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1. VECTOR SPACES

Many sets in mathematics come with extra structure. In the set R of real numbers,
for instance, we can add and multiply elements. In linear algebra, we study vector
spaces, which are sets in which we can add and scale elements. By proving theorems
using only the addition and the scaling, we prove these theorems for all vector
spaces at once.

All we require from our scaling factors, or scalars, is that they come from a set
in which we can add, subtract and multiply elements, and divide by any nonzero
element. Sets with this extra structure are called fields. We will often use the
field R of real numbers in our examples, but by allowing ourselves to work over
more general fields, we also cover linear algebra over finite fields, such as the field
Fy = {0, 1} of two elements, which has important applications in computer science
and coding theory.

1.1. Examples. We start with some examples of a set with an addition and a
scaling, the latter often being referred to as scalar multiplication.

Example 1.1. Consider the set R? = R x R of all pairs of real numbers. The
pairs can be interpreted as points in the plane, where the two numbers of the pair
correspond to the coordinates of the point. We define the sum of two pairs (a, b)
and (c,d) in R? by adding the first elements of each pair, as well as the second, so

(a,b) + (¢,d) = (a+¢,b+d).

We define the scalar multiplication of a pair (a,b) € R? by a factor A € R by
setting

A (a,b) = (Aa, Ab).

Example 1.2. Let Map(R,R) be the set of all functions from R to R. The sum
of two functions f, g € Map(R, R) is the function f + g that is given by

(f +9)(@) = f(z) +g(x)
for all x € R. The scalar multiplication of a function f € Map(R,R) by a factor
A € R is the function A - f that is given by

(A=) =A-(f(x))

for all z € R.

Remark 1.3. Obviously, if f is a function from R to R and x is a real number,
then f(x) is also a real number. In our notation, we will always be careful to
distinguish between the function f and the number f(x). Therefore, we will not
say: “the function f(z) = x2.” Correct would be “the function f that is given by
f(z) =x?for all x € R.”

Example 1.4. Nothing stops us from taking any set X and the set Map(X, R) of
all functions from X to R and repeating the construction of addition and scalar
multiplication from Example 1.2 on Map(X,R). We will do this in a yet more
general situation in Example 1.22.

Example 1.5. A real polynomial in the variable x is a formal sum
f= agx® + ag 128V + .+ asx® + arx + ao

of a finite number of different integral powers ¢ multiplied by a real constant a;; we
say that a, is the coefficient of the monomial z* in f. The degree of f = Zf:o a;x’
with ag # 0 is d. By definition the degree of 0 equals —co. Let P(R) denote the
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set of all real polynomials. We define the addition of polynomials coefficientwise,
so that the sum of the polynomials

f:adxd+...+a2x2+a1x+ao and g:bd:pd+...+b2x2+b1x+bo
equals
f+g="(ag+by)z? +... 4 (ag+ ba)z® + (ay + b))z + (ao + bo).
The scalar multiplication of f by A € R is given by
A f= Aagz® + ..+ Nagx? + dayxz + Aag.

In the examples above, we used the ordinary addition on the set R of real numbers
to define an addition on other sets. When reading an equation as

(f +9)(@) = f(z) +g(z)
in Example 1.2, one should always make sure to identify which addition the plus-

symbols + refer to. In this case, the left + refers to the addition on Map(R,R),
while the right + refers to the ordinary addition on R.

All examples describe an addition on a set V' that satisfies all the rules that one
would expect from the use of the word sum and the notation v + w. For example,
one easily checks that in all examples we have

utv=v+u and u+(v+w)=(utv)+w

for all elements u,v,w in V. Also the scalar multiplication acts as its notation
suggests. For instance, in all examples we have

A (- v) = () -
for all scalars A, ;4 and all elements v in V.

We will define vector spaces in Section 1.4 as a set with an addition and a scalar
multiplication satisfying these same three rules and five more. The examples above
are all vector spaces. In the next section we introduce fields, which can function
as sets of scalars.

1.2. Fields.

Definition 1.6. A field is a set F, together with two distinguished elements
0,1 € F with 0 # 1 and four maps

+: FxF—F (z,y)—x+y (‘addition’),
— FxF—F (z,y)—x—y (‘subtraction’),
wFxF—F (r,y)—x-y (‘multiplication’),
/i Fx(F\{0}) = F, (x,y)—x/y (‘division’),
of which the addition and multiplication satisfy
r4+y=y+uz, r+y+z2)=(x+y) + 2, r+0=uz,
Ty=y-z, - (y-z)=(x-y) 2 z-l=u,
r-(y+2)=(z-y) +(z-2)
for all x,y, z € F, while the subtraction and division are related through
rt+y=zor=2—9y

for all z,y,z € F' and
ry=zer=2z/y
for all x,y,z € F with y # 0.
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Example 1.7. The set R of real numbers, together with its 0 and 1 and the
ordinary addition, subtraction, multiplication, and division, obviously form a field.

Example 1.8. Also the field Q of rational numbers, together with its 0 and 1 and
the ordinary addition, subtraction, multiplication, and division, form a field.

Example 1.9. Consider the subset
QW?2)={a+bV2 : a,beQ}

of R, which contains 0 and 1. The ordinary addition, subtraction, and multiplica-
tion of R clearly give addition, subtraction, and multiplication on Q(v/2), as we
have

(a+bV2) £ (c+dV2) = (a£c)+ (b+d)V?2,
(a4 0V2) - (c+ dV2) = (ac + 2bd) + (ad + be)V/2.

To see that for any z,y € Q(v/2) with y # 0 we also have z/y € Q(v/2), we first
note that if ¢ and d are integers with ¢ = 2d?, then ¢ = d = 0, as otherwise c?
would have an even and 2d? an odd number of factors 2. Now for any x,y € Q(v/2)
with y # 0, we can write x/y as

a+ b2
c+dv?2
with integers a, b, ¢, d, where ¢ and d are not both 0; we find

T a+bv/2  (a+bv2)-(c—dv2)  (ac—2bd) + (be — ad)V/2

Yy c+d\/§_(c+d\/§)-(c—d\/§)_ ¢? —2d?
ac — 2bd bc — ad
— 2 2).
c? — 242 + 62—2d2\/_€(@(\/_)

We conclude that we also have division by nonzero elements on Q(v/2). Since the
requirements of Definition 1.6 are fulfilled for all real numbers, they are certainly

fulfilled for all elements in Q(y/2) and we conclude that Q(v/2) is a field.

In any field with elements  and y, we write —z for 0 — z and y~! for 1/y if y
is nonzero; we also often write xy for x - y. The rules of Definition 1.6 require
that many of the properties of the ordinary addition, subtraction, multiplication,
and division hold in any field. The following proposition shows that automatically
many other properties hold as well.

Proposition 1.10. Suppose F is a field with elements x,y, z € F.

2) If z is nonzero, then xz = yz if and only if x = y.

3) If v+ 2=z, then x = 0.

4) If vz =z and z # 0, then v = 1.

5) We have 0-x =0 and (—1) -z = —x and (—1) - (—=1) = 1.
6) If vy =0, then x =0 or y = 0.

Proof. Exercise. O

Example 1.11. The smallest field Fy = {0, 1} has no more than the two required
elements, with the only ‘interesting’ definition being that 1 +1 = 0. One easily
checks that all requirements of Definition 1.6 are satisfied.
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Warning 1.12. Many properties of sums that you are used to from the real
numbers hold for general fields. There is one important exception: in general
there is no ordering and it makes no sense to call an element positive or negative,
or bigger than an other element. The fact that this is possible for R and for fields
contained in R, means that these fields have more structure than general fields.
We will see later that this extra structure can be used to our advantage.

Ezercises.

Exercise 1.2.1. Prove Proposition 1.10.

Exercise 1.2.2. Check that [ is a field (see Example 1.11).
Exercise 1.2.3. Which of the following are fields?

(1) The set N together with the usual addition and multiplication.

(2) The set Z together with the usual addition and multiplication.

(3) The set Q together with the usual addition and multiplication.

(4) The set R together with the usual addition and multiplication.

(5) The set Q(v/3) = {a + b3 : a,b € Q} together with the usual addition
and multiplication.

(6) The set F3 = {0, 1,2} with the usual addition and multiplication, followed
by taking the remainder after division by 3.

1.3. The field of complex numbers. The first motivation for the introduction
of complex numbers is a shortcoming of the real numbers: while positive real
numbers have real square roots, negative real numbers do not. Since it is frequently
desirable to be able to work with solutions to equations like 22 +1 = 0, we
introduce a new number, called 4, that has the property i = —1. The set C
of complex numbers then consists of all expressions a + bi, where a and b are
real numbers. (More formally, one considers pairs of real numbers (a,b) and so
identifies C with R? as sets.) In order to turn C into a field, we have to define
addition and multiplication.

If we want the multiplication to be compatible with the scalar multiplication on R?,
then (bearing in mind the field axioms) there is no choice: we have to set

(a+bi)+ (c+di)=(a+c)+ (b+d)i
and
(a+ bi)(c+ di) = ac+ adi + bci + bdi® = (ac — bd) + (ad + be)i
(remember 2 = —1). It is then an easy, but tedious, matter to show that the

axioms hold. (The theory of rings and fields in later courses provides a rather
elegant way of doing this.)

If 2z = a+ bi as above, then we call Rez = a the real part and Imz = b the
imaginary part of z.

The least straightforward statement is probably the existence of multiplicative
inverses. In this context, it is advantageous to introduce the notion of conjugate
complex number.

Definition 1.13. If z = a+bi € C, then the complex conjugate of z is zZ = a — bi.
Note that 2z = a% +b? > 0. We set |z| = v/2Z; this is called the absolute value
or modulus of z. It is clear that |z| = 0 only for z = 0; otherwise |z| > 0. We
obviously have z = z and |z| = |z].

Proposition 1.14.



(1) For all w,z € C, we have w+ z = w + Z and Wz = W Z.
(2) For all z € C\ {0}, we have 271 =|z|72 - z.
(3) For all w,z € C, we have |wz| = |w| - |z|.

Proof.
(1) Exercise.
(2) First of all, |z| # 0, so the expression makes sense. Now note that
2|22 2= |2| 72 22 = |2|%2)* = 1.
(3) Exercise.

For example:
1 1—2 1—2 1-2 1 2.

1+2i  (1420)(1—20) 12+ 22 5 5 5
Remark 1.15. Historically, the necessity of introducing complex numbers was
realized through the study of cubic (and not quadratic) equations. The reason
for this is that there is a solution formula for cubic equations that in some cases
requires complex numbers in order to express a real solution. See Section 2.7 in

Jénich’s book [?].

The importance of the field of complex numbers lies in the fact that they pro-
vide solutions to all polynomial equations. This is the ‘Fundamental Theorem of

Algebra’:
Every non-constant polynomaial with complex coefficients has a root in C.

We will have occasion to use it later on. A proof, however, is beyond the scope of
this course.

FEzercises.
Exercise 1.3.1. Prove Remark 1.14.

Exercise 1.3.2. For every complex number z we have Re(z) = 3(z + Z) and
Im(z) = 5:(z — 2).

1.4. Definition of a vector space. We can now define the general notion of a
vector space.

Definition 1.16. Let F' be a field. A wvector space or linear space over F', or an
F-vector space, is a set V with a distinguished zero element 0 € V', together with
two maps + : V xV — V (‘addition’) and - : F'x V — V (‘scalar multiplication’),
written, as usual, (z,y) — = +y and (A, z) — X\ - x or Az, respectively, satisfying
the following axioms.

1) Forall z,y € V, |x + y = y + x| (addition is commutative).

2) Forall z,y,z € V,|(x +y)+ 2z =2+ (y+ 2)| (addition is associative).

(1)
(2)
(3) For all z € V| |x 4+ 0 = x| (adding the zero element does nothing).
(4)

4) For every x € V, there is an 2/ € V such that |z + 2’ = 0| (existence of

negatives).
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(5) Forall A,y e Rand z € V| A- (- x) = (M) - | (scalar multiplication is

associative).

(6) For all z € V, |12z = x| (multiplication by 1 is the identity).

(7) For all A € R and z,y € V, | AM(z + y) = Az + Ay | (distributivity I).

(8) Forall \,p e Rand x € V, | (A + p)z = Az + pa | (distributivity II).

The elements of a vector space are usually called vectors. A real vector space is
a vector space over the field R of real numbers and a complex vector space is a
vector space over the field C of complex numbers.

Remarks 1.17.

(1) The first four axioms above exactly state that (V;0,+) is an (additive)
abelian group. (If you didn’t know what an abelian group is, then this is
the definition.)

(2) Instead of writing (V,0,4,-) (which is the complete data for a vector
space), we usually just write V', with the zero element, the addition, and
scalar multiplication being understood.

The examples of Section 1.1 are real vector spaces. In the examples below, they
will all be generalized to general fields. In each case we also specify the zero of
the vectorspace. It is crucial to always distinguish this from the zero of the field
F', even though both are written as 0.

Example 1.18. The simplest (and perhaps least interesting) example of a vector
space over a field F' is V' = {0}, with addition given by 0 +0 = 0 and scalar
multiplication by A -0 = 0 for all A € F' (these are the only possible choices).
Trivial as it may seem, this vector space, called the zero space, is important. It
plays a role in Linear Algebra similar to the role played by the empty set in Set
Theory.

Example 1.19. The next (still not very interesting) example is V' = F over
itself, with addition, multiplication, and the zero being the ones that make F' into
a field. The axioms above in this case just reduce to the rules for addition and
multiplication in F.

Example 1.20. Now we come to a very important example, which is the model
of a vector space. Let F' be a field. We consider V' = F", the set of n-tuples of
elements of F', with zero element 0 = (0,0,...,0). We define addition and scalar
multiplication ‘component-wise’:

(1,22, ..., 2n) + (Y1, Y2, Un) = (@1 + Y1, T2 + Y2, .., Tn + Un),
A (21,29, ... ) = (Azq, Amg, ..., Axy,).

Of course, we now have to prove that our eight axioms are satisfied by our choice of
(V,0,4,-). In this case, this is very easy, since everything reduces to addition and
multiplication in the field F'. As an example, let us show that the first distributive
law (7) and the existence of negatives (4) are satisfied. For the first, take z,y € F"
and write them as

r=(x1,29,...,Tp) and v=(Y1,Y2, - Yn)-
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Then we have

ANz +y) = )\((xl,xg,...,xn) + (yl,yg,...,yn))
:)\'($1+y17$2+y27"'7xn+yn)

= ()\(xl +uy1), Mza +y2), ., ATy + yn))

= (Ax1 + A\yp, Ay + Aya, ..., ATy, + Ayp)

= Az, Ao, ..., ATy) + (AY1, AYa, - o, AYp)
=Nz, 22, xn) F ANY1,Y2, -5 Un) = AT + Ay

This proves teh first distributive law (7) for F™. Note that for the fourth equality,
we used the distributive law for the field F'. For the existence of negatives (4), take
an element € F™ and write it as © = (21, 29, ..., x,). For each i with 1 <1i < n,
we can take the negative —z; of x; in the field F' and set

= (—xy,—To, ..., —Ty,).
Then, of course, we have
r+a = (v,29,...,0,) + (—x1, —To, ..., —Tp)
= (21 + (—21), 22+ (—22), ..., Tp + (—2,)) = (0,0,...,0) =0,
which proves, indeed, that for every x € F" there is an 2’ € F™ with  + 2/ = 0.

Of course, for n = 2 and n = 3 and F' = R, this is more or less what you know
as ‘vectors’ from high school; the case n = 2 is also Example 1.1. For n = 1, this
example reduces to the previous one (if one identifies 1-tuples () with elements
x); for n = 0, it reduces to the zero space. (Why? Well, like an empty product
of numbers should have the value 1, an empty product of sets like F° has exactly
one element, the empty tuple (), which we can call 0 here.)

Example 1.21. A special case of Example 1.20 is when F' = R. The vector space
R™ is called Euclidean n-space. In Sections 2.5 and 7?7 we will consider lengths,
angles, reflections, and projections in R™. For n = 2 or n = 3 we can identify R"
with the pointed plane or three-dimensional space, respectively. We say pointed
because they come with a special point, namely 0. For instance, for R?, if we
take an orthogonal coordinate system in the plane, with 0 at the origin, then the
vector p = (p1,p2) € R?, which is by definition nothing but a pair of real numbers,
corresponds with the point in the plane whose coordinates are p; and py. This
way, the vectors, which are pairs of real numbers, get a geometric interpretation.
We can similarly identify R? with three-dimensional space. We will often make
these identifications and talk about points as if they are vectors. By doing so, we
can now add points in the plane, as well as in space!

In physics, more precisely in relativity theory, R?* is often interpreted as space with
a fourth coordinate for time.

For n = 2 or n = 3, we may also interpret vectors as arrows in the plane or space,
respectively. In the plane, the arrow from the point p = (p1,p2) to the point
q = (q1, q2) represents the vector v = (¢1 — p1,q2 — p2) = ¢ — p. (A careful reader
notes that here we do indeed identify points and vectors.) We say that the point p
is the tail of the arrow and the point ¢ is the head. Note the distinction we make
between an arrow and a vector, the latter of which is by definition just a sequence
of real numbers. Many different arrows may represent the same vector v, but all
these arrows have the same direction and the same length, which together narrow
down the vector. One arrow is special, namely the one with 0 as its tail; the head
of this arrow is precisely the point ¢ — p! Of course we can do the same for R?.



9

For example, take the two points p = (3,1, —4) and ¢ = (—1,2, 1) and set v = ¢—p.
Then we have v = (—4,1,5). The arrow from p to ¢ has the same direction and
length as the arrow from 0 to the point (—4,1,5). Both these arrows represent
the vector v.

We can now interpret negation, scalar multiples, sums, and differences of vectors
geometrically, namely in terms of arrows. Make your own pictures! If a vector v
corresponds to a certain arrow, then —v corresponds to any arrow with the same
length but opposite direction; more generally, for A\ € R the vector Av corresponds
to the arrow obtained by scaling the arrow for v by a factor .

If v and w correspond to two arrows that have common tail p, then these two
arrows are the sides of a unique parallelogram; the vector v + w corresponds to
a diagonal in this parallelogram, namely the arrow that also has p as tail and
whose head is the opposite point in the parallelogram. An equivalent description
for v +w is to take two arrows, for which the head of the one representing v equals
the tail of the one representing w; then v 4+ w corresponds to the arrow from the
tail of the first to the head of the second. Compare the two constructions in a
picture!

For the same v and w, still with common tail and with heads ¢ and r respectively,
the difference v — w corresponds to the other diagonal in the same parallelogram,
namely the arrow from 7 to q. Another construction for v — w is to write this
difference as the sum v + (—w), which can be constructed as above. Make a
picture again!

Example 1.22. This examples generalizes Example 1.4. Let F' be a field. Let us
consider any set X and look at the set Map(X, F') or FX of all maps (or functions)
from X to F":

V=Map(X,F)=FX={f: X — F}.
We take the zero vector 0 to be the zero function that sends each element of X
to 0 in R. In order to get a vector space, we have to define addition and scalar
multiplication. To define addition, for every pair of functions f,g : X — F, we
have to define a new function f+ ¢ : X — F. The only reasonable way to do this
is as follows (‘point-wise’):

f+9: X —F, 2+ f(z)+g(2),

or, in a more condensed form, by writing (f+g¢)(z) = f(x)+g(x). (Make sure that
you understand these notations!) In a similar way, we define scalar multiplication:

M X —F, z— X\ f(x).

We then have to check the axioms in order to convince ourselves that we really
get a vector space. Let us do again the first distributive law as an example. We
have to check that A(f + g) = Af + Ag, which means that for all x € X, we want

(Mf +9) (@) = (\f + Ag)(@).
Solet A€ Fand f,g: X — F be given, and take any x € X. Then we get

(Af +9) () = A((f + 9)(2))
= A(f(z) + g(2))
= A (z) + Ag(z)
= (Af)(x) + (Ag)()
= (Af+Ag)(x).
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Note the parallelism of this proof with the one in the previous example. That
parallelism goes much further. If we take X = {1,2,...,n}, then the set F'X =
Map(X, F)) of maps f : {1,2,...,n} — F can be identified with F™ by letting such
a map f correspond to the n-tuple (f(1), f(2),..., f(n)). It is not a coincidence
that the notations F'X and F™ are chosen so similar! What do we get when X is
the empty set?

Example 1.23. This example generalizes Example 1.5. A polynomial in the vari-
able x over a field F' is a formal sum

d d—1 2
f=agx® +aq_12 " + ... 4+ ax” + a1x + ag

of a finite number of different integral powers z* multiplied by a constant a; € F’;
the products a;z? are called the terms of f and we say that a; is the coefficient
of ' in f. We let the zero vector 0 be the zero polynomial, for which a; = 0
holds for all i. The degree of f = Z?:o a;x* with ay # 0 is d. By definition the
degree of 0 equals —oco. Let P(F') denote the set of all polynomials over F. We
define the addition and scalar multiplication of polynomials as in Example 1.5.
Anybody who can prove that the previous examples are vector spaces, will have
no problems showing that P(F") is a vector space as well.

Warning 1.24. The polynomials z and z? in P(F,) are different; one has degree
1 and the other degree 2. However, by substituting elements of Fy for x, the two
polynomials induce the same function Fy — Fy as we have o = o for all a € Fs.

Example 1.25. There are other examples that may appear more strange. Let X
be any set, and let V' be the set of all subsets of X. (For example, if X = {a, b},
then V' has the four elements 0, {a}, {0}, {a,b}.) We define addition on V as the
symmetric difference: A+ B = (A\ B)U(B\ A) (this is the set of elements of X
that are in exactly one of A and B). We define scalar multiplication by elements
of Fy in the only possible way: 0- A =), 1- A = A. These operations turn V into
an [Fo-vector space.

To prove this assertion, we can check the vector space axioms (this is an instructive
exercise). An alternative (and perhaps more elegant) way is to note that subsets
of X correspond to maps X — Fy (a map f corresponds to the subset {z € X :
f(x) = 1}) — there is a bijection between V and F5 — and this correspondence
translates the addition and scalar multiplication we have defined on V' into those
we had defined earlier on F.

FEzercises.

Exercise 1.4.1. Compute the inner product of the given vectors v and w in R?
and draw a corresponding picture (cf. Example 1.21).

=(-2,5) and w = (7,1),
=2(-3,2) and w = (1,3) + (—2,4),
3),

Exercise 1.4.2. Write the following equations for lines in R? with coordinates x;
and x5 in the form (a, x) = ¢, i.e., specify a vector a and a constant ¢ in each case.

(1) Lli 21’1 + 333‘2 = 0,
(2) LQI T = 31’1 - 1,
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) L33 2(.’13'1 +£L’2) = 3,
)L4i$1—$2:2l’2—3,
)L5IQ31:4—3$’1,
)L62Z‘1—I‘2:l’1+l’2.
()L7I6I1—2ZE2:7

Exercise 1.4.3. True or False? If true, explain why. If false, give a counterex-
ample.

(1) If a,b € R? are nonzero vectors and a # b, then the lines in R? given by
(a,z) =0 and (b, x) = 1 are not parallel.

(2) If a,b € R? are nonzero vectors and the lines in R? given by (a,z) = 0 and
(b, x) =1 are parallel, then a = b.

(3) Two different hyperplanes in F™ may be given by the same equation.

(4) The intersection of two lines in F™ is either empty or consists of one point.

(5) For each vector v € R? we have 0 -v = 0. (What do the zeros in this
statement refer to?)

Exercise 1.4.4. In Example 1.20, the first distributive law and the existence of
negatives were proved for F™. Show that the other six axioms for vector spaces
hold for F™ as well, so that F™™ is indeed a vector space over F.

Exercise 1.4.5. In Example 1.22, the first distributive law was proved for FX.
Show that the other seven axioms for vector spaces hold for FX as well, so that
FX is indeed a vector space over F.

Exercise 1.4.6. Let (V,0,+, -) be a real vector space and define z —y = 2+ (—y),
as usual. Which of the vector space axioms are satisfied and which are not (in
general), for (V,0,—,-)?

NOTE. You are expected to give proofs for the axioms that hold and to give
counterexamples for those that do not hold.

Exercise 1.4.7. Prove that the set P(F') of polynomials over F', together with
addition, scalar multiplication, and the zero as defined in Example 1.23 is a vector
space.

Exercise 1.4.8. Given the field F' and the set V' in the following cases, together
with the described addition and scalar multiplication, as well as the implicit el-
ement 0, which cases determine a vector space? If not, then which rule is not
satisfied?

(1) The field F' = R and the set V' of all functions [0, 1] — R+, together with
the usual addition and scalar multiplication.

(2) Example 1.25.

(3) The field F' = Q and the set V = R with the usual addition and multipli-
cation.

(4) The field R and the set V' of all functions f: R — R with f(3) = 0, together
with the usual addition and scalar multiplication.

(5) The field R and the set V' of all functions f: R — R with f(3) = 1, together
with the usual addition and scalar multiplication.

(6) Any field F' together with the subset

{(z,y,2) € F* : 24+ 2y — 2z =0},

with coordinatewise addition and scalar multiplication.
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(7) The field F' = R together with the subset
{(z,y,2) € F? : 2 — 2 =1},
with coordinatewise addition and scalar multiplication.

Exercise 1.4.9. Suppose the set X contains exactly n elements. Then how many
elements does the vector space Fx of functions X — Fy consist of?

Exercise 1.4.10. We can generalize Example 1.22 further. Let F' be a field and
V a vector space over F. Let X be any set and let VX = Map(X, V) be the set
of all functions f: X — V. Define an addition and scalar multiplication on V¥
that makes it into a vector space.

Exercise 1.4.11. Let S be the set of all sequences (a,),>0 of real numbers satis-
fying the recurrence relation

Gpio = Qpi1 +a, foralln>0.

Show that the (term-wise) sum of two sequences from S is again in S and that
any (term-wise) scalar multiple of a sequence from S is again in S. Finally show
that S (with this addition and scalar multiplication) is a real vector space.

Exercise 1.4.12. Let U and V be vector spaces over the same field F'. Consider
the Cartesian product

W=UxV={(u,v) : uel,veV}

Define an addition and scalar multiplication on W that makes it into a vector
space.

*Exercise 1.4.13. For each of the eight axioms in Definition 1.16, try to find a
system (V,0, +, -) that does not satisfy that axiom, while it does satisfy the other
seven.

1.5. Basic properties. Before we can continue, we have to deal with a few little
things. The fact that we talk about ‘addition’ and (scalar) ‘multiplication’” might
tempt us to use more of the rules that hold for the traditional addition and mul-
tiplication than just the eight axioms given in Definition 1.16. We will show that
many such rules follow from the basic eight. The first is a cancellation rule.

Lemma 1.26. If three elements x,y, z of a vector space V' satisfy x + z =y + z,
then x = y.

Proof. Suppose x,y,z € V satisfy x + z = y + z. By axiom (4) thereisa 2/ € V
with z + 2/ = 0. Using such 2z’ we get

r=240=2+0G+)=@+2)+2=@W+2)+7=y+(:=+2)=y+0=y,
where we use axioms (3), (2), (2), and (3) for the first, third, fifth, and seventh
equality respectively. So x = y. U

It follows immediately that a vector space has only one zero element, as stated in
the next remark.

Proposition 1.27. In a vector space V, there is only one zero element, i.e., if two
elements 0/ € V and z € V satisfy 0/ + z = z, then 0/ = 0.

Proof. Exercise. O

Proposition 1.28. In any vector space V', there is a unique negative for each
element.
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Proof. The way to show that there is only one element with a given property
is to assume there are two and then to show they are equal. Take x € V and
assume that a,b € V are both negatives of x, i.e., t +a =0, x +b = 0. Then by
commutativity we have

a+r=x+a=0=x+b=>b+x,

so a = b by Lemma 1.26. O

Notation 1.29. Since negatives are unique, given x € V' we may write —z for the
unique element that satisfies z 4+ (—x) = 0. As usual, we write z —y for z + (—y).

Here are some more harmless facts.
Remarks 1.30. Let (V,0,4+,-) be a vector space over a field F'.

(1) For allz € V, we have 0 - x = 0.

(2) For allz € V, we have (—1) -z = —x.

(3) For all X\ € F and x € V such that Ax =0, we have A =0 or x = 0.
(4) For all A\ € F and v € V, we have —(Ax) = X - (—x).

(5) For all z,y,z € V, we have z = x — y if and only if t =y + z.

Proof. Exercise. O

FEzercises.
Exercise 1.5.1. Proof Proposition 1.27.
Exercise 1.5.2. Proof Remarks 1.30.

Exercise 1.5.3. Is the following statement correct? “Axiom (4) of Definition 1.16
is redundant because we already know by Remarks 1.30(2) that for each vector
x € V the vector —x = (—1) - z is also contained in V.”

2. SUBSPACES

2.1. Definition and examples. In many applications, we do not want to con-
sider all elements of a given vector space V', rather we only consider elements of
a certain subset. Usually, it is desirable that this subset is again a vector space
(with the addition and scalar multiplication it ‘inherits’ from V). In order for
this to be possible, a minimal requirement certainly is that addition and scalar
multiplication make sense on the subset. Also, the zero vector of V has to be
contained in U. (Can you explain why the zero vector of V' is forced to be the
zero vector in U?)

Definition 2.1. Let V' be an F-vector space. A subset U C V is called a vector
subspace or linear subspace of V if it has the following properties.

(1) 0eU.
(2) If uy,ug € U, then uy +uy € U.
(3) If A€ Fand u € U, then Au € U.

Here the addition and scalar multiplication are those of V. Often we will just say
subspace without the words linear or vector.
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Note that, given the third property, the first is equivalent to saying that U is
non-empty. Indeed, let u € U, then by (3), we have 0 = 0-u € U. Note that here
the first 0 denotes the zero vector, while the second 0 denotes the scalar 0.

We should justify the name ‘subspace’.

Lemma 2.2. Let (V,+,-,0) be an F-vector space. If U C V is a linear subspace
of V', then (U, +|uxuv, *|Fxv,0) is again an F-vector space.

The notation + |y« means that we take the addition map + : V' x V', but restrict it
to U x U. (Strictly speaking, we also restrict its target set from V' to U. However,
this is usually suppressed in the notation.)

Proof of Lemma 2.2. By definition of what a linear subspace is, we really have
well-defined addition and scalar multiplication maps on U. It remains to check

Y

the axioms. For the axioms that state ‘for all ..., |...

and do not involve any

existence statements, this is clear, since they hold (by assumption) even for all
elements of V', so certainly for all elements of U. This covers all axioms but axiom
(4). For axiom (4), we need that for all u € U there is an element v’ € U with

u+ v = 0. In the vector space V there is a unique such an element, namely
u = —u = (—1)u (see Proposition 1.28, Notation 1.29, and Remarks 1.30). This
element v’ = —u is contained in U by the third property of linear subspaces (take
A=—1€F). O

It is time for some examples.

Example 2.3. Let V be a vector space. Then {0} C V and V itself are linear
subspaces of V.

Example 2.4. Consider V = R? and, for a € R, U, = {(z,y) e R* : x + y = a}.
When is U, a linear subspace?

We check the first condition: 0 = (0,0) € U, <= 0+ 0 = a, so U, can only be a
linear subspace when a = 0. The question remains whether U, is a subspace for
a = 0. Let us check the other properties for Uy:

(1, 01), (T2,92) €Ug = 21 +y1 =0, 23+1y2=0
= (1 +22) + (1 +y2) =0
= (z1,41) + (22,92) = (21 + T2, 41 + y2) € Uo
and
ANeR (z,y) eUpy=24+y=0
= M+ y=ANz+y)=0
= A\z,y) = (\z, \y) € Uy .
We conclude that Uy is indeed a subspace.

Example 2.5. Let F be a field, X any set, and x € X an element. Consider the
subset

U={f: X = F| f(z) =0}
of the vector space FX. Clearly the zero function 0 is contained in U,, as we have
0(z) = 0. For any two functions f,¢g € U, we have f(x) = g(z) = 0, so also
(f + 9)(z) = f(x) + g(x) = 0, which implies f + g € U,. For any A\ € F and
any f € U, we have (A\f)(z) = X- f(x) = A-0 = 0, which implies \f € U,. We

conclude that U, is a subspace.
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Example 2.6. Consider V = R® = {f : R — R}, the set of real-valued functions

on R. You will learn in Analysis that if f and g are continuous functions, then
f + g is again continuous, and Af is continuous for any A € R. Of course, the zero
function x — 0 is continuous as well. Hence, the set of all continuous functions

C(R)={f:R — R fis continuous}
is a linear subspace of V.

Similarly, you will learn that sums and scalar multiples of differentiable functions

are again differentiable. Also, derivatives respect sums and scalar multiplication:
(f+9) =f+4g,(\f) =A\f. From this, we conclude that

C"(R) = {f:R —R| f is n times differentiable and f™ is continuous}
is again a linear subspace of V.
In a different direction, consider the set of all periodic functions with period 1:
U={f:R—=R| f(zx+1)= f(z) for all z € R}.
The zero function is certainly periodic. If f and g are periodic, then
(F+9)a+1) = flw+1) +gla+1) = f(&) + 9(x) = (f + 9)(a).

so f + g is again periodic. Similarly, Af is periodic (for A € R). So U is a linear
subspace of V.

To define subspaces of F™ it is convenient to introduce the following notation.

Definition 2.7. Let F' be a field. For any two vectors x = (z1,23,...,2,) and
y = (y1,Y2,...,Yn) in F™ we define the dot product of z and y as

(T,y) = T1y1 + T2y + .. + TnYn.
Note that the dot product (x,y) is an element of F.

The dot product is often written in other pieces of literature as x -y, which explains
its name. Although this notation looks like scalar multiplication, it should always
be clear from the context which of the two is mentioned, as one involves two
vectors and the other a scalar and a vector. Still, we will always use the notation
(x,y) to avoid confusion. When the field F' equals R (or a subset of R), then the
dot product satisfies the extra property (z,z) > 0 for all z € R"; over these fields
we also refer to the dot product as the inner product (see Section 2.5). Other
pieces of literature may use the two phrases interchangeably over all fields.

Example 2.8. Suppose we have x = (3,4, —2) and y = (2, —1,5) in R®. Then we
get
(z,y) =3-24+4-(=1)+(-2)-5=64(—4) + (-10) = -8.

Example 2.9. Suppose we have z = (1,0,1,1,0,1,0) and y = (0,1,1,1,0,0, 1) in
FI. Then we get

(,y)=1-040-14+1-14+1-14+0-0+1-04+0-1
=0+04+1+14+0+0+0=0.

The dot product satisfies the following useful properties.

Proposition 2.10. Let F be a field with an element A\ € F. Let x,y,z € F™ be
elements. Then the following identities hold.

(1) (z,y) = (y, ),
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Proof. The two identities (1) and (3) are an exercise for the reader. We will prove
the second identity. Write x and y as
r = (z1,29,...,2p) and Y= (Y1,Y2y -, Yn)-

Then we have Az = (Axy, Az, ..., Azy,), SO

(Az,y) = Az)yr + (Az2)yz + .. (Azn)yn
= A+ (T1y1 + Taya + ...+ TuYn) = A - (7, ),
which proves the first equality of (2). Combining it with (1) gives

Az y) = Ay, 1) = Ay, 2) = (2, M),
which proves the second equality of (2). O

Note that from properties (1) and (2) we also conclude that (x + y, 2) = (z,2) +
(y,z). Properties (2) and (3), together with this last property, mean that the
dot product is bilinear. Note that from the properties above it also follows that
(x,y—z) = (x,y) — (z, 2) for all vectors x,y, z € F'"; of course this is also easy to
check directly.

Example 2.11. Consider R? with coordinates x and y. Let L C R? be the line
given by 3z + 5y = 7. For the vector a = (3,5) and v = (z,y), we have

(a,v) = 3z + by,

so we can also write L as the set of all points v € R that satisfy (a,v) = 7.

The following example is very similar to Example 2.4. The dot product and
Proposition 2.10 allow us to write everything much more efficiently.

Example 2.12. Given a nonzero vector a € R? and a constant b € R, let L C R?
be the line consisting of all points v € R? satisfying (a,v) = b. We wonder when
L is a subspace of R%. The requirement 0 € L forces b = 0.

Conversely, assume b = 0. Then for two elements v, w € L we have (a,v + w) =
(a,v) + {(a,w) = 2b =0, so v+ w € L. Similarly, for any A € R and v € L, we
have (a, \v) = XAa,v) = X-b=0. So L is a vector space if and only if b = 0.

We can generalize to I for any positive integer n.

Definition 2.13. Let F' be a field, a € F™ a nonzero vector, and b € F' a constant.
Then the set
H={velF" : (a,v) =0}

is called a hyperplane.
Example 2.14. Any line in R? is a hyperplane, cf. Example 2.12.

Example 2.15. Any plane in R? is a hyperplane. If we use coordinates x,, 2,
then any plane is given by the equation px + qy + rz = d for some constants
p,q,r,b € R with p,q,r not all 0; equivalently, this plane consists of all points
v = (z,y, z) that satisfy (a,v) = b with a = (p,q,r) # 0.

Proposition 2.16. Let F' be a field, a € F™ a nonzero vector, and b € F a

constant. Then the hyperplane H given by (a,v) = b is a subspace if and only if
b=0.
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Proof. The proof is completely analogous to Example 2.12. See also Exercise
2.1.8. O

Definition 2.17. Let F' be a field and a,v € F™ vectors with v nonzero. Then
the subset
L={a+XM : NeF}

of F'™ is called a line.

Proposition 2.18. Let F' be a field and a,v € F™ vectors with v nonzero. Then

the line
L={a+XM : N€e F} C F"
15 a subspace if and only if there exists a scalar A € F such that a = \v.

Proof. Exercise. U

FEzercises.

Exercise 2.1.1. Given an integer d > 0, let P;(R) denote the set of polynomials of
degree at most d. Show that the addition of two polynomials f, g € P,;(IR) satisfies
f+ g € Py(R). Show also that any scalar multiple of a polynomial f € P,(R) is
contained in P,;(R). Prove that P;(R) is a vector space.

Exercise 2.1.2. Let X be a set with elements x1,22 € X, and let F' be a field.
Is the set

U={feF* : flz))=2f(22)}

a subspace of FX?

Exercise 2.1.3. Let X be a set with elements 1,25, € X. Is the set
U={feR" : f(z1)= f(x2)*}

a subspace of R*?

Exercise 2.1.4. Which of the following are linear subspaces of the vector space
R2? Explain your answers!

(1) Uy = {(z,y) € R? : y = —/e™z},
(2) Uz ={(z,y) e R? 1y = 2?},
(3) Uz = {(z,y) € R*: zy = 0}.
Exercise 2.1.5. Which of the following are linear subspaces of the vector space
V of all functions from R to R?

(1) Uy ={f €V : fis continuous}

(2) Uy={feV : f(3)=0}

(3) Us={f €V : fiscontinuous or f(3) =0}
(4) Uy={f €V : fiscontinuous and f(3) =0}
(5) Us={feV : f(0)=3}

(6) Us ={feV : f(0) =0}

Exercise 2.1.6. Prove Proposition 2.10.

Exercise 2.1.7. Prove Proposition 2.18.

Exercise 2.1.8. Let F' be any field. Let aq,...,a; € F™ be vectors and by, ..., b; €
F' constants. Let V' C F™ be the subset

V={zeF" : {(a,2) =by,...,(a,x) = b }.

Show that with the same addition and scalar multiplication as F™, the set V is a
vector space if and only if by = ... = b = 0.
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Exercise 2.1.9.

(1) Let X be a set and F a field. Show that the set F'*) of all functions
f: X — F that satisfy f(z) = 0 for all but finitely many z € X is a
subspace of the vector space FX.

(2) More generally, let X be a set, I’ a field, and V' a vector space over F.
Show that the set VX) of all functions f: X — V that satisfy f(z) =0
for all but finitely many = € X is a subspace of the vector space VX (cf.
Exercise 1.4.10).

Exercise 2.1.10.

(1) Let X be a set and F a field. Let U C F¥ be the subset of all functions
X — F whose image is finite. Show that U is a subspace of F'X that
contains FX) of Exercise 2.1.9.

(2) More generally, let X be a set, I a field, and V' a vector space over F.
Show that the set of all functions f: X — V with finite image is a subspace
of the vector space VX that contains V) of Exercise 2.1.9.

2.2. Intersections. The following result now tells us that, with U and C(R) as in
Example 2.6, the intersection U N C(R) of all continuous periodic functions from
R to R is again a linear subspace.

Lemma 2.19. Let V be an F-vector space, U;,U, C V linear subspaces of V.

Then the intersection U; N Us is again a linear subspace of V.
More generally, if (U;);e; (with I # () is any family of linear subspaces of V', then
their intersection U = (), U; is again a linear subspace of V.

Proof. 1t is sufficient to prove the second statement (take I = {1,2} to obtain the
first). We check the conditions.

(1) By assumption 0 € U; for alli € I. So 0 € U.

(2) Let x,y € U. Then x,y € U; for all i € I, hence (since U; is a subspace by
assumption) x +y € U; for all ¢ € I. But this means x +y € U.

(3) Let A€ F, x € U. Then z € U; for all i € I, hence (since Uj; is a subspace
by assumption) Az € U; for all i € I. This means that Az € U.

We conclude that U is indeed a linear subspace. Il
Note that in general, if U; and U, are linear subspaces, then U; U Us is not (it is
if and only if U; C Us or Uy C U; — Exercisel!).
Example 2.20. Consider the subspaces

Uy ={(z,0) €eR? : x €R}, Uy ={(0,7) € R? : x €R}.
The union U = U; U U, is not a subspace because the elements u; = (1,0) and
uy = (0,1) are both contained in U, but their sum u; + us = (1, 1) is not.
Ezxercises.

Exercise 2.2.1. Suppose that U; and U, are linear subspaces of a vector space
V. Show that U; U Us is a subspace of V' if and only if U; C Uy or Uy C Us.

Exercise 2.2.2. Let H,, H,, H; be hyperplanes in R? given by the equations
((1,0,1),v) =2, (—-1,2,1),v) =0, (1,1,1),v) =3,

respectively.
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(1) Which of these hyperplanes is a subspace of R3?
(2) Show that the intersection Hy N Hy N H3 contains exactly one element.

Exercise 2.2.3. Give an example of a vector space V' with two subsets U; and
U,, such that U; and U, are not subspaces of V', but their intersection U; N U is.

2.3. Linear hulls, linear combinations, and generators. The property we
proved in Lemma 2.19 is very important, since it will tell us that there is always a
smallest linear subspace of V' that contains a given subset S of V. This means that
there is a linear subspace U of V' such that S C U and such that U is contained
in every other linear subspace of V' that contains S.

Definition 2.21. Let V be a vector space, S C V a subset. The linear hull or
linear span of S, or the linear subspace generated by S is

L(S) = ﬂ{U C V : U linear subspace of V., S C U}.

(This notation means the intersection of all elements of the specified set: we
intersect all linear subspaces containing S. Note that V itself is such a subspace,
so this set of subspaces is non-empty, so by the preceding result, L(S) really is a
linear subspace.)

If we want to indicate the field F of scalars, we write Lg(S). If vy, v9,... 0, € V|
we also write L(vq, vy, ..., v,) for L({vy,va,...,0,}).

If L(S) =V, we say that S generates V, or that S is a generating set for V. If
V' can be generated by a finite set S, then we say that V' is finitely generated.

Be aware that there are various different notations for linear hulls in the literature,
for example Span(S) or (S) (which in ITEX is written $\langle S \rangle$ and
not $<S>$!).

Example 2.22. What do we get in the extreme case that S = ()7 Well, then we
have to intersect all linear subspaces of V', so we get L(()) = {0}.

Lemma 2.23. Let V be an F-vector space and S a subset of V. Let U be any
subspace of V' that contains S. Then we have L(S) C U.

Proof. By definition, U is one of the subspaces that L(S) is the intersection of.
The claim follows immediately. U

Definition 2.21 above has some advantages and disadvantages. Its main advantage
is that it is very elegant. Its main disadvantage is that it is rather abstract and
non-constructive. To remedy this, we show that in general we can build the linear
hull in a constructive way “from below” instead of abstractly “from above.” This
generalizes the idea of Example 2.31.

Example 2.24. Let us look at another specific case first. Given a vector space V'
over a field F', and vectors vy, vy € V', how can we describe L(vy,v9)?

According to the definition of linear subspaces, we must be able to add and multi-
ply by scalars in L(vy,v9); also vy, vy € L(v1,vy). This implies that every element
of the form A\jv; + Agve must be in L(vq, vy). So set

U= {)\11)1 + Ayvg : )\1,)\2 c F}
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(where F' is the field of scalars); then U C L(vy,v2). On the other hand, U is itself
a linear subspace:

0=0-v14+0-v €U,
(A1 + pa)vr + (A2 4 p2)va = (Aror + Agvz) + (pavr + povs) € U,
(A1) + (AX2)ve = A(A\v1 + Aaw) € UL

(Exercise: which of the vector space axioms have we used where?)

Therefore, U is a linear subspace containing v; and vy, and hence L(vy,ve) C U
by Remark 2.23. We conclude that

L(Ul,’Ug) =U = {/\11)1 + AUy )\1,)\2 € F} .

This observation generalizes.

Definition 2.25. Let V' be an F-vector space, vi,vs,...,v, € V. The linear
combination (or, more precisely, F-linear combination) of vi,vs,..., v, with co-
efficients A1, Ao, ..., A\, € F'is the element

V= AU+ AUy + - - + AUy,

If n = 0, then the only linear combination of no vectors is (by definition) 0 € V.

If S C V is any (possibly infinite) subset, then an (F'-)linear combination on S is
a linear combination of finitely many elements of S.

Proposition 2.26. Let V' be a vector space, vy, vs, ..., v, € V. Then the set of all
linear combinations of v, vs, ..., v, 1S a linear subspace of V ; it equals the linear
hull L(’Ul, Vo, ... 7Un)-

More generally, let S C V be a subset. Then the set of all linear combinations
on S is a linear subspace of V, equal to L(S).

Proof. Let U be the set of all linear combinations of vy, vs, . .., v,. We have to check
that U is a linear subspace of V. First of all, 0 € U, since 0 = Ovy; + Ovg + - - - + Ov,,
(this even works for n = 0). To check that U is closed under addition, let
V= AU + AUg + - -+ + A\u, and w = pqvy + pevy + -+ + p,v, be two elements
of U. Then
V4w = (Mg + Avg + -+ Nop) + (a1 + pgve + -+ i vy)

= (A 4 p)vr + (A2 + p2)vg + -+ (An + fin)Un

is again a linear combination of vy, vs, ..., v,. Also, for A € F,
AU = )\()\11)1 + )\QUQ +-F )\nvn)
= ()\)\1)7)1 + ()\)\2)’02 + -+ ()\)\n)’l)n

is a linear combination of vy, vs,...,v,. So U is indeed a linear subspace of V. We
have vy, vq,...,v, € U, since

V=004 400+ 104001+ +0-0,,
so L(vy,v9,...,v,) C U by Remark 2.23. On the other hand, it is clear that any

linear subspace containing vy, vs, ..., v, has to contain all linear combinations of
these vectors. Hence U is contained in all the subspaces that L(vy, v, ..., v,) is
the intersection of, so U C L(vq,vs, .. .,v,). Therefore

L(vy,ve,...,v,) = U.
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For the general case, the only possible problem is with checking that the set of
linear combinations on S is closed under addition. For this, we observe that if v is a
linear combination on the finite subset I of S and w is a linear combination on the
finite subset J of S, then v and w can both be considered as linear combinations
on the finite subset /U .J of S (just add coefficients zero); now our argument above
applies. O

Remark 2.27. In many books the linear hull L(S) of a subset S C V is in fact
defined to be the set of all linear combinations on S. Proposition 2.3 states that
our definition is equivalent, so from now on we can use both.

Example 2.28. Note that for any nonzero v € F", the subspace L(v) consists of
all multiples of v, so L(v) = {\v : A € F'} is a line (see Definition 2.17).

Example 2.29. Take the three vectors
er = (1,0,0), es = (0,1,0), and es = (0,0,1)

in R3. Then for every vector x = (z1, T2, 23) € R® we have x = 161 + z9es + 1363,
so every element in R? is a linear combination of e, e, e3. We conclude R? C
L(ey, €9, e3) and therefore L(eq, ez, e3) = R3, s0 {e1, €9, e3} generates R3.

Example 2.30. Let F' be a field and n a positive integer. Set

=(1,0,0,...,0),
(0 1,0,...,0),
= (0, ,0,1,0,...,0),
= (0, 1),
with e; the vector in F™ whose i-th entry equals 1 while all other entries equal 0.
Then for every vector x = (1,9, ...,2,) € F" we have © = z1e1+T2e2+. . .+x 6,
so as in the previous example we find that {ej,es,...,e,} generates F". These

generators are called the standard generators of F™.

Example 2.31. Take V = R* and consider S = {v;, vy, v3} with
v =(1,0,1,0), v =(0,1,0,1),  ws=(1,1,1,1).
For a; = (1,0,—1,0) and as = (0,1,0, —1), the hyperplanes
Hy={zeR" : (z,a;) =0}, and  Hy={xeR" : (z,a3) =0}

are subspaces (see Proposition 2.16) that both contain vy, vy, v3. So certainly we
have an inclusion L(vy, vq,v3) C Hy N Ha.

Conversely, every element = = (x1, 29, 3, x4) in the intersection Hy; N Hy satisfies
(x,a1) =0, 80 1 = x3 and (z,as) = 0, s0 xy = x4, which implies x = x1v; + 220s.
We conclude x € L(vy,v,), so we have

L(Ul,?)g,?}g) C H1 N H2 C L(Ul,vg) C L(Ul,vg,’Ug).

As the first subspace equals the last, all these inclusions are equalities. We deduce
the equality L(S) = Hy N Hs, so S generates the intersection H; N Hy. In fact, we
see that we do not need vs, as also {vy,v2} generates Hy N Hs. In Section 7?7 we
will see how to compute generators of intersections more systematically.

Example 2.32. Let us consider again the vector space C(R) of continuous func-
tions on R. The power functions f, : = — 2" (n = 0,1,2,...) are certainly
continuous and defined on R, so they are elements of C(R). We find that their
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linear hull L({f, : n € Ng}) is the linear subspace of polynomial functions, i.e,
functions that are of the form

T apt" + a1 gz + ag
with n € Ny and ag,aq,...,a, € R.

Example 2.33. For any field we can consider the power functions f, : © — 2"
inside the vector space F of all functions from F' to F. Their linear hull L({f, :
n € Ng}) C F¥ is the linear subspace of polynomial functions from F to F, i.e,
functions that are of the form

T apt"” + a1 o+ agx + ag

with n € Ny and ag, a4, ..., a, € F. By definition, the power functions f,, generate
the subspace of polynomial functions.

Warning 2.34. In Example 1.5 we defined real polynomials in the variable x as
formal (or abstract) sums of powers z* multiplied by a real constant a;. These are
not to be confused with the polynomial functions f: R — R, though the difference
is subtle: over a general field, the subspace of polynomial functions is generated
by the power functions f, from Example 2.33, while the space P(F) of polynono-
mials is generated by the formal powers x! of a variable .

As stated in Warning 1.24, though, over some fields the difference between polyno-
mials, as defined in Example 1.23, and polynomial functions, as defined in Example
2.33, is clear, as there may be many more polynomials than polynomial functions.
For instance, the polynomial 22 + 2 and the zero polynomial 0, both with coeffi-
cients in the field Fy, are different polynomials; the first has degree 2, the second
degree —oo. However, the polynomial function F, — F, that sends z to 2% +x
is the same as the zero function.

Definition 2.35. Let F' be a field and S any subset of F”. Then we set
St={reF" : (s,x) =0 for all s € S}.

In Remark 2.55 we will clarify the notation S*.

Example 2.36. Let I be a field. Then for every element a € F", the hyperplane
H, given by (a,z) = 0 is {a}*. Moreover, the set S* is the intersection of all
hyperplanes H, with a € S, i.e.,

St =()H..

a€esS

For instance, the intersection H; N Hy of Example 2.31 can also be written as
{ab a2}L'

Proposition 2.37. Let F' be a field and S any subset of F™. Then the following
statements hold.

(1) The set S* is a subspace of F™.
(2) We have St = L(S)*.

(3) We have L(S) C (S+)*.

(4) For any subset T C S we have S* C T+.

(5) For any subset T C F™ we have S*NT+ = (SUT)*.

Proof. We leave (1), (3), (4), and (5) as an exercise to the reader. To prove (2),
note that from S C L(S) and (4) we have L(S)* C S, so it suffices to prove the
opposite inclusion. Suppose we have x € S*, so that (s, z) = 0 for all s € S. Now
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any element ¢ € L(.5) is a linear combination of elements in S, so there are elements
S1,892,...,8, € S and scalars A\j, Ao, ..., A\, € F such that t = A\ys1 + ... 4+ A\usp,
which implies

(t,x) = (Mis1+ ...+ S, ) = M (s, @) +. .. F A (sp, ) = A -0+...+X,-0=0.
U

Remark 2.38. Later we will see that the inclusion L(S) C (S*)*+ of Proposition
2.37 is in fact an equality, so that for every subspace U we have (UL)t = U.
A computational proof is based on Proposition 7?7, cf. Exercise ?77. A more
conceptual proof uses the notion of dimension and is given in Section ?77.

Exercises.
Exercise 2.3.1. Prove Proposition 2.37.
Exercise 2.3.2. Do the vectors
(1,0,-1), (2,1,1), and (1,0,1)
generate R3?
Exercise 2.3.3. Do the vectors
(1,2,3), (4,5,6), and (7,8,9)
generate R3?
Exercise 2.3.4. Let U C R* be the subspaces generated by the vectors
(1,2,3,4), (5,6,7,8), and (9,10,11,12).

What is the minimum number of vectors needed to generate U? As always, prove
that your answer is correct.

Exercise 2.3.5. Let F be a field and X a set. Consider the subspace F'X) of FX
consisting of all functions f: X — F that satisfy f(x) = 0 for all but finitely many
xr € X (cf. Exercise 2.1.9). For every x € X we define the function e, : X — F' by

1 ifz=
ez(z):{ it z ==z,

0 otherwise.

Show that the set {e, : = € X} generates FX).

Exercise 2.3.6. Does the equality L(I NJ) = L(I) N L(J) hold for all vector
spaces V with subsets I and J of V7

Exercise 2.3.7. We say that a function f: R — R is even if f(—x) = f(z) for all
x € R, and odd if f(—x) = —f(x) for all z € R.

(1) Ts the subset of R® consisting of al even functions a linear subspace?
(2) Is the subset of R® consisting of al odd functions a linear subspace?

Exercise 2.3.8. Given a vector space V over a field F' and vectors vy, v, ..., v, €
V. Set W = L(vy,vs,...,v,). Using Remark 2.23, give short proofs of the follow-
ing equalities of subspaces.

(1) W = L(v},...,v),) where for some fixed j and some nonzero scalar A € F’

we have v; = v; for i # j and vj = Av; (the j-th vector is scaled by a
nonzero factor \).
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(2) W = L(v,...,v,) where for some fixed j,k with j # k and some scalar

e n

A € F we have v} = v; for i # k and v, = v + Av; (a scalar multiple of v,
is added to vy).
(3) W = L(vi,...,v],) where for some fixed j and k we set v} = v; for i # j, k

rrn

and vj = v, and vy, = v; (the elements v; and vy, are switched),

2.4. Sums of subspaces. We have seen that the intersection of linear subspaces
is again a linear subspace, but the union usually is not, see Example 2.20. However,
it is very useful to have a replacement for the union that has similar properties,
but is a linear subspace. Note that the union of two (or more) sets is the smallest
set that contains both (or all) of them. From this point of view, the following
definition is natural.

Definition 2.39. Let V' be a vector space, Uy, Uy C V' two linear subspaces. The
sum of U; and U, is the linear subspace generated by U; U Us:

Uy +Uy;=LUUU,).
More generally, if (U;);e; is a family of subspaces of V' (I = () is allowed here),

then their sum is again
> u=r(Ju).

el i€l

As before in our discussion of linear hulls, we want a more explicit description of
these sums.

Lemma 2.40. If U; and Uy are linear subspaces of the vector space V', then
Uy + Us :{u1+u2:u1 cUy,ug € Ug}
If (Uy)ier is a family of linear subspaces of V', then
ZUi = {Zu] :J C I finite and u; € U; for all j € J}.
iel jeJ

Proof. For each equality, it is clear that the set on the right-hand side is contained
in the left-hand side (which is closed under addition). For the opposite inclusions,
it suffices by Remark 2.23 (applied with S equal to the union U;UUs, resp. | J,.; Ui,
which is obviously contained in the right-hand side) to show that the right-hand
sides are linear subspaces.

We have 0 =0+ 0 (resp., 0 = >_ 5 u;), so 0 is an element of the right-hand side
sets. Closure under scalar multiplication is easy to see:
)\(Ul + UQ) = )\Ul + )\Uz,
and we have \u; € Uy, Aug € Uy, because Uy, U, are linear subspaces. Similarly,
AD ui =D Ay,
jeJ jed
and Au; € Uj, since Uj is a linear subspace. Finally, for uy, v} € Uy and ug, u}, € Us,
we have
(ug + ug) + (u) + uhy) = (uy + ) + (ug + ub)
with w; + v} € Uy, ug + uy € Us. And for Jy, J, finite subsets of I, u; € U; for
j S Jl, ’LL; S Uj fOl”j € JQ, we find

<Zuj>+<2u;> = Z v,

JjEJL JjE€J2 JEJ1UJo
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Wherevj:uj € Uj lf] € Jl\JQ, Uy :u; EU]‘ lfje JQ\Jl,andvj:uj—l—u; EU]'
it jeJinJs. 0

Alternative proof. Clearly the right-hand side is contained in the left-hand side, so
it suffices to prove the opposite inclusions by showing that any linear combination
of elements in the union U; UU,, resp. |J,.; Ui, is contained in the right-hand side.

Suppose we have v = A\jw; + ... + A\;w, with w; € U; U U,. Then after reordering
we may assume that for some nonnegative integer » > s we have wy, ..., w, € Uy
and wyy1,...,ws € Uy. Then for u; = Mwy+...+ \w, € Uy and ug = A\ yqw, 1+
...+ Asw, € Uy we have v = uq + uo, as required.

Suppose we have v = \jw; + ... + A sw, with w € Uie] U; for each 1 < k < s.
Since the sum is finite, there is a finite subset J C I such that wy, € ;. U; for
each 1 < k < s. After collecting those elements contained in the same subspace
U; together, we may write v as

vV = Z Z /\jkwjk

jed k=1
for scalars Az and elements wj, € U;. Then for u; = 7, Ajpw;. € U; we have
v = ZjGJ u;, as required. O

Example 2.41. The union U = U; U U, of Example 2.20 contains the vectors
e; = (1,0) and e; = (0,1), so the sum U; + U, = L(U) contains L(e, ep) = R?
and we conclude U; + U, = R2.

Example 2.42. Let VV C R¥ be the vector space of all continuous functions from
R to R. Set

U={feV : f(0)=0} Uy={feV : f(1)=0}
We now prove the claim Uy 4+ U; = V. It suffices to show that every continuous
function f can be written as f = fy+ f1 where fy and f; are continuous functions

(dle{pending on f) with fo(0) = fi(1) = 0. Indeed, if f(0) # f(1), then we can
take
) B __ [ N
while in the case f(0) = f(1) = ¢ we can take fy and f; given by
folw) =c(f(z) + 2 =)+ (f(x) —¢),  file) = —c(flz)+2—c—1).

Lemma 2.43. Suppose V' is a vector space containing two subsets S andT’. Then
the equality L(S) + L(T) = L(S UT) holds. In other words, the sum of two
subspaces is generated by the union of any set of generators for one of the spaces
and any set of generators for the other.

Proof. Exercise. U

Definition 2.44. Let V' be a vector space. Two linear subspaces Uy, U C V are
said to be complementary if Uy N Uy = {0} and Uy + Uy = V.

Example 2.45. Take u = (1,0) and v/ = (2,1) in R? and set U = L(u) and
U' = L(u'). We can write every (z,y) € R? as
(z,y) = (x — 2y,0) + 2y,9y) = (x —2y) - u+y -u' € U+ U,
so U + U’ = R% Suppose v € UNU’ Then there are \, u € R with
(A, 0) = Au=v=pu = (2u, ),
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which implies 4 = 0, so v = 0 and U N U’ = {0}. We conclude that U and U’ are
complementary subspaces.

Lemma 2.46. Let V' be a vector space and U and U’ subspaces of V.. Then U
and U’ are complementary subspaces of V' if and only if for every v € V' there are
unique v € U, u' € U’ such that v =u+ u'.

Proof. First suppose U and U’ are complementary subspaces. Let v € V. Since
V = U+ U’, there certainly are u € U and v’ € U’ such that v = v + «’. Now
assume that also v = w + w’ with w € U and w’ € U’. Then u+ v = w + w’, so
u—w=w —u eUNU', henceu —w=w"—u" =0, and u = w, v = w'.

Conversely, suppose that for every v € V there are unique v € U, v’ € U’ such
that v = u + «/. Then certainly we have U + U’ = V. Now suppose w € U NU’.
Then we can write w in two ways as w = u + v’ with u € U and v’ € U’, namely
with u = w and v’ = 0, as well as with v = 0 and v/ = w. From uniqueness, we
find that these two are the same, so w = 0 and U NU’ = {0}. We conclude that
U and U’ are complementary subspaces. Il

As it stands, we do not yet know if every subspace U of a vector space V has a
complementary subspace. In Section 5 we will see that this is indeed the case. In
the next section, we will see an easy special case, namely when U is a subspace
of F™ generated by an element a € F" satisfying (a,a) # 0. It turns out that in
that case the hyperplane {a}! is a complementary subspace (see Corollary 2.61).

FEzercises.
Exercise 2.4.1. Prove Lemma 2.43.

Exercise 2.4.2. Suppose F'is a field and Uy, U C F™ subspaces. Show that we
have

(U + Uyt = U NU;-.

Exercise 2.4.3. Suppose V' is a vector space with a subspace U C V. Suppose
that Uy, Uy C V subspaces of V' that are contained in U. Show that the sum
U, + U, is also contained in U.

Exercise 2.4.4. Take u = (1,0) and v/ = (a, 1) in R?, for any a € R. Show that
U = L(u) and U’ = L(u') are complementary subspaces.

Exercise 2.4.5. Let U, and U_ be the subspaces of R of even and odd functions,
respectively (cf. Exercise 2.3.7).

(1) Show that for any f € R, the functions f, and f_ given by

foio) = LI

are even and odd, respectively.
(2) Show that U, and U_ are complementary subspaces.

and fo(x) =

Exercise 2.4.6. Are the subspaces Uy and U; of Example 2.42 complementary
subspaces?

Exercise 2.4.7. True or false? For every subspaces U, V, W of a common vector
space, we have UN(V4+W) = (UNV)+(UNW). Prove it, or give a counterexample.
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2.5. Euclidean space: lines and hyperplanes. This section, with the excep-
tion of Proposition 2.60 and Exercise 2.5.18, deals with Fuclidean n-space R™, as
well as F™ for fields F' that are contained in R, such as the field Q of rational
numbers. As usual, we identify R? and R? with the plane and three-space through
an orthogonal coordinate system, as in Example 1.21. Vectors correspond with
points and vectors can be represented by arrows. In the plane and three-space, we
have our usual notions of length, angle, and orthogonality. (Two lines are called
orthogonal, or perpendicular, if the angle between them is /2, or 90°.) In this
section we will generalize these notions to all n > 0. Those readers that adhere
to the point of view that even for n = 2 and n = 3, we have not carefully defined
these notions, have a good point and may skip the paragraph before Definition
2.48, as well as Proposition 2.51.

In R we can talk about elements being ‘positive’ or ‘negative’ and ‘smaller’ or
‘bigger’ than other elements. The dot product satisfies an extra property in this
situation.

Proposition 2.47. Suppose F is a field contained in R. Then for any element
x € F™ we have (x,z) > 0 and equality holds if and only if x = 0.

Proof. Write x as x = (x1,Zg,...,2,). Then (z,z) = 2? + 22 + ... + 22. Since
squares of real numbers are nonnegative, this sum of squares is also nonnegative
and it equals 0 if and only if each terms equals 0, so if and only if x; = 0 for all ¢
with 1 <7 <n. O

Over R and fields that are contained in R, we will also refer to the dot product as
the standard inner product or just inner product. In other pieces of literature, the
dot product may be called the inner product over any field.

The vector * = (1, 22,73) € R3 is represented by the arrow from the point
(0,0,0) to the point (x1, xe, z3); by Pythagoras’ Theorem, the length of this arrow
is \/2? + 13 + 22, which equals /(z,z). Similarly, in R? the length of an arrow
representing the vector € R? equals /{x,x). We define, more generally, the
length of a vector in R™ for any integer n > 0 accordingly.

Definition 2.48. Suppose F' is a field contained in R. Then for any element
x € F™ we define the length ||z|| of x as ||z|| = \/(z, x).

Note that by Proposition 2.47, we can indeed take the square root in R, but the
length ||z]| may not be an element of F. For instance, the vector (1,1) € Q? has
length v/2, which is not contained in Q.

Example 2.49. The length of the vector (1, —2,2,3) in R* equals /1 +4 +4 +9 =
3V/2.

Lemma 2.50. Suppose F is a field contained in R. Then for all A\ € F and
x € F" we have || Azx|| = |A| - ||z||.

Proof. Exercise. U

Proposition 2.51. Suppose n =2 orn = 3. Let v,w be two nonzero elements in
R™ and let a be the angle between the arrow from 0 to v and the arrow from 0 to
w. Then we have

v, W

(1) cosa = g
[ol - [Jwll

The arrows are orthogonal to each other if and only if (v, w) = 0.
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Proof. Because we have n = 2 or n = 3, the new definition of length coincides
with the usual notion of length and we can use ordinary geometry. The arrows
from 0 to v, from 0 to w, and from v to w form a triangle in which « is the angle
at 0. The arrows represent the vectors v, w, and w — v, respectively. By the cosine
rule, we find that the length ||w — v]| of the side opposite the angle « satisfies

Jw — v[|* = ||v]|> + [Jw]]* = 2 - [Jo]| - [Jw] - cos a.
We also have
Jw — o[> = (w = v, w —v) = (w,w) — 2(w,v) + (v,v) = [|v]|* + [Jw]* = 2(w, v).

Equating the two right-hand sides yields the desired equation. The arrows are
orthogonal if and only if cosa = 0, so if and only if (w,v) = 0. O

Example 2.52. Let the lines [ and m in the (z, y)-plane R? be given by y = ax+b
and y = cx + d, respectively. Then their directions are the same as the lines
I'=L((1,a)) and m’ = L((1, ¢)), respectively. By Proposition 2.51, the lines I’ and
m/, and thus [ and m, are orthogonal to each other when 0 = ((1, a), (1, ¢)) = 1+ac,
so when ac = —1.

Inspired by Proposition 2.51, we define orthogonality for vectors in R™ for all
n > 0.

Definition 2.53. Suppose F' is a field contained in R. Then we say that two
vectors v, w € F™ are orthogonal, or perpendicular to each other, when (v, w) = 0.
Note that the zero vector is orthogonal to every vector.

Warning 2.54. Proposition 2.47 implies that the only vector in R™ that is per-
pendicular to itself, is 0. Over other fields, however, we may have (v,v) = 0 for
nonzero v. For instance, the vector v = (1,4) € C? satisfies (v,v) = 0, so in C? we
have v € {v}+. Also the vector w = (1,1) € F2 satisfies (w,w) = 0.

Remark 2.55. If two vectors v and w in R™ are orthogonal, we sometimes write
v L w. This explains the notation S* (see Definition 2.35) for S C R", as the set

St={zxeR" : (s,z) =0forall s € S}
consists exactly of all elements that are orthogonal to all elements of S.

Definition 2.56. Suppose F'is a field contained in R and a € F™ a nonzero vector
and b € F' a constant. Then we say that a is a normal of the hyperplane

H={zeR" : (a,z) =b}.

Proposition 2.57. Suppose F' is a field contained in R and H a hyperplane with
a normal a. Then for any p,q € H, the vector q — p is orthogonal to a. If H
contains 0, then every q € H is orthogonal to a.

Proof. There is a constant b € F' such that H consists exactly of all x € F™ with
(a,z) = b. This implies that for p,q € H we have (a,q — p) = (a,q) — {a,p) =
b—b = 0, so a is orthogonal to ¢ — p. The last statement follows by taking
p=0. Il

Because of Proposition 2.57, we say that a normal a of a hyperplane is orthogonal
to that hyperplane. Beware though, as for hyperplanes not containing 0, it does
not mean that the elements of H are orthogonal to a, but the differences between
elements. Draw a picture to clarify this for yourself!
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Example 2.58. Suppose H C R" is a hyperplane with normal a, containing the
point p. Then there is a constant b such that H consists of all points x € R with
(a,z) =b. From p € H we obtain b = (a, p).

With Definitions 2.48 and 2.53 we immediately have the following analogon of
Pythagoras’ Theorem.

Proposition 2.59. Suppose F' is a field contained in R. Then two vectors v,w €
F™ are orthogonal if and only if they satisfy ||v — w|* = ||v]|* + |Jw]]?.

Proof. We have
lv = wl* = (v — w,v —w) = (v,0) = 2(v,w) + (w,w) = [|Jv]|* + [Jw]|* = 2{v, w).

The right-most side equals ||v]|? + ||w||? if and only if (v, w) = 0, so if and only if
v and w are orthogonal. O

We would like to define the angle between two vectors in R™ by letting the angle
a € [0, 7] between two nonzero vectors v, w be determined by (1). However, before
we can do that, we need to know that the value on the right-hand side of (1) lies
in the interval [—1,1]. We will see that this is the case in Proposition 2.73. First
we state some auxiliary results.

The following proposition and its first corollary are the only results of this section
that hold for all fields.

Proposition 2.60. Let F' be any field, n > 0 an integer, and a € F™ an element
with (a,a) # 0. Then for every element v € F™ there is a unique A € F' such that

for w = v — Aa we have {a,w) = 0. Moreover, this A\ equals {a.v) .

(a,a)’
(Aa, Aa) = % and w = v — Aa satisfies (w,w) = (v,v) — (a,v)?

(a,0)

we then have

Proof. For any A € F, we have (a,v—Aa) = (a,v)—A(a, a), so we have (a,v—Aa) =
0 if and only if (a,v) = A(a, a), so if and only if A = =24, The dot products of Aa

a,a)’

~
-

—~

and w = v — Aa with themselves follow from
(Aa, \a) = N\*{a, a)
and
(w,w) = (w,v — Aa) = (w,v) — Mw,a) = (v—Aa,v) — 0= (v,v) — X a,v).
U

Corollary 2.61. Let F' be any field, n > 0 an integer, and a € F™ an element
with (a,a) # 0. Then the subspaces L(a) and

H,={a}"={ze€F" : (a,2) =0}

are complementary subspaces.

Proof. Proposition 2.60 says that every v € F™ can be written uniquely as the sum
of an element A\a € L(a) and an element w in the hyperplane H, = {a}* given by
(a,x) = 0. By Lemma 2.46, the spaces L(a) and H, are complementary subspaces.
Alternatively, we first only conclude L(a) + H, = F"™ from Proposition 2.60. We
also claim L(a) N H, = {0}. Indeed, for v = Aa € L(a) we have (v,a) = X a,a),
so (v,a) = 0 if and only if A = 0, which means v = 0. O
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Corollary 2.62. Suppose F is a field contained in R and a € F™ is a vector. Then
every element v € F™ can be written uniquely as a sum v = vy + vy of a multiple
vy of a and an element vy that is orthogonal to a. Moreover, if a is nonzero, then
we have vi = \a with A = (a,v) - ||a]|™? and the lengths of vy and vy are given by

[{a, v)]

el

||2 . <CL, U>2

2
fagz = 1ol

[or]] = and  |lvaf* = [[v = [[v[|* = fJonll*.

Proof. The statement is just a reformulation of Proposition 2.60 for F' C R, with
v1 = Aa and vy = w. Indeed, for a = 0 the statement is trivial and for a # 0, we
have (a,a) # 0 by Proposition 2.47. O

Definition 2.63. Using the same notation as in Corollary 2.62, we call v; the
orthogonal projection of v onto a or the line L = L(a) and we call vy the orthogonal
projection of v onto the hyperplane H = {a}* = L*. We define the distance
d(v, L) from v to L by d(v, L) = ||vs]| and the distance d(v, H) from v to H by
d(v, H) = ||v1]|]. In section ?? we will define the orthogonal projection onto (and
distances to) any subspace of R™.

Remark 2.64. Suppose F' is a field contained in R and a is a nonzero element
in F". Set L = L(a) and H = {a}* = L* as in Definition 2.63. Let v; € L
and vo € H be the orthogonal projections of v on L and H respectively, so that
v = v; + v9. Then for any x € L, we can write v — = as the sum (v; — x) 4 vy of
two orthogonal vectors, so that by Proposition 2.59 (Pythagoras) we have

lv = ]|* = llor = 2" + [loa]|* = [lvz]1*.

We conclude ||v — z|| > ||vz|| = d(v, L), so the distance d(v, L) is the minimal
distance from v to any point on L. Similarly, the distance d(v, H) is the minimal
distance from v to any point on H. Make a picture to support these arguments!

Example 2.65. Take a = (1,1,1) € R3. Then the hyperplane H = {a}" is the
set

H={zcR® : (a,2) =0} = { (21, 79,73) €ER® : 2 +a5+235=0}

with normal a. To write the vector v = (2,1, 3) as the sum v = vy 4+ vy with v; a
multiple of a and v, € H, we compute
— <a7 U> — 9 — 27
(a,a) 3
so we get v; = 2a = (2,2,2) and thus v, =v—v; = (2,1,3) - (2,2,2) = (0, —1,1).
Indeed, we have v € H. We find that the distance d(v, L(a)) from v to L(a)
equals |[vg]| = v/2 and the distance from v to H equals d(v, H) = ||v1]| = 2v/3.

In fact, we can do the same for every element in R3. We find that we can write
x = (21,29, x3) as © = 2’ + 2" with
;o T -+ i) —+ XT3
3
and

33”: 2131—$2—$3’—$1+2$2—$3’—$1—$2+21’3 cH.
3 3 3

Verify this and derive it yourself! Also find the distance from x to L and H in

this general setting.
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Example 2.66. Consider the point p = (2,1,1) and the plane
V ={(r,79,73) €ER® : 21 — 215+ 323 =0}

in R3. We will compute the distance from p to V. The normal a = (1, -2, 3) of

V satisfies (a,a) = 14. We have V = {a}*, so by Definition 2.63, the distance

d(p, V') from p to V equals the length of the orthogonal projection of p on a. This
3

projection is Aa with X\ = (a,p) - [|al|”> = ;. Therefore, the distance we want

equals [|Aal| = £v/14.

Example 2.67. Consider the vector a = (1, —2,3), the point p = (2,1, 1) and the
plane

W={zecR®: (a,2) =1}

in R? with noral a. We will compute the distance from p to W. Since W does not
contain 0, it is not a subspace and our results do not apply directly. Note that the
point ¢ = (2, —1,—1) is contained in W. We translate the whole configuration by
—q and obtain the point p' = p — ¢ = (0,2,2) and the plane

W ={zecR® : (a0 —(—q)=1}={2cR® : {(a,2) =0} = {a}~,

which does contain 0 (by construction, of course, because it is the image of ¢ € W
under the translation). Note the minus sign in the derived equation (a,z—(—¢q)) =
1 for W’ and make sure you understand why it is there! By Definition 2.63, the
distance d(p’, W') from p’ to W’ equals the length of the orthogonal projection of
p’ on a. This projection is Aa with A = (a, p’) - [|a|| = = 3. Therefore, the distance

we want equals d(p, W) = d(p/, W') = || Aa|| = %\/ﬂ

Example 2.68. Let L C R? be the line through the points p = (1,—1,2) and
q=(2,—2,1). We will find the distance from the point v = (1,1, 1) to L. First we
translate the whole configuration by —p to obtain the point v' = v—p = (0,2, —1)
and the line L’ through the points 0 and ¢ — p = (1, -1, —1). If we set a = ¢ — p,
then we have L' = L(a) (which is why we translated in the first place) and the
distance d(v, L) = d(v’, L') is the length of the orthogonal projection of v' onto the
hyperplane {a}+. We can compute this directly with Corollary 2.62. It satisfies
{a,v")? . (-1 14

d / L/ 2 _ m2 _\»~/7r _ g __ —
0 2 = o = rou
so we have d(v,L) = d(v/,L') = y/& = 1\/42. Alternatively, in order to deter-

mine the orthogonal projection of v onto {a}*, it is easiest to first compute the
orthogonal projection of v" onto L(a), which is Aa with A\ = <|‘|I’T‘2) = —%. Then

the orthogonal projection of v’ onto {a}* equals v — (—3a) = (3,2, —3) and its
length is indeed 3v/42.

Definition 2.69. Let a € R" be nonzero and set
H,={a}"={z€R" : (a,2) =0}
Then for any v € R", we define the reflection of v in H, to be

(v.a)
(.0

Note that if we write v = v;4vy with v; a multiple of @ and vy € H,,, as in Corollary
2.62, then we have v/ = vy — vy; note also that (v, a) = (—vy,a) = —(v,a), so the

v =v—2
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reflection v” of v’ in H, is v, as we have
(v, a)

/
,a) ’a>a =0 +2+—""a=n.
(a,a) (a,a)
Draw a picture to see why v’ is called the reflection of v and compare it with the
following proposition.

v =" =2

Proposition 2.70. Let a € R™ be nonzero and set H, = {a}*. Let v € R"™ be any
vector and v' the reflection of v in H,. Then the following statements hold.

(1) The vector v —v' is orthogonal to H,.

(2) The distances of v and v’ to H, are the same, i.e., d(v, H,) = d(v', Hy).

(3) If v is not contained in H,, then v’ is the unique point different from v
itself that satisfies the two points above.

Proof. Exercise. U

Example 2.71. Let L C R? be the line given by y = —2x. Then L = {a}* for
a=(2,1), i.e., a is a normal of L. The reflection of the point p = (3,4) in L is
{p, a)

10
l=p—2 —p—2-—-a=p—4a=(-5,0).
Pmpo 2 yesr 7 a=p—da=(-50)

Draw a picture to verify!

Example 2.72. Consider the vector a = (—1,2,3) € R? and the plane
V={veR®: (a,v) =2}
We will compute the reflection of the point ¢ = (0,3,1) in V. Note that V' does
not contain 0, so we first translate everything over —p with p = (0,1,0) € V.
Then we get § = ¢ —p = (0,2,1) and
V={v—p:veV}={a"
The reflection of § in V equals

(G,a) 7 i
Finally, to get the reflection ¢’ of ¢ in V', we have to translate back over p, so

¢=q+p=(11-2).

~/

qg=q—2

Proposition 2.73 (Cauchy-Schwarz). Suppose F' is a field contained in R and
n > 0 is an integer. Then for all v,w € F™ we have |(v,w)| < ||v| - |Jw| and
equality holds if and only if there are A\, u € F', not both zero, such that Av+pw = 0.

Proof. For v = 0, we automatically have equality, as well as a nontrivial linear
combination that is 0, namely with A = 1 and g = 0. Suppose v # 0. Let z be the
orthogonal projection of w onto {v}+ (see Definition 2.63, so our vectors v, w, 2
correspond to a,v,vs of Proposition 2.62, respectively). Then by Corollary 2.62
we have

(v, w)?

[o]|>

From ||z]|?> > 0 we conclude (v, w)? < |[v||*- ||w|?*, which implies the inequality, as
lengths are nonnegative. We have equality if and only if z = 0, so if and only if
w = v for some A € F, in which case we have Av + (—1) - w = 0. Conversely, if
we have a nontrivial linear combination A\v + pw = 0 with A and p not both zero,
then we have p # 0, for otherwise Av = 0 would imply A = 0; therefore, we have
w = —A\p~ v, so w is a multiple of v and the inequality is an equality. U

2% = [lwll* -
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Proposition 2.74 (Triangle inequality). Suppose F is a field contained in R and
n > 0 is an integer. Then for all v,w € F™ we have ||[v + w| < ||v|| + ||w]| and
equality holds if and only if there are nonnegative scalars A\, u € F', not both zero,
such that \v = pw.

Proof. By the inequality of Cauchy-Schwarz, Proposition 2.73, we have
lv+wl* = (v +w, v+ w) = (v,0) + 2(v,w) + (w, w)
= [lol* + 2{v, w) + [[w]]* < ol + 2lv]| - w]| + [lwl* = (o]l + [lw])*.

Since all lengths are nonnegative, we may take square roots to find the desired
inequality. The investigation of equality is left as an exercise. O

Definition 2.75. Suppose F is a field contained in R and n > 0 is an integer.
Then for all nonzero v,w € F" we define the angle between v and w to be the
unique real number « € [0, 7] that satisfies

B (v, w)
@ 08 = T el

Note that the angle a between v and w is well defined, as by Proposition 2.73, the
right-hand side of (2) lies between —1 and 1. The angle also corresponds with the
usual notion of angle in R? and R? by Proposition 2.51. Finally, Definitions 2.53
and 2.75 imply that two nonzero vectors v and w in F™ are orthogonal if and only
the angle between them is 7/2.

Example 2.76. For v = (3,0) and w = (2,2) in R? we have (v,w) = 6, while
|v|| = 3 and ||w|| = 2v/2. Therefore, the angle 6 between v and w satisfies
cos = 6/(3-2v2) = /2, so we have § = 7/4.

Example 2.77. For v = (1,1,1,1) and w = (1,2, 3,4) in R* we have (v, w) = 10,
while ||v|| = 2 and ||w|| = v/30. Therefore, the angle § between v and w satisfies
cosf = 10/(2- v/30) = £v/30, so 6 = arccos (1+/30).

Exercises.

Exercise 2.5.1. Prove Lemma 2.50.

Exercise 2.5.2. Take a = (—1,2,1) € R? and set V = {a}* C R3. Write the
element = (21,72, 73) € R® as v = 2/ + 2" with z € L(a) and 2” € V.

Exercise 2.5.3. Finish the proof of Proposition 2.74.

Exercise 2.5.4. Explain why Proposition 2.74 might be called the triangle in-
equality, which usually refers to ¢ < a + b for the sides a, b, ¢ of a triangle. Prove
that for all v,w € R™ we have [|[v — w| < ||v]|| + ||w].

Exercise 2.5.5. Let a and b be the lengths of the sides of a parallelogram and ¢
and d of its diagonals. Prove that then ¢* + d* = 2(a® + b?).

Exercise 2.5.6. Prove the cosine rule in R".

Exercise 2.5.7. Show that two vectors v,w € R™ have the same length if and
only v —w and v + w are orthogonal.

Exercise 2.5.8. Prove that the diagonals of a parallelogram are orthogonal to
each other if and only if all sides have the same length.

Exercise 2.5.9. Compute the distance from the point (1,1,1,1) € R* to the line
L(a) with a = (1,2, 3,4).
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Exercise 2.5.10. Given the vectors p = (1,2,3) and w = (2,1,5), let L be the
line consisting of all points of the form p + Aw for some A € R. Compute the
distance d(v, L) for v = (2,1, 3).

Exercise 2.5.11. Let aj,as,a3 € R be such that a? + a2 + a3 = 1, and let
f: R?® — R be the function that sends x = (&1, 23, 23) to a 21 + asws + azxs. Show
that the distance from any point p to the plane in R? given by f(z) = 0 equals

f(p).

Exercise 2.5.12. Let H C R* be the hyperplane with normal a = (1,—1,1,—1)
going though the point ¢ = (1,2, —1, —3). Determine the distance from the point
(2,1,-3,1) to H.

Exercise 2.5.13. Determine the angle between the vectors (1, —1,2) and (=2, 1,1)
in R3.

Exercise 2.5.14. Let V C R3 be the plane that has normal a = (1,2, —1) and
that goes through the point p = (1,1,1). Determine the reflection of the point
(1,0,0) in V.

Exercise 2.5.15. Prove Proposition 2.70.

Exercise 2.5.16. The angle between two hyperplanes is defined as the angle
between their normal vectors. Determine the angle between the hyperplanes in
R* given by 21 — 229 + 13 — 24 = 2 and 3z, — 22 + 223 — 224 = —1, respectively.

Exercise 2.5.17. Let p,q € R™ be two different points. Let V' C R"™ be the set of
all points in R™ that have the same distance to p as to ¢, i.e.,

V={veR" : v-pl=v-ql}

(1) Show that V' is the hyperplane of all v € R™ that satisfy

(a0 = 5(lall* = ol

(2) Show g — p is a normal of V' and that the point %(p + q) is contained in V.
(3) Show that the reflection of p in V' is g.

Exercise 2.5.18. In this exercise, we generalize the notion of reflection to arbi-
trary fields. Let F' be any field, n > 0 an integer, and a € F™ an element with
(a,a) # 0. Set

H,={a}*={z € F" : {a,2) =0}.
Then for any v € F", we define the reflection of v in H, to be

(v, a)

/
—v—2 .
T e a)

(1) Show that the reflection of v’ in H, equals v.

(2) Suppose that w' is the reflection of a vector w € F™ and 2’ is the reflection
of the sum © = v + w. Show that ' = v + w’. (A similar statement
holds for the scalar multiplication instead of the sum; together, this shows
that reflections are linear maps, as defined in the next section. See also
Examples 3.7.)
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3. LINEAR MAPS

So far, we have defined the objects of our theory: vector spaces and their elements.
Now we want to look at relations between vector spaces. These are provided by
linear maps — maps between two vector spaces that preserve the linear structure.
But before we give a definition, we have to review what a map or function is and
their basic properties.

3.1. Review of maps. A map or function f : X — Y is a ‘black box’ that for
any given x € X gives us back some f(z) € Y that only depends on x. More
formally, we can define functions by identifying f with its graph

I'y={(z,f(z)):2e X} C X xY.

In these terms, a function or map from X to Y is a subset f C X xY such that for
every x € X there is a unique y € Y such that (z,y) € f; we then write f(z) = y.
It is important to keep in mind that the data of a function include the domain X
and target (or codomain) Y.

If f: X — Y is amap, then we call {f(z): 2 € X} CY the image of f, im(f).
The map f is called injective or one-to-one (1-1) if no two elements of X are
mapped to the same element of Y. More formally, if z,2’ € X and f(z) = f(2),
then x = 2/. The map f is called surjective or onto if its image is all of Y.
Equivalently, for all y € Y there is some x € X such that f(z) =y. The map f
is called bijective if it is both injective and surjective. In this case, there is an
inverse map f~' such that f~1(y) =2 < f(z)=y.

A map f: X — Y induces maps from subsets of X to subsets of Y and conversely,
which are denoted by f and f~! again (so you have to be careful to check the
‘datatype’ of the argument). Namely, if A C X, we set f(A) = {f(z) : x € A}
(for example, the image of f is then f(X)), and for a subset B C Y, we set
fYB) = {x € X : f(z) € B}; this is called the preimage of B under f. Note
that when f is bijective, there are two meanings of f~!(B) — one as just defined,
and one as g(B) where g is the inverse map f~!. Fortunately, both meanings agree
(Exercise), and there is no danger of confusion.

Maps can be composed: if f : X — Y and g : Y — Z, then we can define a map
X — Z that sends x € X to g(f(x)) € Z. This map is denoted by go f (“g after
f7) — keep in mind that it is f that is applied first!

Composition of maps is associative: if f: X - Y, ¢g:Y - Zand h: 2Z — W,
then (hog)o f =ho(go f). Every set X has a special map, the identity map
idy : X — X,z — z. It acts as a neutral element under composition: for
f:X =Y, we have foidy = f =idyof. If f: X — Y is bijective, then its
inverse satisfies f o f~! =idy and f~'o f =idx.

When talking about several sets and maps between them, we often picture them
in a diagram like the following.

x 1oy X

gl ig' fl\
1 g

vy y 22y

We call such a diagram commutative if all possible ways of going from one set to
another lead to the same result. For the left diagram, this means that g'of = f’og,
for the right diagram, this means that h = g o f.



36

3.2. Definition and examples. We want to single out among all maps between
two vector spaces V and W those that are ‘compatible with the linear structure.’

Definition 3.1. Let V and W be two F-vector spaces. A map f :V — W is
called an (F-)linear map or a homomorphism if

(1) for all vy, vy € V', we have f(v1 +v2) = f(v1) + f(v2),
(2) for all A € F' and all v € V, we have f(Av) = Af(v).

(Note: the first property states that f is a group homomorphism between the
additive groups of V' and W.)

An injective homomorphism is called a monomorphism, a surjective homomor-
phism is called an epimorphism, and a bijective homomorphism is called an iso-
morphism. Two vector spaces V and W are said to be isomorphic, written V = W,
if there exists an isomorphism between them.

A linear map f : V — V is called an endomorphism of V; if f is in addition
bijective, then it is called an automorphism of V.

Lemma 3.2. Here are some simple properties of linear maps.

(1) If f -V — W s linear, then f(0) = 0.
(2) If f : V — W is an isomorphism, then the inverse map f~' is also an
1somorphism.

B)Iff:U—V and g:V — W are linear maps, then go f : U — W is also
linear.

Proof.

(1) This follows from either one of the two properties of linear maps:

f(0) = f(0+0) = f(0) + f(0) = f(0) =0
or
f(0) = f(0-0)=0-f(0)=0.
(Which of the zeros are scalars, which are vectors in V', in W7?)

(2) The inverse map is certainly bijective; we have to show that it is linear.
So let wy,ws € W and set vy = f~Hwy), vo = f~H(ws). Then f(vy) = wy,
f(va) = wy, hence f(v; + v2) = wy + wy. This means that

7wy 4+ ws) = vy vy = 7 wy) 4+ fH (wy) .

The second property is checked in a similar way.

(3) Easy.
O
Lemma 3.3. Let f:V — W be a linear map of F-vector spaces.
(1) For all vy,v,...,v, €V and A\, Ag,..., N\, € F we have
Favr+ .o+ ) = A f(vn) + .o+ A f(vn).
(2) For any subset S C V we have f(L(S)) = L(f(95)).
Proof. Exercise. U

Associated to a linear map there are two important linear subspaces: its kernel
and its image.
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Definition 3.4. Let f : V — W be a linear map. Then the kernel of f is defined
to be

ker(f)={veV: f(v)=0}.
Lemma 3.5. Let f : V — W be a linear map.

(1) ker(f) C V is a linear subspace. More generally, if U C W is a linear
subspace, then f~1(U) C V is again a linear subspace; it contains ker(f).

(2) im(f) C W is a linear subspace. More generally, if U C V is a linear sub-
space, then f(U) C W is again a linear subspace; it is contained in im(f).

(3) f is ingective if and only if ker(f) = {0}.
Proof.

(1) We have to check the three properties of subspaces for ker(f). By the
previous remark, f(0) = 0, so 0 € ker(f). Now let vy, vy € ker(f). Then
f(v1) = f(v2) = 0, so f(vy +v2) = f(v1) + f(v2) = 0+ 0 = 0, and
v1 + vy € ker(f). Finally, let A be a scalar and v € ker(f). Then f(v) =0,
so f(Av) = Af(v) =A-0=0, and \v € ker(f).

The more general statement is left as an exercise.

(2) We check again the subspace properties. We have f(0) = 0 € im(f). If
wy, wy € im(f), then there are vy, vy € V such that f(v1) = wy, f(ve) = wo,
hence wy + wy = f(vy +v2) € im(f). If A is a scalar and w € im(f), then
there is v € V such that f(v) = w, hence Aw = f(\v) € im(f).

The more general statement is proved in the same way.

(3) If f is injective, then there can be only one element of V' that is mapped
to 0 € W, and since we know that f(0) = 0, it follows that ker(f) = {0}.
Now assume that ker(f) = {0}, and let vy, vy € V such that f(v1) = f(v2).
Then f(vi—vy) = f(v1)—f(ve) = 0, s0 v1—vy € ker(f). By our assumption,
this means that v; — vy = 0, hence vy = vs.

i

Remark 3.6. If you want to show that a subset U in a vector space V' is a linear
subspace, it may be easier to find a linear map f : V — W such that U = ker(f)
than to check the properties directly.

It is time for some examples.

Examples 3.7.

(1) Let V be any vector space. Then the unique map f : V — {0} into the
zero space is linear. More generally, if W is another vector space, then
f:V—=W, v~ 0,is linear. It is called the zero homomorphism; often it
is denoted by 0. 0 Its kernel is all of V| its image is {0} C W.

(2) For any vector space, the identity map idy is linear; it is even an auto-
morphism of V. Its kernel is trivial (= {0}); its image is all of V.

(3) If V.= F™, then all the projection maps m; : F" — F, (x1,...,%,) — ;
are linear.
(In fact, one can argue that the vector space structure on F™ is defined in
exactly such a way as to make these maps linear.)

(4) Suppose V = R" and a € V is nonzero. Set H, = {a}*. Then the following
maps from V to V are linear.
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(a) The orthogonal projection m,: R" — R™ onto L(a) given by

(v.a)
(a,a)

(see Definition 2.63). Indeed, linearity follows from the identities (v +
w,a) = (v,a) + (w,a) and (A\v,a) = X\(v,a). Note that for the a = e;,
the j-th standard vector, and the projection map 7;: R®™ — R on the
j-th coordinate, we have

(e d

7y (0) = 7,(0) - ¢
(b) The orthogonal projection 7,1 : R* — R™ onto H, = {a}* given by
(v.a)
(a,a)
(see Definition 2.63). Indeed, for checking addition, note that we have
(v,0) + (w,a)
(a, a)
(@ N, e
(a,a) (a,a)

The scalar multiplication follows similarly.
(c) The reflection s,: R® — R™ in the hyperplane H, = {a}* given by

VU —

(v+w,a)

@ a=(v+w)-—

(v +w) -

(v.0)
(a,a)
(see Definition 2.69). The linearity is proven in the same way as for

the projection onto H,. The remark under Definition 2.69 shows that
S, 0 S = idy .

Vi— v —2

(5) For any two vector spaces Vi, V5 over the same field F', the projection maps
Vi x Vo — Vi and Vi x Vo — Vy given by (v1,v9) — vy and (vy,ve) — vy,
respectively, are linear, cf. Exercise 1.4.12.

(6) Let P be the vector space of polynomial functions on R. Then the following
maps are linear.

(a) Evaluation: given a € R, the map ev, : P — R, p+ p(a) is linear.
The kernel of ev, consists of all polynomials having a zero at a; the
image is all of R.

(b) Differentiation: D : P — P, p — p’ is linear.

The kernel of D consists of the constant polynomials; the image of D
is P (since D o I, =idp, cf. (d) below).

(c) Definite integration: given a < b, the map

b
Iy : P— R, pl—>/p(x)dx

is linear.
(d) Indefinite integration: given a € R, the map

T

I,:P— P, pr—><x»—>/p(t)dt)

a
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is linear. This map is injective; its image is the kernel of ev, (see
below).

(e) Translation: given a € R, the map
T,:P— P, pr— (z+ p(z+a))

is linear. This map is an isomorphism: 7' =T_,.

The Fundamental Theorem of Calculus says that D o I, = idp and that
I,y oD = evy—ev, and I, o D = idp —ev,. This implies that ev,ol, =
0, hence im(/,) C ker(ev,). On the other hand, if p € ker(ev,), then
I,(p) = p—pla) = p, so p € im(I,). Therefore we have shown that
im(7,) = ker(evy,).

The relation Dol, = idp implies that [, is injective and that D is surjective.
Let C' C P be the subspace of constant polynomials, and let Z, C P be
the subspace of polynomials vanishing at a € R. Then C' = ker(D) and
Z, = ker(ev,) = im(l,), and C' and Z, are complementary subspaces. D
restricts to an isomorphism Z, — P, and I, restricts (on the target side)
to an isomorphism P = Z, (Exercise!).

Two isomorphic vector spaces can for all practical purposes be identified. This is
illustrated by the following proposition.

Proposition 3.8. Suppose ¢: V. — V' and ¢: W — W' are isomorphisms of
vector spaces. Suppose f: V — W is a linear map and set f' =1po fop™t: V' —
W'. Then the diagram

f
V—W
|,
V/ L W/
commutes,  restricts to an isomorphism ker f — ker f', and 1 restricts to an

isomorphism im f — im f’.

Proof. Exercise. O

Proposition 3.9. Let F' be any field and n a nonnegative integer. For every
a € F™, the function
F"—>F, xw {a,r)

18 a linear map.

Proof. This follows directly from Proposition 2.10. U

Proposition 3.10. Let F' be any field and n a nonnegative integer. Suppose
f: F" — F is a linear map. Then there is a unique vector a € F™ such that for
all z € F™ we have f(z) = (a,z).

Proof. Suppose there exists such an element a and write a = (ay, as, ..., a,). Then
for each 7 with 1 < ¢ < n we have
f(ez): <CL,€Z‘> :a1~0—|—...+ai,1-O—i—ai-1+ai+1~0+...+an-02ai.

We conclude that a = (f(e1), f(e2), ..., f(€s)), so a is completely determined by
f and therefore unique, if it exists.

To show there is indeed an a as claimed, we take

a=(f(er), flea), -, flen))
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(we have no choice by the above) and show it satisfies f(z) = (a, z) for all x € F™,
as required. Indeed, if we write x = (z1,z9,...,x,), then we find

fle)=f(z1-e14+...+xp-e,) =x1- fler) +... 4z, flen) = (x,a) = (a, z).
O

One nice property of linear maps is that they are themselves elements of vector
spaces.

Lemma 3.11. Let V and W be two F-vector spaces. Then the set of all linear
maps V. — W, with addition and scalar multiplication defined point-wise, forms
an F-vector space. It is denoted by Hom(V,W).

Proof. 1t is easy to check the vector space axioms for the set of all maps V — W
(using the point-wise definition of the operations and the fact that W is a vector
space). Hence it suffices to show that the linear maps form a linear subspace:

The zero map is a homomorphism. If f,g: V — W are two linear maps, we have
to check that f 4 g is again linear. So let vy, v, € V'; then

(f +g)(v1 +v2) = for +v2) + g(v1 +v2) = fv1) + f(v2) + g(v1) + g(v2)
= f(v1) + g(v1) + f(v2) + g(v2) = (f + g)(v1) + (f + g)(v2) .
Similarly, if A € F and v € V, we have
(f +9) () = f(hv) + g(Aw) = Af(v) + Ag(v) = A(f(v) + g(v)) = A (f +g)(v).
Now let u € F', and let f: V — W be linear. We have to check that pf is again
linear. So let vy, v € V; then
(f) (1 +v2) = pf(vr 4 v2) = pu(f(v1) + f(va))
= pf(v1) + pf(v2) = (uf)(v1) + (f)(v2) .
Finally, let A € F and v € V. Then

(1f) (M) = pf (W) = p(Af(v)) = (pA)f(0) = A(pf (V) = A+ (uf)(v).
O

Example 3.12. Suppose V = R" and a € V is nonzero. Set H, = {a}*. Let
Ta, Tat, and s, be the orthogonal projection onto L(a), the orthogonal projection
onto {a}*, and the reflection in H,, respectively, as in Examples 3.7. Then the
linearity of the last two maps follows from the linearity of the first, as we have

T = idy —7g, and Sq = idy —2m,.
Proposition 3.13. Let F' be a field and W be an F-vector space. Then for
every sequence wi,Ws, ..., w, of n vectors in W, there is a unique linear map

p: F" — W with ¢(e;) = w; for every i € {1,...,n}.
Proof. Suppose f is a function with f(e;) = w; for every i € {1,...,n}. Then for
x = (x1,29,...,2,) € F™ we have

flz) = f(rer+ ...+ anen) =z f(er) + ...+ x1f(en) = mqwy + . .. + zpw,,

so f is completely determined on all z € F™ by the vectors wy,ws,...,w, and
therefore ¢ is unique, if it exists.

To show there is indeed a ¢ as claimed, we define the function ¢: F™ — W by

o(x) = zwy + ... + Twy
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(we have no choice by the above). One easily checks that ¢ is linear. (Do this!)
For ¢ with 1 <7 < n, we have
ele))=0-w+...40 w1+ 1w +0 w1 +...+0-w, =w,

so ¢ indeed satisfies the requirements. U

By construction, the image of the map ¢ of Proposition 3.13 consists of all linear
combinations of wy,wy, ..., w,, so it equals L(wy,...,w,); this implies that ¢ is
surjective if and only if the elements wy, ws, ..., w, generate W.

Definition 3.14. For any vector space W over a field F', and a sequence C' =
(wy,ws, ..., w,) of n elements in W, we write p¢ for the linear map ¢: F" — W
associated to C' as in Proposition 3.13.

Ezercises.
Exercise 3.2.1. Prove Lemma 3.3.
Exercise 3.2.2. Which of the following maps between vector spaces are linear?
(1) R? - R? (z,9,2) — (v —2y,2 + 1),
(3) C* = C, (2,9,2) — (v +2y,x — 32,y — 2,0+ 2y + 2),
(4) R® — V, (2,9,2) — xv; + yvs + 2v3, for a vector space V over R with
U1, V2,03 € V)
(5) P(C) — P(C), f — f', where P(C) is the vector space of polynomials
over C and f’ the derivative of f,
(6) P(R) — R?, f+ (f(2), f(0)).

Exercise 3.2.3. Let f: V — W be a linear map of vector spaces. Show that the
following are equivalent.

(1) The map f is surjective.
(2) For every subset S C V with L(S) =V we have L(f(S)) = W.
(3) There is a subset S C V with L(f(5)) =W.

Exercise 3.2.4. Let p: R? — R? be rotation about the origin (0,0) over an angle
6.

(1) Show that p is a linear map.
(2) What are the images p((1,0)) and p((0,1))?
(3) Show that we have

p((z,y)) = (xcos@ — ysin b, xsinf + y cos ).

Exercise 3.2.5. Show that the reflection s: R? — R? in the line given by y = —x
is a linear map. Give an explicit formule for s.

Exercise 3.2.6. Given the map
T: RQ - R27 (ZE,y) = x(gu %) + y(%7 _g)
and the vectors v; = (2,1) and vy = (—1,2).

(1) Show that T'(vy) = vy and T'(ve) = —vs.
(2) Show that T" equals the reflection in the line given by 2y — z = 0.

Exercise 3.2.7. Give an explicit expression for the linear map s: R? — R? given
by reflecting in the line y = 3z.
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Exercise 3.2.8. Let V C R? be the plane
V={(r,y,2)€eR® : 20 —y+2z=0}

(1) Give an explicit expression for the reflection s: R? — R? in the plane V.

(2) Show that
Uy ={veR? : s(v) =v} and U.={veR?® : s(v)=—v}
are subspaces.

(3) Show Uy =V and U_ = L(a).
(4) Show that U, and U_ are complementary subspaces.

Exercise 3.2.9. Prove Proposition 3.8.

Exercise 3.2.10. Let F' be a field and n a nonnegative integer. Show that there
is an isomorphism

F" — Hom(F", F)
that sends a vector a € F™ to the linear map = — (a, x).

Exercise 3.2.11. Let F' be field. The dot product on F" is a map F" x F™" — F,
satisfying some conditions. In this exercise, we will generalize this to F'X for any
set X. Note that if X is finite, then FX and F) as in Exercise 2.1.9 are equal.
In general, we get a map

F¥x F& —F, (f.g) = {f.g)=> f@)g(x),

zeX

where the sum contains only finitely many nonzero terms, because there are only
finitely many = € X with g(z) # 0.

(1) Show that this generalized dot product satisfies the conditions of Proposi-
tion 2.10.
(2) Show that there is an isomorphism

FX — Hom(FYX), F)
that sends a vector f € FX to the linear map g — (f, g).

Exercise 3.2.12. Suppose V is a vector space with two complementary subspaces
U and U’, cf. Definition 2.44. Then for every v € V there are unique elements
u € U and v’ € U’ with v = u+u' by Lemma 2.46; let 7;y: V' — U denote the map
that sends v to the corresponding element u. Note that 7y also depends on U’,
even though it is not referred to in the notation. Show that 7 is a surjective linear
map with kernel ker 7, = U’. We call 7y the projection of V' onto U along U’.

Exercise 3.2.13. This exercise generalizes Exercises 2.4.5 and 3.2.8. Let V' be
a vector space over a field F' and assume char F' # 2, so that 2 # 0 and we can
divide by 2. Let s: V' — V be a linear map satisfying s(s(v)) = v for all v € V
(for example, s: R™ — R™ is the reflection in some hyperplane). Set

Vi={veV : sv)=uv}, Vo={veV : sv)=—-v}

(1) Show that s is an isomorphism.
(2) Show that for every v € V' we have
v+ s(v) v —s(v)
2 2

(3) Show that V, and V_ are complementary subspaces in V.
(4) For what choice of s does Exercise 2.4.5 become a special case?

€V, and cv..
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Exercise 3.2.14. Let V be a vector space and o: X — Y any map of sets. Define
the map
o*: V¥ = Map(Y,V) — Map(X,V) = V*
by o*(f) = foo.
) Show that o* is a linear map.
) Show that if o is injective, then o* is surjective.
)

Show that if o is surjective, then o* is injective.
(4) Show that if o is bijective, then ¢* is an isomorphism.

Exercise 3.2.15.

(1
(2
(3

(1) Suppose a: W — W is a linear map of vector spaces over a field F'. Show
that for every vector space V over F there is a linear map
a.: Hom(V, W) — Hom(V, W')

that sends f to o f.
(2) Suppose 3: V! — V is a linear map of vector spaces over a field F'. Show
that for every vector space W over F' there is a linear map

G*: Hom(V, W) — Hom(V', W)
that sends f to fo (.
(3) Check that in Proposition 3.8 we have

fr="0ho (™)) () = (™) 0 v)(f)-

Exercise 3.2.16. This exercise generalizes Proposition 3.13. Let F' be a field and
X a (not necessarily finite) set. Consider the subspace FX) of FX as in Exercise
2.1.9, and the elements e, (for x € X) as in Exercise 2.3.5. Let W be a vector
space over F' containing a collection C' = (w,)zex of elements in W. Show that
there is a unique linear map ¢¢: F (X) — W that satisfies voler) = w, for every
x € X and that this map is surjective if and only if the collection C' generates W.

4. M ATRICES

4.1. Definition of matrices.

Definition 4.1. Let F be a field and m, n nonnegative integers. An m X n matriz
over F'is an array

aix a2 - Q1p
Q21 Q22 -+ Q2p

A= . . .| = (@ijhicismagi<n
Am1 Am2 - Qmn

of entries or coefficients a;; € F.

For i € {1,...,m}, the vector (a;1, aa, ..., a:) is a row of A, which is an element
of F™, and for j € {1,...,n}, the vector

alj
a2j

Amj
is called a column of A, which is an element of F'm, written vertically. The set of
all m x n matrices with entries in F' is denoted by Mat(m X n, F'). Note that as
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a boundary case, m = 0 or n = 0 (or both) is allowed; in this case Mat(m x n, F)
has only one element, which is an empty matrix.

If m = n, we sometimes write Mat(m, F') for Mat(n x n, F'). The matrix

10 --- 0
01 --- 0
I=1,= T (0ij)1<ij<n -
00 1
is called the identity matriz.
For any
aipr a2 - Qg L1
a a cee Qo x
A= 7 e Mat(m x n, F) and  a=|.|eF"
Am1 Am2 Amn Ln
we define the product Ax as
app Q2 o Qg X a11201 + 12T + - - - + A1 Ty
o1 G - A9y T 2121 + Q22X + - - - + A2pTh
Az = ; } ; = )
Am1 Am2 - Amn Ln Am1T1 + Am2T2 + -+ Ayndn
Example 4.2. We have
3 2 1 2 3:24+2-(=2)+1-(-1) 1
-1 2 7 -2 = (=1)-24+2-(=2)+7-(-1) = [ -13
-3 5 =2/ \-1 (=3)-245-(=2)+(-2)-(-1) —14

There are (at least) two useful ways to think of the multiplication. If we let
v = (i1, iz, - - - 5 Ain)

be the i-th row of A, then we can write Az as

—v— (v, )
—Vg— Vo, T

A — .2 r = < 2‘7 > 7
— U — (U, T)

so the entries of Ax are the dot-products of  with the row vectors of A. If we let

A2,
U}j =
Qmyj
denote the j-th column of A, then we can write Az as

15

| | x
2
Ar=w; we -+ w, | = Twn F Towe £ T Wy,

n

so Az is the linear combination of the column vectors of A with the entries of
as coefficients. Note that Ae; = w;.
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4.2. Linear maps associated to matrices.

Definition 4.3. To any matrix A € Mat(m x n, F') we associate the function
fa: F" — F™ given by

fa(z) = Az
for all x € F™.

Example 4.4. Let A € Mat(3 x 4,R) be the matrix

3 2 0 -1
1 -2 5 =3
0o 1 4 7
Then the map f4 sends

;1 31 +2x9 —Z4

x2 e R? to r1 —2xs +5xr3 —3z4 | € R3.

1’3 T2 +4I3 +7l’4

4

Note that the images of the standard vectors ey, €5, €3, and e4 in Example 4.4 are
the columns of A (check this!). Indeed, in general, for any m X n matrix A, the
J-th column of A equals f4(e;) for any j € {1,...,n}. More precisely, we have the
following result, which states that f4: F™ — F™ is the unique linear map sending
e; to the j-th column of A.

Proposition 4.5. Let F' be a field and C' = (wy,ws,...,w,) a sequence of n
elements in F™. Let A be the m X n matriz over F of which the j-th column
equals w;. Then we have fa = pc with oc: F™" — F™ as in Definition 5.14.

Proof. Exercise. O

Lemma 4.6. For any matriz A € Mat(mxn, F), the associated function fa: F™ —
F™ is a linear map.

Proof. This can be checked straight from the definition, but it is easier to use the
two ways to think of the product Ax just described. We will use the first way. Let

vy, Vg, . . ., Uy denote the row vectors of A. Then for any =,y € F™ we have
<’U1,I’+y> <U1,.§L’>+<’U1,y>
<U27I+y> <U27‘7;>+<U27y>
falz+y)=Alx+y) = : = :
(U, T +y) (vm, ) + (Um, y)
<1)1, ZE) <U17 y)
<U27 l’) <U27 y)
= "] | = Ar+ Ay = fale) + faly).
(Vi ) (V. )
Similarly, one easily checks that for any A € F' we have fa(A\x) = Afa(x), so fa is
indeed linear. O

Clearly, the linear map f; associated to the matrix I = I, is the identity map
" — F".

Proposition 4.7. Let F' be a field and m,n nonnegative integers. Suppose f: F™ —
F™ is a linear map. Then there is a unique matriz A € Mat(mxn, F') with f = fa.
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Proof. We use the first view point. For any ¢ with 1 < ¢ < m, the composition of f
with the projection m;: F™ — F (see Examples 3.7) is the linear map m;o f: F" —
F' that sends any x € F™ to the i-th entry of f(z). By Lemma 3.10 there is a
unique vector v; € F™ such that (m; o f) = (v;, z) for all x € F". Then we have

<U1,1]>

<U27 JZ>
f@ ="
(U, )
so f = f4 for the matrix A whose rows are vy, vs,...,v,,. The uniqueness of A
follows from the uniqueness of v; for all 7. O

Alternative proof. We now use the second view point. Suppose A € Mat(m xn, F')
satisfies f = fa. Then by Proposition 4.5 the j-th column of A equals fa(e;) =
f(ej), so A is completely determined by f and therefore, A is unique, if it exists.

To show there is indeed an A as claimed, we set w; = f(e;) for 1 < j < n and
let A be the matrix whose columns are wy, ws, ..., w, (we have no choice by the
above). Then for any = = (z1,...,x,) we have

f(l‘) = f(xlel + ... +In6n) = xlf(el) +... +$nf(en)
=W + ...+ xw, = Ax = fa(x),
which implies f = fa. U

Lemma 4.6 and Proposition 4.7 together show that there is a bijection
Mat(m x n, F') — Hom(F", F™), A fa.

Therefore, one often identifies a matrix A with the linear map f4 that the matrix
induces. In this way we may refer to the kernel and image of f4 as the kernel and
image of A and we write ker A = ker f4 and im A = im f}4.

Example 4.8. Let p: R? — R? be rotation about the origin (0,0) over an angle
0. From Exercise 3.2.4, we know that p is given by

x _ (xcost —ysind
p y) ) \xsinf+ycos) -

We conclude that p corresponds to the matrix

cosf) —sind

sinff cosf@ ) -
Example 4.9. Let s: R? — R? be the reflection in the line L given by y = 2z.
Then s is linear and we can determine a 2 x 2 matrix A such that s = f4. By
Proposition 4.5, the columns of A are the images fa(e1) = s(e1) and fa(es) =
s(eg). Note that the vector a = (2, —1) is a normal of L. For any vector v € R?,
the projection of v onto a equals Aa with A = gzzs, so the projection of v onto L
is v — Aa and the reflection of v in L is s(v) = v — 2Aa. (Make a picture!) We find

)= (7)) = (1)

(do the calculations yourself), so we get

o

I
VRS
o |

ol
Ot Ut >
~__
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Definition 4.10. The row space R(A) of an m x n matrix A € Mat(m x n, F') is
the subspace of F™ that is generated by the row vectors of A; the column space
C(A) is the subspace of F™ generated by the column vectors of A.

Remark 4.11. The column space of a matrix A € Mat(m x n, F') is the same as
the image of A, i.e., the image of the linear map f4.

Proposition 4.12. Let A € Mat(m x n, F') be a matriz. Then we have

ker A = (R(A))* C F™.
For ' =R, the kernel of A consists of all vectors in R™ that are orthogonal to the
row space R(A) of A.

Proof. Let vy,vs, ..., v, be the rows of A. Then R(A) = L(vy,...,v,). The map
fa: F™ — F™ is then given by fa(z) = ((vy,z), ..., {vm,x)) for all z € F™. Thus,
we have © € ker A = ker fyu, ie., fa(x) = 0, if and only if (v;,z) = 0 for all
1 <17 < m, so if and only if x is contained in

{v1, .., 0} = L(vy, ... om) " = (R(A)*.

We conclude ker A = (R(A))*, as stated. The last statement is merely a rephrasing
of this equality for F' = R. O

Remark 4.13. Let U C F™ be a subspace of F". We can use Proposition 4.12 to
reinterpret U+. Let U be generated by the vectors v, vs, ..., vp,. Let f: F* — F™
be the linear map given by

<U1,SL‘>
<U2,$>

fz) =

(U )

Then the kernel of f equals U+. The map f is also given by z — Mz, where M
is the m x n matrix whose ¢-th row vector is v; for all « < m.

Ezercises.

Exercise 4.2.1. Prove Lemma 4.6 using the column vectors of A.
Exercise 4.2.2. Prove Remark 4.11.

Exercise 4.2.3. Prove Proposition 4.5.

Exercise 4.2.4. For the given matrix A and the vector z, determine Ax.

(1)

-2 =3 1 -3
A= 1 1 =2 and r=\| —4 |,
0o 1 1 2
(2)
1
1 -3 2
A= ( 9 4 9 ) and x = 2 1,
-1
(3)
4 3
3 =2 -2
A= 3 and x = < 3 >
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Exercise 4.2.5. For each of the linear maps f: F" — F™ of the exercises of
Section 3.2, give a matrix M such that f is given by

T — Mzx.

Exercise 4.2.6. Given the matrix

-4 -3 0 -3
M = 2 2 -3 -1
0 -3 1 -1
and the linear map f: R"™ — R™, x +— Mz for the corresponding m and n. What
are m and n? Give vectors vy, ..., v, such that f is also given by

f((lL'l,ZE27 . ,mn)) =201 + ...+ TpUn.

Exercise 4.2.7. Determine the matrix M for which fy;: R3 — R3 is reflection in
the plane given by x + 2y — z = 0.

Exercise 4.2.8. Given the following linear maps R® — R™, determine a matrix
A such that the map is also given by x — Ax.

(1) f: R > RY, (z,y,2)— Brx+2y—2,—x—y+2z,2—2,y+2),

(2) g: R? =R (z,9,2) — (xr+2y — 32,20 —y + 2,0+ y + 2),

(3) h: R?) _>R27 (:C,y,Z) = - (172> +y (27_1) + 2 (_173)7

(4) j: R? = R3, v — ({(v,wy), (v,ws), (v,w3)), met wy; = (1, —1), wy = (2,3)
en wy = (—2,4).

4.3. Addition and multiplication of matrices. We know that Hom(F™", F™)
has the structure of an F-vector space (see Lemma 3.11). We can ‘transport’ this
structure to Mat(m x n, F') using the identification of matrices and linear maps.

Definition 4.14. For A, B € Mat(m x n, F'), we define A + B to be the matrix
corresponding to the linear map f4 + fg sending x to Ax + Bx. Similarly, for
A € F, we define AA to be the matrix corresponding to the linear map A f4 sending
x to A+ Ax, so that fayp = fa+ f and fra = \fa.

It is a trivial verification to see that (a;;) + (b;;) = (ai; + bs;), i.e., that addition
of matrices is done coefficient-wise. Similarly, we see easily that A(a;;) = (Aaj;).
With this addition and scalar multiplication, Mat(m x n, F') becomes an F-vector
space, and it is clear that it is ‘the same’ as (i.e., isomorphic to) F — the only
difference is the arrangement of the coefficients in a rectangular fashion instead of
in a row or column.

By Lemma 3.2, the composition of two linear maps is again linear. How is this
reflected in terms of matrices?

Definition 4.15. Let A € Mat(l x m,F) and B € Mat(m x n,F'). Then B
gives a linear map fz: F™ — F™, and A gives a linear map f4: F™ — F!. We
define the product AB to be the matrix corresponding to the composite linear

map fao fp: F* 25 F™ 4 [l So AB will be a matrix in Mat(l x n, F).

In other words, the product AB satisfies fap = f4 0 fB, so we have

(3) (AB)z = fap(x) = fa(fp(x)) = A(Bz)
for all z € F". To express AB in terms of A and B, we let v, vs,...,v; denote
the rows of A and wy,wy, ..., w, the columns of B. The relation (3) holds in

particular for x = ey, the k-th standard vector. Note that (AB)ey and Bey are
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the k-th column of AB and B, respectively. Since the latter is wy, we find that
the k-th column of AB equals

<U17 wk>

Vg, W

<Ula wk>

We conclude
—U1— <U17 w1> <Ula w2> t <U17 wn)
—Uy— | | | </027 w1> </027 w2> tr <v27 wn)
AB = . wy wy Wy | = .

—U1— <Ul7w1> <Ul7w2> e <Ul7wn>

In other words, the (i, k)-th entry in the i-th row and the k-th column of the
product AB is the dot product (v, wy) of the i-th row of A and the k-th row of
B. With

a1 a2 - Qim by bia -+ bin
A az1 Qo2 -+ Qom d B 621 b22 .. b2n
ai; Q. ccc Qu bni bma c byn
we get
bik
bok
Vi = (@i1, Qigy - - - Qi) and wy=| . |,
bmk

so in terms of the entries of A and B, the (i, k)-th entry ¢, of the product AB
equals

m
cir. = (Vi, Wg) = anbig + abog + - + Qi by, = E aijbjp .
=1

If we write the matrix A on the left of AB and the matrix B above AB, then the
(i, k)-th entry ¢;; of AB is the dot product of the i-th row of A next to this entry
and the k-th column of B above the entry.

bt bz - by
(@) Sl
byt bus o+ by
aip aiz - Qim €11 Ci2 '+ Cip
a [ | e )
an Q2 0 Qim i G2 - Cyp
Example 4.16. To compute the product AB for the matrices
2 4 6
A= G 131 153 175) and B = 184 12 ﬁ ’

20 22 24
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we write them diagonally with respect to each other.

2 4 6

8§ 10 12

14 16 18

20 22 24

1 3 5 7 . 268 .
( 9 11 13 15 ) ( . . . )

The product AB is a matrix with as many rows as A and as many columns as B,

so it is a 2 x 3 matrix. The (1,2)-th entry of AB, for instance, is the dot product

of the first row of A and the second column of B, which equals
((1,3,5,7),(4,10,16,22)) =1-443-10+5-16 4+ 7 - 22 = 268.

The other entries are computed similarly and we find

236 268 300
AB = (588 684 780)'

Proposition 4.17. The matriz multiplication is associative: for A € Mat(kx(, F')
and B € Mat(l x m, F) and C' € Mat(m x n, F'), we have
A(BC) = (AB)C.

Proof. The left-hand side is the unique matrix associated to the composition
fao (fso fc), while the right-hand side is the unique matrix associated to the
composition (f4 o fg) o fo, and these composite maps are the same because of
associativity of composition. In other words, we have

fae) = fao fee = fao(feo fe) = (fao fs)o fc = fapo fc = fapc,
so A(BC) = (AB)C by Proposition 4.7. O
Proposition 4.18. The matriz multiplication s distributive with respect to addi-
tion:

A(B4+C)=AB+ AC for A€ Mat(l x m, F), B,C € Mat(m x n, F);

(A+ B)C = AC + BC for A,B € Mat(l x m, F'), C € Mat(m x n, F).

Proof. Exercise. O

However, matrix multiplication is not commutative in general — BA need not
even be defined even though AB is — and AB = 0 (where 0 denotes a zero matriz
of suitable size) does not imply that A = 0 or B = 0. For a counterexample (to
both properties), consider (over a field of characteristic # 2)

A:<(1) (1)> and B:(g })
0 2 0 0
= (0 2) 4 (0 O =na

Definition 4.19. If the linear map f4 corresponding to A € Mat(m x n, F) is an
isomorphism, then A is called invertible.

Then

The matrix corresponding to the inverse linear map is (obviously) denoted A~
so that fq-1 = fi'; we then have AA™! = A7'A = [,, and A~! is uniquely
determined by this property.
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Proposition 4.20. A matriz A € Mat(m x n, F) is invertible if and only if there
exist matrices B and C such that AB = 1,,, and CA = 1I,.

Proof. Exercise. O

Proposition 4.21. Suppose A and B are invertible matrices for which the product
AB exists. Then AB is also invertible, and (AB)™' = B~'A~1. (Note the reversal
of the factors!)

Proof. Exercise. U

Remark 4.22. If A € Mat(m x n, F) is invertible, then m = n, as we will see
computationally in the next chapter and more insightfully in the chapter after.
This means that the matrices A and B in Proposition 4.21 are in fact square
matrices of the same size.

Remark 4.23. The identity matrix acts as a multiplicative identity:

I,A= A= Al, for Ae Mat(m xn,F).
Definition 4.24. Let A = (a;;) € Mat(m x n, F') be a matrix. The transpose of A
is the matrix

AT = (ai)1<i<ni1<j<m € Mat(n x m, F).

(So we get AT from A by a ‘reflection on the main diagonal.’)

Example 4.25. For

1 2 3 4
A=15 6 7 8
9 10 11 12
we have
1 5 9
T |2 6 10
4= 3 7 11
4 8 12

As simple properties of transposition, we have that

(A+B)'=AT+B", AA)T=XAT, (AB)" =BTA"
(note the reversal of factors!) — this is an exercise. If A is invertible, this implies
that AT is also invertible, and (AT)™! = (A~1)T.

Remark 4.26. We have expressed the product AB of matrices A and B in terms
of the dot products of the rows of A and the columns of B. Conversely, we can
interpret the dot product as product of matrices. Suppose we have vectors

a=(ay,as,...,a,) and b= (b1,bs,...,bp)

in F". We can think of a and b as 1 x n matrices (implicitly using that F™ and
Mat(1 x n, F') are isomorphic). Then the transpose b' is an n x 1 matrix and the
matrix product
b
T b2
a-b :(a1 as ... an)- : = (a1by + ... + ayby)
bn

is the 1 x 1 matrix whose single entry equals the dot product (a,b).
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Remark 4.27. The product Az of a matrix A € Mat(m x n, F') and a vector
x € F" can be interpreted as a product between matrices as well. If we think of
x as a 1 X n matrix, then z' is an n x 1 matrix and the product Az corresponds
to the matrix product A -z .

FExercises.

Exercise 4.3.1. Prove Proposition 4.21. If matrices A and B have a product AB
that is invertible, does this imply that A and B are invertible? Cf. Exercise 77.

Exercise 4.3.2. Prove Proposition 4.18.

Exercise 4.3.3. Let p: R? — R? be rotation around 0 over an angle o, cf. Exercise
3.2.4 and Example 4.8. Show that the matrix

A= (Gme o)
satisfies p(v) = Av for all v € R?. Show that for all «, 3 € R we have
cos(a+ ) = cosa.cos f — sin asin 3,
sin(a + ) = sin a cos 3 + cos asin 3.

Exercise 4.3.4. For which 4,5 € {1,...,5} does the product of A; and A; exist
and in which order?

1 1 1 2 -1 1 —4
Al:(—l —2 —1)’ A2:<3—12 4)
2 3 4 ~1 -3 Lo
A= -1 02, A= 2 -2, A5:(_3 2).
3 2 1 1 1
Determine those products.
Exercise 4.3.5. Foreachi € {1,,...,5}, we definer the linear map f; by = — A;x

with A; as in the previous exercise.

(1) What are the domains and codomains of these functions?

(2) Which pairs of these maps can be composed and which product of the
matrices belongs to each possible composition?

(3) Is there an order in which you can compose all maps, and if so, which
product of matrices corresponds to this composition, and what are its
domain and codomain?

Exercise 4.3.6. Take the linear maps f and g of Exercise 4.2.8 and call the
corresponding matrices A and B. In which order can you compose f and g7
Write the composition in the same manner that f and g are given by substituting
one in the other. Multiply the matrices A and B (in the appropriate order) en
verify that this product does indeed correspond with the composition of the linear
maps.

Exercise 4.3.7. This exercise proves Proposition 4.20. Let A be an m x n matrix
over a field F.

(1) Show that if there exists a matrix B such that AB = I,,, then f4 is
surjective.

(2) Show that if there exists a matrix C' such that CA = I,,, then f, is injective.

(3) Show that if there exist matrices B and C' such that AB = I,,, and CA = I,,,
then f4 is an isomorphism and B = C.
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(4) Show that if f4 is an isomorphism, then there exist matrices B and C' such
that AB=1,, and CA = I,.

Exercise 4.3.8. Let F' be a field and m, n nonnegative integers. Show that there
exists an isomorphism

Mat(m x n, F') — Hom(F", F"™)

that sends A to fa. (The fact that this map is linear is almost true by definition,
as we defined the addition and scalar product of matrices in terms of the addition
and scalar product of the functions that are associated to them.)

Exercise 4.3.9. (infinite matrices) An m x n matrix over a field F' can be viewed
as a map from the set {1,2,... ,m} x{1,2,...,n} to F, sending (¢, j) to the (i, j)-
th entry of the matrix in row ¢ and column j. In general, for sets X and Y, we

define an X x Y matrix over F' to be a map X x Y — F. In other words, we set
Mat(X X Y, F) = Map(X x Y, F).

(1) Show that for each M € Mat(X x Y, F), there is a linear map

fMiF(Y)—>FX, gn—><x|—>ZM(x,y)~g(y)).

yey

(2) Describe the map above both in terms of “row vectors” and “column vec-
tors” as in Section 4.1, cf. Exercise 3.2.11.
(3) Show that there is an isomorphism

Mat(X x Y, F) — Hom(F®), FX)
that sends a matrix M to the linear map fyy.
Note that, for any set W, two infinite matrices N € Mat(W x X) and M €

Mat (X x Y, F) can, in general, not be multiplied together, just as the maps F(*) —
FX and F®) — FW can not be composed.

4.4. Elementary row and column operations. Matrices are very suitable for
doing computations. The main tool for that are the so-called ‘elementary row and
column operations.’

Definition 4.28. Let A be a matrix with entries in a field F. We say that we
perform an elementary row operation on A, if we
(1) multiply a row of A by some A € F'\ {0}, or
(2) add a scalar multiple of a row of A to another (not the same) row of A, or
(3) interchange two rows of A.

We call two matrices A and A" row equivalent if A’ can be obtained from A by a
sequence of elementary row operations.

Note that the third type of operation is redundant, since it can be achieved by a
sequence of operations of the first two types (Exercise).

Let F be a field and m a positive integer. Let E;; be the m x m matrix over F' of
which the only nonzero entry is a 1 in row ¢ and column j. For 1 < 4,7 < m with
1 # j and \ € F', we define the elementary m x m matrices

LN =1L,+ (A= 1)Ey,
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One easily verifies that if A is an m x n matrix, then multiplying the i-th row of A
by A amounts to replacing A by L;()\) - A, while adding A times the j-th row of A
to the i-th row of A amounts to replacing A by M;;(\) - A and switching the i-th
and the j-th row amounts to replacing A by N;; - A.

The elementary matrices are invertible, which corresponds to the fact that all
elementary row operations are invertible by an elementary row operation of the
same type. Indeed, we have

Li(\) - LiAY) = 1, M;;(N) - My (=) = Iy, and ij = Ip,.
This implies that row equivalence is indeed an equivalence.

We define elementary column operations and column equivalence in a similar way,
replacing the word ‘row’ by ‘column’ each time it appears. While each row op-
eration on a matrix A € Mat(m x n, F') corresponds to multiplying A by an
elementary m x m matrix M from the left, yielding M A, each column operation
corresponds to multiplying A by an elementary n x n matrix /N from the right,
yielding AN.

The following proposition shows that the elementary row operations do not change
the row space and the kernel of a matrix.

Proposition 4.29. If M and M’ are row equivalent matrices, then we have

R(M) = R(M") and ker M = ker M.

Proof. Exercise. O

Proposition 4.30. Suppose A and A" are row equivalent m x n matrices. If A’
can be obtained from A by a certain sequence of elementary row operations, then
there is an invertible m x m matriz B, depending only on the sequence, such that
A’ = BA. Similarly, if A and A" are column equivalent, then there is an invertible
n x n matriz C' such that A" = AC.

Proof. Let A € Mat(m x n, F'). Let By, Bs, ..., B, be the elementary matrices
corresponding to the row operations we have performed on A to obtain A’, then

A =B (Boy o (Bo(BiA)) -+ ) = (BoByy -+ BaBi)A,

and B = B,B,_1---ByB; is invertible as a product of invertible matrices. The
statement on column operations is proved in the same way, or by applying the
result on row operations to A'. O

Proposition 4.31. Suppose A € Mat(m x n, F) is a matriz. Let A" be a matrix
obtained from A by applying a sequence of elementary row and column operations.
Then the following are true.

(1) If the sequence contains only row operations, then there is an isomorphism
v F™ — F™, depending only on the sequence, with far = 1) o fy.

(2) If the sequence contains only column operations, then there is an isomor-
phism ¢: F™ — F" depending only on the sequence, with far = fa 0 .

(3) There is an isomorphism p: F" — F™, depending only on the subsequence
of column operations, and an isomorphism ¢ : F'™ — F™  depending only
on the subsequence of row operations, with far = ¥ o fq 0, so that the
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diagram
Fm i> Fm
R
FTL > Fm
fA/
18 commutative.
Proof. Exercise. O

Corollary 4.32. Let M and M’ be row equivalent matrices. Then fyr is injective
if and only if far is injective and fyr is surjective if and only if fap is surjective.

Proof. By Proposition 4.31 there is an isomorphism ¢ with fy; = ¥ o fy;. Indeed,

the composition is surjective or injective if and only if fj; is. U
Ezercises.

Exercise 4.4.1. Let vy,v9,...,v, € R"™ be m vectors and consider the m x n
matrix M whose rows are these vectors. Let M’ be a matrix that is row equivalent
to M. Use Exercise 2.3.8 to show that for the rows v}, v}, ... v/ of M’ we have
L(vy,...,0p) = LW, ..., 0).

Exercise 4.4.2. Prove Proposition 4.29.

Exercise 4.4.3. Show that column equivalent matrices have the same column
space, cf. Proposition 4.29.

Exercise 4.4.4. In the following sequence of matrices, each is obtained from the
previous by one or two elementary row operations. Find, for each 1 <7 < 9, a
matrix B; such that A; = B;A,_;. Also find a matrix B such that A = BA,.
You may write B as a product of other matrices without actually performing the
multiplication.

2 5 4 -3 1 1 3 -2 2 1
1 3 -2 2 1 2 5 4 -3 1
Ao = 0 4 —1 0 3 A= 0 4 -1 0 3
-1 2 2 3 1 -1 2 2 3 1
1 3 -2 2 1 1 3 -2 2 1
0 -1 8 -7 —1 0 -1 8 -7 -1
Az = 0 4 -1 0 3 A3 = 0 0 31 —28 —1
0 0 5 2 0 0 40 —-30 -3
1 3 -2 2 1 1 3 -2 2 1
0 -1 8 -7 -1 0 -1 8 -7 -1
A= 0 0 31 —28 —1 As = 0 0 4 —-22 5
0o 0 9 -2 -2 0O 0 9 -2 -2
1 3 -2 2 1 1 -2 2 1
0 -1 8 -7 -1 0 -1 8 -7 -1
As = 0 0 4 -2 5 Ar = 0 0 1 42 -—12
0 0 1 42 —12 0 0 4 —-22 5
1 3 -2 2 1 1 3 -2 2 1
4 0 -1 8 -7 -1 4 01 -8 7 1
8710 0 1 42 —12 710 0 1 42 -—12
0 0 0 —190 53 00 0 190 —53
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Exercise 4.4.5. Show that row operations commute with column operations.
In other words, if M is a matrix and M’ is the matrix obtained from M by
first applying a certain row operation and then a certain column operation, then
applying the two operations in the opposite order to M yields the same matrix
M.

Exercise 4.4.6. Prove Proposition 4.31.

Exercise 4.4.7. Is Corollary 4.32 also true for column equivalent matrices M and
M'? What about matrices M and M’ that can be obtained from each other by a
sequence of row or column operations?

4.5. Row Echelon Form. A matrix is said to be in row echelon form when its
nonzero rows (if they exist) are on top and its zero rows (if they exist) on the
bottom and, moreover, the first nonzero entry in each nonzero row, the so-called
pivot of that row, is farther to the right than the pivot in the row above (except
of course for the top row).

Example 4.33. The matrix Ag of Exercise 4.4.4 is in row echelon form. The
following matrices are all in row echelon form as well, with the last one describing
the most general shape with all pivots equal to 1.

1
1 4 -2 4 3 0111
02 7 2 5 8 8 g ? 0011
00 0 1 -1 00 0 -1 0 001
00 0 0 O 00 0 O 0 00O
1 0---0 1 = ¥ %

r |00 0000001 %%
r+1[0---0 0 0---0 0 0---0 0 0---0

m \0---0 0 0---0 0 0---00 0---0
Ji Jo oo Jr

To make the most general shape with all pivots equal to 1 more precise, note that
there are 0 < r < mand 1 < j; < jo < --- < j, < n where r is the number of
nonzero rows and, for each 1 < ¢ < r, the number j; denotes the column of the
pivot in row i, so that if A" = (aj;), then aj; = 0if i > r orif i <r and j < jj,
and aj; =1for 1 <7 <.

Every matrix can be brought into row echelon form by a sequence of elementary
row operations. The following procedure describes precisely how to do this. This
algorithm is the key to most computations with matrices. It makes all pivots equal
to 1.

Proposition 4.34 (The Row Echelon Form Algorithm). Let A € Mat(m x n, F)
be a matriz. The following procedure applies successive elementary row operations
to A and transforms it into a matriz A" in row echelon form.

1. Set A=A, r =0 and j, = 0.
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2. (At this point, aj; = 0 if i >r and j < j, or if 1 <i <r and 1 < j < j;. Also,
a;jizlforlgz'gr.)
If the (r + 1)st up to the mth rows of A’ are zero, then stop.

3. Find the smallest j such that there is some a;; # 0 with r < i < m. Replace
r by r+1, set j. = j, and interchange the rth and the ith row of A" if r # 1.
Note that 3, > j,._1.

4. Multiply the rth row of A" by (ay; )~".

5. For each i = v+ 1,...,m, add —aj; times the rth row of A’ to the ith row
of A'.

6. Go to Step 2.

Proof. The only changes that are done to A’ are elementary row operations of the
third, first and second kinds in steps 3, 4 and 5, respectively. Since in each pass
through the loop, r increases, and we have to stop when r = m, the procedure
certainly terminates. We have to show that when it stops, A" is in row echelon
form.

We check that the claim made at the beginning of step 2 is correct. It is trivially
satisfied when we reach step 2 for the first time. We now assume it is OK when
we are in step 2 and show that it is again true when we come back to step 2. Since
the first r» rows are not changed in the loop, the part of the statement referring
to them is not affected. In step 3, we increase r and find j, (for the new r) such
that a;j =0if ¢ > r and j < j.. By our assumption, we must have j,. > 7,_1.
The following actions in steps 3 and 4 have the effect of producing an entry with
value 1 at position (r, j.). In step 5, we achieve that aj; =0 for i >r. So aj; =0
for i > r and j < 7, and for ¢« = r and j < j,.. This shows that the condition in
step 2 is again satisfied.

So at the end of the algorithm, the statement in step 2 is true. Also, we have seen
that 0 < j; < js < -+ < j,, hence A’ has row echelon form when the procedure is
finished. O

Example 4.35. Consider the following matrix.

1
A= 14
7

co Ut N
O O W

Let us bring it into row echelon form.

Since the upper left entry is nonzero, we have j; = 1. We subtract 4 times the
first row from the second and 7 times the first row from the third. This leads to

1 2 3
A=[0 -3 -6
0 —6 —12

Now we have to distinguish two cases. If char(F') = 3, then

A =

OO =
S O N
o O O
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is already in row echelon form. Otherwise, —3 # 0, so we divide the second row
by —3 and then add 6 times the new second row to the third. This gives

1 2 3
A=101 2],
0 00
which is in row echelon form.

Remark 4.36. The row space of A in Example 4.35 is spanned by its three rows.
Assume char F' # 3, so 3 # 0. By Proposition 4.29, the row spaces of A and A’
are the same, so this space is also spanned by the two nonzero rows of A’. We will
see in the next chapter that the space can not be generated by fewer elements.
More generally, the number of nonzero rows in a matrix in row echelon form is the

minimal number of vectors needed to span its row space.

Example 4.37 (Avoiding denominators). The algorithm above may introduce
more denominators than needed. For instance, it transforms the matrix

22 5

9 2
22 5 1 2 1 >
(526 4) - %)

Instead of immediately dividing the first row by 22, we could first subtract a
multiple of the second row from the first. We can continue to decrease the numbers
in the first column by adding multiples of one row to the other. Eventually we
end up with a 1 in the column, or, in general, with the greatest common divisor
of the numbers involved.

22 5 - Ry —2Ry, (4 1 - R, (41
9 2 Ry \9 2 Ry —2R;y \1 O
— Ry (1 0 — R, (1 0

R \4 1 Ry —4R; \O 1)°

We see that the 2 x 2 identity matrix is also a row echelon form for the original
matrix.

in two rounds as

Note that in Example 4.37 we indicated the row operations by writing on the
left of each row of a matrix, the linear combination of the rows of the previous
matrix that this row is equal to. This is necessary, because we do not follow the
deterministic algorithm. Note that if in some step you add a multiple of a row,
say It;, to another row, say R;, then row R; should appear unchanged as one of
the rows in the new matrix.

We give one more example, where we avoid denominators all the way.

Example 4.38.

3 5 2 2 R, {1 3 —4 3
1 3 —4 3 R [3 5 2 2
2 2 5 1|7 Ry | 2 —2 5 -1
-1 3 1 -3 R, \-1 3 1 -3
R, (1 3 —4 3 R, (1 3 -4 3
. R—=3R |0 —4 14 —7| R, |0 -4 14 —7
Rs—2R, |0 -8 13 —7 Ry |0 =8 13 —7

Ry+R \O 6 -3 0 Ry+ Ry, \O 2 11 -7
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R (1 3 —4 3 R (13 —4 3
R0 2 11 7| R, |0 2 11 -7
Ry |0 —8 13 —7 Rs+4R, |0 0 57 —35
R, \0 —4 14 -7 Ry+2R, \0 0 36 —21
R (13 —4 3 R (13 —4 3
R, |0 2 11 -7 R, [0 2 11 -7
" Ry—Ry |00 21 —14|7 Ry |00 21 —14
R, \0 0 36 —21 Ri—Rs \0 0 15 -7
R (13 —4 3 R (13 —4 3
. Ry |02 11 —7| _ R, [0 2 11 —7
Ri—R, |00 6 -7 R; |00 6 -7
R, \0 0 15 -7 Ry—2R; \0 0 3 7
R (13 —4 3 R (13 —4 3
R, |0 2 11 -7 R, [0 2 11 -7
“ R, oo 3 7|7 R, |00 3 7
R; \0 0 6 -7 Ry—2R; \0 0 0 —21

While the row echelon form of a matrix is not unique, the reduced row echelon
form below is.

Definition 4.39. A matrix A = (a;;) € Mat(m x n, F') is in reduced row echelon
form, if it is in row echelon form and in addition all pivots equal 1 and we have
a;j, =0 for all 1 <k <7 and i # k. This means that the entries above the pivots
are zero as well:

0---0 1 *---% 0 -x 0 -k
0---0 0 0---0 1 % 0 *
A=10 0O 0---0 0 0---0 1 =*---%
0 0---0 0 0---0 0 0---0
0---0 0 0---0 0 0---0 O O---0

It is clear that every matrix can be transformed into reduced row echelon form by
a sequence of elementary row operations — we only have to change Step 5 of the
algorithm to

5 Foreachi=1,...,r=1,r+1,...,m, add —a;; times the rth row of A’ to the
ith row of A’

Proposition 4.40. Suppose that A € Mat(m x n, F) is a matriz in reduced row
echelon form. Then the nonzero rows of A are uniquely determined by the row
space R(A).

Proof. Let r be the number of nonzero rows of A and let j; < jo < ... < j, be the
numbers of the columns with a pivot. Let vy, vs,..., v, be the nonzero rows of A.
Then the j;-th, jo-th, ..., j.-th entries of the linear combination

)\11)1 + )\2’1)2 + ...+ )\T"UT

are exactly the coefficients Ay, A9, ..., \,. This implies that the nonzero vector in
R(A) with the most starting zeros is obtained by taking \y = ... = A\._; = 0, so
the vector v, is the unique nonzero vector in R(A) with the most starting zeros
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of which the first nonzero entry equals 1. Thus the row space R(A) determines
v, and j, uniquely. Similarly, v,_; is the unique nonzero vector in R(A) with
the most starting zeros of which the j.-th entry equals 0 and the first nonzero
entry equals 1. This also uniquely determines j._ ;. By (downward) induction, v;
is the unique nonzero vector in R(A) with the most starting zeros of which the
Jix1-th, ..., 7,-th entries equal 0 and the first nonzero entry, the j;-th, equals 1.
This process yields exactly the r nonzero rows of A and no more, as there are no
nonzero vectors in R(A) of which the ji-th, jo-th, ..., j,-th entries are zero. This
means that also r is determined uniquely by R(A). O

Corollary 4.41. The following statements about two matrices A, A" € Mat(m X
n, F') are equivalent.

(1) The matrices A and A’ are row equivalent.

(2) The row spaces R(A) and R(A’) are equal.

(3) For any matrices B and B’ in reduced row echelon form that are row equiv-
alent to A and A’, respectively, we have B = B’.

Proof. If A and A’ are row equivalent, then the row spaces R(A) and R(A’) are
the same by Proposition 4.29, which proves (1) = (2). For (2) = (3), suppose
that the row spaces R(A) and R(A’) are equal. Let B and B’ be any matrices in
reduced row echelon form with B and B’ row equivalent to A and A’, respectively.
By Proposition 4.29 we have R(B) = R(A) and R(B’) = R(A’), so we conclude
R(B) = R(B'). Therefore, by Proposition 4.40, the nonzero rows of B and B’
coincide, and as the matrices have the same size, they also have the same number
of zero rows. This yields B = B’. The implication (2) = (3) follows from the
fact that if B = B’ is row equivalent to both A and A’, then A and A’ are row
equivalent. O

Corollary 4.42. The reduced row echelon form is unique in the sense that if a
matriz A is row equivalent to two matrices B, B" that are both in reduced row
echelon form, then B = B’.

Proof. This follows from Corollary 4.41 by taking A = A’. 0

In other words, the m x n matrices in reduced row echelon form give a complete
system of representatives of the row equivalence classes.

Remark 4.43. It follows from Corollary 4.42 that the number r of nonzero rows
in the reduced row echelon form of a matrix A is an invariant of A. It equals the
number of nonzero rows in any row echelon form of A. We will see later that this
number r equals the so-called rank of the matrix A.

4.6. Generators for the kernel. If we want to compute generators for the kernel
of a matrix A € Mat(m x n, F'), then, according to Proposition 4.29, we may
replace A by any row equivalent matrix. In particular, it suffices to understand
how to determine generators for the kernel of matrices in row echelon form. We
start with an example.

Example 4.44. Suppose M is the matrix (over R)
@ 2 -1 0 2 1 -3
o o (1O -1 2 -1 2
o 0o o o @O 1 1 |
0O 0 0 0 0 0 0
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which is already in row echelon form with its pivots circled. Let vy, v9, v3 denote
its nonzero rows, which generate the row space R(M). Suppose the vector z =
(21, To, T3, T4, T, Tg, T7) | is contained in
ker M = R(M)* ={x € R" : (v;,z) =0 fori=1,2,3}.
Then the coordinates i, x3, x5, which belong to the columns with a pivot, are
uniquely determined by the coordinates xs, x4, ¢, 7, which belong to the columns
without a pivot. Indeed, starting with the lowest nonzero row, the equation
(vs, x) = 0 gives x5 + x5 + x7 = 0, s0
Ty = —Tg — T7.

The equation (v, x) = 0 then gives x5 — x4 + 2x5 — xg + 227, SO

3 =24 — 2(—xg — x7) + T6 — 227 = x4 + 3.
Finally, the equation (v, x) = 0 gives

T = —2562 + ($4 + 3]76) — 2(—%6 — SL’7> — Tg + 3137 = —2]72 + x4+ 4%6 + 5%7.

Moreover, any choice for the values w9, x4, g, x7, with these corresponding values
for x1, 3, x5, does indeed give an element of the kernel ker M, as the equations

(v, ) = 0 for 1 <14 < 3 are automatically satisfied. With ¢ = x5, r = x4, s = w4,
and t = x7, we may write

1 —2q+r+4s+5t —2 1 4 5)
T2 q 1 0 0 0
T3 r + 3s 0 1 3 0
r=|x4 | = T =q| O | +r|1|+s] O | +£] O
s —s—1t 0 0 -1 -1
Tg s 0 0 1 0
T t 0 0 0 1

= qwy + rwy + swg + twy,

where

& @ O ®

1 0 0 0

© @ ® ©

wy=| 0 |, wy=1 11, wg=| 0 |, wy=| 0
® © S <

0 0 1 0

0 0 0 1

This shows that the kernel ker M is generated by ws, w4, ws, w7, i.e., we have
ker M = L(ws, wy, we, wy7). In each wy, we circled the coordinates that correspond
to the columns of M with a pivot. Note that the non-circled coordinates in each wy,
are all 0, except for one, the k-th coordinate, which equals 1. Conversely, for each
of the columns of M without pivot, there is exactly one wj, with 1 for the (non-
circled) coordinate corresponding to that column and 0 for all other coordinates
belonging to a column without a pivot.

This could also be used to find wo, wy, we, wy directly: choose any column without
a pivot, say the k-th, and set the k-th coordinate of a vector w € R equal to 1,
then set all other coordinates corresponding to columns without pivot equal to 0,
and compute the remaining coordinates. For instance, for the sixth column, which
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has no pivot, we get a vector w of which the sixth entry is 1, and all other entries
corresponding to columns without pivots are 0, i.e.,

g
I
— % O % O %

0

The entries that correspond to columns with a pivot (so the first, third, and fifth)
can now be computed using the equations (v;, w) = 0, starting with ¢ = 3 and
going down to 7 = 1. We find w = wg in this example.

The following theorem says that we can find generators for the kernel of any matrix
in row echelon form in the same manner.

Proposition 4.45. Let A € Mat(m X n, F) be a matriz in row echelon form with
r nonzero rows and let j; < jo < ... < j,. be the numbers of the columns with a
pivot. Then for each 1 < k < n with k & {j1,72,---,7r}, there is a unique vector
wy, € ker A such that

(1) the k-th entry of wy equals 1, and
(2) the I-th entry of wy equals O for all 1 < | < n with l # k and | ¢
{j17j27 s 7j7"}'

Furthermore, the n—r vectors wy, (for1 < k < n with k & {j1, ja, - - -, Jr}) generate
the kernel ker A.

Proof. The proof is completely analogous to Example 4.44 and is left to the reader.
O

The computation of generators of the kernel of a matrix A is easier when A is
in reduced row echelon form. A reduced row echelon form for the matrix M of
Example 4.45, for instance, is

0o -1

1) 2 0

o 0o @O -1 o =3 0
o 0o 0o 0o O 1 1
0o 0 0 0 0 0 0

-4 =5

The circled entries of wg of Example 4.44 are exactly the negatives of the elements
—4,—3,1 in the nonzero rows and the sixth column. The same holds for the
other generators wsy, wy, and wy. In terms of Proposition 4.45, with A = (a;;); ; in
reduced row echelon form: if 1 <k <nandk & {j1,jo2, .., jr}, then the [-th entry
of wy is given by Proposition 4.45 for [ &€ {j1, j2, .., jr}, while the j;-th entry of
wy, is —ayy, for 1 <4 < r; this yields wy = e, — Y ;_; aej,. This is summarized in
the next proposition.

Proposition 4.46. If A = (a;;) € Mat(m x n,F) is a matriz in reduced row

echelon form with r nonzero rows and pivots in the columns numbered 7, < ... <
Jr, then the kernel ker(A) is generated by the n — r elements

Wy = e — Zaikeji, forke{l,....,n}\{j1,---,Jr},

1<i<r
Ji<k
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where €1, ..., e, is the canonical basis of F™.

Proof. We leave it as an exercise to show that this follows from Proposition 4.45.
O

Proposition 4.46 gives a very efficient way of computing the kernel of a matrix.
First bring it into reduced row echelon form using elementary row operations,
and then write down generators for the kernel according to the given recipe, one
generator for each column without pivot.

We can now also check efficiently whether the map associated to a matrix is
injective.

Proposition 4.47. Let A € Mat(m X n, F') be a matriz and A" a row equivalent
matrix in row echelon form. Then the associated map fa: F™ — F™ is injective
if and only if A" has n nonzero rows or, equivalently, if and only if each column
of A" contains a pivot.

Proof. By Proposition 4.32, the map f4 is injective if and only if fa: is injective,
so it suffices to do the case A = A’. By Lemma 3.5, the map f4 is injective if
and only if the kernel ker f4 = ker A is zero, which, according to Proposition 4.45,
happens if and only if each of the n columns of A has a pivot, so if and only if
there are exactly n nonzero rows. U

Proposition 4.40 and Corollaries 4.41 and 4.42 state that if A is an m X n matrix
and A’ is the associated reduced row echelon form, then the nonzero rows of A’
are uniquely determined by the row space R(A) of A. The following roposition
shows how the columns of A determine which of the columns of A’ contain pivots.

Proposition 4.48. Suppose A and A’ are row equivalent m x n matrices with
A" in row echelon form. Then for every k € {1,...,n}, the k-th column of A’
contains a piwot if and only if the k-th column of A is not a linear combination of
the previous columns of A.

Proof. Let F be a field that A and A’ are matrices over. Suppose the column
vectors of an m X n matrix B over F' are denoted by vy, vs,...,v,. Then the k-th
column v, of B is a linear combination of the previous columns if and only if there
are Aq, ..., \p_1 such that v, = \jv; + ...+ A\p_1vs_1, i.e., such that the element

(=M1, = A2y, —Ako1,1,0,...,0)
——

n—k

is contained in the kernel of B. As A and A’ have the same kernel by Proposition
4.29, the k-th column of A is a linear combination of the previous columns of A if
and only if the k-th column of A’ is a linear combination of the previous columns
of A’. Thus, we have reduced to the case A = A’ and without loss of generality,
we may and will also assume that A = A’ = (a;;) € Mat(m x n, F) is in reduced
row echelon form.

Let vy, vq,...,v, denote the columns of A. If the k-th column v, has a pivot, say
in the i-th row, then the previous columns vy, ...,v,_1 have a 0 on that row, so
clearly vy is not a linear combination of vy, ..., v,_1. For the converse, let r denote

the number of nonzero rows of A and let the columns with pivot be numbered
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1572y 5 Jr. 1f the k-th column does not contain a pivot, then by Proposition
4.46 the element
Wy = €k — Z i€y,
1<i<r
Ji<k

is contained in the kernel, so we have Aw;, = 0, i.e.,

and we conclude that vy, is indeed a linear combination of vy, va, ..., Vp_1. ]

Ezercises.
Exercise 4.6.1. Prove Proposition 4.45.

Exercise 4.6.2. Determine the “reduced row echelon form” for the following
matrices over C and give generators for their kernels.

241 1 1+ 303
2 1—3i 3—5i 230
3 31
-1 0 0 1 2 10 -1 0
02 2 -2

21 -1 0 2
00 0 —-10 23 10
-2 0 2 1

5. LINEAR INDEPENDENCE AND DIMENSION

5.1. Linear independence. This section, like all others, has a large overlap with
Stoll’s notes [?], in particular with its chapter 6, which in turn follows essentially
Chapter 3 in Jénich’s book [?].

In the context of looking at linear hulls, it is a natural question whether we really
need all the given vectors in order to generate their linear hull. Also (maybe in
order to reduce waste. .. ), it is interesting to consider minimal generating sets.
These questions lead to the notions of linear independence and basis.

Definition 5.1. Let V' be an F-vector space, vy, vs,...,v, € V. We say that
vy, Vs, . .., U, are linearly independent, if for all A, X, ..., N\, € F, the equality

>\1U1+)\2U2+"‘+)\nvn:0

implies Ay = Ay = -+ = X\, = 0. (“The zero vector cannot be written as a
nontrivial linear combination of vy, ..., v,.”)

In a similar way we can define linear independence for arbitrary collections of
elements of V. If [ is any index set (not necessarily finite) and for each i € I
we have an element v; € V', then we write the collection of all these elements as
(v3)ier- Note that such a collection has more structure than a set, as for each index
1, we know which element of the collection belongs to that index i. In other words,
we know which is the i-th element. Also, elements may occur multiple time, so for
i,7 € I with @ # j, we may have v; = v;. Such a collection is also called a labeled
set, where the index 7 is called the label of the element v;.
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Definition 5.2. A collection (v;);cs of elements in V' is linearly independent if for
every finite subset S C I, the finite collection (v;);es is linearly independent, i.e.,
for all (finite) collections (\;);es of scalars in F, the equality » . o Ajv; = 0 implies
A =0foralliels.

Note that for finite index sets [ = {1,2,...,n}, Definitions 5.1 and 5.2 are equiv-
alent, so we have no conflicting definitions. As a special case, the empty sequence
or empty collection of vectors is considered to be linearly independent.

If we want to refer to the field of scalars F', we say that the given vectors are
F-linearly independent or linearly independent over F.

If vy, v9,...,v, (resp., (v;);er) are not linearly independent, then we say that they
are linearly dependent. An equation of the form A\jv; + Agve + -+ + Av, = 0 s
called a linear relation among the elements vy, ..., v,; if the scalars A1, Ao,..., A\,

are all zero, then we call it the trivial relation, otherwise a nontrivial relation.

Example 5.3. Let V be any vector space. If a collection (v;);e; of elements
of V' contains the element 0y € V, then the collection is linearly dependent.
Furthermore, if there are i,j € I with ¢ # j and v; = v;, then the collection is
linearly dependent as well.

Example 5.4. Let V be a vector space over a field F. Then for any v € V,
the one-element sequence v is linearly independent if and only if v # 0. Any two
elements vy, vy € V are linearly dependent if and only if there are s,t € F', not
both 0, such that sv; + tv, = 0, which is the case if and only if v; is a multiple of
v9 Or vy is a multiple of v; (or both), because s # 0 implies v; = —évg and t # 0
implies vy = —$v1.

Example 5.5. For an easy example that the field of scalars matters in the context
of linear independence, consider 1,7 € C, where C can be considered as a real or
as a complex vector space. We then have that 1 and ¢ are R-linearly independent
(essentially by definition of C — 0 = 0-1+0-4, and this representation is unique),
whereas they are C-linearly dependent — i-1+ (—1)-i=0.

Example 5.6. The vectors
v1 = (1,2,3,4), vy = (5,6,7,8), vy = (9,10, 11,12)
in R* are linearly dependent, as we have a linear relation v; — 2vy + v3 = 0.

Example 5.7. Let F' be a field and V' = P(F’) be the vector space of all polyno-
mials in the variable z over F' (see Example 1.23). For each n € Z>( we have the
monomial #". The collection (2"),cz., is linearly independent, because any finite

subcollection is contained in (1, x,2?, ..., 2¢%) for some d € Z>( and any relation
d d—1
agx” + ag_1x"  + ... +ax+ay=0
implies ag = aq_1=...=a; =ag=0.

Example 5.8. In C(R), the functions
r+—1, z+——sinz, z+—cosz, x+——sin’z, z+— cos’z
are linearly dependent, since 1 — sin?z — cos?z = 0 for all = € R.
On the other hand,
r+——1, x+—sinxr, z+——cosx

are linearly independent. To see this, assume that A + psinz + vcosz = 0 for
all z € R. Plugging in z = 0, we obtain A +v = 0. For z = 7, we get A —v =0,
which together imply A = v = 0. Then taking = 7/2 shows that u = 0 as well.
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Example 5.9. Consider the vectors
wy = (1,1,1), we=(1,2,4), ws = (1,3,9)
in R3 and suppose we have A\jw; + Aows + Asws = 0. Then we have
A+ A+ A3 =0,
A+ 2 2+ 33 =0,
A+ 42+ 923 = 0.

These equations imply Ay = Ay = A3 = 0, so wy, ws, and w3 are linearly indepen-
dent.

Recall from Definition 3.14 that for any sequence C' = (wy, ..., w,) of n elements
in a vector space W over a field F', we have a unique linear map ¢¢: F* — W
that sends the j-th standard vector e; to w;; the map ¢¢ sends (ay,...,a,) € F"
to aqwy + ... + a,w,.

Proposition 5.10. Suppose W is a vector space over the field F' and C =
(wy,wa, ..., wy,) a sequence of n vectors in W. Then the elements wy,ws, ..., wy,
are linearly independent if and only if ker oo = {0}.

Proof. The kernel of ¢ consists of all the n-tuples (A1,...,\,) with Ajw; +
oo+ Aw, = 0, so indeed, we have ker o = {0} if and only if the elements
wy, Wa, . . ., W, are linearly independent. U

In fact, the proof shows that the nontrivial linear relations on wy,...,w, corre-
spond exactly with the nonzero elements of the kernel of . A statement similar
to Proposition 5.10 holds for arbitrary collections (exercise). For W = F™, we
have the following corollary.

Corollary 5.11. Let F' be a field and m a nonnegative integer. Then any vectors
Wy, Wa, ..., w, € F™ are linearly independent if and only if the m X n matriz that
has wy,ws, ..., w, as columns has kernel {0}.

Proof. The linear map F™ — F™ that sends e; to w; € ™ corresponds to the
described matrix by Proposition 4.5, so this follows from Proposition 5.10. U

Example 5.12. Let wy, ws, w3 € R3 be as in Example 5.9. Then the map R? — R?
that sends e; to w; corresponds to the matrix

1 11
1 2 3
1 49

that has wq, we, w3 as columns. It is easily checked that the kernel of this matrix
is zero, so it follows again that the vectors wy, ws, w3 are linear independent. If

we add the vector wy = (1,4,16), then the vectors wy,ws,ws, wy are linearly
independent if and only if the matrix

1 11 1

1 2 3 4

1 4 9 16
has kernel zero. Its reduced row echelon form is

1 00 1

010 -3

001 3
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so the kernel is spanned by (—1,3,—3,1) and we find the linear relation —wy +
3wy — 3wz + wy = 0. We conclude that the vectors wy, ws, w3, wy are linearly
dependent. Of course, we could have already concluded that from the fact that
the matrix with wy, ws, w3, w4 as columns has more columns than rows, so not
every column in the reduced row echelon form could have a pivot, cf. Proposition
4.47.

Lemma 5.13. Let f: V — W be a linear map of vector spaces. Then any vectors
V1, V2, ..., U, €V are linearly independent if their images f(v1), f(ve),..., f(vn)
are. If f is injective, then the converse holds as well.

Proof. Take any sequence C' = (vy,vs,...,v,) of vectors in V. Then, by Propo-
sition 5.10, the map ¢c: F" — V sending e; to v; for 1 < j < n is injec-
tive if and only if vy, vs,...,v, are linearly independent. Similarly, the com-
position f o pc: ™ — W, which sends e; to f(v;), is injective if and only if
f(v1), f(ve),..., f(v,) are linearly independent. Therefore, the first statement fol-
lows from the fact that if f o p¢ is injective, then so is . The second statement
follows from the fact that if f is injective, then ¢¢ is injective if and only if the
composition f o ¢¢ is. Il

Alternative proof. Take any vectors vi,vs,...,v, € V. Any nontrivial relation
Av1 + ...+ A\, = 0 implies a nontrivial relation
Mfor)+ .o+ A f(on) = f(A\vr + ...+ Ao,) = f(0) =0,

so if the elements vy, vs,...,v, are linearly dependent, then so are the elements
f(v1), f(v2),..., f(vy). This is equivalent to the first statement.

Suppose that f is injective. Take any linearly independent vectors vy, vg, ..., v, €
V. Any linear relation

Af(on) + . 4 Auf(v) =0
implies f(v) = 0 with v = A\jv; + ...+ Ayv,, so v € ker f = {0} and thus v = 0.

Since vy, ..., v, are linearly independent, this implies Ay = ... = A\, = 0, which
implies that the elements f(v),..., f(v,) are linearly independent as well. This
proves the second statement. Il

From the finite case, it follows immediately that Lemma 5.13 holds for arbitrary
collections as well (exercise).

Example 5.14. Let V = P(R) be the vector space of all real polynomials, con-
taining the elements f; = 23 — 2 — 3, fo = 2 + 4, and f3 = 22 + 2 + 1. These
polynomials all lie in the subspace P3(R) of all polynomials of degree at most
3, so to check for linear independence, we may check it within P3(R). This is
obvious, but it also follows from Lemma 5.13, with f taken to be the inclusion
P3(R) — P(R) sending any polynomial p to itself.

The map c: P3(R) — R? that sends any polynomial azz® + axx® + a1z + ag to
the sequence (ag, a1, as, az) of its coefficients is injective (in fact, an isomorphism),
so by Lemma 5.13, the polynomials fi, fo, and f3 are linearly independent if and
only if ¢(f1), c(f2), and ¢(f3) are. The matrix that has these vectors as columns is

-3 41
-1
0
1

M =

o = O

1
1 9
0
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which is easily checked to have zero kernel, so ¢(f1),c(f2), and ¢(f3) are linearly
independent by Corollary 5.11, and therefore, so are fi, fs, and f5.

Note that if we had looked for explicit A, Ao, A3 with A1 f1 + Ao fo + A3 f3 = 0, then
collecting similar powers of = gives

(=3A1 44X 4+ A3) + (=M1 + A3)x 4+ (Mg + A3)a? + N2 = 0.

Each of the coefficients has to equal 0, which gives four equations, expressed by
the equation
A1
M- X]| =0.
Az

The equality ker M = {0} shows A\ = Ay = A3 = 0, and we conclude again that
f1, f2, and f3 are linearly independent.

Proposition 5.15. Let V' be a vector space, vi,vs, ..., v, € V. Then vy, v, ..., v,
are linearly dependent if and only if one of the v; is a linear combination of the
others, i.e., if and only if

L(’Ul,/UQ, ce ,'Un) = L(Ul, e Ui—1, V541, - - ,’Un)
for some j € {1,2,...,n}. A similar statement holds for any collection (v;)ic; of
vectors in V.
Proof. Let us first assume that vy, vs,...,v, are linearly dependent. Then there
are scalars A\i, A\g, ..., A, not all zero, such that

AU+ AUy + -+ A0, =0.
Let j be such that A; # 0. Then
v; = —)\j_l(/\lvl 4 AU F At e Ay
Conversely, assume that v; is a linear combination of the other vectors:
Vj = MU+ N1+ AU s A0,
Then
MU+ Ao — v+ AU o+ Ay, =0,

so the given vectors are linearly dependent. Given that a collection (v;);es is lin-
early dependent if and only if for some finite subset S C I, the finite subcollection
(v;)ies is linearly dependent, the last statement also follows. Il

If we take the order of the vectors into consideration, we can make the following
stronger statement.

Proposition 5.16. Let V' be a vector space, vi,va,...,v, € V. Then the ele-
ments vi,vq, ..., U, are linearly dependent if and only if one of the v; is a linear
combination of the previous ones, i.e., if and only if

(% € L(Ul, R ,’Uj_l)

for some j € {1,2,...,n}. A similar statement holds for infinite sequences of
vectors in V.

Proof. Exercise. O



69
Example 5.17. Consider the real polynomials
fi=1, fo=a+2 fs=2>—22+3, fi=2"—22>+5

inside the real vector space P(R) (cf. Example 1.5 and Warning 1.24). The degree
of each polynomial is higher than the degree of all the previous ones, so none of
the polynomials is a linear combination of the previous ones and we conclude by
Proposition 5.16 that the polynomials are linearly independent.

Example 5.18. Take the vectors
1,2,1, — 1,2, 1,0),

= (
=(0,1,1,0,—1,-2,3),
(00033 12)
=(0,0,0,0,0,6,4)

in Q. We consider them in opposite order, so v4, v3, v, v;. Then for each vector,
the first coordinate that is nonzero (namely the sixth, fourth, second, and first
coordinate respectively), is zero for all previous vectors. This implies that no
vector is a linear combination of the previous ones, so the vectors are linearly
independent by Proposition 5.16.

Proposition 5.19. Let vy, v, ..., v, be the nonzero rows of a matrix in row ech-
elon form. Then vy, vy, ..., v, are linearly independent.

Proof. The proof is completely analogous to Example 5.18 and is left to the reader.
O

Proposition 5.20. Let A be an m x n matrix in row echelon form. Let r be the
number of nonzero rows in A. Then the n —r elements wy, (for all 1 < k <n for
which the k-th column contains no pivot) of Proposition /.45 (or Proposition 4./0
if A is in reduced row echelon form) are linearly independent.

Proof. For each k with 1 < k < n, for which the k-th column of A contains no
pivot, the element wy has a 1 on the k-th coordinate, where all the other n —r —1
elements have a 0. This implies that none of the wy, is a linear combination of the
others, so by Proposition 5.15, these n — r elements are linearly independent. [

FExercises.

Exercise 5.1.1. Which of the following sequences of vectors in R? are linearly
independent?

(1) ((1,2,3),(2,1,-1),(-1,1,1)),
(2) ((1,3,2),(1,1,1),(-1,3,1)).

Exercise 5.1.2. Are the polynomials 3,z —1,2? -3z +2,2* - 32+ 13,2 —x + 14
linearly independent?

Exercise 5.1.3. Are the polynomials 27 — 2z +1, 522, 20* — 523, z, 5 — 3z linearly
independent?
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Exercise 5.1.4. Are the vectors
v1 = (1,4,2,3,5),
=(-1,7,2,3,6),
vy = (4,2,3,-3,4),
vy = (2, 3, 1,4 2),
vs = (6,5 —4),
= (1,—7,3,2, 5)

in R linearly independent? (Hint: do not start a huge computation)
Exercise 5.1.5. Prove Proposition 5.19.
Exercise 5.1.6.

(1) Prove Proposition 5.16.

(2) Phrase and prove a version of Proposition 5.16 for collections of vectors
indexed by Zxy, i.e., for infinite sequences vy, vy, Vg, . . ..

(3) Phrase and prove a version of Proposition 5.16 any collection of vectors
indexed by a totally ordered set I.

Exercise 5.1.7. Suppose W is a vector space over a field F', containing a (possibly
infinite) collection (w;);cs of elements. Let ¢: FU) — T be the unique linear map
sending the standard vector e; to w; for all i € I (see Exercise 3.2.16). Show that
the collection (w;);es is linearly independent if and only if ¢ is injective.

Exercise 5.1.8. State and prove a generalization of Proposition 5.10 for arbitrary
collections of vectors, cf. Exercise 3.2.16.

Exercise 5.1.9. State and prove a generalization of Lemma 5.13 for arbitrary
collections of vectors.

5.2. Bases and dimension.

Definition 5.21. Let V' be a vector space. A sequence (vq,vs, ..., v,) of elements
of V is called a basis of V if vy,vs,...,v, are linearly independent, and V =
L(vy,v9,...,v,). We also say that the elements vy, vs,...,v, form a basis for
V. More generally, a basis is a collection (v;);e; of vectors in V' that is linearly
independent and generates V.

Note that the elements of a basis (vq,vs, ..., v,) have a specific order. Also in the
general case of arbitrary collections, a basis (v;);c; has more structure than just
a set. For each index ¢ € I, we know which element of the basis belongs to that
index 7. In other words, we know which is the i-th element. See also the remark
between Definitions 5.1 and 5.2

Example 5.22. The most basic example of a basis is the canonical basis or stan-
dard basis of F™. This is £ = (e, eq,...,€,), where

er = (1,0,0,...,0,0)
=(0,1,0,...,0,0)

»=(0,0,0,...,0,1).
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Example 5.23. Let X be a finite set and F' a field. For each x € X, we define
the function f,: X — F that sends z to 1 and every other element of X to 0.
Then the collection (f,).ex is a basis for the vector space FX. Compare this to
the previous example. For infinite sets X, see Exercise 5.2.7.

Example 5.24 (Basis of row space and kernel). Let A € Mat(m x n, F') be a
matrix in row echelon form with r nonzero rows. Then these r rows form a basis
for the row space R(A), as they generate the row space by definition and they are
linearly independent by Proposition 5.19. The n—r elements wy, (forall 1 <k <n
for which the k-th column contains no pivot) of Proposition 4.45 (or Proposition
4.46 if A is in reduced row echelon form) form a basis of the kernel of A, as they
generate the kernel by Proposition 4.45 or 4.46 and they are linearly independent
by Proposition 5.20.

Remark 5.25 (Basis of U and U~ using rows). We can use Example 5.24 to find
a basis of a subspace U of F™ generated by elements wy, ws, ..., w,,. First we let
A denote the m x n matrix of which the rows are wy,ws, ..., w,,. Then we apply
a sequence of elementary row operations to A to obtain a matrix A’ that is in
row echelon form. Since the row spaces R(A) and R(A’) are equal by Proposition
4.29, the nonzero rows of A’ form a basis for R(A’) = R(A) = U. Moreover, the
subspace U+ equals ker A = ker A’ by Propositions 4.12 and 4.29, so Example 5.24
also gives a basis for U+,

Remark 5.25 puts generators of a subspace U C F™ as rows in a matrix in order
to find a basis for U and U+. We will now describe a method to find a basis for
U that puts generators of U as columns in a matrix.

Lemma 5.26. Suppose V is a vector space and vy,vs,...,v, € V. Let I C

{1,2,...,n} be the set of alli for which v; is not a linear combination of vy, ..., v;—1.
Then the collection (v;)icr is a basis for L(vi,ve, ..., vy,).
Proof. Exercise. O

Example 5.27. Consider the matrix

11 2 134 0
03 -1 212 0
A=100 0 2 0 2 =31,
00 0 001 1
00 0 0O0O0 O

which is in row echelon form. By Proposition 4.48, the columns with a pivot, i.e.,
the first, second, fourth, and sixth, are exactly the columns that are not a linear
combination of the previous columns of A. From Lemma 5.26 we conclude that
these four columns form a basis for the column space C(A) of A.

We can combine Proposition 4.48 and Lemma 5.26 to make a method to determine
a basis for the column space of a matrix.

Proposition 5.28 (Basis of column space). Let A be an m X n matriz over a
field F' with columns wy,...,w,. Let A" be a matriz in row echelon form that
is row equivalent to A. Let I C {1,...,n} be the set of all indices of columns
of A" with a pivot. Then the collection (w;);er is a basis for the column space

C(A) = L(wy,...,w,) of A.
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Proof. By Proposition 4.48, the collection (w;);er consists exactly of those columns
w; of A that are not a linear combination of the previous columns of A. By Lemma

5.26, this implies that this collection (w;);e; is a basis for the space L(wy, ..., w,) =
C(A). O
Remark 5.29 (Basis of U using columns). We can use Proposition 5.28 to deter-
mine a basis of a subspace U of F™ generated by elements wy, ws, . .. ,wm. First
we let B denote the n x m matrix of which the columns are wy, wo, . . . Note

that B = AT for A as in Remark 5.25. Then we apply a sequence of elementary
row operations to B to obtain a matrix B’ that is in row echelon form, and we let
I denote the set of all indices 7 with 1 <4 < n for which the ¢-th column contains
a pivot. Then the collection (w;);es is a basis for U = C(A).

An advantage of this method is that the basis we find consists entirely of vectors
that we started with.

A summary of the idea behind this is the following. Note that row operations may
change the column space, but the kernel is preserved, which means that linear
relations among the columns of a matrix B are preserved among the columns of a
row equivalent matrix B’ (and vice versa). If B’ is a matrix in row echelon form,
the existence of linear relations can be read off easily from the pivots.

Example 5.30. Let us determine a basis for the subspace U C R* generated by
=(1,0,2,—1),
0,1,0, 2)

= (
=(1,2,2,3),
(1, 1 0,1),
= (0,3,2,2).

The 4 x 5 matrix B with these vectors as columns has reduced row echelon form

1 010 1
0120 2
0001 —1
000O0 O

The pivots are contained in columns 1, 2, and 4, so the first, second, and fourth
column of B form a basis (v, vq,v4) for U. From the reduced row echelon form
we can also read off the linear relations vs = vy + 2vy and vs = v + 2vy — vy.

Recall from Definition 3.14, as in the previous section, that for any sequence

C = (wy,...,w,) of n elements in a vector space W over a field F', we have a
unique linear map ¢¢c: I — W that sends the j-th standard vector e; to wj; the
map @c sends (ay,...,a,) € F™ to ajwy + ... + a,wy,.

Proposition 5.31. Suppose W is a wvector space over the field F and C =
(wy,wa, ..., wy,) a sequence of n vectors in W. Then C is a basis for W if and
only if the map pc: F™ — W is an isomorphism.

Proof. The map ¢ is injective if and only if wy, ..., w, are linearly independent
by Proposition 5.10. The map ¢¢ is surjective if and only if wy, ..., w, generate
W (see the remark below Proposition 3.13). The statement follows. O
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A statement similar to Proposition 5.31 holds for arbitrary collections (exercise).

From Proposition 5.15 above, we see that a basis of V' is a minimal generating set
of V, in the sense that we cannot leave out some element and still have a generating
set.

What is special about a basis among generating sets?

Lemma 5.32. Suppose V' is an F-vector space. Then a sequence (vy,va, ..., U,)
of elements in V is a basis for V if and only if for every v € V', there are unique
scalars A1, Mgy ..., Ay € F such that

U:)\1U1+)\2U2+"'+/\nvn.
Proof. Set C' = (v, va,...,v,). Then by Proposition 5.31, the sequence C' is basis

for V if and only if ¢ is an isomorphism. On the other hand, ¢¢ is surjective if
and only if for every v € V| there are scalars \;, Ao, ..., A\, € F such that

V= AU+ Xovg + - + A\,

and ¢ is injective if and only if such scalars are unique, if they exist. It follows
that o is bijective if and only if there are unique scalars satisfying the given
equation. This proves the lemma. O

Alternative proof. Suppose that the sequence (v, vs, ...,v,) is a basis for V. The
existence of (A1, Aa, ..., A,) € F™ such that
vV=MU1F+ A+ A,
follows from the fact that vy, vs, ..., v, generate V.
To show uniqueness, assume that (w1, pa, ..., pn) € F™ also satisfy
V= U1U1 + foU2 + -+ - + Ly Uy .
Taking the difference, we obtain

0= (A1 — p)vr + (A2 — p2)va + -+ + (A — pn) v -

Since vy, vg, ..., v, are linearly independent, it follows that

A= =X —pg="=X — =0,
ie, (A1, Aoy ..oy An) = (11, f2, - - -, ptn)- The converse is left as an exercise. O
Lemma 5.33. Let f: V — W be an isomorphism of vector spaces and vy, vs, ..., v,
elements of V.. Then the elements vy, vs, ..., v, form a basis for V if and only if

their images f(v1), f(ve), ..., f(v,) form a basis for W.

Proof. Set C' = (vy,v9,...,v,). By Proposition 5.31, the elements vy, vs, ..., v,
form a basis for V' if and only if ¢¢ is an isomorphism. The composition f o
wc: F* — W sends e; to f(v;), so the elements f(vq), f(v2),..., f(v,) form a
basis for W if and only if f o p¢ is an isomorphism. The lemma now follows from
the fact that ¢ is an isomorphism if and only if the composition f o o is. [

Alternative proof. Suppose v1,vs,...,v, form a basis for V. Then the elements
vy, ..., 0, are linearly independent and since f is injective, the linear independence
of f(v1),..., f(v,) follows from Lemma 5.13. Because vy, ...,v, generate V, we
also have

L(f(v1),....f(vn)) = f(L(v1,...,0,)) = f(V)=W
by Lemma 3.3, so f(v1), ..., f(v,) generate W, so they form a basis. The converse
statement follows by applying the same argument to . O
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Proposition 5.34. Let V and W be vector spaces, f:V — W a linear map, and
let vq,...,v, be a basis of V. Then

(1) f is injective if and only if f(v1),..., f(v,) are linearly independent,
(2) f is surjective if and only if L(f(v1),..., f(v,)) =W, and
(3) f is an isomorphism if and only if f(v1),..., f(v,) is a basis of W.

Proof. The proof of the first two statements is an exercise; the third follows from
the first two. U

Lemmas 5.32 and 5.33 and Proposition 5.34 also hold for arbitrary collections
(exercise).

Proposition 5.31 says that if vy, vs, ..., v, form a basis for a vector space V', then V'
is isomorphic to the standard vector space F, so that we can express everything
in V in terms of F™. Since we seem to know “everything” about a vector space
as soon as we know a basis, it makes sense to use bases to measure the “size”
of vector spaces. In order for this to make sense, we need to know that any two
bases of a given vector space have the same size. The key to this (and many other
important results) is the following.

Theorem 5.35 (Basis Extension Theorem). Let V' be a wvector space, and let

Viyev oy Upy W, ..., ws € V' be vectors such that vy, ... v, are linearly independent
and V = L(vy, ..., v, w1, ..., ws). Then there is t € Ny and indices iy, ...,i; €
{1,...,s} such that (vy, ..., V0, W4y, ...,w;) is a basis of V.

The Basis Extension Theorem says that when vy,... v, and wy,..., ws are as
given, then by adding suitably chosen vectors from wy,...,w,, we can extend
vy, ...,0, to a basis of V. Make sure you understand how we have formalized the
notion of “suitably chosen vectors from wq, ..., w!”

Note that this is an existence theorem — what it says is that if we have a bunch of
vectors that is ‘too small’ (linearly independent, but not necessarily generating)
and a larger bunch of vectors that is ‘too large’ (generating but not necessarily
linearly independent), then there is a basis ‘in between’. Proposition 5.38 tells us
how to actually find such a basis, i.e., how to select the w; that we have to add,
in the case V' is a subspace of F™.

Proof of Theorem 5.35. The idea of the proof is simply to add vectors from the
w;’s as long as this is possible while keeping the sequence linearly independent.
When no further lengthening is possible, we should have a basis. So we are
looking for a maximal linearly independent sequence vy, ..., v, w;,, ..., w;. Note
that there cannot be repetitions among the w;,,...,w;, if this sequence is to be
linearly independent. Therefore t < s, and there must be such a sequence of
maximal length. We have to show that it generates V. It suffices to show that

w; € L(vy,...,vp, w4, ..., w;,) for all j € {1,...,s}. This is clear if j = i for
some k € {1,...,t}. Otherwise, assume that w; is not a linear combination of
Uiy ooy Upy Wiy s oo, Wi, Then vy, ..o v, w5, ..., Wy, w; would be linearly indepen-

dent, which would contradict our choice of a linearly independent sequence of
maximal length. So w; must be a linear combination of our vectors, and the
theorem is proved. O

Alternative proof. Here is an alternative proof, using induction on the number s
of vectors w;. The base case is s = 0. In this case, the assumptions tell
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us that vq,...,v, are linearly independent and generate V, so we have a ba-
sis. For the induction step, we assume the statement of the theorem is true for
wy, ..., ws (and any choice of linearly independent vectors vy, ..., v,), and we have
to prove it for wy, ..., ws, weyr1. First assume that L(vq,..., v, wy,...,ws) = V.
Then the induction hypothesis immediately gives the result. So we assume now
that L(vy,..., 0., wq,...,ws) C V. Then ws; is not contained in the subspace
L(vy, ..., 00, w1, ..., W), SO Wsy1 is not a linear combination of vy, ..., v,, hence
V1, ..., Up, Weyy are linearly independent. Now we can apply the induction hy-
pothesis again (to vy,..., v, wsr1 and wy, ..., w;); it tells us that we can extend
vy, ..., Up, Wsy1 to a basis by adding suitable vectors from wy, ... w,. This gives
us what we want. O

Example 5.36. Consider the real polynomials f; = 22 — 1, fo, = 2% — x, and
f3 = 23 —2x% —x+1 in the vector space P3(R) of polynomials of degree at most 3.
It is easy to check that these polynomials are linearly independent. On the other
hand, the monomials 1, z, 22, 23 generate P5(R), so certainly

f17f27f37 ]_,{L‘,.I'Q,IB

generate P3(R). By the Basis Extension Theorem we can extend fi, fa, f3 to a
basis by adding suitably chosen monomials. The monomials 1 and 22 are already
contained in L(f1, f2, f3), so adding either of those to fi, fa2, f3 would cause non-
trivial linear relations. The element x, however, is not contained in L(fi, fo, f3),
because fi, fa, f3,x are linearly independent (check this). We also have

1= fo—2fi — fs, 132:f2—f1—f37 and $3:f2+$>

so the generators 1, z, 22, 23 of P3(R) are contained in L( f1, f2, f3, ), and therefore
L(f1, fo, f3,2) = P3(R), so fi, fa, f3,* generate P3(R) and form a basis for Ps(R).
We could have also added 23 to fi, fo, f3 to obtain a basis.

Example 5.37. Let us revisit the previous example. The linear map
¢: R* — P3(R), (ag, a1, as, as) — azr® + axr® + a1 + ag

is an isomorphism, so ¢ and ¢! send linearly independent vectors to linearly
independent vectors (Lemma 5.13) and bases to bases (Lemma 5.33). Setting
v =@ H(f;) for i =1,2,3 and w; = ¢~ (27) for j = 0,1,2,3, we get w; = e; and

—1 0 1
v = (1) , Vg = _01 , and v3 = :;
0 1 1

We wish to extend vy, vy, v3 to a basis of R* by adding suitably chosen elements
from {ey, es, e3,e4}. In order to do so, we use Proposition 5.28 and Remark 5.29
and put the seven vectors as columns in a matrix

-1 0 1 1000
A 0 -1 —-1.01 00
|1 0 =200 10]"
0O 1 1 0001
of which the reduced row echelon form equals

100 2 0 —-10
010 1 0 1 1
001 -10 -10
000 0 1 0 1
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The pivots in the latter matrix are contained in columns 1, 2, 3, and 5, so by
Proposition 5.28 and Remark 5.29, the column space C'(A) has a basis consisting
of the corresponding columns of B. We conclude that (vq, v, v3,€2) is a basis of
C(A) = R* and after applying ¢, we find that (fi, fo, f3, ) is a basis for P3(R),
which is exactly the basis we had found before.

Note that it was not a coincidence that the first three columns of the matrix in
row echelon form contained a pivot, because we already knew that the elements
v1, Ug, v3 are linearly independent, so none of these is a linear combination of the
previous, cf. Proposition 4.48.

The idea of the example above can be used in general to extend some linearly inde-
pendent vectors in a subspace V' of F™ to a basis of V. The following proposition
makes this precise.

Proposition 5.38 (Explicit Basis Extension Theorem). Let V C F™ be a subspace
containing elements vy,...,v.,wy,...,ws € V such that vy,...,v, are linearly
independent and V' = L(vy,...,v.,wy,...,ws). Let A be the n X (r + s) matrix
with columns vy, ..., v, w,...,w,, let A" be the associated reduced row echelon
form, and I the set of all indices 1 with r < i < n for which the i-th column of A’
has a pivot. Then vy,vs, ..., v, and (w;);er together form a basis for V.

Proof. The vectors vy, ..., v, are linearly independent, so none is a linear combi-
nation of the others, so the first r columns of A’ contain a pivot by Proposition
4.48. This means that the elements vy, vy, ..., v, and (w;);e;r correspond exactly
to the columns of A’ that contain a pivot. By Proposition 5.28, these elements
form a basis for the column space C'(A) of A, which equals V' by construction. [

The Basis Extension Theorem implies another important statement, namely the
Exchange Lemma. It says that if we have two finite bases of a vector space, then
we can trade any vector of our choice in the first basis for a vector in the second
basis in such a way as to still have a basis.

Lemma 5.39 (Exchange Lemma). If vy,...,v, and wy,...,w, are two bases of
a vector space V, then for each i € {1,2,...,n} there is some j € {1,2,...,m}
such that vy, ..., vi—1,W;, Vit1, ..., U, @S again a basis of V.

Proof. Fixi € {1,...,n}. Since vy,..., v, are linearly independent, v; cannot be a
linear combination of the remaining v’s. So U = L(vq,...,0;_1,Vit1, .- .,0,) S V.
This implies that there is some j € {1,...,m} such that w; ¢ U (if all w; € U,
then V' C U). This in turn implies that vq,...,v,_1, w;, Vit1, ..., v, is linearly
independent. If it is not a basis of V', then by the Basis Extension Theorem,
U1,y Uim1, W), Vigd, - - ., Up, ¥; Must be a basis (we apply the Basis Extension The-
orem to the linearly independent vectors vy, ..., v;_1,w;, Vit1, . .., v, and the addi-
tional vector v;; together they generate V). However, the vectors in this latter se-
quence are not linearly independent, since w; is a linear combination of vy, ..., v,.
S0 V1, ..., Vi1, W, Vit1,- - -, U, must already be a basis of V. O

Theorem 5.40. If vy, vs,...,v, and wy,ws, ..., w,, are two bases of a vector
space V, then n = m.

Proof. Assume, without loss of generality, that n > m. By repeatedly applying
the Exchange Lemma, we can successively replace vy, va, ..., v, by some w; and
still have a basis. Since there are more v’s than w’s, the resulting sequence must
have repetitions and therefore cannot be linearly independent, contradiction. [J
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This implies that the following definition makes sense.

Definition 5.41. If the vector space V' has a basis vy, vy, ..., v,, then n > 0 is
called the dimension of V', written n = dim V' = dimp V.

Example 5.42. The empty sequence is a basis of the zero space, so dim {0} = 0.
Example 5.43. The canonical basis of I has length n, so dim F" = n.

Theorem 5.44. Let V be a vector space containing elements vy, ..., V., Wy, ..., Ws
with vy, ..., v, linearly independent and V = L(ws,...,ws). Then the following
statements hold.

(1) The vector space V' has a finite basis and dimension, say dimV = n.
(2) We have n < s with equality if and only if (wy, ..., ws) is a basis for V.
(3) We have r < n with equality if and only if (vy,...,v,) is a basis for V.

Proof. For (1) and (2), we apply the Basis Extension Theorem to the empty se-
quence and the sequence wy,...,ws. The empty sequence can be extended to a
basis by adding suitably chosen elements from wy, ..., ws. As no element occurs
doubly in such a basis (or it would not be linearly independent), the basis con-
tains at most s elements, say n. If the inequality n < s is an equality, then each
w; is included in the basis, as otherwise some element would occur doubly. This

shows that wy, ..., ws are linearly independent, so (wy,...,ws) is a basis for V.
Conversely, if (wy, ..., ws) is a basis for V, then we have n = dimV = s.

For (3), we apply the Basis Extension Theorem to the sequence vy,...,v, and
wi,...,ws. As we have

V= L(wy,...,ws) = L(vy, ..., 00wy, ..., w;),

we can extend vy,...,v, to a basis of length n. We immediately conclude r < n
and equality holds if and only if (vy,...,v,) needs no extension, i.e., it is already
a basis. U

Remark 5.45. Theorem 5.44, applied to the case r = 0, shows that if V is a
finitely generated vector space, then V has a finite basis and a finite dimension.

Note that this theorem yields a quite strong existence statement: if V' is a vector
space of dimension dim V' = n containing a sequence C' = (v, va, ..., v,) of r ele-
ments in V', then the nontrivial linear relations among vy, vy, . .., v, correspond to
the nonzero elements in the kernel of pc: F" — V' (see remark below Proposition
5.10), and part (3) guarantees the existence of such a nontrivial linear relation

whenever r > n without the need to do any computation. This is very useful
in many applications. On the other hand, it is quite a different matter to actu-
ally find such a relation: the proof is non-constructive and we usually need some
computational method to exhibit an explicit relation.

Part (3) of Theorem 5.44 tells us that in a vector space of (finite) dimension n,
there is an upper bound (namely, n) for the length of a linearly independent
sequence of vectors. We can use this to show that there are vector spaces that do
not have dimension n for any integer n > 0.

Example 5.46. Let F' be a field. The vector space P(F) of all polynomials in the
variable x with coefficients in F' contains the monomials 1, z, 22, 23, 2%, ..., which
are linearly independent, see Example 5.7. This means that we can find arbitrarily
many linearly independent elements in P(F'), so P(F') can not have a finite basis
by Theorem 5.44(3). Note that since P(F) = L({z™ : n € Ny}), we have shown
that the collection (™),en, is a basis of P(F).



78

With a little more effort, we can also show that the subspace of R® of real poly-
nomial functions does not have a finite basis either.

Example 5.47. Let us consider again the linear subspace of polynomaial functions
in C(R) (the vector space of continuous functions on R), compare Example 2.32.
Let us call this space P:

P={fe€CR):3IneNyJagy,...,a, ERVZeR: f(z) =apa" + -+ a1z +ap}

Denote as before by f,, the nth power function: f,(z) = z". I claim that the col-
lection (fo, f1, f2,---) = (fn)nen, is linearly independent. Recall that this means
that the only way of writing zero (i.e., the zero function) as a finite linear com-
bination of the f; is with all coefficients equal to zero. If we let n be the largest
number such that f,, occurs in the linear combination, then it is clear that we can
write the linear combination as

AofotAfit -+ fn=0.
We have to show that this is only possible when A\g = A\ =--- =\, = 0.
Note that our assumption means that
A"+ -+ M+ A =0 for all x € R.

There are various ways to proceed from here. For example, we can make use of
the fact that a polynomial of degree n > 0 can have at most n zeros in R. Since
there are infinitely many real numbers, the polynomial above has infinitely many
zeros, hence it must be the zero polynomial.

Another possibility is to use induction on n (which, by the way, is implicit in the
proof above: it is used in proving the statement on zeros of polynomials). Let us
do this in detail. The claim we want to prove is

Vi € N Vhg, Ay € R: (V€ R: Aya™- -4 dg = 0) = Ao =+ = Ay = 0)

We now have to establish the induction base: the claim holds for n = 0. This is
easy — let \g € R and assume that for all x € R, Ay = 0 (the function is constant
here: it does not depend on ). Since there are real numbers, this implies Ay = 0.

Next, and this is usually the hard part, we have to do the induction step. We
assume that the claim holds for a given n (this is the induction hypothesis) and
deduce that it then also holds for n+ 1. To prove the statement for n+ 1, we have
to consider coefficients Ag, ..., A\,41 € R such that for all z € R,

f@) = Az + X2+ Mz 4+ A = 0.

Now we want to use the induction hypothesis, so we have to reduce this to a
statement involving a polynomial of degree at most n. One way of doing that is to
borrow some knowledge from Analysis about differentiation. This tells us that the
derivative of f is zero again, and that it is a polynomial function of degree < n:

0= f/(:b') =n+ DA,z" + ) W i ST W

Now we can apply the induction hypothesis to this polynomial function; it tells
us that (n + DAy = nA, = -+ = A =0, hence \y = --- =\, = \11 = 0.
So f(x) = Ag is in fact constant, which finally implies Ay = 0 as well (by our
reasoning for the induction base).

This completes the induction step and therefore the whole proof.

Note that since P = L({f, : n € Ny}), we have shown that the collection (f,,)nen,
is a basis for P.
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So we see that P cannot have a finite basis, since we can find arbitrarily many
linearly independent elements. The following proposition states that this is in fact
the only obstruction to a vector space having a finite basis.

Proposition 5.48. Let V' be a vector space. Then V has no finite basis if and

only if there is an linearly independent infinite sequence vy, vy, Vs, ... of elements
mn V.
Proof. Exercise. U

This motivates the following definition.

Definition 5.49. If a vector space V' does not have a finite basis, then V' is said
to be infinite-dimensional, and we write dim V' = oo.

Example 5.50. In particular, Example 5.46 shows that the space P(F') of poly-
nomials over a field F' is infinite-dimensional. Example 5.47 gives dim P = oo for
the space P of real polynomial functions.

Warning 5.51. Although the vector space of real polynomial functions is infinite-
dimensional, over finite fields this is not the case (exercise).

Examples 5.52. We have inclusions
PCC®®)=()C"(R) C---CC*R) CC'(R)CCR)CR".
n=0

Since P contains arbitrarily long sequences of linearly independent functions, so
do all these spaces and therefore they are all infinite-dimensional.

Warning 5.53. In Examples 5.46 and 5.47 we actually found infinite bases for
P(F) and P C R® but for example for R¥, it is a priori not at all clear that
there even exists a collection C' of functions in RF that is linearly independent and
generates the whole vector space R¥.

Although in Section 7?7 we will see that indeed all vector spaces do magically turn
out to have some basis, by definition the claim dim V' = oo only means that there
is no finite basis, and does not directly state that there would exist an infinite
basis.

The following important result states that essentially (‘up to isomorphism’), there
is only one F-vector space of any given dimension n (namely F", cf. Proposition
5.31).

Proposition 5.54. Let V and W be vector spaces over the field F'. IfV and W are
isomorphic, then we have dimV = dim W. The converse holds if the dimension
18 finite.

Proof. If both V' and W are infinite-dimensional, then we are done, so suppose,
without loss of generality, that V' has finite dimension, say dim V' = n, and let
B = (v1,...,v,) be a basis for V. Suppose that f: V — W is an isomorphism.
Then the elements f(vy),..., f(v,) form a basis for W by Proposition 5.31, so we
have dimW = n = dim V. If, for the converse, we have dimW = dimV = n,
then W has a basis C' = (wy,...,wy), so pp: F" — V and pc: F* — W are
isomorphisms and the composition ¢¢ o ¢z': V — W is an isomorphism. U

Corollary 5.55. Every invertible matriz is a square matrix.

Proof. Suppose an m x n matrix A over F' is invertible. Then the associated map
fa: F™ — F™ is an isomorphism, so we get m = dim F"" = dim F" = n. O



80

FExercises.

Exercise 5.2.1. Determine a basis for the subspaces of R™ generated by

(1) V1 = (1,3),1)2 == 2, 1),2]3 == (1, 1)7

2) v = (1,3,1), 00 = (2,1,2), 05 = (1,1,1),

(3) o1 = (1,3,1), 09 = (3,1,3), 05 = (1,1,1),

(4) U1 = (172’3)77)2 = (47576>7U3 = (7a8a 9)?

(5) v1 = (1,2,3,4), 03 = (4,3,2,1), 03 = (1, —1,1, ~1),

Exercise 5.2.2. Redo Exercise 5.1.4.
Exercise 5.2.3. Finish the alternative proof of Lemma 5.32.

Exercise 5.2.4. For each of the matrices of Exercise 4.6.2, select some columns
that form a basis for the column space of that matrix.

Exercise 5.2.5. Show that the real polynomials f; = 22 + 2, fo = 22% — 3, and
f3 = 234+ x — 1 are linearly independent and extend them to a basis for the space
Py(R) of all real polynomials of degree at most 4. In other words, give polynomials

fa, ..., [ for a certain ¢, such that (f1,..., f;) is a basis for Py(R).
Exercise 5.2.6. Let V' C R* be the hyperplane V = {a}* with a = (1,1,1,1).

(1) What is the dimension of V7

(2) Show that the vectors v; = (2,—-3,—1,2) and vy = (—1,3,2,—4) are lin-
early independent and contained in V.

(3) Extend (v1,v2) to a basis for V.

Exercise 5.2.7. This exercise generalizes Example 5.23. Let X be any set and F
a field. For each z € X, we define the function f,: X — F that sends x to 1 and
every other element of X to 0.

(1) Give an example where the collection (f,).cx is not a basis for F~.
(2) Show that the collection (f,).cx is a basis of the vector space F'X).

Exercise 5.2.8. Let V be a finite-dimensional vector space and S C V' a subset
that generates V. Show that there is a finite subset of S that generates V.

Exercise 5.2.9. State and prove a generalization of Proposition 5.31 for arbitrary
collections of vectors, cf. Exercise 3.2.16.

Exercise 5.2.10. State and prove an analog of Lemma 5.32 for arbitrary collec-
tions (v;);er of vectors in V.

Exercise 5.2.11. Use Proposition 3.13 to prove the following generalization of
Proposition 3.13 itself: “Let V' and W be vector spaces over a field F', and let

B = (vy,vq,...,v,) be a basis for V. Then for every sequence wy,ws,...,w, of
vectors in W there is a unique linear map f: V' — W such that f(v;) = w; for all
j € {1,...,n}.” Also state and prove an analog for arbitrary collections (v;);cr

(basis for V') and (w;);er (general elements in ).

Exercise 5.2.12. Prove Lemma 5.26. Is the same statement true for infinite
sequences vy, Vg, U3, ... ! What about sequences (v;)iez = ...,v_1, 00,01, ... that
are infinite in both directions, with the hypothesis that I consist of of all i € Z
for which v; is not a linear combination of the previous elements?

Exercise 5.2.13. Prove Proposition 5.48.
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Exercise 5.2.14. This exercise gives two alternative definitions for the dimension
of a matrix. Let V be a vector space.

(1) Show that dim V' equals the supremum (possibly co) of the set of all integers
r for which there exists a sequence

y=Vvcvicwhc...CV,_,CV,=V

of subspaces of V', each properly contained in the previous.
(2) Show that dim V' equals the supremum (possibly 0o) of the set of all integers
r for which there exists a sequence

U1,V2, ..., Ur

of linearly independent elements in V.

The last exercises relate linear independence and generating on one hand to in-
jectivity and surjectivity on the other. They are related to Lemmas 5.13 and 5.33
and Proposition 5.34. We will not use/assume in these statements that every
vector space has a basis, c¢f. Warning 5.53, which is why it is included as explicit
hypothesis whenever needed.

Exercise 5.2.15. State and prove an analog of Lemma 5.33 for arbitrary collec-
tions (v;);er of vectors in V.

Exercise 5.2.16. Prove Proposition 5.34. Also state and prove an analog of
Proposition 5.34 for an arbitrary collection (v;);er of vectors as a basis for V
(follows from the next three exercises).

Exercise 5.2.17. Let f: V — W be a linear map. Show that the following are
equivalent.

(1) The map f is injective.

(2) For every nonnegative integer n and every sequence vy,...,v, € V of
linearly independent vectors, the images f(v1),..., f(v,) are linearly inde-
pendent in W.

(3) For every collection (v;);er of linearly independent vectors in V, the collec-
tion (f(v;))ier of images is linearly independent in W.

Show also that if V' has a (not necessarily) basis, then these statements are also
equivalent to the following.

(4) For all bases (v;);e; for V, the collection (f(v;))icr of images is linearly
independent in .

(5) There exists a basis (v;);e;r for V' for which the collection (f(v;))ier of
images is linearly independent in W.

Exercise 5.2.18. Let f: V — W be a linear map. Show that the following are
equivalent.

(1) The map f is surjective.

(2) For every collection (v;);er of vectors that generate V, the collection (f(v;))ier
of their images generates V.

(3) There is a collection (v;)er of vectors in V' for which the collection (f(v;))ier
of their images generates W.

Explain why the analog for finite sequences is missing among these statements by
giving an example of a linear map f: V — W that is not surjective, but such
that for all sequences vy, vy, ..., v, of elements in V that generate V', the images

f(v1), f(v2),..., f(v,) generate W.
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Exercise 5.2.19. Let f: V — W be a linear map and assume V has a (not
necessarily finite) basis. Then the following are equivalent.

(1) The map f is an isomorphism.

(2) For every basis (v;);er for V, the collection (f(v;))icr is a basis for W.

(3) There exists a basis (v;);er for V' for which the collection (f(v;))icr is a
basis for W.

5.3. Dimensions of subspaces. The following result shows that our intuition
that dimension is a measure for the ‘size’ of a vector space is not too far off: larger
spaces have larger dimension.

Lemma 5.56. Let U be a linear subspace of the vector space V. Then we have
dimU < dimV. If dim V' is finite, then we have equality if and only if U = V.

Here we use the usual convention that n < oo for n € Ny. Note that in the case
that dim V' is finite, the statement also asserts the existence of a finite basis of U.

Proof. There is nothing to show if dimV = oo. So let us assume that V' has
a basis vy,...,v,. If uy,...,u, € U are linearly independent, then m < n by
Theorem 5.44(3). Hence there is a sequence ug, ..., u, of linearly independent
vectors in U of maximal length m (and m < n). We claim that uy,...,u,, is in
fact a basis of U. The first claim then follows, since then dimU =m <n =dim V.

We have to show that uq,...,u,, generate U. So assume that there is u € U that
is not a linear combination of the w;. Then w4, ..., u,,, v are linearly independent,
which contradicts our choice of uy, ..., u,, as a mazrimal linearly independent se-
quence in U. So there is no such u, hence U = L(uy, ..., uy).

To prove the second part, first assume dim U < dim V. Then by Theorem 5.40, no
basis of U would also be a basis of V', so U # V. Conversely, assume U # V and
consider a basis of U. It can be extended to a basis for V' by the Basis Extension
Theorem 5.35. Since it does not generate V', at least one element has to be added,
which implies dimU < dim V. U

FRkARXIRX Dimension formula to come *FFFFFF*k

ool Existence of complementary spaces to come *HAHHFRHK

FEzercises.

Exercise 5.3.1. Let F be a finite field, and consider the F-vector space V of
functions from F to F' (so V = F¥ in our earlier notation). Consider again the
linear subspace of polynomial functions:

Pp = Lp({fo, fr, f2.--- })

where f,, : © — 2" (for x € F). Show that dimp Pp is finite. (Warning: do not
confuse the space P of polynomial functions with the space P(F') of polynomials,
which has infinite dimension, ¢f. Warning 2.34 and Examples 2.33, 5.46, 5.47, and
5.50.)

6. THE RANK OF A LINEAR MAP

6.1. Definition of the rank of a linear map.

FRAFEARE Definition of rank and rank formula to come *¥#*FxF**k
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6.2. Rank of a matrix.

ook “Row rank equals column rank” to come *HFFHAAAK

6.3. Inverses of matrices. Recall that every invertible matrix is square by Corol-
lary 5.55. In this section, we will give a method to check whether a square matrix
is invertible, and, if so, to compute the inverse.

Lemma 6.1. Let A, B,C be matrices satisfying AB = C. Let A" be the matrix
obtained from A by a sequence of elementary row operations, and let C' be the

matriz obtained from C by the same sequence of operations. Then we have A'B =
.

Proof. By Proposition 4.30, there is an invertible matrix M, depending only on
the applied sequence of row operations, such that A’ = M A and ¢! = MC. We
immediately see A’'B = (MA)B = M(AB) = MC = C". Alternatively, this also
follows easily from the fact that the entries of C' are the dot products of the rows
of A and the columns of C, and the fact that the dot product is linear in its
variables. O

Lemma 6.1 states that if we start with a product AB = C', written as

bii bz - bip
bar  baa - by
(5) ) } =B
bml bm2 e bmn
apy Q2 - Qi Ci1 Ci2 -+ Cin
ag1 A2z -+  Q2m Co1 Co2 -+  Cop
A= . . . . . .| =C
apn Qi Aup i C2 - Cp

as in (4), and we perform an elementary row operation on the two bottom matrices
simultaneously, then we obtain the matrices A" and C’ and, together with B, these
resulting matrices depict the equality A’B = C".

Given the matrices A and C, one might be interested in finding a matrix B such
that AB = C, if such B exists. If A is invertible, then we have B = A™'(AB) =
A7IC. If A7! is known, then this is readily computed by multiplying A~! with
C. The following proposition gives a criterion for A being invertible and, if so, for
determining A='C efficiently if the inverse A~! is not yet known.

Proposition 6.2. A matriz A € Mat(m, F') is invertible if and only if its reduced
row echelon form is the identity matriz I,,. Suppose I, is obtained from A by a
sequence of elementary row operations. Then A~! is obtained from I, by the same
sequence of operations. More generally, for any matriz C' with n rows, the matrix
A~LC is obtained from C by the same sequence of operations.

Proof. If A is invertible, then f, is injective, and by Proposition 4.47 we conclude
that any row echelon form of A has n nonzero rows, so every row has a pivot and
all pivots are on the diagonal; it follows that the reduced row echelon form is the
identity matrix. Conversely, suppose that the reduced row echelon form of A is
the identity matrix [,,. Then by Proposition 4.30 there is an invertible matrix
M, such that I, = MA, so A= M~!is invertible. Applying Lemma 6.1 to the
products A- A7 = I, and A - (A7'C) = C and the sequence of elementary row
operations that transform A into [, yields the last two statements. O
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Here is a visual interpretation of Proposition 6.2. If we write X = A~'C for A
and C' as in Proposition 6.2, then we can depict the equality AX = C as in (5) by

X
LAl c
Applying elementary row operations to the combined matrix yields

a combined matrix of matrices A" and C’ that satisfy A’X = C’ by
Lemma 6.1, depicted as follows.

X X
(4a] ¢ ~ A
In particular, if we obtain A’ = I, then we have C' = A’X = IX = X.

X X
A C ~ I X

Therefore, if a priori we do not yet know X = A~'C, then we can find X by

writing down the combined matrix and applying row operations until
the left part of the combined matrix equals I. The right part then automatically

equals X = A~1C.
Example 6.3. Let us see how to invert the following matrix

111
A=1[1 2 4],
139

where we assume char(F') # 2, so that 2 # 0 and we can divide by 2.

We perform the row operations on A and on [ in parallel, as above.

1 1 111 00 1 1 11 00
1 2 4/0 1 0 ~ 01 3/|-1 10
1 3 9/0 01 0 2 8/—-101
1 0 =22 —-120
~s 01 3|—-1 1 0
00 2|1 =21
1 00[3 -3 1
~s 010—%4—%
001%—1%
So
3 -3 1
Ailz—lgll—l%
3 L3

Remark 6.4. This inversion procedure will also tell us whether a matrix A is
invertible or not. Namely, if at some point in the computation of the row echelon
form, the lower part of the next column has no non-zero entries, then the reduced
row echelon form of A is not the identity, so the matrix is not invertible.

Corollary 6.5. If A € Mat(m, F') is invertible, then A can be written as a product
of matrices M;(X\) (X # 0) and I, + A\E;; (i # j). (Notation as in the proof of
Proposition /.30.)
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Proof. Exercise.

Example 6.6. Let A be the matrix of Example 6.3 and b € F? the vector

-1
2
1

b —

Using the inverse A~!, it is easy to find an element x € F? with Ax = b, namely

3 =3 1 -1 -8
r=AYAr) = A" = —g 4 —% 2 1=129
oyl 1 9

If we had not know A~! yet, then we can apply Lemma 6.1 directly to the product
Ax = b and the sequence of row operations that transforms A into I3, so that we
need not compute A~! first. We put A and b in an extended matriz

11 1]-1
1 2 4] 2
1 3 9|1
and transform the left part to I:
11 1|-1 11 1|-1
1 2 4] 2 ~ 01 3| 3
1 3 9|1 0 2 8] 2
10 —2|—-4 1 0 0]-8
~ 01 3|3 ~ 01 0|9 ,
00 2 |—4 00 1|-2
SO
-8
z=19
—2
Ezercises.
Exercise 6.3.1. Determine the inverses of the following matrices
-1 -2 -1 -1 2 =2 0 =10
-3 -1 3 =2 =2
(_2 _1>, 13 11, 0o -1 0], 1 _9 _9
1 =2 0 1 -2 3 0 0 -1 —
Exercise 6.3.2. Are the matrices
1 9 —2 1 =2
o ) -1 1 -1
1 -1 1

invertible?

Exercise 6.3.3. Determine the inverse of those matrices (over R) that are invert-

ible.

0 o 1 -1 1 -2 2
-2 1 1 -1

-1 1 0
o o 1 2 -1 1 0
0 1 2 1

—_ O ==
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0 2 —-11
-2 -1 -2 0 b2
1 1 -1
1 0 -1 2 10 0
2 2 0 2

Exercise 6.3.4. Let I be a field and m a positive integer. Let E;; be the m x m
matrix over F' of which the only nonzero entry is a 1 in row ¢ and column 7, as in
the proof of Proposition 4.30. For 1 <i,7 < m with i # j and A € F', we set

M;X) =1, + (A —1)E;
We call these matrices elementary matrices.

(1) Show that multiplication by an elementary matrix (from the left) corre-
sponds to applying an elementary row operation.

(2) Conclude that if A and A’ are row equivalent, then there is an invertible
matrix B such that A’ = BA (see Proposition 4.30).

(3) Prove that a matrix A is invertible if and only if A can be written as the
product of elementary matrices.

(4) Prove Corollary 6.5.

(5) Write the following matrices as a product of elementary matrices, if possi-

ble:
1 -1 0 —1 0 —2 2 3 —2
-1 -2 -1 -1 -1 -2 3 2 2
2 2 1 2 3 3 0 —1 2

6.4. Computing intersections.

Proposition 6.7. Suppose F' is a field and Uy, Uy C F™ are finitely generated
subspaces. Then we have

UNU, = U +UHT  and (U NU)*t =Ut 4+ Uy
Proof. Exercise. U

Later we will see that it is not necessary to assume the the subspaces U; and U,
are finitely generated, cf. ?77.

Proposition 6.7 expresses taking intersections in terms of taking sums and orthogo-
nal subspaces. This allows us to explicitly compute generators for the intersection
Uy N Uy if we know generators for the subspaces U; (or Ui) and Uy (or Us"). In-
deed, we already know how to take sums and orthogonal subspaces: if we have
generating subsets S7 and S for two subspaces Vi and V5 of F™, then the union
S1US; generates V) 4+ V5 by Lemma 2.43, and if vy, vs, ..., v, € F" generate a sub-
space V C F™, then V* is the kernel of the matrix whose rows are vy, vs, . . ., v, by
Proposition 4.12 and we can compute generators for this kernel with Proposition
4.45.

Example 6.8. Let U C R® be generated by the elements
up = (1,3,1,2,2),
ug = (—1,2,-2,3,2),
us = (3,2,0,—1,—4),
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and V C R® by the elements
v = (=2,0,-6,3, —2),
v = (1,2,-3,1,-3),
vy = (—1,0,-3, -2, —1).

To determine generators for the intersection U NV, we use the identity U NV =
(U+ + V1)L, The subspaces U+ and V+ equal the kernel of the matrices

1 3 1 2 2 -2 0 -6 3 =2
M=|-12 -2 3 2 and N=|1 2 -3 1 =3],
3 2 0 -1 -4 -1 0 -3 -2 -1

respectively, where the rows of M are wuy, us, uz and those of N are vy, v9,v3. The
reduced row echelon forms of M and N are
100 —1 =2 10
M=[010 1 1 and N=(01 -3 0 -2,
001 0 1 00 0 1 0

respectively. By Proposition 4.46, the kernels ker M’ = ker M = U~ and ker N’ =
ker N = V1 are generated by {w4, ws} and {x3, x5} respectively, with

1 2 -3 -1
-1 -1 3 2
wy=1| 0 [, ws = | =11, =111, zs=1 0
1 0 0 0
0 1 0 1

Therefore, the subspace U+ + V= is generated by wa, ws, x5, T5, so the subspace
UNV = (Ut +V+)tis the kernel of the matrix

1 -1 0 10
2 -1 -1 0 1
-3 3 1 0 0}’
-1 2 0 01
which has wy, ws, x3, x5 as rows. The reduced row echelon form of this matrix is
1 00 21
01011
0013 0]’
00 0O0O0

so the kernel UNV is generated by the vectors (now not written as column vectors)
24 = (—2,—-1,-3,1,0) and z5 = (—1,-1,0,0,1).

There is a different way to compute the intersection of two subspaces, based on
the equality
UnUy=UH"NUy={ueclU, : ul U}

Example 6.9. Let U and V' be as in Example 6.8. Just as in Example 6.8, we
first determine that U+ = ker M is generated by w4 and ws. This shows
UNnV=U"NV={weV : (v,uw) = (v,ws) =0}.

Every v € V can be written as v = A\jv; + Avg + Agv3 for some A\, Ay, A3 € R. In
terms of the \;, the equation (v, wy) = 0 (for k = 4,5) is equivalent to

0 = (M1 + Aovg + A3v3, wi) = A {v1, wi) + Aa(va, wi) + A3(v3, wy),
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so the two equations (v, ws) = (v, ws) = 0 are equivalent to (A1, A2, A3) lying in
the kernel of the matrix

(vi,wa) (v2,we) (vz,wa)) _ (1 0 =3

(v, ws)  (va,ws) (v3,ws) 00 0)/)°
It turns out that ws is orthogonal to V' and this matrix is already in reduced row
echelon form. Its kernel is generated by (0, 1,0) and (3,0, 1), which correspond to

the vectors 0-v1 +1-v9+0-v3=vyand 3-v; +0-vy+1-v3 = 3v; +v3. We
conclude that U NV is generated by vy and 3v; + v3.

Yet a third method to compute the intersection is based on the following propo-
sition. Recall from Examples 3.7 that for any two vector spaces Vi, Vs over the
same field F', the projection maps V; x Vo — Vj and V| x Vo, — V; are linear.

Proposition 6.10. Let fi: Vi — W and fy: Vo — W be two linear maps. Let
fi X fo: Vi x Vo — W denote the linear map given by

Vi x Va3 (v1,v2) = fi(ve) + fa(va).
Fori=1,2, let U; C V; be the projection of ker(f; X fa) onto V;. Then we have

f1(Ur) = fo(Uz) = im(f1) Nim(fy).

Proof. Suppose z € f1(U;). Then there are elements v; € V; and vy € V, with
(v1,v9) € ker(f1X f2), s0 vy € Uy, and f1(v1) = z. Then we have f(vy)+ fo(v2) = 0,
so z = f(v1) = fa(—vz) € im(f1) Nim(f2) and thus fi(U1) C im(f1) Nim(f2).
Conversely, suppose z € im(f;) Nim(f;). Then there are v; € V; and vy € V5 with
z = fi(v1) = fa(vz). This gives (f1 XfQ)((Uh —U2)) = fi(vi)+fo(—12) = 2—2 =0,
so (vy,—wvy) € ker(f; X fp). This implies v; € Uy and hence z € f(U;). We
conclude f1(Uy) = im(f;) Nim(fz). The equality fo(Usz) = im(f;) Nim(fs) follows
by symmetry. O

Example 6.11. With uy, us, us, v1, v2, v3 as in Example 6.8, let f,g: R* — R be
the linear maps given by

f(()m A2, )\3)) = Au + Agug + Azus,
9(()\17 A2, )\3)) = A1 + Agva + A3vs.

Then we have im f = U and img = V. Identifying, R?* x R?® with R®, the map
f x g: RS — R? is given by the matrix

-1 3 |-2 1 -1
2 210 2 0
-2 0|-6 -3 =3
3 -1 3 1 =2
2 —4|-2 =3 -1

Y

RN = W

where the line separates the two factors in R? x R?. The reduced row echelon form
of this matrix, with some of its rows scaled to get rid of denominators, equals

1 0 0]0 -8 =70
22 010 25 161

0O 0 00 O 0
Therefore, the kernel of f x g is generated by
2z = (16,—25,-2110,22,0) and 2o = (140, —161,—49 | 66,0, 22),
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which correspond to the relations

16U1 — 25U2 — 21“3 + 22’02 =0
140u; — 161us — 49u3 4+  66v; + 2203 =0

The projections of z; and 2, onto the first factor in R® x R3 are (16, —25, —21)
and (140, —161, —49) and the projections on the second factor are (0,22,0) and
(66, 0,22). We find the two elements

F((16, =25, —21)) = 160y — 25uy — 21ug = —22vy = —g((0, 22,0)),
£((140, =161, —49)) = 140u; — 161uy — 49us = —(66v; + 22v3) = —g((66,0,22)),

and these elements generate im f Nimg = U NV by Proposition 6.10.

Note that in Example 6.11, when we determine generators for the kernel of the 5x6
matrix in reduced row echelon form using Proposition 4.46, the only part of the
matrix that matters for the last three coordinates of the generators (corresponding
to the second factor R?), is the part right of the vertical line and below the dashed
horizontal line. This implies that the projection of the kernel ker(f x g) onto the
second factor of R3 x R? is exactly the kernel of the 2 x 3 matrix

1 0 -3
00 0)°

It is a coincidence that this matrix is the same as the one in Example 6.11, but
it is not a coincidence that the kernels of these 2 x 3 matrices coincide. This
observation can be turned into an efficient variation of the method of Example
6.11, described in the following proposition.

Proposition 6.12. Let U,V C F"™ be subspaces generated by wuyi,us, ..., us, and
V1, Vg, . . ., Uy Tespectively. Let M be the n X (s+t) matriz of which the columns are
Up, U, . . ., Ug, V1, Vo, ..., 0. Let M' be a row equivalent matriz in row echelon form.
Let r be the number of nonzero rows in the left-most n x s submatriz of M’, let N
be the lower-right (n —r) x t submatriz of M', and K C F* the kernel of N. Then
UNV =g(K), where g: F* — F™ is given by g((M1,...,\)) = Mv1 + ... + A\

Proof. One proof uses the same arguments as above. We leave it as an exercise
to the reader to phrase them in full generality. Exercise 6.4.8 gives a different
proof. U

Example 6.13. Let U C R* be generated by
u = (—1,3,3,-3), ug = (—1,1,-3,1), and ug = (—2,3,-3,0),
and V C R* by
vy = (-1,3,—-1,-3) and vy = (—3,4,2,1).

We will find generators for the intersection U NV, using Proposition 6.12. The
matrix with wq, us, usg, v1, v9 as columns is

-1 -1 -2|-1 -3
3 1 3|3 4
3 -3 —=3|-1 2 ’
-3 1 0 |=-3 1

M =
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which has row echelon form (with some rows scaled)

2 0 110 b5

, 0 2 3|0 5
M=1-6"07071 23

O 0 0|0 O

The part of the matrix left of the vertical line has » = 2 nonzero rows. The kernel
of the lower-right 2 X 2 matrix is generated by (2,1), so U NV is generated by
2z = 2u; + vy. Indeed, the kernel of M’ contains the element (—g, —g, 0,2,1), so
5

—5U — gug + 2v1 + v = 0 and we have 2z = buq + Sug, which shows z € U.

Remark 6.14. The method you choose to compute an intersection U; N Uy obvi-
ously depends on whether you have generators for U; or equations (i.e., generators
for U), and whether you want generators for the intersection or equations. Also,
if U; requires many generators, then U only needs few, so it is worth consid-
ering a method where you can do the bulk of the computation with U7 instead
of U;. Another point to consider is that the methods of Examples 6.9 and 6.11
and Proposition 6.12 yield generators for U; N U, that are given as explicit linear
combinations of the generators of U; and/or Uy, which in some applications is an
advantage. The big advantage of the method of Example 6.8 is that it always
yields a minimal number of generators, regardless of whether the number of given
generators for U; and Us is minimal.

Ezercises.
Exercise 6.4.1. Prove Proposition 6.7.

Exercise 6.4.2. Compute the intersection U NV with U and V' as in Example 6.8
with the method of Example 6.9, but with the roles of U and V reversed. Same
for the methods of Example 6.11 and Proposition 6.12.

Exercise 6.4.3. Compute the intersection U NV with U and V as in Example
6.13 with all the methods, and compare the amount of work involved with each
method. Perform each method again with the roles of U and V reversed.

Exercise 6.4.4. Let F = Fy be the field of two elements. Let U C F* be the
subspace generated by

(1,1,1,1), (1,1,0,0), and (0,1,1,0),
and let V C F* be the subspace generated by
(1,1,1,0) and (0,1,1,1).
Find generators for the intersection U N'V.

Exercise 6.4.5. Take two subspaces of R% generated by four elements and com-
pute generators for the intersection.

Exercise 6.4.6. Prove Proposition 6.12 along the lines of the arguments men-
tioned above that proposition. For a different proof, see Exercise 6.4.8.

Exercise 6.4.7. Suppose U C F™ is a subspace that can be generated by r
elements and not by fewer. Suppose V' C F™ is a subspace that can be generated
by n — r elements and not by fewer. Show that the intersection U NV equals {0}
if and only if the sum U 4+ V equals F™. [Hint: consider the n x n matrix whose
first 7 columns generate U and whose last n — r columns generate V]
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Exercise 6.4.8. * In this exercise, we will prove Proposition 6.12 more concep-

tually.

(1)

(2)

(3)

(4)
(5)

(6)

Let fi: Vi — W and fo: Vo — W be linear maps. Suppose U C W is a
subspace that is complementary to im fi. Let 7: W — U be the projection
of W onto U along im f; as in Exercise 3.2.12, and set fo = 7o fo: Vo — U.
Show that we have fy(ker fo) = im(f) Nim(fs).

Now assume Vi = F* and Vo, = F' and W = F". Identify F* x F* with
Fsttand let M be the matrix associated to f; X fo: F*t' — F™. Let M’ be
a row equivalent matrix in row echelon form and let r denote the number
of nonzero rows in the left n x s submatrix of M’. By Exercise 77 there
is an isomorphism v : F™ — F" such that fy =¥ o (f; X f3). Show that
1 induces an isomorphism from im f; to the subspace of F™ generated by
the first r standard vectors eq, es,...,e€,.

Let U’ be the subspace of I generated by the last n — r standard vectors
€ri1,-- -,y and set U =~ 1(U’). Show that im f; and U are complemen-
tary subspaces in F".

Show that fy and ¢ o fo have the same kernel.

Show that the map v o fo: Ft — U’ = F™ " is given by the lower-right
(n —r) x t submatrix of M.

Prove Proposition 6.12.
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