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WONDER, December 5, 2013

1. Del Pezzo surfaces of degree at least five

• Lang-Nishimura [22, Lemma 1.1].
• Severi-Brauer varieties over a global field satisfy the Hasse principle [22, Theorem 2.4].
• Let X be a projective variety over a field k with a separable closure ks and absolute

Galois group Gk. Assume that X has a k-rational point. Then the natural injection
PickX ↪→ (Picks Xks)Gk is an isomorphism.

Proof (sketch). It suffices to show every very ample class c ∈ (Picks Xks)Gk is in the
image. Let L = {D ∈ c : D ≥ 0} be the associated complete linear system. Then L
has the structure of a variety over k, and over ks the base change Lks is isomorphic to
Pn
ks . Because c is very ample, L induces a morphism X → L∗, where L∗ is the dual of
L, sending P to the hyperplane {D ∈ L : P ∈ Supp D}. Since X contains a rational
point, we find that L∗ has a rational point, corresponding to a divisor A ∈ Divk L
whose base change Aks is linearly equivalent with a hyperplane of Pn

ks . Therefore,
the linear system |A| (on L!) determines an isomorphism L → Pn over k, so L has
a rational point, corresponding to a divisor D ∈ c defined over k. Alternatively, the
fact that L∗ has a rational point implies that L∗ itself is isomorphic to Pn, hence so
is its dual L.

If k is a global field and X has a kv-point for all places v of k, then the same conclusion
holds.

Proof (sketch). This follows pretty much in the same way, but uses that L is a
Severi-Brauer variety, and therefore satisfies the Hasse principle.

• Let X over k be a del Pezzo surface of degree at least 5. If X has a k-point, then X is
birational to P2 over k. If the degree of X is 5 or 7, then X automatically has a k-point.
Moreover, if k is global, then X satisfies the Hasse principle. [22, Theorem 2.1].

2. A remark on Exercise 3(c) from last week

Because I’ve never seen this worked out in the literature (they always say “a trivial computation
shows”), I thought I’d actually work out how to find all 240 curves in a way that does not cause
much of a headache. There are probably even more short-cuts.

Let π : X → P2 be the blow-up of P2 in r ≤ 8 points P1, . . . , Pr in general position. Let KX

be a canonical divisor. Then PicX is isomorphic to Zr+1 with basis L = π∗`, E1, . . . , Er, where
` is a line in P2, and Ei is the exceptional curve above Pi. Suppose C is an exceptional curve on
X. Then C is irreducible and there exist integers b, a1, . . . , ar such that C is linearly equivalent
to bL−

∑
i aiEi. The intersection numbers C2 = KX · C = −1 yield

(1)
∑
i

a2i = b2 + 1 and
∑
i

ai = 3b− 1.

Assume that C is not one of the Ei. Then C intersects all Ei non-negatively, which implies
ai = C · Ei ≥ 0. This in turn implies b ≥ 1. If you assume that C is not the strict transform of a
line through two of the eight points, and not of a quadric through five of them either, then these
curves also have non-negative intersection with C, which yields more interesting inequalities that
we will not need.

For each j, we will bound aj in terms of r and b. We have∑
i6=j

a2i = b2 + 1− a2j and
∑
i 6=j

ai = 3b− 1− aj .

The inequality

(2)

∑
i 6=j ai

r − 1
≤

√∑r
i 6=j a

2
i

r − 1
1



2

between the arithmetic and quadratic mean therefore implies

(3b− 1− aj)2 ≤ (r − 1)(b2 + 1− a2j ),

or, equivalently, (complete the square, viewing as polynomial in aj)

(3) (raj − (3b− 1))2 ≤ (r − 1)(r(b2 + 1)− (3b− 1)2).

As any integral solution to (1) for r ≤ 8 extends to a solution for r = 8 by adding zeros, we
may assume r = 8. The right-hand side of (3) has to be non-negative, which is equivalent to
(b+1)(b−7) ≤ 0, so we get b ≤ 7. We consider all cases b ∈ {1, 2, . . . , 7} separately. The following
table gives, for each b, the interval that aj is contained in for each j, by (3), in the second column.
Here we used that the right-hand side of (3) may be rounded down to the nearest integral square.
The third column lists the integral values in that interval.

b aj ∈ aj ∈ t 8t+ 9− 3b
1 [− 7

8 ,
11
8 ] {0, 1} 0 6

2 [− 5
8 ,

15
8 ] {0, 1} 0 3

3 [− 2
8 ,

18
8 ] {0, 1, 2}

4 [ 18 ,
21
8 ] {1, 2} 1 5

5 [ 58 ,
23
8 ] {1, 2} 1 2

6 [ 108 ,
24
8 ] {2, 3} 2 7

7 { 52} ∅
Given that aj is integral, we find that for b = 7 there are no solutions. For b 6∈ {3, 7}, there are
only two possible values for aj , say t and t + 1. If we let n denote the number of j with aj = t,
then we obtain

3b− 1 =
∑
i

ai = nt+ (r − n)(t+ 1) = rt+ r − n,

so n = rt+ r+ 1− 3b = 8t+ 9− 3b, which is listed in the table as well. Indeed, all these solutions
also satisfy

∑
i a

2
i = b2 + 1.

For b = 3, we can apply a trick that actually works for any b ≤ 5. We have 0 ≤ aj ≤ 2, so
a2j − aj is nonzero if and only if aj = 2, in which case we have a2j − aj = 2. Hence, the identity∑

i

(a2i − ai) = (b2 + 1)− (3b− 1) = b2 − 3b+ 2

shows that for exactly 1
2 (b2−3b+ 2) of the indices j we have aj = 2. The number of j with aj = 1

then equals (
∑

i ai) −
1
2 (b2 − 3b + 2) · 2 = −b2 + 6b − 3. Again these all do indeed give solutions

to (1).
This yields the following table, containing the types of divisor classes [C] with C2 = C ·KX =

−1, and the number of such classes for each r.

(b; a1, a2, a3, a4, a5, a6, a7, a8) r 1 2 3 4 5 6 7 8
(0;−1, 0, 0, 0, 0, 0, 0, 0) r 1 2 3 4 5 6 7 8
(1; 1, 1, 0, 0, 0, 0, 0, 0)

(
r
2

)
0 1 3 6 10 15 21 28

(2; 1, 1, 1, 1, 1, 0, 0, 0)
(
r
5

)
0 0 0 0 1 6 21 56

(3; 2, 1, 1, 1, 1, 1, 1, 0) 0 0 0 0 0 0 7 56
(4; 2, 2, 2, 1, 1, 1, 1, 1) 0 0 0 0 0 0 0 56
(5; 2, 2, 2, 2, 2, 2, 1, 1) 0 0 0 0 0 0 0 28
(6; 3, 2, 2, 2, 2, 2, 2, 2) 0 0 0 0 0 0 0 8
total 1 3 6 10 16 27 56 240

To see that these curves indeed correspond to 240 actual exceptional curves, we first use
Riemann-Roch to show that the classes contain an effective divisor. For each C, we have

`(C)− s(C) + `(KX −C) = 1
2C(C −KX) + 1 + pa(X) = 1

2 (C2−C ·KX) + 1 = 1
2 (−1 + 1) + 1 = 1,

so `(C)+`(KX−C) ≥ 1, so `(C) ≥ 1 or `(KX−C) ≥ 1, which implies that C is linearly equivalent
to an effective curve, or KX − C is. However, the ample divisor −KX intersects every effective
divisor positively, so the inequality −KX · (KX − C) = −K2

X − 1 < 0 shows that KX − C is not
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linearly equivalent to an effective divisor. We conclude that C is, so each of the divisor classes
that we found does indeed contain an effective divisor. Because the ample divisor −KX intersects
each component of such a divisor positively, and we have (−KX) · C = 1, we also find that these
divisors are prime/irreducible. Their arithmetic genus satisfies

2pa(C)− 2 = C · (C +KX) = C2 + C ·KX = −2,

so pa(C) = 0, which implies that C is smooth.
Finally, each class contains a unique effective curve, as two different irreducible curves can not

intersect negatively.
Hence, we really have 1, 3, 6, 10, 16, 27, 56, 240 exceptional curves for r = 1, 2, 3, 4, 5, 6, 7, 8, re-

spectively.

3. Del Pezzo surfaces of degree 6

We now sketch an alternative completion of the proof of the fact that Del Pezzo surfaces of
degree 6 over a global field satisfy the Hasse principle.

Let X be a variety over a field k and m a positive integer. Then there exists a variety SymmX
over k of which the k-points are the orbits of

∏m
i=1X(k) under the action of the permutation

group Sm, acting by permuting the m factors. Moreover, if X is smooth, then SymmX is smooth
at all points corresponding to orbits of m-tuples of m different points. You may use this in the
exercises below as well.

Let X be a del Pezzo surface of degree 6, embedded anticanonically in P6. Let

z = ([(Q,Q′, Q′′)], [(R,R′)]) ∈ (Sym3X)× (Sym2X)

be a point for which Q,Q′, Q′′, R,R′ are five different points. Let Mz be the 4-dimensional linear
subspace of P6 spanned by these five points. If z is general enough, then the intersection Mz ∩X
is 0-dimensional; it then has degree 6, with five intersection points already known, so the sixth
intersection point is unique. This yields a rational map

(Sym3X)× (Sym2X) 99K X,

sending z to the sixth intersection points of Mz ∩X.
Now let K and L be separable field extensions of k of degrees 2 and 3, respectively. Suppose

X(K) and X(L) are not empty, say Q ∈ X(L) and R ∈ X(K). If Q or R is defined over k, then
X(k) is not empty. Otherwise, let Q′ and Q′′ be the conjugates of Q and R′ the conjugate of R.
Then z = ([(Q,Q′, Q′′)], [(R,R′)]) ∈ (Sym3X) × (Sym2X) is a smooth point over k. Since X is
proper, we find by Lang-Nishimura that X also has a k-rational point.

Together with what we did in class, this proves that X satisfies the Hasse principle if k is a
global field. For the proof in class, see [22, 2.4. case 4.] and the references given there. For this
alternative proof, see [17, 9.4.4].

4. Exercises

(1) Suppose X is a del Pezzo surface of degree 5 over a field k. Let P ∈ X(k) be a point that
lies on (at least) one of the 10 exceptional curves of X. Show that X is not minimal, i.e.,
there exists a Galois stable set of exceptional curves that pairwise do not intersect (which
can be blown down over k, hence the terminology “not minimal”).

(2) Let X be a del Pezzo surface of degree d ≥ 3. Suppose that X has a point over a separable
field extension K of k of degree [K : k] = d− 1. Show that X also has a k-rational point.

(3) Email me before Monday, December 9, with the times on Monday, December 16, that you
can not do the oral exam.
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[16] M. Pieropan, On the unirationality of Del Pezzo surfaces over an arbitrary field, Algant Master thesis,

http://www.algant.eu/documents/theses/pieropan.pdf.

[17] B. Poonen, Rational points on varieties, http://www-math.mit.edu/~poonen/papers/Qpoints.pdf
[18] B. Poonen and Yu. Tschinkel, Arithmetic of higher dimensional algebraic varieties, Progress in Mathematics

226, Birkhäuser, 2003.
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