Roch for surfaces [5, Theorem V.1.6], [6, Theorem A4.6.3].
e Kodaira Vanishing [5, Remark I1.7.15, Exercise V.4.12], [6, Remark A4.6.3.2].
e Let f: S — S’ be a surjective morphism of smooth, irreducible, projective surfaces that

is generically finite of degree d. Then for any D, D’ € DivS’, we have (f*D) - (f*D’) =
d(D - D') [3, Proposition L1.8] for characteristic zero, [6, A2.3.2] for f finite, combine [11,
Propositions 5.2.32 and 9.2.11] for the general case.
Blow-up [3, Section II.1], [5, Section I.4], [6, A1.2.6.(f)].

— effect on Pic.

— effect on canonical divisor.

— self intersection is —1.

2. EXERCISES

Let X be a nice surface over a field k, and P € X(k) a point. Let 7: X — X be the
blow-up of X at P. Suppose C' C X is an irreducible curve with multiplicity m at P. Let
C be the strict transform of C' on X.
(a) Show that we have C? = C? —
(b) Show that the arithmetic genera of C and C are related by p,(C) = pa (C)—im(m—1).
(c) Consider X = P2. Show that an irreducible curve of degree d in P? has at most
%(d —1)(d — 2) singular points, and that if equality holds, then all singular points are
double points. You may use that the arithmetic genus of a nice curve is nonnegative.
(d) Suppose k = Q. Let C C P%(z,y,2) be given by 2222 = 2* + y*. Then C is smooth
outside the point P = [0 : 0 : 1], which is a double point on C. (This type of
singularity is called a tacnode.) Show that the strict transform C on the blow-up X
of X at P has one singular point, say R, and that R is a node on C.

(e) Let X be the blow-up of X at R, and let C be the strict transform of ¢ on X. Show

that C’ is smooth and has genus 1.
It is a fact that if Y is a nice surface and E C Y is a nice curve that is isomorphic to P!
and has self intersection E2 = —1, then F is an exceptional curve in the sense that there
exists a nice surface X and a point P on X and a morphism 7: Y — X that is (isomorphic
to) the blow-up of X at P, with E corresponding to the exceptional curve above P.
(a) Let Y be a nice surface with canonical divisor Ky, and £ C Y a nice curve. Show
that F is an exceptional curve if and only if £E? = E - Ky = —1.
(b) Let Y be a nice surface on which the anticanonical divisor —Ky is ample. Let E C Y
be a nice curve. Show that F is an exceptional curve if and only if its self intersection
E? is negative.
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(3) Let C C P3 be a nice curve that is the complete intersection of two surfaces of degrees d
and e. Using intersection theory on one of these two surfaces, show that the genus of C
equals 1+ Jde(d+e —4).
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