Rational points on varieties, part II (surfaces)
Ronald van Luijk
WONDER, December 5, 2013

1. DEL PEZZO SURFACES OF DEGREE AT LEAST FIVE

e Lang-Nishimura [22, Lemma 1.1].
e Severi-Brauer varieties over a global field satisfy the Hasse principle [22, Theorem 2.4].
e Let X be a projective variety over a field k£ with a separable closure k% and absolute
Galois group Gj. Assume that X has a k-rational point. Then the natural injection
Picy X < (Picgs Xps)¥* is an isomorphism.
Proof (sketch). It suffices to show every very ample class ¢ € (Picgs Xgs)%* is in the
image. Let L = {D € ¢ : D > 0} be the associated complete linear system. Then L
has the structure of a variety over k, and over k° the base change Lys is isomorphic to
P}.. Because c is very ample, L induces a morphism X — L*, where L* is the dual of
L, sending P to the hyperplane {D € L : P € Supp D}. Since X contains a rational
point, we find that L* has a rational point, corresponding to a divisor A € Divy L
whose base change Ags is linearly equivalent with a hyperplane of P%,. Therefore,
the linear system |A| (on L!) determines an isomorphism L — P" over k, so L has
a rational point, corresponding to a divisor D € ¢ defined over k. Alternatively, the
fact that L* has a rational point implies that L* itself is isomorphic to P", hence so
is its dual L.

If k is a global field and X has a k,-point for all places v of k, then the same conclusion

holds.
Proof (sketch). This follows pretty much in the same way, but uses that L is a
Severi-Brauer variety, and therefore satisfies the Hasse principle.

e Let X over k be a del Pezzo surface of degree at least 5. If X has a k-point, then X is
birational to P? over k. If the degree of X is 5 or 7, then X automatically has a k-point.
Moreover, if k is global, then X satisfies the Hasse principle. [22, Theorem 2.1].

2. A REMARK ON EXERCISE 3(C) FROM LAST WEEK

Because I've never seen this worked out in the literature (they always say “a trivial computation
shows”), I thought I'd actually work out how to find all 240 curves in a way that does not cause
much of a headache. There are probably even more short-cuts.

Let m: X — P2 be the blow-up of P? in » < 8 points Pi,..., P, in general position. Let Kx
be a canonical divisor. Then Pic X is isomorphic to Z"*! with basis L = 7*¢, E1, ..., E,, where
¢ is a line in P?, and E; is the exceptional curve above P;. Suppose C is an exceptional curve on
X. Then C is irreducible and there exist integers b, aq,...,a, such that C' is linearly equivalent
to bL — ), a; B;. The intersection numbers C?=Kx -C = -1 yield

(1) Zaf:bz—i—l and Zai:?)b—l.
1 K3
Assume that C is not one of the F;. Then C intersects all E; non-negatively, which implies
a; = C - F; > 0. This in turn implies b > 1. If you assume that C is not the strict transform of a
line through two of the eight points, and not of a quadric through five of them either, then these
curves also have non-negative intersection with C', which yields more interesting inequalities that
we will not need.
For each j, we will bound a; in terms of r and b. We have

Za?:szrlfa? and Zai:i%bflfaj.
i#] i#j
The inequality

Zz’;ﬁj @i < Z:;ﬁj a;

2) r—1 = r—1



2

between the arithmetic and quadratic mean therefore implies
(Bb—1—a;)*> < (r—1)(*+1—a)),

or, equivalently, (complete the square, viewing as polynomial in a;)

(3) (raj — (3b—1))* < (r = 1)(r(6* +1) — (3b — 1)*).

As any integral solution to (1) for r < 8 extends to a solution for r = 8 by adding zeros, we
may assume r = 8. The right-hand side of (3) has to be non-negative, which is equivalent to
(b+1)(b—7) <0, s0 we get b < 7. We consider all cases b € {1,2,...,7} separately. The following
table gives, for each b, the interval that a; is contained in for each j, by (3), in the second column.
Here we used that the right-hand side of (3) may be rounded down to the nearest integral square.
The third column lists the integral values in that interval.

b| a;e a; € | t]8+9—3b
1 [_éa%] {071} 0 6

2 [_ga%] {071} 0 3

3 [_ga%] {0a172}
sy ] s

5 [gagj] {172} 1 2

6| (2.%] | {23) 2] 7
AR

Given that a; is integral, we find that for b = 7 there are no solutions. For b ¢ {3, 7}, there are
only two possible values for a;, say t and ¢ + 1. If we let n denote the number of j with a; = ¢,
then we obtain
3b—1:2ai =nt+(r—n)(t+1)=rt+r—mn,
son=rt+r+1—3b=8t+9—3b, which is listed in the table as well. Indeed, all these solutions
also satisfy >, a? = b? + 1.
For b = 3, we can apply a trick that actually works for any b < 5. We have 0 < a; < 2, so

a? — a; is nonzero if and only if a; = 2, in which case we have a? — a; = 2. Hence, the identity

> (@ —ai) = (b +1)— (3b—1) = b* — 3b+2
shows that for exactly %(b2 —3b+2) of the indices j we have a; = 2. The number of j with a; =1
then equals (3, a;) — $(b% — 3b+2) -2 = —b? + 6b — 3. Again these all do indeed give solutions
to (1).
This yields the following table, containing the types of divisor classes [C] with C? = C - Kx =
—1, and the number of such classes for each r.

(b;a1,as,a3,a4,a5,a6,a7,ag) | r [1]23| 4|56 |7] 8
(0;-1,0,0,0,0,0,0,0) r 1234|567 8
(1;1,1,0,0,0,0,0,0) Gy|o|1]3]6[10]|15]21] 28
(2:1,1,1,1,1,0,0,0) Mlolololo|1]|6]|21] 56
(3:2,1,1,1,1,1,1,0) olololo|o|o]| 7|56
(4,2,2,2,1,1,1,1,1) 0/0|0| 0] O] 0| 0] 56
(5;2,2,2,2,2,2,1,1) 0/0j0|O0]O0O]|]0O]|O0] 28
(6:3,2,2,2,2,2,2,2) olojolololo|o] 8
total 1(3]|6]10]16 |27 |56 | 240

To see that these curves indeed correspond to 240 actual exceptional curves, we first use
Riemann-Roch to show that the classes contain an effective divisor. For each C, we have
UC)—s(C)+U(Kx —C)=1C(C—Kx)+14pa(X)=1(C*-C-Kx)+1=1(-1+1)+1=1,

s0 (C)+4(Kx—C) > 1,80 4(C) > 1 or £{(Kx —C) > 1, which implies that C is linearly equivalent
to an effective curve, or Kx — C is. However, the ample divisor —K x intersects every effective
divisor positively, so the inequality —Ky - (Kx — C) = —K% — 1 < 0 shows that Kx — C is not



linearly equivalent to an effective divisor. We conclude that C' is, so each of the divisor classes
that we found does indeed contain an effective divisor. Because the ample divisor — K x intersects
each component of such a divisor positively, and we have (—Kx)-C = 1, we also find that these
divisors are prime/irreducible. Their arithmetic genus satisfies

2,(C)—2=C-(C+Kx)=C?+C -Kx = -2,

$0 pa(C) = 0, which implies that C' is smooth.

Finally, each class contains a unique effective curve, as two different irreducible curves can not
intersect negatively.

Hence, we really have 1, 3,6, 10,16, 27,56, 240 exceptional curves for r = 1,2,3,4,5,6,7,8, re-
spectively.

3. DEL PEZZ0O SURFACES OF DEGREE 6

We now sketch an alternative completion of the proof of the fact that Del Pezzo surfaces of
degree 6 over a global field satisfy the Hasse principle.

Let X be a variety over a field k and m a positive integer. Then there exists a variety Sym™ X
over k of which the k-points are the orbits of [[/~, X (k) under the action of the permutation
group Sy, acting by permuting the m factors. Moreover, if X is smooth, then Sym™ X is smooth
at all points corresponding to orbits of m-tuples of m different points. You may use this in the
exercises below as well.

Let X be a del Pezzo surface of degree 6, embedded anticanonically in PS. Let

2= ([(Q,Q", Q") (R, R")) € (Sym® X) x (Sym® X)
be a point for which @, Q’,Q”, R, R are five different points. Let M, be the 4-dimensional linear
subspace of PS spanned by these five points. If z is general enough, then the intersection M, N X
is O-dimensional; it then has degree 6, with five intersection points already known, so the sixth
intersection point is unique. This yields a rational map

(Sym® X) x (Sym® X) --» X,

sending z to the sixth intersection points of M, N X.

Now let K and L be separable field extensions of k of degrees 2 and 3, respectively. Suppose
X (K) and X (L) are not empty, say @ € X(L) and R € X(K). If Q or R is defined over k, then
X (k) is not empty. Otherwise, let Q" and Q" be the conjugates of @ and R’ the conjugate of R.
Then 2z = ([(Q,Q",Q")], [(R, R")]) € (Sym® X) x (Sym? X) is a smooth point over k. Since X is
proper, we find by Lang-Nishimura that X also has a k-rational point.

Together with what we did in class, this proves that X satisfies the Hasse principle if k is a
global field. For the proof in class, see [22, 2.4. case 4.] and the references given there. For this
alternative proof, see [17, 9.4.4].

4. EXERCISES

(1) Suppose X is a del Pezzo surface of degree 5 over a field k. Let P € X (k) be a point that
lies on (at least) one of the 10 exceptional curves of X. Show that X is not minimal, i.e.,
there exists a Galois stable set of exceptional curves that pairwise do not intersect (which
can be blown down over k, hence the terminology “not minimal”).

(2) Let X be a del Pezzo surface of degree d > 3. Suppose that X has a point over a separable
field extension K of k of degree [K : k] = d — 1. Show that X also has a k-rational point.

(3) Email me before Monday, December 9, with the times on Monday, December 16, that you
can not do the oral exam.
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