- (1) Which of the following are linear subspaces of the vector space \mathbb{R}^2 ? Explain your answers!
 - (a) $U_1 = \{(x, y) \in \mathbb{R}^2 : y = -\sqrt{e^{\pi}}x\}$
 - (b) $U_2 = \{(x, y) \in \mathbb{R}^2 : y = x^2\}$
 - (c) $U_3 = \{(x, y) \in \mathbb{R}^2 : xy = 0\}$
- (2) Which of the following are linear subspaces of the vector space V of all functions from \mathbb{R} to \mathbb{R} ?
 - (a) $U_1 = \{f \in V : f \text{ is continuous}\}$
 - (b) $U_2 = \{ f \in V : f(3) = 0 \}$
 - (c) $U_3 = \{f \in V : f \text{ is continuous or } f(3) = 0\}$
 - (d) $U_4 = \{f \in V : f \text{ is continuous and } f(3) = 0\}$ (e) $U_5 = \{f \in V : f(0) = 3\}$ (f) $U_6 = \{f \in V : f(0) \ge 0\}$
- (3) Given a vector space V with subsets I and J of V, show that

 $L(I \cup J) = L(I) + L(J).$

Does the equality $L(I \cap J) = L(I) \cap L(J)$ hold?

- (4) Which of the following sequences of vectors in \mathbb{R}^3 are linear independent? (a) ((1,2,3),(2,1,-1),(-1,1,1))
 - (b) ((1,3,2),(1,1,1),(-1,3,1))
- (5) Let F be a field, n > 0 an integer, and set $V = F^n$. For $i \in \{1, \ldots, n\}$, let $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$ be the vector with all zeroes, except for a 1 at the *i*-th position. Show that (e_1, e_2, \ldots, e_n) is a basis for F^n .
- (6) For any positive integer n > 0, let P_n be the vector space of polynomials in x over the field F of degree at most n; show that $(1, x, x^2, \ldots, x^n)$ a basis is for P_n . Show that $(1, x - 1, (x - 1)^2, \dots, (x - 1)^n)$ also basis is (Hint: consider the degree).
- (7) Give a basis for each of the following \mathbb{R} -vector spaces.

$$U_1 = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 - x_2 + x_3 = 0 \}$$

$$U_2 = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + 2x_2 + 3x_3 = 0, x_1 + x_2 - x_4 = 0 \}$$

Use the definition of 'basis' from the lecture to show your answer is correct.

- (8) Let U_1 and U_2 be two linear subspaces of a vector space V. Show that $U_1 \cup U_2$ is a linear subspace of V if and only if $U_1 \subset U_2$ or $U_2 \subset U_1$.
- (9) Give examples of a vector space V and linear subspaces $U_1, U_2, U_3 \subset V$ that show that in general
 - (a) $(U_1 \cap U_2) + U_3 \neq (U_1 + U_3) \cap (U_2 + U_3)$
 - (b) $(U_1 + U_2) \cap U_3 \neq (U_1 \cap U_3) + (U_2 \cap U_3)$
- (10) Let V be a vector space with dim V = n, and take $v_1, \ldots, v_n \in V$. Prove that the following statements are equivalent.
 - (i) $\{v_1, \ldots, v_n\}$ is a basis of V
 - (ii) v_1, \ldots, v_n are linearly independent
 - (iii) $L(v_1,\ldots,v_n) = V$

- (11) Let V be a vector space and $v_1, \ldots, v_n \in V$. Show that dim $L(v_1, \ldots, v_n) \leq n$.
- (12) Let V be a real vector space, and $a, b, c, d \in V$. Show that the following vectors are linearly dependent:

$$v_{1} = 2a + 9d$$

$$v_{2} = 5c$$

$$v_{3} = a + b + c + d$$

$$v_{4} = a + 2b + 3c + 4d$$

$$v_{5} = a$$

HINT. There is a very short solution.

(13) Give a basis for each of the following \mathbb{R} -vector spaces.

$$U_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 - x_2 + x_3 = 0\}$$

$$U_2 = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + 2x_2 + 3x_3 = 0, x_1 + x_2 - x_4 = 0 \}$$

Use the definition of 'basis' from the lecture to show your answer is correct.

(14) Let $P_n(F)$ denote the vector space of polynomials of degree at most n. For each $k \in \mathbb{Z}_{>0}$, define

$$\binom{x}{k} = \frac{1}{k!}x(x-1)(x-2)\cdots(x-k+1).$$

Show that

$$\left(\binom{x}{0}, \binom{x}{1}, \binom{x}{2}, \dots, \binom{x}{n-1}, \binom{x}{n}\right)$$

is a basis for $P_n(F)$.

(15) Show that the vectors

$$v_1 = (1, 2, 3, 4), v_2 = (1, 1, 1, 1), \text{ and } v_3 = (1, 1, 0, -1)$$

in \mathbb{Q}^4 are linearly independent and extend (v_1, v_2, v_3) to a basis for \mathbb{Q}^4 .

 $\mathbf{2}$