# Rational points on varieties, part II (surfaces) 

Ronald van Luijk
WONDER, December 5, 2013

## 1. Del Pezzo surfaces of degree at least five

- Lang-Nishimura [22, Lemma 1.1]
- Severi-Brauer varieties over a global field satisfy the Hasse principle [22, Theorem 2.4].
- Let $X$ be a projective variety over a field $k$ with a separable closure $k^{\mathrm{s}}$ and absolute Galois group $G_{k}$. Assume that $X$ has a $k$-rational point. Then the natural injection $\operatorname{Pic}_{k} X \hookrightarrow\left(\operatorname{Pic}_{k^{\mathrm{s}}} X_{k^{\mathrm{s}}}\right)^{G_{k}}$ is an isomorphism.

Proof (sketch). It suffices to show every very ample class $c \in\left(\operatorname{Pic}_{k^{\mathrm{s}}} X_{k^{\mathrm{s}}}\right)^{G_{k}}$ is in the image. Let $L=\{D \in c: D \geq 0\}$ be the associated complete linear system. Then $L$ has the structure of a variety over $k$, and over $k^{\mathrm{s}}$ the base change $L_{k^{\mathrm{s}}}$ is isomorphic to $\mathbb{P}_{k^{s}}^{n}$. Because $c$ is very ample, $L$ induces a morphism $X \rightarrow L^{*}$, where $L^{*}$ is the dual of $L$, sending $P$ to the hyperplane $\{D \in L: P \in \operatorname{Supp} D\}$. Since $X$ contains a rational point, we find that $L^{*}$ has a rational point, corresponding to a divisor $A \in \operatorname{Div}_{k} L$ whose base change $A_{k^{\mathrm{s}}}$ is linearly equivalent with a hyperplane of $\mathbb{P}_{k^{\mathrm{s}}}^{n}$. Therefore, the linear system $|A|$ (on $L$ !) determines an isomorphism $L \rightarrow \mathbb{P}^{n}$ over $k$, so $L$ has a rational point, corresponding to a divisor $D \in c$ defined over $k$. Alternatively, the fact that $L^{*}$ has a rational point implies that $L^{*}$ itself is isomorphic to $\mathbb{P}^{n}$, hence so is its dual $L$.
If $k$ is a global field and $X$ has a $k_{v}$-point for all places $v$ of $k$, then the same conclusion holds.

Proof (sketch). This follows pretty much in the same way, but uses that $L$ is a Severi-Brauer variety, and therefore satisfies the Hasse principle.

- Let $X$ over $k$ be a del Pezzo surface of degree at least 5 . If $X$ has a $k$-point, then $X$ is birational to $\mathbb{P}^{2}$ over $k$. If the degree of $X$ is 5 or 7 , then $X$ automatically has a $k$-point. Moreover, if $k$ is global, then $X$ satisfies the Hasse principle. [22, Theorem 2.1].


## 2. A remark on Exercise 3(c) from last week

Because I've never seen this worked out in the literature (they always say "a trivial computation shows"), I thought I'd actually work out how to find all 240 curves in a way that does not cause much of a headache. There are probably even more short-cuts.

Let $\pi: X \rightarrow \mathbb{P}^{2}$ be the blow-up of $\mathbb{P}^{2}$ in $r \leq 8$ points $P_{1}, \ldots, P_{r}$ in general position. Let $K_{X}$ be a canonical divisor. Then $\operatorname{Pic} X$ is isomorphic to $\mathbb{Z}^{r+1}$ with basis $L=\pi^{*} \ell, E_{1}, \ldots, E_{r}$, where $\ell$ is a line in $\mathbb{P}^{2}$, and $E_{i}$ is the exceptional curve above $P_{i}$. Suppose $C$ is an exceptional curve on $X$. Then $C$ is irreducible and there exist integers $b, a_{1}, \ldots, a_{r}$ such that $C$ is linearly equivalent to $b L-\sum_{i} a_{i} E_{i}$. The intersection numbers $C^{2}=K_{X} \cdot C=-1$ yield

$$
\begin{equation*}
\sum_{i} a_{i}^{2}=b^{2}+1 \quad \text { and } \quad \sum_{i} a_{i}=3 b-1 . \tag{1}
\end{equation*}
$$

Assume that $C$ is not one of the $E_{i}$. Then $C$ intersects all $E_{i}$ non-negatively, which implies $a_{i}=C \cdot E_{i} \geq 0$. This in turn implies $b \geq 1$. If you assume that $C$ is not the strict transform of a line through two of the eight points, and not of a quadric through five of them either, then these curves also have non-negative intersection with $C$, which yields more interesting inequalities that we will not need.

For each $j$, we will bound $a_{j}$ in terms of $r$ and $b$. We have

$$
\sum_{i \neq j} a_{i}^{2}=b^{2}+1-a_{j}^{2} \quad \text { and } \quad \sum_{i \neq j} a_{i}=3 b-1-a_{j} .
$$

The inequality

$$
\begin{equation*}
\frac{\sum_{i \neq j} a_{i}}{r-1} \leq \sqrt{\frac{\sum_{i \neq j}^{r} a_{i}^{2}}{r-1}} \tag{2}
\end{equation*}
$$

between the arithmetic and quadratic mean therefore implies

$$
\left(3 b-1-a_{j}\right)^{2} \leq(r-1)\left(b^{2}+1-a_{j}^{2}\right)
$$

or, equivalently, (complete the square, viewing as polynomial in $a_{j}$ )

$$
\begin{equation*}
\left(r a_{j}-(3 b-1)\right)^{2} \leq(r-1)\left(r\left(b^{2}+1\right)-(3 b-1)^{2}\right) \tag{3}
\end{equation*}
$$

As any integral solution to (1) for $r \leq 8$ extends to a solution for $r=8$ by adding zeros, we may assume $r=8$. The right-hand side of (3) has to be non-negative, which is equivalent to $(b+1)(b-7) \leq 0$, so we get $b \leq 7$. We consider all cases $b \in\{1,2, \ldots, 7\}$ separately. The following table gives, for each $b$, the interval that $a_{j}$ is contained in for each $j$, by (3), in the second column. Here we used that the right-hand side of (3) may be rounded down to the nearest integral square. The third column lists the integral values in that interval.

| $b$ | $a_{j} \in$ | $a_{j} \in$ | $t$ | $8 t+9-3 b$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\left[-\frac{7}{8}, \frac{11}{8}\right]$ | $\{0,1\}$ | 0 | 6 |
| 2 | $\left[-\frac{5}{8}, \frac{15}{8}\right]$ | $\{0,1\}$ | 0 | 3 |
| 3 | $\left[-\frac{2}{8}, \frac{18}{8}\right]$ | $\{0,1,2\}$ |  |  |
| 4 | $\left[\frac{1}{8}, \frac{1}{8}\right]$ | $\{1,2\}$ | 1 | 5 |
| 5 | $\left[\frac{5}{8}, \frac{23}{8}\right]$ | $\{1,2\}$ | 1 | 2 |
| 6 | $\left[\frac{10}{8}, \frac{24}{8}\right]$ | $\{2,3\}$ | 2 | 7 |
| 7 | $\left\{\frac{5}{2}\right\}$ | $\emptyset$ |  |  |

Given that $a_{j}$ is integral, we find that for $b=7$ there are no solutions. For $b \notin\{3,7\}$, there are only two possible values for $a_{j}$, say $t$ and $t+1$. If we let $n$ denote the number of $j$ with $a_{j}=t$, then we obtain

$$
3 b-1=\sum_{i} a_{i}=n t+(r-n)(t+1)=r t+r-n,
$$

so $n=r t+r+1-3 b=8 t+9-3 b$, which is listed in the table as well. Indeed, all these solutions also satisfy $\sum_{i} a_{i}^{2}=b^{2}+1$.

For $b=3$, we can apply a trick that actually works for any $b \leq 5$. We have $0 \leq a_{j} \leq 2$, so $a_{j}^{2}-a_{j}$ is nonzero if and only if $a_{j}=2$, in which case we have $a_{j}^{2}-a_{j}=2$. Hence, the identity

$$
\sum_{i}\left(a_{i}^{2}-a_{i}\right)=\left(b^{2}+1\right)-(3 b-1)=b^{2}-3 b+2
$$

shows that for exactly $\frac{1}{2}\left(b^{2}-3 b+2\right)$ of the indices $j$ we have $a_{j}=2$. The number of $j$ with $a_{j}=1$ then equals $\left(\sum_{i} a_{i}\right)-\frac{1}{2}\left(b^{2}-3 b+2\right) \cdot 2=-b^{2}+6 b-3$. Again these all do indeed give solutions to (1).

This yields the following table, containing the types of divisor classes $[C]$ with $C^{2}=C \cdot K_{X}=$ -1 , and the number of such classes for each $r$.

| $\left(b ; a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right)$ | $r$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(0 ;-1,0,0,0,0,0,0,0)$ | $r$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $(1 ; 1,1,0,0,0,0,0,0)$ | $\binom{r}{2}$ | 0 | 1 | 3 | 6 | 10 | 15 | 21 | 28 |
| $(2 ; 1,1,1,1,1,0,0,0)$ | $\binom{r}{5}$ | 0 | 0 | 0 | 0 | 1 | 6 | 21 | 56 |
| $(3 ; 2,1,1,1,1,1,1,0)$ |  | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 56 |
| $(4 ; 2,2,2,1,1,1,1,1)$ |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 56 |
| $(5 ; 2,2,2,2,2,2,1,1)$ |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 |
| $(6 ; 3,2,2,2,2,2,2,2)$ |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 |
| total |  | 1 | 3 | 6 | 10 | 16 | 27 | 56 | 240 |

To see that these curves indeed correspond to 240 actual exceptional curves, we first use Riemann-Roch to show that the classes contain an effective divisor. For each $C$, we have
$\ell(C)-s(C)+\ell\left(K_{X}-C\right)=\frac{1}{2} C\left(C-K_{X}\right)+1+p_{a}(X)=\frac{1}{2}\left(C^{2}-C \cdot K_{X}\right)+1=\frac{1}{2}(-1+1)+1=1$, so $\ell(C)+\ell\left(K_{X}-C\right) \geq 1$, so $\ell(C) \geq 1$ or $\ell\left(K_{X}-C\right) \geq 1$, which implies that $C$ is linearly equivalent to an effective curve, or $K_{X}-C$ is. However, the ample divisor $-K_{X}$ intersects every effective divisor positively, so the inequality $-K_{X} \cdot\left(K_{X}-C\right)=-K_{X}^{2}-1<0$ shows that $K_{X}-C$ is not
linearly equivalent to an effective divisor. We conclude that $C$ is, so each of the divisor classes that we found does indeed contain an effective divisor. Because the ample divisor $-K_{X}$ intersects each component of such a divisor positively, and we have $\left(-K_{X}\right) \cdot C=1$, we also find that these divisors are prime/irreducible. Their arithmetic genus satisfies

$$
2 p_{a}(C)-2=C \cdot\left(C+K_{X}\right)=C^{2}+C \cdot K_{X}=-2
$$

so $p_{a}(C)=0$, which implies that $C$ is smooth.
Finally, each class contains a unique effective curve, as two different irreducible curves can not intersect negatively.

Hence, we really have $1,3,6,10,16,27,56,240$ exceptional curves for $r=1,2,3,4,5,6,7,8$, respectively.

## 3. Del Pezzo surfaces of Degree 6

We now sketch an alternative completion of the proof of the fact that Del Pezzo surfaces of degree 6 over a global field satisfy the Hasse principle.

Let $X$ be a variety over a field $k$ and $m$ a positive integer. Then there exists a variety $\operatorname{Sym}^{m} X$ over $k$ of which the $\bar{k}$-points are the orbits of $\prod_{i=1}^{m} X(\bar{k})$ under the action of the permutation group $S_{m}$, acting by permuting the $m$ factors. Moreover, if $X$ is smooth, then Sym $^{m} X$ is smooth at all points corresponding to orbits of $m$-tuples of $m$ different points. You may use this in the exercises below as well.

Let $X$ be a del Pezzo surface of degree 6, embedded anticanonically in $\mathbb{P}^{6}$. Let

$$
z=\left(\left[\left(Q, Q^{\prime}, Q^{\prime \prime}\right)\right],\left[\left(R, R^{\prime}\right)\right]\right) \in\left(\operatorname{Sym}^{3} X\right) \times\left(\operatorname{Sym}^{2} X\right)
$$

be a point for which $Q, Q^{\prime}, Q^{\prime \prime}, R, R^{\prime}$ are five different points. Let $M_{z}$ be the 4-dimensional linear subspace of $\mathbb{P}^{6}$ spanned by these five points. If $z$ is general enough, then the intersection $M_{z} \cap X$ is 0 -dimensional; it then has degree 6 , with five intersection points already known, so the sixth intersection point is unique. This yields a rational map

$$
\left(\operatorname{Sym}^{3} X\right) \times\left(\operatorname{Sym}^{2} X\right) \xrightarrow{ }
$$

sending $z$ to the sixth intersection points of $M_{z} \cap X$.
Now let $K$ and $L$ be separable field extensions of $k$ of degrees 2 and 3 , respectively. Suppose $X(K)$ and $X(L)$ are not empty, say $Q \in X(L)$ and $R \in X(K)$. If $Q$ or $R$ is defined over $k$, then $X(k)$ is not empty. Otherwise, let $Q^{\prime}$ and $Q^{\prime \prime}$ be the conjugates of $Q$ and $R^{\prime}$ the conjugate of $R$. Then $z=\left(\left[\left(Q, Q^{\prime}, Q^{\prime \prime}\right)\right],\left[\left(R, R^{\prime}\right)\right]\right) \in\left(\operatorname{Sym}^{3} X\right) \times\left(\operatorname{Sym}^{2} X\right)$ is a smooth point over $k$. Since $X$ is proper, we find by Lang-Nishimura that $X$ also has a $k$-rational point.

Together with what we did in class, this proves that $X$ satisfies the Hasse principle if $k$ is a global field. For the proof in class, see $[22,2.4$. case 4.] and the references given there. For this alternative proof, see [17, 9.4.4].

## 4. ExERCISES

(1) Suppose $X$ is a del Pezzo surface of degree 5 over a field $k$. Let $P \in X(k)$ be a point that lies on (at least) one of the 10 exceptional curves of $X$. Show that $X$ is not minimal, i.e., there exists a Galois stable set of exceptional curves that pairwise do not intersect (which can be blown down over $k$, hence the terminology "not minimal").
(2) Let $X$ be a del Pezzo surface of degree $d \geq 3$. Suppose that $X$ has a point over a separable field extension $K$ of $k$ of degree $[K: k]=d-1$. Show that $X$ also has a $k$-rational point.
(3) Email me before Monday, December 9, with the times on Monday, December 16, that you can not do the oral exam.

## References

[1] M. Atiyah and I. MacDonald, Introduction to commutative algebra, Addison-Wesley, 1969.
[2] V. Batyrev and Yu. Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Math. Ann. 286 (1990), no. 1-3, 27-43.
[3] A. Beauville, Complex algebraic surfaces, second edition, LMS Student texts 34, Cambridge University Press, 1996.
[4] D. Eisenbud, Commutative algebra, with a view toward algebraic geometry, Graduate Texts in Mathematics 150, corrected third printing, Springer, 1999.
[5] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, corrected eighth printing, Springer, 1997.
[6] M. Hindry and J. Silverman, Diophantine Geometry. An Introduction, Graduate Texts in Mathematics, 201, Springer, 2000.
[7] S.L. Kleiman, The Picard scheme, Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence, RI, 2005, 235-321.
[8] J. Kollár, Unirationality of cubic hypersurfaces, J. Inst. Math. Jussieu 1 (2002), no. 3, 467-476.
[9] S. Lang, Algebra, third edition, Addison-Wesley, 1997.
[10] S. Lang, Survey of Diophantine geometry, second printing, Springer, 1997.
[11] Q. Liu, Algebraic geometry and arithmetic curves, translated by Reinie Erné, Oxford GTM 6, 2002.
[12] R. van Luijk, Density of rational points on elliptic surfaces, Acta Arithmetica, Volume 156 (2012), no. 2, 189-199.
[13] Yu. Manin, Cubic Forms, North-Holland, 1986.
[14] H. Matsumura, Commutative algebra, W.A. Benjamin Co., New York, 1970.
[15] E. Peyre, Counting points on varieties using universal torsors, Arithmetic of higher dimensional algebraic varieties, eds. B. Poonen and Yu. Tschinkel, Progress in Mathematics 226, Birkhäuser, 2003.
[16] M. Pieropan, On the unirationality of Del Pezzo surfaces over an arbitrary field, Algant Master thesis, http://www.algant.eu/documents/theses/pieropan.pdf.
[17] B. Poonen, Rational points on varieties, http://www-math.mit.edu/~poonen/papers/Qpoints.pdf
[18] B. Poonen and Yu. Tschinkel, Arithmetic of higher dimensional algebraic varieties, Progress in Mathematics 226, Birkhäuser, 2003.
[19] B. Segre, A note on arithmetical properties of cubic surfaces, J. London Math. Soc. 18 (1943), 24-31.
[20] B. Segre, On the rational solutions of homogeneous cubic equations in four variables, Math. Notae 11 (1951), 1-68.
[21] Sir P. Swinnerton-Dyer, Diophantine equations: progress and problems, Arithmetic of higher dimensional algebraic varieties, eds. B. Poonen and Yu. Tschinkel, Progress in Mathematics 226, Birkhäuser, 2003.
[22] A. Várilly-Alvarado, Arithmetic of del Pezzo and K3 surfaces, http://math.rice.edu/~av15/dPsK3s.html.

