Rational points on varieties, part II (surfaces)

Ronald van Luijk WONDER, November 14, 2013

1. Intersection Theory and Blowing up

- Extended moving lemma and intersection numbers being constant within divisor classes [6, A2.3.1].
- Intersection pairing on Pic X when X is normal and projective surface [5, Theorem V.1.1], [6, Section A2.3], [7, Appendix B].
- Self intersection: $C \cdot D = \deg_C \mathcal{L}(D) \otimes \mathcal{O}_C$ restricted to C = D [5, Lemma V.1.3].
- $X \subset \mathbb{P}^n$ a surface, $H \in \text{Div } X$ a hyperplane section, $C \subset X$ a curve. Then $H^2 = H \cdot H = \deg X$ [6, A2.3], and $H \cdot C = \deg C$. [5, Exercise V.1.2].
- Adjunction formula $2g(C) 2 = C \cdot (C + K_X)$ for smooth curve C on smooth projective surface X [5, Proposition V.1.5], [6, Theorem A4.6.2]. If C is not smooth, then you should use the *arithmetic genus* instead.
- Riemann-Roch for surfaces [5, Theorem V.1.6], [6, Theorem A4.6.3].
- Kodaira Vanishing [5, Remark II.7.15, Exercise V.4.12], [6, Remark A4.6.3.2].
- Let $f: S \to S'$ be a surjective morphism of smooth, irreducible, projective surfaces that is generically finite of degree d. Then for any $D, D' \in \text{Div } S'$, we have $(f^*D) \cdot (f^*D') = d(D \cdot D')$ [3, Proposition I.8] for characteristic zero, [6, A2.3.2] for f finite, combine [11, Propositions 5.2.32 and 9.2.11] for the general case.
- Blow-up [3, Section II.1], [5, Section I.4], [6, A1.2.6.(f)].
 - effect on Pic.
 - effect on canonical divisor.
 - self intersection is -1.

2. Exercises

- (1) Let X be a nice surface over a field k, and $P \in X(k)$ a point. Let $\pi \colon \tilde{X} \to X$ be the blow-up of X at P. Suppose $C \subset X$ is an irreducible curve with multiplicity m at P. Let \tilde{C} be the strict transform of C on \tilde{X} .
 - (a) Show that we have $\tilde{C}^2 = C^2 m^2$.
 - (b) Show that the arithmetic genera of C and \tilde{C} are related by $p_a(\tilde{C}) = p_a(C) \frac{1}{2}m(m-1)$.
 - (c) Consider $X = \mathbb{P}^2$. Show that an irreducible curve of degree d in \mathbb{P}^2 has at most $\frac{1}{2}(d-1)(d-2)$ singular points, and that if equality holds, then all singular points are double points. You may use that the arithmetic genus of a nice curve is nonnegative.
 - (d) Suppose $k = \mathbb{Q}$. Let $C \subset \mathbb{P}^2(x,y,z)$ be given by $x^2z^2 = x^4 + y^4$. Then C is smooth outside the point P = [0:0:1], which is a double point on C. (This type of singularity is called a tacnode.) Show that the strict transform \tilde{C} on the blow-up \tilde{X} of X at P has one singular point, say R, and that R is a node on \tilde{C} .
 - (e) Let $\tilde{\tilde{X}}$ be the blow-up of \tilde{X} at R, and let $\tilde{\tilde{C}}$ be the strict transform of \tilde{C} on $\tilde{\tilde{X}}$. Show that $\tilde{\tilde{C}}$ is smooth and has genus 1.
- (2) It is a fact that if Y is a nice surface and $E \subset Y$ is a nice curve that is isomorphic to \mathbb{P}^1 and has self intersection $E^2 = -1$, then E is an exceptional curve in the sense that there exists a nice surface X and a point P on X and a morphism $\pi: Y \to X$ that is (isomorphic to) the blow-up of X at P, with E corresponding to the exceptional curve above P.
 - (a) Let Y be a nice surface with canonical divisor K_Y , and $E \subset Y$ a nice curve. Show that E is an exceptional curve if and only if $E^2 = E \cdot K_Y = -1$.
 - (b) Let Y be a nice surface on which the anticanonical divisor $-K_Y$ is ample. Let $E \subset Y$ be a nice curve. Show that E is an exceptional curve if and only if its self intersection E^2 is negative.

1

(3) Let $C \subset \mathbb{P}^3$ be a nice curve that is the complete intersection of two surfaces of degrees d and e. Using intersection theory on one of these two surfaces, show that the genus of C equals $1 + \frac{1}{2}de(d + e - 4)$.

References

- [1] M. Atiyah and I. MacDonald, Introduction to commutative algebra, Addison-Wesley, 1969.
- [2] V. Batyrev and Yu. Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Math. Ann. 286 (1990), no. 1-3, 27-43.
- A. Beauville, Complex algebraic surfaces, second edition, LMS Student texts 34, Cambridge University Press, 1996.
- [4] D. Eisenbud, Commutative algebra, with a view toward algebraic geometry, Graduate Texts in Mathematics 150, corrected third printing, Springer, 1999.
- [5] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, corrected eighth printing, Springer, 1997.
- [6] M. Hindry and J. Silverman, Diophantine Geometry. An Introduction, Graduate Texts in Mathematics, 201, Springer, 2000.
- [7] S.L. Kleiman, The Picard scheme, Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence, RI, 2005, 235-321.
- [8] J. Kollár, Unirationality of cubic hypersurfaces, J. Inst. Math. Jussieu 1 (2002), no. 3, 467–476.
- [9] S. Lang, Algebra, third edition, Addison-Wesley, 1997.
- [10] S. Lang, Survey of Diophantine geometry, second printing, Springer, 1997.
- [11] Q. Liu, Algebraic geometry and arithmetic curves, translated by Reinie Erné, Oxford GTM 6, 2002.
- [12] R. van Luijk, Density of rational points on elliptic surfaces, Acta Arithmetica, Volume 156 (2012), no. 2, 189–199.
- [13] Yu. Manin, Cubic Forms, North-Holland, 1986.
- [14] H. Matsumura, Commutative algebra, W.A. Benjamin Co., New York, 1970.
- [15] E. Peyre, Counting points on varieties using universal torsors, Arithmetic of higher dimensional algebraic varieties, eds. B. Poonen and Yu. Tschinkel, Progress in Mathematics 226, Birkhäuser, 2003.
- [16] M. Pieropan, On the unirationality of Del Pezzo surfaces over an arbitrary field, Algant Master thesis, http://www.algant.eu/documents/theses/pieropan.pdf.
- [17] B. Poonen, Rational points on varieties, http://www-math.mit.edu/~poonen/papers/Qpoints.pdf
- [18] B. Poonen and Yu. Tschinkel, Arithmetic of higher dimensional algebraic varieties, Progress in Mathematics **226**, Birkhäuser, 2003.
- [19] B. Segre, A note on arithmetical properties of cubic surfaces, J. London Math. Soc. 18 (1943), 24-31.
- [20] B. Segre, On the rational solutions of homogeneous cubic equations in four variables, Math. Notae 11 (1951), 1–68.
- [21] Sir P. Swinnerton-Dyer, *Diophantine equations: progress and problems*, Arithmetic of higher dimensional algebraic varieties, eds. B. Poonen and Yu. Tschinkel, Progress in Mathematics **226**, Birkhäuser, 2003.
- [22] A. Várilly-Alvarado, Arithmetic of del Pezzo and K3 surfaces, http://math.rice.edu/~av15/dPsK3s.html.