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1. Vector spaces

1.1. Examples.

1.2. Fields.

Exercise 1.2.1. Prove Proposition ??.

Exercise 1.2.2. Check that F2 is a field (see Example ??).

Exercise 1.2.3. Which of the following are fields?

(1) The set N together with the usual addition and multiplication.
(2) The set Z together with the usual addition and multiplication.
(3) The set Q together with the usual addition and multiplication.
(4) The set R≥0 together with the usual addition and multiplication.

(5) The set Q(
√

3) = {a + b
√

3 : a, b ∈ Q} together with the usual addition
and multiplication.

(6) The set F3 = {0, 1, 2} with the usual addition and multiplication, followed
by taking the remainder after division by 3.

1.3. The field of complex numbers.

Exercise 1.3.1. Prove Remark ??.

Exercise 1.3.2. For every complex number z we have Re(z) = 1
2
(z + z) and

Im(z) = 1
2i

(z − z).

1.4. Definition of a vector space.

Exercise 1.4.1. Compute the inner product of the given vectors v and w in R2

and draw a corresponding picture (cf. Example ??).

(1) v = (−2, 5) and w = (7, 1),
(2) v = 2(−3, 2) and w = (1, 3) + (−2, 4),
(3) v = (−3, 4) and w = (4, 3),
(4) v = (−3, 4) and w = (8, 6),
(5) v = (2,−7) and w = (x, y),
(6) v = w = (a, b).

Exercise 1.4.2. Write the following equations for lines in R2 with coordinates x1

and x2 in the form 〈a, x〉 = c, i.e., specify a vector a and a constant c in each case.

(1) L1 : 2x1 + 3x2 = 0,
(2) L2 : x2 = 3x1 − 1,
(3) L3 : 2(x1 + x2) = 3,
(4) L4 : x1 − x2 = 2x2 − 3,
(5) L5 : x1 = 4− 3x1,
(6) L6 : x1 − x2 = x1 + x2.
(7) L7 : 6x1 − 2x2 = 7

Exercise 1.4.3. True or False? If true, explain why. If false, give a counterex-
ample.

(1) If a, b ∈ R2 are nonzero vectors and a 6= b, then the lines in R2 given by
〈a, x〉 = 0 and 〈b, x〉 = 1 are not parallel.

(2) If a, b ∈ R2 are nonzero vectors and the lines in R2 given by 〈a, x〉 = 0 and
〈b, x〉 = 1 are parallel, then a = b.
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(3) Two different hyperplanes in F n may be given by the same equation.
(4) The intersection of two lines in F n is either empty or consists of one point.
(5) For each vector v ∈ R2 we have 0 · v = 0. (What do the zeros in this

statement refer to?)

Exercise 1.4.4. In Example ??, the first distributive law and the existence of
negatives were proved for F n. Show that the other six axioms for vector spaces
hold for F n as well, so that F n is indeed a vector space over F .

Exercise 1.4.5. In Example ??, the first distributive law was proved for FX .
Show that the other seven axioms for vector spaces hold for FX as well, so that
FX is indeed a vector space over F .

Exercise 1.4.6. Let (V, 0,+, ·) be a real vector space and define x−y = x+(−y),
as usual. Which of the vector space axioms are satisfied and which are not (in
general), for (V, 0,−, ·)?
Note. You are expected to give proofs for the axioms that hold and to give
counterexamples for those that do not hold.

Exercise 1.4.7. Prove that the set P (F ) of polynomials over F , together with
addition, scalar multiplication, and the zero as defined in Example ?? is a vector
space.

Exercise 1.4.8. Given the field F and the set V in the following cases, together
with the described addition and scalar multiplication, as well as the implicit el-
ement 0, which cases determine a vector space? If not, then which rule is not
satisfied?

(1) The field F = R and the set V of all functions [0, 1]→ R>0, together with
the usual addition and scalar multiplication.

(2) Example ??.
(3) The field F = Q and the set V = R with the usual addition and multipli-

cation.
(4) The field R and the set V of all functions f : R→ R with f(3) = 0, together

with the usual addition and scalar multiplication.
(5) The field R and the set V of all functions f : R→ R with f(3) = 1, together

with the usual addition and scalar multiplication.
(6) Any field F together with the subset

{(x, y, z) ∈ F 3 : x+ 2y − z = 0},

with coordinatewise addition and scalar multiplication.
(7) The field F = R together with the subset

{(x, y, z) ∈ F 3 : x− z = 1},

with coordinatewise addition and scalar multiplication.

Exercise 1.4.9. Suppose the set X contains exactly n elements. Then how many
elements does the vector space FX2 of functions X → F2 consist of?

Exercise 1.4.10. We can generalize Example ?? further. Let F be a field and V
a vector space over F . Let X be any set and let V X = Map(X, V ) be the set of
all functions f : X → V . Define an addition and scalar multiplication on V X that
makes it into a vector space.
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Exercise 1.4.11. Let S be the set of all sequences (an)n≥0 of real numbers satis-
fying the recurrence relation

an+2 = an+1 + an for all n ≥ 0.

Show that the (term-wise) sum of two sequences from S is again in S and that
any (term-wise) scalar multiple of a sequence from S is again in S. Finally show
that S (with this addition and scalar multiplication) is a real vector space.

Exercise 1.4.12. Let U and V be vector spaces over the same field F . Consider
the Cartesian product

W = U × V = { (u, v) : u ∈ U, v ∈ V }.
Define an addition and scalar multiplication on W that makes it into a vector
space.

*Exercise 1.4.13. For each of the eight axioms in Definition ??, try to find a
system (V, 0,+, ·) that does not satisfy that axiom, while it does satisfy the other
seven.

1.5. Basic properties.

Exercise 1.5.1. Proof Proposition ??.

Exercise 1.5.2. Proof Remarks ??.

Exercise 1.5.3. Is the following statement correct? “Axiom (4) of Definition
?? is redundant because we already know by Remarks ??(2) that for each vector
x ∈ V the vector −x = (−1) · x is also contained in V .”

2. Subspaces

2.1. Definition and examples.

Exercise 2.1.1. Given an integer d ≥ 0, let Pd(R) denote the set of polynomials of
degree at most d. Show that the addition of two polynomials f, g ∈ Pd(R) satisfies
f + g ∈ Pd(R). Show also that any scalar multiple of a polynomial f ∈ Pd(R) is
contained in Pd(R). Prove that Pd(R) is a vector space.

Exercise 2.1.2. Let X be a set with elements x1, x2 ∈ X, and let F be a field.
Is the set

U = { f ∈ FX : f(x1) = 2f(x2) }
a subspace of FX?

Exercise 2.1.3. Let X be a set with elements x1, x2 ∈ X. Is the set

U = { f ∈ RX : f(x1) = f(x2)
2 }

a subspace of RX?

Exercise 2.1.4. Which of the following are linear subspaces of the vector space
R2? Explain your answers!

(1) U1 = {(x, y) ∈ R2 : y = −
√
eπx},

(2) U2 = {(x, y) ∈ R2 : y = x2},
(3) U3 = {(x, y) ∈ R2 : xy = 0}.

Exercise 2.1.5. Which of the following are linear subspaces of the vector space
V of all functions from R to R?
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(1) U1 = {f ∈ V : f is continuous}
(2) U2 = {f ∈ V : f(3) = 0}
(3) U3 = {f ∈ V : f is continuous or f(3) = 0}
(4) U4 = {f ∈ V : f is continuous and f(3) = 0}
(5) U5 = {f ∈ V : f(0) = 3}
(6) U6 = {f ∈ V : f(0) ≥ 0}

Exercise 2.1.6. Prove Proposition ??.

Exercise 2.1.7. Prove Proposition ??.

Exercise 2.1.8. Let F be any field. Let a1, . . . , at ∈ F n be vectors and b1, . . . , bt ∈
F constants. Let V ⊂ F n be the subset

V = {x ∈ F n : 〈a1, x〉 = b1, . . . , 〈at, x〉 = bt}.
Show that with the same addition and scalar multiplication as F n, the set V is a
vector space if and only if b1 = . . . = bt = 0.

Exercise 2.1.9.

(1) Let X be a set and F a field. Show that the set F (X) of all functions
f : X → F that satisfy f(x) = 0 for all but finitely many x ∈ X is a
subspace of the vector space FX .

(2) More generally, let X be a set, F a field, and V a vector space over F .
Show that the set V (X) of all functions f : X → V that satisfy f(x) = 0
for all but finitely many x ∈ X is a subspace of the vector space V X (cf.
Exercise 1.4.10).

2.2. Intersections.

Exercise 2.2.1. Suppose that U1 and U2 are linear subspaces of a vector space
V . Show that U1 ∪ U2 is a subspace of V if and only if U1 ⊂ U2 or U2 ⊂ U1.

Exercise 2.2.2. Let H1, H2, H3 be hyperplanes in R3 given by the equations

〈(1, 0, 1), v〉 = 2, 〈(−1, 2, 1), v〉 = 0, 〈(1, 1, 1), v〉 = 3,

respectively.

(1) Which of these hyperplanes is a subspace of R3?
(2) Show that the intersection H1 ∩H2 ∩H3 contains exactly one element.

Exercise 2.2.3. Give an example of a vector space V with two subsets U1 and
U2, such that U1 and U2 are not subspaces of V , but their intersection U1 ∩U2 is.

2.3. Linear hulls, linear combinations, and generators.

Exercise 2.3.1. Prove Proposition ??.

Exercise 2.3.2. Do the vectors

(1, 0,−1), (2, 1, 1), and (1, 0, 1)

generate R3?

Exercise 2.3.3. Do the vectors

(1, 2, 3), (4, 5, 6), and (7, 8, 9)

generate R3?
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Exercise 2.3.4. Let U ⊂ R4 be the subspaces generated by the vectors

(1, 2, 3, 4), (5, 6, 7, 8), and (9, 10, 11, 12).

What is the minimum number of vectors needed to generate U? As always, prove
that your answer is correct.

Exercise 2.3.5. Let F be a field and X a set. Consider the subspace F (X) of FX

consisting of all functions f : X → F that satisfy f(x) = 0 for all but finitely many
x ∈ X (cf. Exercise 2.1.9). For every x ∈ X we define the function ex : X → F by

ex(z) =

{
1 if z = x,

0 otherwise.

Show that the set {ex : x ∈ X} generates F (X).

Exercise 2.3.6. Does the equality L(I ∩ J) = L(I) ∩ L(J) hold for all vector
spaces V with subsets I and J of V ?

Exercise 2.3.7. We say that a function f : R→ R is even if f(−x) = f(x) for all
x ∈ R, and odd if f(−x) = −f(x) for all x ∈ R.

(1) Is the subset of RR consisting of al even functions a linear subspace?
(2) Is the subset of RR consisting of al odd functions a linear subspace?

Exercise 2.3.8. Given a vector space V over a field F and vectors v1, v2, . . . , vn ∈
V . Set W = L(v1, v2, . . . , vn). Using Remark ??, give short proofs of the following
equalities of subspaces.

(1) W = L(v′1, . . . , v
′
n) where for some fixed j and k we set v′i = vi for i 6= j, k

and v′j = vk and v′k = vj (the elements vj and vk are switched),
(2) W = L(v′1, . . . , v

′
n) where for some fixed j and some nonzero scalar λ ∈ F

we have v′i = vi for i 6= j and v′j = λvj (the j-th vector is scaled by a
nonzero factor λ).

(3) W = L(v′1, . . . , v
′
n) where for some fixed j, k with j 6= k and some scalar

λ ∈ F we have v′i = vi for i 6= k and v′k = vk + λvj (a scalar multiple of vj
is added to vk).

2.4. Sums of subspaces.

Exercise 2.4.1. Prove Lemma ??.

Exercise 2.4.2. Suppose F is a field and U1, U2 ⊂ F n subspaces. Show that we
have

(U1 + U2)
⊥ = U⊥1 ∩ U⊥2 .

Exercise 2.4.3. Suppose V is a vector space with a subspace U ⊂ V . Suppose
that U1, U2 ⊂ V subspaces of V that are contained in U . Show that the sum
U1 + U2 is also contained in U .

Exercise 2.4.4. Take u = (1, 0) and u′ = (α, 1) in R2, for any α ∈ R. Show that
U = L(u) and U ′ = L(u′) are complementary subspaces.

Exercise 2.4.5. Let U+ and U− be the subspaces of RR of even and odd functions,
respectively (cf. Exercise 2.3.7).

(1) Show that for any f ∈ RR, the functions f+ and f− given by

f+(x) =
f(x) + f(−x)

2
and f−(x) =

f(x)− f(−x)

2
are even and odd, respectively.
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(2) Show that U+ and U− are complementary subspaces.

Exercise 2.4.6. Are the subspaces U0 and U1 of Example ?? complementary
subspaces?

Exercise 2.4.7. True or false? For every subspaces U, V,W of a common vector
space, we have U∩(V +W ) = (U∩V )+(U∩W ). Prove it, or give a counterexample.

2.5. Euclidean space.

Exercise 2.5.1. Prove Lemma ??.

Exercise 2.5.2. Take a = (−1, 2, 1) ∈ R3 and set V = {a}⊥ ⊂ R3. Write the
element x = (x1, x2, x3) ∈ R3 as x = x′ + x′′ with x ∈ L(a) and x′′ ∈ V .

Exercise 2.5.3. Finish the proof of Proposition ??.

Exercise 2.5.4. Explain why Proposition ?? might be called the triangle inequal-
ity, which usually refers to c ≤ a + b for the sides a, b, c of a triangle. Prove that
for all v, w ∈ Rn we have ‖v − w‖ ≤ ‖v‖+ ‖w‖.

Exercise 2.5.5. Prove the cosine rule in Rn.

Exercise 2.5.6. Show that two vectors v, w ∈ Rn have the same length if and
only v − w and v + w are orthogonal.

Exercise 2.5.7. Prove that the diagonals of a parallelogram are orthogonal to
each other if and only if all sides have the same length.

Exercise 2.5.8. Compute the distance from the point (1, 1, 1, 1) ∈ R4 to the line
L(a) with a = (1, 2, 3, 4).

Exercise 2.5.9. Given the vectors p = (1, 2, 3) and w = (2, 1, 5), let L be the line
consisting of all points of the form p+ λw for some λ ∈ R. Compute the distance
d(v, L) for v = (2, 1, 3).

Exercise 2.5.10. Let H ⊂ R4 be the hyperplane with normal a = (1,−1, 1,−1)
going though the point q = (1, 2,−1,−2). Determine the distance from the point
(2, 1,−3, 1) to H.

Exercise 2.5.11. Determine the angle between the vectors (1,−1, 2) and (−2, 1, 1)
in R3.

Exercise 2.5.12. The angle between two hyperplanes is defined as the angle
between their normal vectors. Determine the angle between the hyperplanes in
R4 given by x1 − 2x2 + x3 − x4 = 2 and 3x1 − x2 + 2x3 − 2x4 = −1, respectively.
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3. Linear Maps

3.1. Review of maps.

3.2. Definition and examples.

Exercises.

Exercise 3.2.1. Prove Lemma ??.

Exercise 3.2.2. Welke van de volgende functies tussen vectorruimtes is een lin-
eaire afbeelding?

(1) R3 → R2, (x, y, z) 7→ (x− 2y, z + 1),
(2) R3 → R3, (x, y, z) 7→ (x2, y2, z2),
(3) C3 → C4, (x, y, z) 7→ (x+ 2y, x− 3z, y − z, x+ 2y + z),
(4) R3 → V, (x, y, z) 7→ xv1 + yv2 + zv3, voor een vectorruimte V over R met

v1, v2, v3 ∈ V ,
(5) P (C)→ P (C), f 7→ f ′, waarbij P (C) de vectorruimte van polynomen over

C is en f ′ de afgeleide van f ,
(6) P (R)→ R2, f 7→ (f(2), f ′(0)).

Exercise 3.2.3. Let f : V → W be a linear map of vector spaces. Show that the
following are equivalent.

(1) The map f is surjective.
(2) For every subset S ⊂ V with L(S) = V we have L(f(S)) = W .
(3) There is a subset S ⊂ V with L(f(S)) = W .

Exercise 3.2.4. Zij ρ : R2 → R2 de afbeelding gegeven door rotatie om de oor-
sprong (0, 0) over de hoek θ.

(1) Show that ρ is a linear map.
(2) Wat zijn de beelden ρ((1, 0)) en ρ((0, 1))?
(3) Laat zien dat er geldt

ρ((x, y)) = (x cos θ − y sin θ, x sin θ + y cos θ).

Exercise 3.2.5. Show that the reflection s : R2 → R2 in the line given by y = −x
is a linear map. Give an explicit formule for s.

Exercise 3.2.6. Gegeven is de afbeelding

T : R2 → R2, (x, y) 7→ x(3
5
, 4

5
) + y(4

5
,−3

5
)

en de vectoren v1 = (2, 1) en v2 = (−1, 2).

(1) Laat zien dat er geldt T (v1) = v1 en T (v2) = −v2.
(2) Laat zien dat de lineaire afbeelding gegeven door spiegeling in de lijn 2y−

x = 0 gelijk is aan T .

Exercise 3.2.7. Geef een expliciete uitdrukking voor de lineaire afbeelding s : R2 →
R2 die gegeven wordt door spiegeling in de lijn y = 3x.

Exercise 3.2.8. Let F be a field and n a nonnegative integer. Show that there
is an isomorphism

F n → Hom(F n, F )

that sends a vector a ∈ F n to te linear map x 7→ 〈a, x〉.
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4. Matrices

4.1. Definition of matrices.

4.2. Linear maps associated to matrices.

Exercises.

Exercise 4.2.1. Prove Lemma ?? using the column vectors of A.

Exercise 4.2.2. Prove Remark ??.

Exercise 4.2.3. Voor de gegeven matrix A en vector x, bereken Ax.

(1)

A =

 −2 −3 1
1 1 −2
0 1 1

 en x =

 −3
−4

2

 ,

(2)

A =

(
1 −3 2
−2 −4 2

)
en x =

 1
2
−1

 ,

(3)

A =


4 3
3 −2
−3 −1
−1 1

 en x =

(
−2

3

)
.

Exercise 4.2.4. Geef voor elk van de lineaire afbeeldingen f : F n → Fm van de
opgaven van het vorige hoofdstuk een matrix M zodat f gegeven wordt door

x 7→Mx.

Exercise 4.2.5. Gegeven de matrix

M =

 −4 −3 0 −3
2 2 −3 −1
0 −3 1 −1


en de lineaire afbeelding f : Rn → Rm, x 7→Mx for de bijbehorende m en n. Wat
zijn m en n en wat zijn vectoren v1, . . . , vn zodanig dat f ook gegeven wordt door

f
(
(x1, x2, . . . , xn)

)
= x1v1 + . . .+ xnvn?

Exercise 4.2.6. Voor welke i, j ∈ {1, . . . , 5} bestaat het product Ai · Aj en in
welke volgorde?

A1 =

(
1 1 1
−1 −2 −1

)
, A2 =

(
2 −1 1 −4
3 −1 2 4

)

A3 =

 2 3 4
−1 0 2

3 2 1

 , A4 =

 −1 −3
2 −2
1 1

 , A5 =

(
1 −2
−3 2

)
.

Bereken (een aantal van) deze producten.

Exercise 4.2.7. Voor elke i ∈ {1, , . . . , 5} definiëren we de lineaire afbeelding fi
door x 7→ Aix met Ai als in de vorige opgave.

(1) Wat zijn de domeinen en codomeinen van deze functies?
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(2) Welke van deze functies kun je samenstellen en welke matrices horen dan
bij de samenstelling (geef alleen aan welke twee matrices je moet ver-
menigvuldigen en in welke volgorde)?

(3) Is er een volgorde waarop je alle functies kunt samenstellen, en zo ja, welk
product van matrices hoort bij deze samenstelling, en wat is het domein
en codomein?

Exercise 4.2.8. Vind twee matrices A en B zodanig dat AB een nulmatrix is
(die dus alleen maar nullen bevat), terwijl het product BA ook bestaat, maar
geen nulmatrix is.

Exercise 4.2.9. Gegeven de volgende lineaire afbeeldingen Rn → Rm, bepaal een
matrix A zodanig dat de afbeelding ook geschreven kan worden als x 7→ Ax.

(1) f : R3 → R4, (x, y, z) 7→ (3x+ 2y − z,−x− y + z, x− z, y + z),
(2) g : R3 → R3, (x, y, z) 7→ (x+ 2y − 3z, 2x− y + z, x+ y + z),
(3) h : R3 → R2, (x, y, z) 7→ x · (1, 2) + y · (2,−1) + z · (−1, 3),
(4) j : R2 → R3, v 7→ (〈v, w1〉, 〈v, w2〉, 〈v, w3〉), met w1 = (1,−1), w2 = (2, 3)

en w3 = (−2, 4).

Exercise 4.2.10. Neem de lineaire afbeeldingen f en g uit de vorige opgave en
noem de bijbehorende matrices A en B. In welke volgorde kun je f en g samen-
stellen? Stel ze met de hand ook daadwerkelijk samen en schrijf die samenstelling
op dezelfde manier op als f en g ook gegeven zijn. Bereken het product van de
matrices A en B (in de juiste volgorde) en verifieer dat dit product inderdaad
overeen komt met de samenstelling van de lineaire afbeeldingen.

Exercise 4.2.11. Let F be a field and m,n nonnegative integers. Show that there
exists an isomorphism

Matm,n(F )→ Hom(F n, Fm)

that sends A to fA. (This is in fact almost true by definition, as we defined the
addition and scalar product of matrices in terms of the addition and scalar product
of the functions that are associated to them.)
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