(1) Which of the following are linear subspaces of the vector space \mathbb{R}^{2} ? Explain your answers!
(a) $U_{1}=\left\{(x, y) \in \mathbb{R}^{2}: y=-\sqrt{e^{\pi}} x\right\}$
(b) $U_{2}=\left\{(x, y) \in \mathbb{R}^{2}: y=x^{2}\right\}$
(c) $U_{3}=\left\{(x, y) \in \mathbb{R}^{2}: x y=0\right\}$
(2) Which of the following are linear subspaces of the vector space V of all functions from \mathbb{R} to \mathbb{R} ?
(a) $U_{1}=\{f \in V: f$ is continuous $\}$
(b) $U_{2}=\{f \in V: f(3)=0\}$
(c) $U_{3}=\{f \in V: f$ is continuous or $f(3)=0\}$
(d) $U_{4}=\{f \in V: f$ is continuous and $f(3)=0\}$
(e) $U_{5}=\{f \in V: f(0)=3\}$
(f) $U_{6}=\{f \in V: f(0) \geq 0\}$
(3) Given a vector space V with subsets I and J of V, show that

$$
L(I \cup J)=L(I)+L(J)
$$

Does the equality $L(I \cap J)=L(I) \cap L(J)$ hold?
(4) Which of the following sequences of vectors in \mathbb{R}^{3} are linear independent?
(a) $((1,2,3),(2,1,-1),(-1,1,1))$
(b) $((1,3,2),(1,1,1),(-1,3,1))$
(5) Let F be a field, $n>0$ an integer, and set $V=F^{n}$. For $i \in\{1, \ldots, n\}$, let $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ be the vector with all zeroes, except for a 1 at the i-th position. Show that $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is a basis for F^{n}.
(6) For any positive integer $n>0$, let P_{n} be the vector space of polynomials in x over the field F of degree at most n; show that $\left(1, x, x^{2}, \ldots, x^{n}\right)$ a basis is for P_{n}. Show that $\left(1, x-1,(x-1)^{2}, \ldots,(x-1)^{n}\right)$ also basis is (Hint: consider the degree)
(7) Give a basis for each of the following \mathbb{R}-vector spaces.
$U_{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}-x_{2}+x_{3}=0\right\}$
$U_{2}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}+2 x_{2}+3 x_{3}=0, x_{1}+x_{2}-x_{4}=0\right\}$
Use the definition of 'basis' from the lecture to show your answer is correct.
(8) Let U_{1} and U_{2} be two linear subspaces of a vector space V.

Show that $U_{1} \cup U_{2}$ is a linear subspace of V if and only if $U_{1} \subset U_{2}$ or $U_{2} \subset U_{1}$.
(9) Give examples of a vector space V and linear subspaces $U_{1}, U_{2}, U_{3} \subset V$ that show that in general
(a) $\left(U_{1} \cap U_{2}\right)+U_{3} \neq\left(U_{1}+U_{3}\right) \cap\left(U_{2}+U_{3}\right)$
(b) $\left(U_{1}+U_{2}\right) \cap U_{3} \neq\left(U_{1} \cap U_{3}\right)+\left(U_{2} \cap U_{3}\right)$
(10) Let V be a vector space with $\operatorname{dim} V=n$, and take $v_{1}, \ldots, v_{n} \in V$. Prove that the following statements are equivalent.
(i) $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V
(ii) v_{1}, \ldots, v_{n} are linearly independent
(iii) $L\left(v_{1}, \ldots, v_{n}\right)=V$
(11) Let V be a vector space and $v_{1}, \ldots, v_{n} \in V$. Show that $\operatorname{dim} L\left(v_{1}, \ldots, v_{n}\right) \leq$ n.
(12) Let V be a real vector space, and $a, b, c, d \in V$. Show that the following vectors are linearly dependent:

$$
\begin{aligned}
& v_{1}=2 a \quad 5 c \\
& v_{2}= \\
& v_{3}=a+b+c+d \\
& v_{4}=a+2 b+3 c+4 d \\
& v_{5}=a
\end{aligned}
$$

Hint. There is a very short solution.
(13) Give a basis for each of the following \mathbb{R}-vector spaces.
$U_{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}-x_{2}+x_{3}=0\right\}$
$U_{2}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}+2 x_{2}+3 x_{3}=0, x_{1}+x_{2}-x_{4}=0\right\}$
Use the definition of 'basis' from the lecture to show your answer is correct.
(14) Let $P_{n}(F)$ denote the vector space of polynomials of degree at most n. For each $k \in \mathbb{Z}_{\geq 0}$, define

$$
\binom{x}{k}=\frac{1}{k!} x(x-1)(x-2) \cdots(x-k+1) .
$$

Show that

$$
\left(\binom{x}{0},\binom{x}{1},\binom{x}{2}, \ldots\binom{x}{n-1},\binom{x}{n}\right)
$$

is a basis for $P_{n}(F)$.
(15) Show that the vectors

$$
v_{1}=(1,2,3,4), \quad v_{2}=(1,1,1,1), \text { and } v_{3}=(1,1,0,-1)
$$

in \mathbb{Q}^{4} are linearly independent and extend $\left(v_{1}, v_{2}, v_{3}\right)$ to a basis for \mathbb{Q}^{4}.

