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CHAPTER 1

Vector spaces

Many sets in mathematics come with extra structure. In the set R of real numbers,
for instance, we can add and multiply elements. In linear algebra, we study vector
spaces, which are sets in which we can add and scale elements. By proving theorems
using only the addition and the scaling, we prove these theorems for all vector
spaces at once.

All we require from our scaling factors, or scalars, is that they come from a set
in which we can add, subtract, and multiply elements, and divide by any nonzero
element. Sets with this extra structure are called fields. We will often use the
field R of real numbers in our examples, but by allowing ourselves to work over
more general fields, we also cover linear algebra over finite fields, such as the field
F2 = {0, 1} of two elements, which has important applications in computer science
and coding theory.

1.1. Examples

We start with some examples of a set with an addition and a scaling, the latter
often being referred to as scalar multiplication.

Example 1.1. Consider the set R2 = R × R of all pairs of real numbers. The
pairs can be interpreted as points in the plane, where the two numbers of the pair
correspond to the coordinates of the point. We define the sum of two pairs (a, b)
and (c, d) in R2 by adding the first elements of each pair, as well as the second, so

(a, b) + (c, d) = (a+ c, b+ d).

We define the scalar multiplication of a pair (a, b) ∈ R2 by a factor λ ∈ R by
setting

λ · (a, b) = (λa, λb).

Example 1.2. Let Map(R,R) be the set of all functions from R to R. The sum
of two functions f, g ∈ Map(R,R) is the function f + g that is given by

(f + g)(x) = f(x) + g(x)

for all x ∈ R. The scalar multiplication of a function f ∈ Map(R,R) by a factor
λ ∈ R is the function λ · f that is given by

(λ · f)(x) = λ · (f(x))

for all x ∈ R.

Remark 1.3. Obviously, if f is a function from R to R and x is a real number,
then f(x) is also a real number. In our notation, we will always be careful to
distinguish between the function f and the number f(x). Therefore, we will not
say: “the function f(x) = x2.” Correct would be “the function f that is given by
f(x) = x2 for all x ∈ R.”
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4 1. VECTOR SPACES

Example 1.4. Nothing stops us from taking any set X and the set Map(X,R) of
all functions from X to R and repeating the construction of addition and scalar
multiplication from Example 1.2 on Map(X,R). We will do this in a yet more
general situation in Example 1.22.

Example 1.5. A real polynomial in the variable x is a formal sum

f = adx
d + ad−1x

d−1 + · · ·+ a2x
2 + a1x+ a0

of a finite number of different integral powers xi multiplied by a real constant ai; we
say that ai is the coefficient of the monomial xi in f . The degree of f =

∑d
i=0 aix

i

with ad 6= 0 is d. By definition the degree of 0 equals −∞. Let R[x] denote the
set of all real polynomials. We define the addition of polynomials coefficientwise,
so that the sum of the polynomials

f = adx
d + · · ·+ a2x

2 + a1x+ a0 and g = bdx
d + · · ·+ b2x

2 + b1x+ b0

equals

f + g = (ad + bd)x
d + · · ·+ (a2 + b2)x

2 + (a1 + b1)x+ (a0 + b0).

The scalar multiplication of f by λ ∈ R is given by

λ · f = λadx
d + · · ·+ λa2x

2 + λa1x+ λa0.

We could also define the product of two polynomials, but that has nothing to do
with the vector space structure, for which we only care about the addition and
scalar multiplication.

In the examples above, we used the ordinary addition on the set R of real numbers
to define an addition on other sets. When reading an equation as

(f + g)(x) = f(x) + g(x)

in Example 1.2, one should always make sure to identify which addition the plus-
symbols + refer to. In this case, the left + refers to the addition on Map(R,R),
while the right + refers to the ordinary addition on R.

All examples describe an addition on a set V that satisfies all the rules that one
would expect from the use of the word sum and the notation v+w. For example,
one easily checks that in all examples we have

u+ v = v + u and u+ (v + w) = (u+ v) + w

for all elements u, v, w in V . Also the scalar multiplication acts as its notation
suggests. For instance, in all examples we have

λ · (µ · v) = (λµ) · v

for all scalars λ, µ and all elements v in V .

We will define vector spaces in Section 1.4 as a set with an addition and a scalar
multiplication satisfying these same three rules and five more. The examples
above are all vector spaces. In the next section we first introduce fields, which can
function as sets of scalars.
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1.2. Fields

Definition 1.6. A field is a set F , together with two distinguished elements
0, 1 ∈ F with 0 6= 1 and four maps

+: F × F → F, (x, y) 7→ x+ y (‘addition’),

− : F × F → F, (x, y) 7→ x− y (‘subtraction’),

· : F × F → F, (x, y) 7→ x · y (‘multiplication’),

/ : F × (F \ {0})→ F, (x, y) 7→ x/y (‘division’),

of which the addition and multiplication satisfy

x+ y = y + x, x+ (y + z) = (x+ y) + z, x+ 0 = x,

x · y = y · x, x · (y · z) = (x · y) · z, x · 1 = x,

x · (y + z) = (x · y) + (x · z)

for all x, y, z ∈ F , while the subtraction and division are related to the addition
and multiplication through

x+ y = z ⇔ x = z − y

for all x, y, z ∈ F and

x · y = z ⇔ x = z/y

for all x, y, z ∈ F with y 6= 0.

Example 1.7. The set R of real numbers, together with its 0 and 1 and the
ordinary addition, subtraction, multiplication, and division, obviously form a field.

Example 1.8. Also the field Q of rational numbers, together with its 0 and 1 and
the ordinary addition, subtraction, multiplication, and division, form a field.

Example 1.9. Consider the subset

Q(
√

2) = { a+ b
√

2 : a, b ∈ Q }

of R, which contains 0 and 1. The ordinary addition, subtraction, and multiplica-
tion of R clearly give addition, subtraction, and multiplication on Q(

√
2), as we

have

(a+ b
√

2)± (c+ d
√

2) = (a± c) + (b± d)
√

2,

(a+ b
√

2) · (c+ d
√

2) = (ac+ 2bd) + (ad+ bc)
√

2.

To see that for any x, y ∈ Q(
√

2) with y 6= 0 we also have x/y ∈ Q(
√

2), we first
note that if c and d are integers with c2 = 2d2, then c = d = 0, as otherwise c2

would have an even and 2d2 an odd number of factors 2. Now for any x, y ∈ Q(
√

2)
with y 6= 0, we can write x/y as

a+ b
√

2

c+ d
√

2

with integers a, b, c, d, where c and d are not both 0; we find

x

y
=
a+ b

√
2

c+ d
√

2
=

(a+ b
√

2) · (c− d
√

2)

(c+ d
√

2) · (c− d
√

2)
=

(ac− 2bd) + (bc− ad)
√

2

c2 − 2d2

=
ac− 2bd

c2 − 2d2
+
bc− ad
c2 − 2d2

√
2 ∈ Q(

√
2).
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We conclude that we also have division by nonzero elements on Q(
√

2). Since the
requirements of Definition 1.6 are fulfilled for all real numbers, they are certainly
fulfilled for all elements in Q(

√
2) and we conclude that Q(

√
2) is a field.

In any field with elements x and y, we write −x for 0 − x and y−1 for 1/y if y
is nonzero; we also often write xy for x · y. The rules of Definition 1.6 require
that many of the properties of the ordinary addition, subtraction, multiplication,
and division hold in any field. The following proposition shows that automatically
many other properties hold as well.

Proposition 1.10. Suppose F is a field with elements x, y, z ∈ F .

(1) Then x+ z = y + z if and only if x = y.
(2) If z is nonzero, then xz = yz if and only if x = y.
(3) If x+ z = z, then x = 0.
(4) If xz = z and z 6= 0, then x = 1.
(5) We have 0 · x = 0 and (−1) · x = −x and (−1) · (−1) = 1.
(6) If xy = 0, then x = 0 or y = 0.

Proof. Exercise. �

Example 1.11. The smallest field F2 = {0, 1} has no more than the two required
elements, with the only ‘interesting’ definitions being that 1+1 = 0 and 0−1 = 1.
One easily checks that all requirements of Definition 1.6 are satisfied.

Warning 1.12. Many properties of sums that you are used to from the real
numbers hold for general fields. There is one important exception: in general
there is no ordering and it makes no sense to call an element positive or negative,
or bigger than an other element. The fact that this is possible for R and for fields
contained in R, means that these fields have more structure than general fields.
We will see later that this extra structure can be used to our advantage.

Exercises

1.2.1. Prove Proposition 1.10.
1.2.2. Check that F2 is a field (see Example 1.11).
1.2.3. Which of the following are fields?

(1) The set N together with the usual addition, multiplication, subtraction,
division, 0, and 1.

(2) The set Z together with the usual operations, and the usual 0 and 1.
(3) The set Q together with the usual operations, and the usual 0 and 1.
(4) The set R≥0 together with the usual operations, and the usual 0 and 1.
(5) The set Q(

√
3) = {a+b

√
3 : a, b ∈ Q} together with the usual operations,

and the usual 0 and 1.
1.2.4. Suppose F is a field. Show that the 0, 1, the subtraction, and the division are

completely determined by the addition and the multiplication and the fact that
F is a field. In other words, once you know the addition and multiplication on a
set F , there is no choice anymore for the elements 0 and 1, and the subtraction
and division, if you want to make F into a field.

1.2.5. Consider the set F3 = {0, 1, 2} with the usual addition, subtraction, and
multiplication, but where each is followed by taking the remainder after division
by 3. Is there a division that makes F3 into a field?
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1.3. The field of complex numbers.

The first motivation for the introduction of complex numbers is a shortcoming of
the real numbers: while positive real numbers have real square roots, negative real
numbers do not. Since it is frequently desirable to be able to work with solutions
to equations like x2 + 1 = 0, we introduce a new number, called i, that has the
property i2 = −1. The set C of complex numbers then consists of all expressions
a+ bi, where a and b are real numbers. If z = a+ bi, then we call Re z = a the real
part and Im z = b the imaginary part of z. (More formally, one considers pairs of
real numbers (a, b) and so identifies C with R2 as sets.) In order to turn C into a
field, we have to define addition, multiplication, subtraction, and division.

If we want the multiplication to be compatible with the scalar multiplication on R2,
then (bearing in mind the field axioms) there is no choice: we have to set

(a+ bi)± (c+ di) = (a± c) + (b± d)i

and
(a+ bi)(c+ di) = ac+ adi+ bci+ bdi2 = (ac− bd) + (ad+ bc)i

(remember i2 = −1). It is then an easy, but tedious, matter to show that the
axioms of Definition 1.6 regarding the addition, subtraction, and multiplication
hold. (The theory of rings and fields in later courses provides a rather elegant way
of doing this.)

We still need to show there is also a division, or, equivalently, we need to show the
existence of multiplicative inverses. In this context, it is advantageous to introduce
the notion of conjugate complex number.

Definition 1.13. If z = a+ bi ∈ C, then the complex conjugate of z is z̄ = a− bi.
Note that z z̄ = a2 + b2 is real and satisfies zz̄ ≥ 0. We set |z| =

√
zz̄; this is

called the absolute value or modulus of z. It is clear that |z| = 0 only for z = 0;
otherwise |z| > 0. We obviously have ¯̄z = z and |z̄| = |z|.

Proposition 1.14.

(1) For all w, z ∈ C, we have w + z = w̄ + z̄ and wz = w̄ z̄.

(2) For all z ∈ C \ {0}, the element z′ = |z|−2 · z̄ satisfies z′ · z = 1.

(3) For all w, z ∈ C, we have |wz| = |w| · |z|.

Proof.

(1) Exercise.

(2) First of all, |z| 6= 0, so the expression makes sense. Now note that

z′ · z = |z|−2z̄ · z = |z|−2 · zz̄ = |z|−2|z|2 = 1 .

(3) Exercise.

�

By Proposition 1.14(2), the division on C has to satisfy 1/z = |z|−2 · z̄, and
therefore

y

z
= y · 1

z
=

yz̄

|z|2
for all y, z ∈ C with z 6= 0. For example:

1

1 + 2i
=

1− 2i

(1 + 2i)(1− 2i)
=

1− 2i

12 + 22
=

1− 2i

5
=

1

5
− 2

5
i .
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In general, we get

a+ bi

c+ di
=

(a+ bi)(c− di)
(c+ di)(c− di)

=
ac− bd
c2 + d2

+
bc− ad
c2 + d2

· i,

for a, b, c, d ∈ R with c and d not both 0.

Remark 1.15. Historically, the necessity of introducing complex numbers was
realized through the study of cubic (and not quadratic) equations. The reason
for this is that there is a solution formula for cubic equations that in some cases
requires complex numbers in order to express a real solution. See Section 2.7 in
Jänich’s book [J].

The importance of the field of complex numbers lies in the fact that they pro-
vide solutions to all polynomial equations. This is the ‘Fundamental Theorem of
Algebra’:

Every non-constant polynomial with complex coefficients has a root in C.

We will have occasion to use it later on. A proof, however, is beyond the scope of
this course.

Exercises

1.3.1. Prove Remark 1.14.
1.3.2. Show that for every complex number z we have

Re(z) = 1
2(z + z) and Im(z) = 1

2i(z − z).

1.4. Definition of a vector space

We can now define the general notion of a vector space.

Definition 1.16. Let F be a field. A vector space or linear space over F , or an
F -vector space, is a set V with a distinguished zero element 0 ∈ V , together with
two maps + : V ×V → V (‘addition’) and · : F ×V → V (‘scalar multiplication’),
written, as usual, (x, y) 7→ x+ y and (λ, x) 7→ λ · x or λx, respectively, satisfying
the following axioms.

(1) For all x, y ∈ V , x+ y = y + x (addition is commutative).

(2) For all x, y, z ∈ V , (x+ y) + z = x+ (y + z) (addition is associative).

(3) For all x ∈ V , x+ 0 = x (adding the zero element does nothing).

(4) For every x ∈ V , there is an x′ ∈ V such that x+ x′ = 0 (existence of

negatives).

(5) For all λ, µ ∈ R and x ∈ V , λ · (µ · x) = (λµ) · x (scalar multiplication

is associative).

(6) For all x ∈ V , 1 · x = x (multiplication by 1 is the identity).

(7) For all λ ∈ R and x, y ∈ V , λ(x+ y) = λx+ λy (distributivity I).

(8) For all λ, µ ∈ R and x ∈ V , (λ+ µ)x = λx+ µx (distributivity II).
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The elements of a vector space are usually called vectors. A real vector space is
a vector space over the field R of real numbers and a complex vector space is a
vector space over the field C of complex numbers.

Remarks 1.17.

(1) The first four axioms above exactly state that (V, 0,+) is an (additive)
abelian group. (If you didn’t know what an abelian group is, then this is
the definition.)

(2) Instead of writing (V, 0,+, ·) (which is the complete data for a vector
space), we usually just write V , with the zero element, the addition, and
scalar multiplication being understood.

The examples of Section 1.1 are real vector spaces. In the examples below, they
will all be generalized to general fields. In each case we also specify the zero of
the vectorspace. It is crucial to always distinguish this from the zero of the field
F , even though both are written as 0.

Example 1.18. The simplest (and perhaps least interesting) example of a vector
space over a field F is V = {0}, with addition given by 0 + 0 = 0 and scalar
multiplication by λ · 0 = 0 for all λ ∈ F (these are the only possible choices).
Trivial as it may seem, this vector space, called the zero space, is important. It
plays a role in Linear Algebra similar to the role played by the empty set in Set
Theory.

Example 1.19. The next (still not very interesting) example is V = F over
itself, with addition, multiplication, and the zero being the ones that make F into
a field. The axioms above in this case just reduce to the rules for addition and
multiplication in F .

Example 1.20. Now we come to a very important example, which is the model
of a vector space. Let F be a field. We consider V = F n, the set of n-tuples of
elements of F , with zero element 0 = (0, 0, . . . , 0). We define addition and scalar
multiplication ‘component-wise’:

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn),

λ · (x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn).

Of course, we now have to prove that our eight axioms are satisfied by our choice of
(V, 0,+, ·). In this case, this is very easy, since everything reduces to addition and
multiplication in the field F . As an example, let us show that the first distributive
law (7) and the existence of negatives (4) are satisfied. For the first, take x, y ∈ F n

and write them as

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

Then we have

λ(x+ y) = λ
(
(x1, x2, . . . , xn) + (y1, y2, . . . , yn)

)
= λ · (x1 + y1, x2 + y2, . . . , xn + yn)

=
(
λ(x1 + y1), λ(x2 + y2), . . . , λ(xn + yn)

)
= (λx1 + λy1, λx2 + λy2, . . . , λxn + λyn)

= (λx1, λx2, . . . , λxn) + (λy1, λy2, . . . , λyn)

= λ(x1, x2, . . . , xn) + λ(y1, y2, . . . , yn) = λx+ λy.
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This proves the first distributive law (7) for F n. Note that for the fourth equality,
we used the distributive law for the field F . For the existence of negatives (4), take
an element x ∈ F n and write it as x = (x1, x2, . . . , xn). For each i with 1 ≤ i ≤ n,
we can take the negative −xi of xi in the field F and set

x′ = (−x1,−x2, . . . ,−xn).

Then, of course, we have

x+ x′ = (x1, x2, . . . , xn) + (−x1,−x2, . . . ,−xn)

=
(
x1 + (−x1), x2 + (−x2), . . . , xn + (−xn)

)
= (0, 0, . . . , 0) = 0,

which proves, indeed, that for every x ∈ F n there is an x′ ∈ F n with x+ x′ = 0.

Of course, for n = 2 and n = 3 and F = R, this is more or less what you know
as ‘vectors’ from high school; the case n = 2 is also Example 1.1. For n = 1, this
example reduces to the previous one (if one identifies 1-tuples (x) with elements
x); for n = 0, it reduces to the zero space. (Why? Well, like an empty product
of numbers should have the value 1, an empty product of sets like F 0 has exactly
one element, the empty tuple (), which we can call 0 here.)

Example 1.21. A special case of Example 1.20 is when F = R. The vector
space Rn is called Euclidean n-space. In Section 2.5 we will consider lengths,
angles, reflections, and projections in Rn. For n = 2 or n = 3 we can identify Rn

with the pointed plane or three-dimensional space, respectively. We say pointed
because they come with a special point, namely 0. For instance, for R2, if we
take an orthogonal coordinate system in the plane, with 0 at the origin, then the
vector p = (p1, p2) ∈ R2, which is by definition nothing but a pair of real numbers,
corresponds with the point in the plane whose coordinates are p1 and p2. This
way, the vectors, which are pairs of real numbers, get a geometric interpretation.
We can similarly identify R3 with three-dimensional space. We will often make
these identifications and talk about points as if they are vectors. By doing so, we
can now add points in the plane, as well as in space!
In physics, more precisely in relativity theory, R4 is often interpreted as space with
a fourth coordinate for time.
For n = 2 or n = 3, we may also interpret vectors as arrows in the plane or space,
respectively. In the plane, the arrow from the point p = (p1, p2) to the point
q = (q1, q2) represents the vector v = (q1 − p1, q2 − p2) = q − p. (A careful reader
notes that here we do indeed identify points and vectors.) We say that the point p
is the tail of the arrow and the point q is the head. Note the distinction we make
between an arrow and a vector, the latter of which is by definition just a sequence
of real numbers. Many different arrows may represent the same vector v, but all
these arrows have the same direction and the same length, which together narrow
down the vector. One arrow is special, namely the one with 0 as its tail; the head
of this arrow is precisely the point q − p! Of course we can do the same for R3.
For example, take the two points p = (3, 1,−4) and q = (−1, 2, 1) and set v = q−p.
Then we have v = (−4, 1, 5). The arrow from p to q has the same direction and
length as the arrow from 0 to the point (−4, 1, 5). Both these arrows represent
the vector v.
We can now interpret negation, scalar multiples, sums, and differences of vectors
geometrically, namely in terms of arrows. Make your own pictures! If a vector v
corresponds to a certain arrow, then −v corresponds to any arrow with the same
length but opposite direction; more generally, for λ ∈ R the vector λv corresponds
to the arrow obtained by scaling the arrow for v by a factor λ.



1.4. DEFINITION OF A VECTOR SPACE 11

If v and w correspond to two arrows that have common tail p, then these two
arrows are the sides of a unique parallelogram; the vector v + w corresponds to
a diagonal in this parallelogram, namely the arrow that also has p as tail and
whose head is the opposite point in the parallelogram. An equivalent description
for v+w is to take two arrows, for which the head of the one representing v equals
the tail of the one representing w; then v + w corresponds to the arrow from the
tail of the first to the head of the second. Compare the two constructions in a
picture!
For the same v and w, still with common tail and with heads q and r respectively,
the difference v−w corresponds to the other diagonal in the same parallelogram,
namely the arrow from r to q. Another construction for v − w is to write this
difference as the sum v + (−w), which can be constructed as above. Make a
picture again!

Example 1.22. This example generalizes Example 1.4. Let F be a field. Let us
consider any set X and look at the set Map(X,F ) or FX of all maps (or functions)
from X to F :

V = Map(X,F ) = FX = {f : X → F} .
We take the zero vector 0 to be the constant zero function that sends each element
of X to 0 in R. In order to get a vector space, we have to define addition and
scalar multiplication. To define addition, for every pair of functions f, g : X → F ,
we have to define a new function f + g : X → F . The only reasonable way to do
this is as follows (‘point-wise’):

f + g : X −→ F , x 7−→ f(x) + g(x) ,

or, in a more condensed form, by writing (f+g)(x) = f(x)+g(x). (Make sure that
you understand these notations!) In a similar way, we define scalar multiplication:

λf : X −→ F , x 7−→ λ · f(x) .

We then have to check the axioms in order to convince ourselves that we really
get a vector space. Let us do again the first distributive law as an example. We
have to check that λ(f + g) = λf + λg, which means that for all x ∈ X, we want(

λ(f + g)
)
(x) = (λf + λg)(x) .

So let λ ∈ F and f, g : X → F be given, and take any x ∈ X. Then we get(
λ(f + g)

)
(x) = λ

(
(f + g)(x)

)
= λ

(
f(x) + g(x)

)
= λf(x) + λg(x)

= (λf)(x) + (λg)(x)

= (λf + λg)(x) .

Note the parallelism of this proof with the one in the previous example. That
parallelism goes much further. If we take X = {1, 2, . . . , n}, then the set FX =
Map(X,F ) of maps f : {1, 2, . . . , n} → F can be identified with F n by letting such
a map f correspond to the n-tuple (f(1), f(2), . . . , f(n)). It is not a coincidence
that the notations FX and F n are chosen so similar! What do we get when X is
the empty set?

Example 1.23. This example generalizes Example 1.5. A polynomial in the vari-
able x over a field F is a formal sum

f = adx
d + ad−1x

d−1 + · · ·+ a2x
2 + a1x+ a0
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of a finite number of different integral powers xi multiplied by a constant ai ∈ F ;
the products aix

i are called the terms of f and we say that ai is the coefficient of
xi in f . We let the zero vector 0 be the zero polynomial, for which ai = 0 holds
for all i. The degree of a nonzero polynomial f =

∑d
i=0 aix

i with ad 6= 0 is d. By
definition the degree of 0 equals −∞. Let F [x] denote the set of all polynomials
over F . We define the addition and scalar multiplication of polynomials as in
Example 1.5. Anybody who can prove that the previous examples are vector
spaces, will have no problems showing that F [x] is a vector space as well.

Warning 1.24. The polynomials x and x2 in F2[x] are different; one has degree
1 and the other degree 2. However, by substituting elements of F2 for x, the two
polynomials induce the same function F2 → F2 as we have α = α2 for all α ∈ F2.

Remark 1.25. We can multiply the polynomials f =
∑d

i=0 aix
i and g =

∑e
j=0 bjx

j

over a field F by expanding the product and using xi · xj = xi+j, which gives

f · g =
d+e∑
k=0

∑
i,j

i+j=k

aibj

xk.

However, this multiplication is not part of the vector space structure on F [x].

Moreover, we can also define the derivative f ′ of a polynomial f =
∑d

i=0 aix
i by

f ′ =
∑d

i=1 iaix
i−1. Note that while this reminds us of the derivative in Analysis,

we need to define this explicitly, as Analysis does not make any sense for some
fields, e.g., F2.

Example 1.26. There are other examples that may appear more strange. Let X
be any set, and let V be the set of all subsets of X. (For example, if X = {a, b},
then V has the four elements ∅, {a}, {b}, {a, b}.) We define addition on V as the
symmetric difference: A+B = (A \B)∪ (B \A) (this is the set of elements of X
that are in exactly one of A and B). We define scalar multiplication by elements
of F2 in the only possible way: 0 ·A = ∅, 1 ·A = A. These operations turn V into
an F2-vector space.

To prove this assertion, we can check the vector space axioms (this is an instructive
exercise). An alternative (and perhaps more elegant) way is to note that subsets
of X correspond to maps X → F2 (a map f corresponds to the subset {x ∈ X :
f(x) = 1}) — there is a bijection between V and FX2 — and this correspondence
translates the addition and scalar multiplication we have defined on V into those
we had defined earlier on FX2 .

Exercises

1.4.1. Compute the sum of the given vectors v and w in R2 and draw a corresponding
picture (cf. Example 1.21).
(1) v = (−2, 5) and w = (7, 1),
(2) v = 2(−3, 2) and w = (1, 3) + (−2, 4),
(3) v = (−3, 4) and w = (4, 3),
(4) v = (−3, 4) and w = (8, 6),
(5) v = (2,−7) and w = (x, y),
(6) v = w = (a, b).

1.4.2. In Example 1.20, the first distributive law and the existence of negatives were
proved for Fn. Show that the other six axioms for vector spaces hold for Fn

as well, so that Fn is indeed a vector space over F .
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1.4.3. In Example 1.22, the first distributive law was proved for FX . Show that the
other seven axioms for vector spaces hold for FX as well, so that FX is indeed
a vector space over F .

1.4.4. Let (V, 0,+, ·) be a real vector space and define x − y = x + (−y), as usual.
Which of the vector space axioms are satisfied and which are not (in general),
for (V, 0,−, ·)?
Note. You are expected to give proofs for the axioms that hold and to give
counterexamples for those that do not hold.

1.4.5. Prove that the set F [x] of polynomials over F , together with addition, scalar
multiplication, and the zero as defined in Example 1.23 is a vector space.

1.4.6. Given the field F and the set V in the following cases, together with the
described addition and scalar multiplication, as well as the implicit element 0,
which cases determine a vector space? If not, then which rule is not satisfied?
(1) The field F = R and the set V of all functions [0, 1]→ R>0, together with

the usual addition and scalar multiplication.
(2) Example 1.26.
(3) The field F = Q and the set V = R with the usual addition and multipli-

cation.
(4) The field R and the set V of all functions f : R → R with f(3) = 0,

together with the usual addition and scalar multiplication.
(5) The field R and the set V of all functions f : R → R with f(3) = 1,

together with the usual addition and scalar multiplication.
(6) Any field F together with the subset

{(x, y, z) ∈ F 3 : x+ 2y − z = 0},
with coordinatewise addition and scalar multiplication.

(7) The field F = R together with the subset

{(x, y, z) ∈ R3 : x− z = 1},
with coordinatewise addition and scalar multiplication.

1.4.7. Suppose the set X contains exactly n elements. Then how many elements
does the vector space FX2 of functions X → F2 consist of?

1.4.8. We can generalize Example 1.22 further. Let F be a field and V a vector
space over F . Let X be any set and let V X = Map(X,V ) be the set of all
functions f : X → V . Define an addition and scalar multiplication on V X that
makes it into a vector space.

1.4.9. Let S be the set of all infinite sequences (an)n≥0 of real numbers satisfying
the recurrence relation

an+2 = an+1 + an for all n ≥ 0.

An example of an element in S is the sequence

(a0, a1, a2, a3, a4, a5, a6, a7, . . .) = (0, 1, 1, 2, 3, 5, 8, 13, . . .)

of Fibonacci numbers. Show that the (term-wise) sum of two sequences from S
is again in S and that any (term-wise) scalar multiple of a sequence from S is
again in S. Finally show that S (with this addition and scalar multiplication)
is a real vector space.

1.4.10. Let U and V be vector spaces over the same field F . Consider the Cartesian
product

W = U × V = { (u, v) : u ∈ U, v ∈ V }.
Define an addition and scalar multiplication on W that makes it into a vector
space.

1.4.11. For each of the eight axioms in Definition 1.16, try to find a system (V, 0,+, ·)
that does not satisfy that axiom, while it does satisfy the other seven.
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1.5. Basic properties

Before we can continue, we have to deal with a few little things. The fact that we
talk about ‘addition’ and (scalar) ‘multiplication’ might tempt us to use more of
the rules that hold for the traditional addition and multiplication than just the
eight axioms given in Definition 1.16. We will show that many such rules follow
from the basic eight. The first is a cancellation rule.

Lemma 1.27. If three elements x, y, z of a vector space V satisfy x+ z = y + z,
then x = y.

Proof. Suppose x, y, z ∈ V satisfy x + z = y + z. By axiom (4) there is a
z′ ∈ V with z + z′ = 0. Using such z′ we get

x = x+ 0 = x+ (z + z′) = (x+ z) + z′ = (y + z) + z′ = y + (z + z′) = y + 0 = y,

where we use axioms (3), (2), (2), and (3) for the first, third, fifth, and seventh
equality respectively. So x = y. �

It follows immediately that a vector space has only one zero element, as stated in
the next remark.

Proposition 1.28. In a vector space V , there is only one zero element, i.e., if two
elements 0′ ∈ V and z ∈ V satisfy 0′ + z = z, then 0′ = 0.

Proof. Exercise. �

Proposition 1.29. In any vector space V , there is a unique negative for each
element.

Proof. The way to show that there is only one element with a given property
is to assume there are two and then to show they are equal. Take x ∈ V and
assume that a, b ∈ V are both negatives of x, i.e., x + a = 0, x + b = 0. Then by
commutativity we have

a+ x = x+ a = 0 = x+ b = b+ x,

so a = b by Lemma 1.27. �

Notation 1.30. Since negatives are unique, given x ∈ V we may write −x for the
unique element that satisfies x+ (−x) = 0. As usual, we write x− y for x+ (−y).

Here are some more harmless facts.

Remarks 1.31. Let (V, 0,+, ·) be a vector space over a field F .

(1) For all x ∈ V , we have 0 · x = 0.

(2) For all x ∈ V , we have (−1) · x = −x.

(3) For all λ ∈ F and x ∈ V such that λx = 0, we have λ = 0 or x = 0.

(4) For all λ ∈ F and x ∈ V , we have −(λx) = λ · (−x).

(5) For all x, y, z ∈ V , we have z = x− y if and only if x = y + z.

Proof. Exercise. �

Exercises
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1.5.1. Proof Proposition 1.28.
1.5.2. Proof Remarks 1.31.
1.5.3. Is the following statement correct? “Axiom (4) of Definition 1.16 is redundant

because we already know by Remarks 1.31(2) that for each vector x ∈ V the
vector −x = (−1) · x is also contained in V .”





CHAPTER 2

Subspaces

2.1. Definition and examples

In many applications, we do not want to consider all elements of a given vector
space V , rather we only consider elements of a certain subset. Usually, it is
desirable that this subset is again a vector space (with the addition and scalar
multiplication it ‘inherits’ from V ). In order for this to be possible, a minimal
requirement certainly is that addition and scalar multiplication make sense on the
subset. Also, the zero vector of V has to be contained in U . (Can you explain
why the zero vector of V is forced to be the zero vector in U?)

Definition 2.1. Let V be an F -vector space. A subset U ⊂ V is called a vector
subspace or linear subspace of V if it has the following properties.

(1) 0 ∈ U .

(2) If u1, u2 ∈ U , then u1 + u2 ∈ U .

(3) If λ ∈ F and u ∈ U , then λu ∈ U .

Here the addition and scalar multiplication are those of V . Often we will just say
subspace without the words linear or vector.

Note that, given the third property, the first is equivalent to saying that U is
non-empty. Indeed, let u ∈ U , then by (3), we have 0 = 0 · u ∈ U . Note that here
the first 0 denotes the zero vector, while the second 0 denotes the scalar 0.

We should justify the name ‘subspace’.

Lemma 2.2. Let (V,+, ·, 0) be an F -vector space. If U ⊂ V is a linear subspace
of V , then (U,+|U×U , ·|F×U , 0) is again an F -vector space.

The notation +|U×U means that we take the addition map + : V ×V , but restrict it
to U ×U . (Strictly speaking, we also restrict its target set from V to U . However,
this is usually suppressed in the notation.)

Proof of Lemma 2.2. By definition of what a linear subspace is, we really
have well-defined addition and scalar multiplication maps on U . It remains to

check the axioms. For the axioms that state ‘for all . . . , . . . ’ and do not involve

any existence statements, this is clear, since they hold (by assumption) even for
all elements of V , so certainly for all elements of U . This covers all axioms but
axiom (4). For axiom (4), we need that for all u ∈ U there is an element u′ ∈ U
with u+ u′ = 0. In the vector space V there is a unique such an element, namely
u′ = −u = (−1)u (see Proposition 1.29, Notation 1.30, and Remarks 1.31). This
element u′ = −u is contained in U by the third property of linear subspaces (take
λ = −1 ∈ F ). �

It is time for some examples.

17
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Example 2.3. Let V be a vector space. Then {0} ⊂ V and V itself are linear
subspaces of V .

Example 2.4. Consider V = R2 and, for a ∈ R, Ua = {(x, y) ∈ R2 : x + y = a}.
When is Ua a linear subspace?

We check the first condition. We have 0 = (0, 0) ∈ Ua if and only if 0 + 0 = a, so
Ua can only be a linear subspace when a = 0. The question remains whether Ua
is a subspace for a = 0. Let us check the other properties for U0:

(x1, y1), (x2, y2) ∈ U0 =⇒ x1 + y1 = 0, x2 + y2 = 0

=⇒ (x1 + x2) + (y1 + y2) = 0

=⇒ (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) ∈ U0

and

λ ∈ R, (x, y) ∈ U0 =⇒ x+ y = 0

=⇒ λx+ λy = λ(x+ y) = 0

=⇒ λ(x, y) = (λx, λy) ∈ U0 .

We conclude that U0 is indeed a subspace.

Example 2.5. Let F be a field, X any set, and x ∈ X an element. Consider the
subset

Ux = {f : X → F | f(x) = 0}
of the vector space FX . Clearly the zero function 0 is contained in Ux, as we have
0(x) = 0. For any two functions f, g ∈ Ux we have f(x) = g(x) = 0, so also
(f + g)(x) = f(x) + g(x) = 0, which implies f + g ∈ Ux. For any λ ∈ F and
any f ∈ Ux we have (λf)(x) = λ · f(x) = λ · 0 = 0, which implies λf ∈ Ux. We
conclude that Ux is a subspace.

Example 2.6. Consider V = RR = {f : R→ R}, the set of real-valued functions
on R. You will learn in Analysis that if f and g are continuous functions, then
f + g is again continuous, and λf is continuous for any λ ∈ R. Of course, the zero
function x 7→ 0 is continuous as well. Hence, the set of all continuous functions

C(R) = {f : R→ R | f is continuous}
is a linear subspace of V .

Similarly, you will learn that sums and scalar multiples of differentiable functions
are again differentiable. Also, derivatives respect sums and scalar multiplication:
(f + g)′ = f ′ + g′, (λf)′ = λf ′. From this, we conclude that

Cn(R) = {f : R→ R | f is n times differentiable and f (n) is continuous}
is again a linear subspace of V .

In a different direction, consider the set of all periodic functions with period 1:

U = {f : R→ R | f(x+ 1) = f(x) for all x ∈ R} .
The zero function is certainly periodic. If f and g are periodic, then

(f + g)(x+ 1) = f(x+ 1) + g(x+ 1) = f(x) + g(x) = (f + g)(x) ,

so f + g is again periodic. Similarly, λf is periodic (for λ ∈ R). So U is a linear
subspace of V .

To define subspaces of F n it is convenient to introduce the following notation.
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Definition 2.7. Let F be a field. For any two vectors x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) in F n we define the dot product of x and y as

〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn.

Note that the dot product 〈x, y〉 is an element of F .

The dot product is often written in other pieces of literature as x·y, which explains
its name. Although this notation looks like scalar multiplication, it should always
be clear from the context which of the two is mentioned, as one involves two vectors
and the other a scalar and a vector. Still, we will always use the notation 〈x, y〉
to avoid confusion. When the field F equals R (or a subset of R), then the dot
product satisfies the extra property 〈x, x〉 ≥ 0 for all x ∈ Rn; over these fields we
also refer to the dot product as the inner product (see Section 2.5). Other pieces
of literature may use the two phrases interchangeably over all fields.

Example 2.8. Suppose we have x = (3, 4,−2) and y = (2,−1, 5) in R3. Then we
get

〈x, y〉 = 3 · 2 + 4 · (−1) + (−2) · 5 = 6 + (−4) + (−10) = −8.

Example 2.9. Suppose we have x = (1, 0, 1, 1, 0, 1, 0) and y = (0, 1, 1, 1, 0, 0, 1) in
F7

2. Then we get

〈x, y〉 = 1 · 0 + 0 · 1 + 1 · 1 + 1 · 1 + 0 · 0 + 1 · 0 + 0 · 1
= 0 + 0 + 1 + 1 + 0 + 0 + 0 = 0.

The dot product satisfies the following useful properties.

Proposition 2.10. Let F be a field with an element λ ∈ F . Let x, y, z ∈ F n be
elements. Then the following identities hold.

(1) 〈x, y〉 = 〈y, x〉,
(2) 〈λx, y〉 = λ · 〈x, y〉 = 〈x, λy〉,
(3) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉.

Proof. The two identities (1) and (3) are an exercise for the reader. We will
prove the second identity. Write x and y as

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

Then we have λx = (λx1, λx2, . . . , λxn), so

〈λx, y〉 = (λx1)y1 + (λx2)y2 + . . . (λxn)yn

= λ · (x1y1 + x2y2 + · · ·+ xnyn) = λ · 〈x, y〉,

which proves the first equality of (2). Combining it with (1) gives

λ · 〈x, y〉 = λ · 〈y, x〉 = 〈λy, x〉 = 〈x, λy〉,

which proves the second equality of (2). �

Note that from properties (1) and (3) we also find the equality 〈x+y, z〉 = 〈x, z〉+
〈y, z〉. Properties (2) and (3), together with this last property, mean that the
dot product is bilinear. Note that from the properties above it also follows that
〈x, y− z〉 = 〈x, y〉 − 〈x, z〉 for all vectors x, y, z ∈ F n; of course this is also easy to
check directly.
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Example 2.11. Consider R2 with coordinates x and y. Let L ⊂ R2 be the line
given by 3x+ 5y = 7. For the vector a = (3, 5) and v = (x, y), we have

〈a, v〉 = 3x+ 5y,

so we can also write L as the set of all points v ∈ R that satisfy 〈a, v〉 = 7.

The following example is very similar to Example 2.4. The dot product and
Proposition 2.10 allow us to write everything much more efficiently.

Example 2.12. Given a nonzero vector a ∈ R2 and a constant b ∈ R, let L ⊂ R2

be the line consisting of all points v ∈ R2 satisfying 〈a, v〉 = b. We wonder when
L is a subspace of R2. The requirement 0 ∈ L forces b = 0.
Conversely, assume b = 0. Then for two elements v, w ∈ L we have 〈a, v + w〉 =
〈a, v〉 + 〈a, w〉 = 2b = 0, so v + w ∈ L. Similarly, for any λ ∈ R and v ∈ L, we
have 〈a, λv〉 = λ〈a, v〉 = λ · b = 0. So L is a subspace if and only if b = 0.

We can generalize this to F n for any positive integer n.

Definition 2.13. Let F be a field, a ∈ F n a nonzero vector, and b ∈ F a constant.
Then the set

H = { v ∈ F n : 〈a, v〉 = b }
is called a hyperplane.

Example 2.14. Any line in R2 is a hyperplane, cf. Example 2.12.

Example 2.15. Any plane in R3 is a hyperplane. If we use coordinates x, y, z,
then any plane is given by the equation px + qy + rz = b for some constants
p, q, r, b ∈ R with p, q, r not all 0; equivalently, this plane consists of all points
v = (x, y, z) that satisfy 〈a, v〉 = b with a = (p, q, r) 6= 0.

Proposition 2.16. Let F be a field, a ∈ F n a nonzero vector, and b ∈ F a
constant. Then the hyperplane

H = { v ∈ F n : 〈a, v〉 = b }
is a subspace of F n if and only if b = 0.

Proof. The proof is completely analogous to Example 2.12. See also Exercise
2.1.11. �

Definition 2.17. Let F be a field and a, v ∈ F n vectors with v nonzero. Then
the subset

L = { a+ λv : λ ∈ F }
of F n is called a line.

Proposition 2.18. Let F be a field and a, v ∈ F n vectors with v nonzero. Then
the line

L = { a+ λv : λ ∈ F } ⊂ F n

is a subspace if and only if there exists a scalar λ ∈ F such that a = λv.

Proof. Exercise. �

Exercises

2.1.1. For each of the pairs (v, w) given in Exercise 1.4.1, compute the inner prod-
uct 〈v, w〉.
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2.1.2. Write the following equations for lines in R2 with coordinates x1 and x2 in
the form 〈a, x〉 = c, i.e., specify a vector a and a constant c in each case, such
that the line equals the set {x ∈ R2 : 〈a, x〉 = c}.
(1) L1 : 2x1 + 3x2 = 0,
(2) L2 : x2 = 3x1 − 1,
(3) L3 : 2(x1 + x2) = 3,
(4) L4 : x1 − x2 = 2x2 − 3,
(5) L5 : x1 = 4− 3x1,
(6) L6 : x1 − x2 = x1 + x2.
(7) L7 : 6x1 − 2x2 = 7

2.1.3. True or False? If true, explain why. If false, give a counterexample.
(1) If a ∈ R2 is a nonzero vector, then the lines {x ∈ R2 : 〈a, x〉 = 0} and
{x ∈ R2 : 〈a, x〉 = 1} in R2 are parallel.

(2) If a, b ∈ R2 are nonzero vectors and a 6= b, then the lines {x ∈ R2 :
〈a, x〉 = 0} and {x ∈ R2 : 〈b, x〉 = 1} in R2 are not parallel.

(3) For each vector v ∈ R2 we have 0 · v = 0. (What do the zeros in this
statement refer to?)

2.1.4. Given an integer d ≥ 0, let R[x]d denote the set of polynomials of degree
at most d. Show that the addition of two polynomials f, g ∈ R[x]d satisfies
f + g ∈ R[x]d. Show also that any scalar multiple of a polynomial f ∈ R[x]d is
contained in R[x]d. Prove that R[x]d is a vector space.

2.1.5. Let X be a set with elements x1, x2 ∈ X, and let F be a field. Is the set

U = { f ∈ FX : f(x1) = 2f(x2) }

a subspace of FX?
2.1.6. Let X be a set with elements x1, x2 ∈ X. Is the set

U = { f ∈ RX : f(x1) = f(x2)2 }

a subspace of RX?
2.1.7. Which of the following are linear subspaces of the vector space R2? Explain

your answers!
(1) U1 = {(x, y) ∈ R2 : y = −

√
eπx},

(2) U2 = {(x, y) ∈ R2 : y = x2},
(3) U3 = {(x, y) ∈ R2 : xy = 0}.

2.1.8. Which of the following are linear subspaces of the vector space V of all func-
tions from R to R?
(1) U1 = {f ∈ V : f is continuous}
(2) U2 = {f ∈ V : f(3) = 0}
(3) U3 = {f ∈ V : f is continuous or f(3) = 0}
(4) U4 = {f ∈ V : f is continuous and f(3) = 0}
(5) U5 = {f ∈ V : f(0) = 3}
(6) U6 = {f ∈ V : f(0) ≥ 0}

2.1.9. Prove Proposition 2.10.
2.1.10. Prove Proposition 2.18.
2.1.11. Let F be any field. Let a1, . . . , at ∈ Fn be vectors and b1, . . . , bt ∈ F constants.

Let V ⊂ Fn be the subset

V = {x ∈ Fn : 〈a1, x〉 = b1, . . . , 〈at, x〉 = bt}.

Show that with the same addition and scalar multiplication as Fn, the set V
is a vector space if and only if b1 = . . . = bt = 0.

2.1.12. Let X be a set and F a field.
(1) Show that the set F (X) of all functions f : X → F that satisfy f(x) = 0

for all but finitely many x ∈ X is a subspace of the vector space FX .
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(2) More generally, let V be a vector space over F . Show that the set V (X)

of all functions f : X → V that satisfy f(x) = 0 for all but finitely many
x ∈ X is a subspace of the vector space V X (cf. Exercise 1.4.8).

2.1.13. Let X be a set and F a field.
(1) Let U ⊂ FX be the subset of all functions X → F whose image is finite.

Show that U is a subspace of FX that contains F (X) of Exercise 2.1.12.
(2) More generally, let V be a vector space over F . Show that the set of all

functions f : X → V with finite image is a subspace of the vector space
V X that contains V (X) of Exercise 2.1.12.

2.2. Intersections

The following result can be used, for example, to show that, with U and C(R) as
in Example 2.6, the intersection U ∩C(R) of all continuous periodic functions from
R to R is again a linear subspace.

Lemma 2.19. Let V be an F -vector space, and U1, U2 ⊂ V linear subspaces of V .
Then the intersection U1 ∩ U2 is again a linear subspace of V .
More generally, if (Ui)i∈I (with I 6= ∅) is any family of linear subspaces of V , then
their intersection U =

⋂
i∈I Ui is again a linear subspace of V .

Proof. It is sufficient to prove the second statement (take I = {1, 2} to obtain
the first). We check the conditions.

(1) By assumption 0 ∈ Ui for all i ∈ I. So 0 ∈ U .

(2) Let x, y ∈ U . Then x, y ∈ Ui for all i ∈ I, hence (since Ui is a subspace
by assumption) x+ y ∈ Ui for all i ∈ I. But this means x+ y ∈ U .

(3) Let λ ∈ F , x ∈ U . Then x ∈ Ui for all i ∈ I, hence (since Ui is a subspace
by assumption) λx ∈ Ui for all i ∈ I. This means that λx ∈ U .

We conclude that U is indeed a linear subspace. �

Note that in general, if U1 and U2 are linear subspaces, then U1 ∪ U2 is not (it is
if and only if U1 ⊂ U2 or U2 ⊂ U1 — Exercise!).

Example 2.20. Consider the subspaces

U1 = {(x, 0) ∈ R2 : x ∈ R}, U2 = {(0, x) ∈ R2 : x ∈ R}.
The union U = U1 ∪ U2 is not a subspace because the elements u1 = (1, 0) and
u2 = (0, 1) are both contained in U , but their sum u1 + u2 = (1, 1) is not.

Exercises

2.2.1. Suppose that U1 and U2 are linear subspaces of a vector space V . Show that
U1 ∪ U2 is a subspace of V if and only if U1 ⊂ U2 or U2 ⊂ U1.

2.2.2. Let H1, H2, H3 be hyperplanes in R3 given by the equations

〈(1, 0, 1), v〉 = 2, 〈(−1, 2, 1), v〉 = 0, 〈(1, 1, 1), v〉 = 3,

respectively.
(1) Which of these hyperplanes is a subspace of R3?
(2) Show that the intersection H1 ∩H2 ∩H3 contains exactly one element.

2.2.3. Give an example of a vector space V with two subsets U1 and U2, such that
U1 and U2 are not subspaces of V , but their intersection U1 ∩ U2 is.
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2.3. Linear hulls, linear combinations, and generators

Given a set S of vectors in a vector space V , we want to understand the smallest
subspace of V that contains S. Let us look at a specific case first.

Example 2.21. Let V be a vector space over a field F , and let v1, v2 ∈ V be two
vectors. Suppose that W is any subspace of V that contains v1 and v2.
According to the definition of linear subspaces, all scalar multiples of v1 and v2,
and sums thereof are contained in W . This implies that every element of the form
λ1v1 + λ2v2 is contained in W . So set

U = {λ1v1 + λ2v2 : λ1, λ2 ∈ F}.
Then U ⊂ W . On the other hand, U is itself a linear subspace:

0 = 0 · v1 + 0 · v2 ∈ U,
(λ1v1 + λ2v2) + (µ1v1 + µ2v2) = (λ1 + µ1)v1 + (λ2 + µ2)v2 ∈ U,
λ(λ1v1 + λ2v2) = (λλ1)v1 + (λλ2)v2 ∈ U.

(Exercise: which of the vector space axioms have we used where?)
Therefore, U is the smallest linear subspace of V containing v1 and v2 in the
following sense: U is a subspace containing v1 and v2, and every subspace W ⊂ V
containing v1 and v2 contains U .

This observation generalizes.

Definition 2.22. Let V be an F -vector space, v1, v2, . . . , vn ∈ V. The linear
combination (or, more precisely, F -linear combination) of v1, v2, . . . , vn with co-
efficients λ1, λ2, . . . , λn ∈ F is the element

v = λ1v1 + λ2v2 + · · ·+ λnvn.

If n = 0, then the only linear combination of no vectors is (by definition) 0 ∈ V .
If S ⊂ V is any (possibly infinite) subset, then an (F -)linear combination on S is
a linear combination of finitely many elements of S.

Definition 2.23. Let V be a vector space over a field F . If S is a subset of V , then
L(S) is the set of all linear combinations on S. If we want to indicate the field F
of scalars, we write LF (S). If v1, v2, . . . , vn ∈ V , we also write L(v1, v2, . . . , vn)
for L({v1, v2, . . . , vn}).

Note that if S = {v1, v2, . . . , vn}, then any linear combination on S, a priori not
necessarily using all n vectors, is also a linear combination of all v1, v2, . . . , vn, as
we can just add coefficients zero for the vectors that were not used. This means
that L(v1, v2, . . . , vn) is the set of all linear combinations of v1, v2, . . . , vn.

Proposition 2.24. Let V be a vector space, and v1, v2, . . . , vn ∈ V . Then the set
L(v1, v2, . . . , vn) is a linear subspace of V . More generally, let S ⊂ V be a subset.
Then L(S) is a linear subspace of V.

Proof. We start with the first statement. Write U = L(v1, v2, . . . , vn). First
of all, 0 ∈ U , since 0 = 0v1 + 0v2 + · · ·+ 0vn (this even works for n = 0). To
check that U is closed under addition, let v = λ1v1 + λ2v2 + · · ·+ λnvn and w =
µ1v1 + µ2v2 + · · ·+ µnvn be two elements of U . Then

v + w = (λ1v1 + λ2v2 + · · ·+ λnvn) + (µ1v1 + µ2v2 + · · ·+ µnvn)

= (λ1 + µ1)v1 + (λ2 + µ2)v2 + · · ·+ (λn + µn)vn
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is again a linear combination of v1, v2, . . . , vn. Also, for λ ∈ F ,

λv = λ(λ1v1 + λ2v2 + · · ·+ λnvn)

= (λλ1)v1 + (λλ2)v2 + · · ·+ (λλn)vn

is a linear combination of v1, v2, . . . , vn. So U is indeed a linear subspace of V .

For the general case, the only possible problem is with checking that the set of
linear combinations on S is closed under addition. For this, we observe that if v is a
linear combination on the finite subset I of S and w is a linear combination on the
finite subset J of S, then v and w can both be considered as linear combinations
on the finite subset I∪J of S (just add coefficients zero); now our argument above
applies. �

For any subset S of a vector space V , the subspace L(S) is called the linear hull
or linear span of S, or the linear subspace generated by S. If L(S) = V , we say
that S generates V , or that S is a generating set for V . If V can be generated
by a finite set S, then we say that V is finitely generated.

Be aware that there are various different notations for linear hulls in the literature,
for example Span(S) or 〈S〉 (which in LATEX is written $\langle S \rangle$ and
not $<S>$!).

Since every vector is a linear combination of itself (v = 1 · v), it is clear that L(S)
contains S. The following lemma shows that L(S) is the smallest linear subspace
containing S.

Lemma 2.25. Let V be an F -vector space and S a subset of V. Let U be any
subspace of V that contains S. Then we have L(S) ⊂ U .

Proof. Since U is a linear subspace that contains S, it also contains all scalar
multiples of elements in S, as well as sums thereof. Hence, U contains all linear
combinations on S, so L(S) ⊂ U . �

Lemma 2.26. Let V be an F -vector space and S, T subsets of V satisfying T ⊂
L(S) and S ⊂ L(T ). Then we have L(S) = L(T ).

Proof. Applying Lemma 2.25 to S and U = L(T ), we obtain L(S) ⊂ L(T ).
By symmetry we also have L(T ) ⊂ L(S), so we find L(S) = L(T ). �

Lemma 2.27. Let V be an F -vector space and S ⊂ V a set that generates V .
Suppose T ⊂ V is a subset whose span L(T ) contains S. Then T also generates V .

Proof. We have T ⊂ V = L(S), so from Lemma 2.26 we find L(T ) = L(S) =
V , which proves the lemma. �

Example 2.28. Note that for any nonzero v ∈ F n, the subspace L(v) consists of
all multiples of v, so L(v) = {λv : λ ∈ F} is a line (see Definition 2.17).

Example 2.29. Take the three vectors

e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1)

in R3. Then for every vector x = (x1, x2, x3) ∈ R3 we have x = x1e1 +x2e2 +x3e3,
so every element in R3 is a linear combination of e1, e2, e3. We conclude R3 ⊂
L(e1, e2, e3) and therefore L(e1, e2, e3) = R3, so {e1, e2, e3} generates R3.
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Definition 2.30. Let F be a field and n a positive integer. The standard gener-
ators of F n are

e1 = (1, 0, 0, . . . , 0),

e2 = (0, 1, 0, . . . , 0),

ei = (0, 0, . . . , 0, 1, 0, . . . , 0),

en = (0, 0, . . . , 0, 1),

with ei the vector in F n whose i-th entry equals 1 while all other entries equal 0.

For every vector x = (x1, x2, . . . , xn) ∈ F n we have x = x1e1 + x2e2 + · · · + xnen,
so as in the previous example we find that the set {e1, e2, . . . , en} generates F n,
thus explaining the name standard generators.

By Lemma 2.27, if we want to show that a certain set T ⊂ F n generates F n, then
it suffices to show that the standard generators of F n are linear combinations of T .

The following proposition again shows that L(S) is the smallest subspace contain-
ing S.

Proposition 2.31. Let V be an F -vector space and S a subset of V. Then we
have

L(S) =
⋂
{U ⊂ V : U linear subspace of V and S ⊂ U} .

Note that the notation in this proposition means the intersection of all elements
of the specified set: we intersect all linear subspaces containing S.

Proof. The space V itself is a subspace containing S, so the set of subspaces
of which we take the intersection is non-empty. Let U denote this intersection. By
Lemma 2.19, the intersection U is a subspace of V . Since U contains S, we obtain
L(S) ⊂ U from Lemma 2.25. As the subspace L(S) contains S, this subspace L(S)
is one of the subspaces that U is the intersection of, so we also have U ⊂ L(S),
which proves the proposition. �

Remark 2.32. What do we get in the extreme case that S = ∅? Well, then
we have to intersect all linear subspaces of V , so Proposition 2.31 reduces to the
statement L(∅) = {0}.

Example 2.33. Take V = R4 and consider S = {v1, v2, v3} with

v1 = (1, 0, 1, 0), v2 = (0, 1, 0, 1), v3 = (1, 1, 1, 1).

For a1 = (1, 0,−1, 0) and a2 = (0, 1, 0,−1), the hyperplanes

H1 = {x ∈ Rn : 〈x, a1〉 = 0}, and H2 = {x ∈ Rn : 〈x, a2〉 = 0}
are subspaces (see Proposition 2.16) that both contain v1, v2, v3. So certainly we
have an inclusion L(v1, v2, v3) ⊂ H1 ∩H2.

Conversely, every element x = (x1, x2, x3, x4) in the intersection H1 ∩H2 satisfies
〈x, a1〉 = 0, so x1 = x3 and 〈x, a2〉 = 0, so x2 = x4, which implies x = x1v1 + x2v2.
We conclude x ∈ L(v1, v2), so we have

L(v1, v2, v3) ⊂ H1 ∩H2 ⊂ L(v1, v2) ⊂ L(v1, v2, v3).

As the first subspace equals the last, all these inclusions are equalities. We deduce
the equality L(S) = H1 ∩H2, so S generates the intersection H1 ∩H2. In fact, we
see that we do not need v3, as also {v1, v2} generates H1 ∩H2. In Section 6.3 we
will see how to compute generators of intersections more systematically.
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Example 2.34. Let us consider again the vector space C(R) of continuous func-
tions on R. The power functions fn : x 7→ xn (n = 0, 1, 2, . . . ) are certainly
continuous and defined on R, so they are elements of C(R). We find that their
linear hull L({fn : n ∈ N0}) is the linear subspace of polynomial functions, i.e,
functions that are of the form

x 7−→ anx
n + an−1x

n−1 + · · ·+ a1x+ a0

with n ∈ N0 and a0, a1, . . . , an ∈ R.

Example 2.35. For any field we can consider the power functions fn : x 7→ xn

inside the vector space F F of all functions from F to F . Their linear hull L({fn :
n ∈ N0}) ⊂ F F is the linear subspace of polynomial functions from F to F , i.e,
functions that are of the form

x 7−→ anx
n + an−1x

n−1 + · · ·+ a1x+ a0

with n ∈ N0 and a0, a1, . . . , an ∈ F . By definition, the power functions fn generate
the subspace of polynomial functions.

Warning 2.36. In Example 1.5 we defined real polynomials in the variable x as
formal (or abstract) sums of powers xi multiplied by a real constant ai. These are
not to be confused with the polynomial functions f : R→ R, though the difference
is subtle: over a general field, the subspace of polynomial functions is generated
by the power functions fn from Example 2.35, while the space F [x] of polynono-
mials is generated by the formal powers xi of a variable x.
As stated in Warning 1.24, though, over some fields the difference between polyno-
mials, as defined in Example 1.23, and polynomial functions, as defined in Example
2.35, is clear, as there may be many more polynomials than polynomial functions.
For instance, the polynomial x2 + x and the zero polynomial 0, both with coeffi-
cients in the field F2, are different polynomials: the first has degree 2, the second
degree −∞. However, the polynomial function F2 → F2 that sends x to x2 + x
is the same as the zero function.

Definition 2.37. Let F be a field and S any subset of F n. Then we set

S⊥ = {x ∈ F n : 〈s, x〉 = 0 for all s ∈ S}.

In Remark 2.57 we will clarify the notation S⊥.

Example 2.38. Let F be a field. Then for every element a ∈ F n, the hyperplane
Ha = {x ∈ F n : 〈a, x〉 = 0} equals {a}⊥. Moreover, the set S⊥ is the intersection
of all hyperplanes Ha with a ∈ S, i.e.,

S⊥ =
⋂
a∈S

Ha.

For instance, the intersection H1 ∩ H2 of Example 2.33 can also be written as
{a1, a2}⊥.

Proposition 2.39. Let F be a field and S any subset of F n. Then the following
statements hold.

(1) The set S⊥ is a subspace of F n.
(2) We have S⊥ = L(S)⊥.
(3) We have L(S) ⊂ (S⊥)⊥.
(4) For any subset T ⊂ S we have S⊥ ⊂ T⊥.
(5) For any subset T ⊂ F n we have S⊥ ∩ T⊥ = (S ∪ T )⊥.
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Proof. We leave (1), (3), (4), and (5) as an exercise to the reader. To prove
(2), note that from S ⊂ L(S) and (4) we have L(S)⊥ ⊂ S⊥, so it suffices to
prove the opposite inclusion. Suppose we have x ∈ S⊥, so that 〈s, x〉 = 0 for all
s ∈ S. Now any element t ∈ L(S) is a linear combination of elements in S, so
there are elements s1, s2, . . . , sn ∈ S and scalars λ1, λ2, . . . , λn ∈ F such that we
have t = λ1s1 + · · ·+ λnsn, which implies

〈t, x〉 = 〈λ1s1 + · · ·+λnsn, x〉 = λ1〈s1, x〉+ · · ·+λn〈sn, x〉 = λ1 ·0+ · · ·+λn ·0 = 0.

�

Remark 2.40. Later we will see that the inclusion L(S) ⊂ (S⊥)⊥ of Proposition
2.39 is in fact an equality, so that for every subspace U we have (U⊥)⊥ = U . See
Corollary 6.15 and Exercise 6.2.4.

Exercises

2.3.1. Prove Proposition 2.39.
2.3.2. Do the vectors

(1, 0,−1), (2, 1, 1), and (1, 0, 1)

generate R3?
2.3.3. Do the vectors

(1, 2, 3), (4, 5, 6), and (7, 8, 9)

generate R3?
2.3.4. Let U ⊂ R4 be the subspace generated by the vectors

(1, 2, 3, 4), (5, 6, 7, 8), and (9, 10, 11, 12).

What is the minimum number of vectors needed to generate U? As always,
prove that your answer is correct.

2.3.5. Let F be a field and X a set. Consider the subspace F (X) of FX consisting
of all functions f : X → F that satisfy f(x) = 0 for all but finitely many x ∈ X
(cf. Exercise 2.1.12). For every x ∈ X we define the function ex : X → F by

ex(z) =

{
1 if z = x,

0 otherwise.

Show that the set {ex : x ∈ X} generates F (X).
2.3.6. Does the equality L(I ∩ J) = L(I) ∩ L(J) hold for all vector spaces V with

subsets I and J of V ?
2.3.7. We say that a function f : R→ R is even if f(−x) = f(x) for all x ∈ R, and

odd if f(−x) = −f(x) for all x ∈ R.
(1) Is the subset of RR consisting of all even functions a linear subspace?
(2) Is the subset of RR consisting of all odd functions a linear subspace?

2.3.8. Let F be a field and F [x] the vector space of polynomials over F . Consider the
map ϕ : F [x]→ FF that sends a polynomial f =

∑d
i=0 cix

i to the function that
sends an element a ∈ F to the evaluation of f at a, i.e., to f(a) :=

∑d
i=0 cia

i,
cf. Warning 1.24.
(1) Show that the image of ϕ is exactly the subspace of FF consisting of

polynomial functions.
(2) Is ϕ injective for F = F2?
(3) Is there a field F for which ϕ is injective?

[Remark: By abuse of notation, the function ϕ(f) is often also denoted by f .]
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2.3.9. Given a vector space V over a field F and vectors v1, v2, . . . , vn ∈ V . Set
W = L(v1, v2, . . . , vn). Using Lemma 2.26, give short proofs of the following
equalities of subspaces.
(1) W = L(v′1, . . . , v

′
n) where for some fixed j and some nonzero scalar λ ∈ F

we have v′i = vi for i 6= j and v′j = λvj (the j-th vector is scaled by a
nonzero factor λ).

(2) W = L(v′1, . . . , v
′
n) where for some fixed j, k with j 6= k and some scalar

λ ∈ F we have v′i = vi for i 6= k and v′k = vk + λvj (a scalar multiple of vj
is added to vk).

(3) W = L(v′1, . . . , v
′
n) where for some fixed j and k we set v′i = vi for i 6= j, k

and v′j = vk and v′k = vj (the elements vj and vk are switched),

2.4. Sums of subspaces

We have seen that the intersection of linear subspaces is again a linear subspace,
but the union usually is not, see Example 2.20. However, it is very useful to have
a replacement for the union that has similar properties, but is a linear subspace.
Note that the union of two (or more) sets is the smallest set that contains both
(or all) of them. From this point of view, it is natural in the context of vector
spaces to study the smallest subspace containing two given subspaces, which is
the subspace generated by the union.

Definition 2.41. Let V be a vector space, U1, U2 ⊂ V two linear subspaces. The
sum of U1 and U2 is the linear subspace generated by U1 ∪ U2:

U1 + U2 = L(U1 ∪ U2) .

More generally, if (Ui)i∈I is a family of subspaces of V (I = ∅ is allowed here),
then their sum is again ∑

i∈I

Ui = L
(⋃
i∈I

Ui

)
.

We want a more explicit description of these sums.

Lemma 2.42. If U1 and U2 are linear subspaces of the vector space V , then

U1 + U2 = {u1 + u2 : u1 ∈ U1, u2 ∈ U2} .
If (Ui)i∈I is a family of linear subspaces of V , then∑

i∈I

Ui =
{∑
j∈J

uj : J ⊂ I finite and uj ∈ Uj for all j ∈ J
}
.

Proof. For each equality, it is clear that the set on the right-hand side is
contained in the left-hand side (which is closed under addition). For the opposite
inclusions, it suffices by Lemma 2.25 (applied with S equal to the union U1 ∪ U2,
resp.

⋃
i∈I Ui, which is obviously contained in the right-hand side) to show that

the right-hand sides are linear subspaces.

We have 0 = 0 + 0 (resp., 0 =
∑

j∈∅ uj), so 0 is an element of the right-hand side
sets. Closure under scalar multiplication is easy to see:

λ(u1 + u2) = λu1 + λu2 ,

and we have λu1 ∈ U1, λu2 ∈ U2, because U1, U2 are linear subspaces. Similarly,

λ
∑
j∈J

uj =
∑
j∈J

λuj ,
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and λuj ∈ Uj, since Uj is a linear subspace. Finally, for u1, u
′
1 ∈ U1 and u2, u

′
2 ∈ U2,

we have
(u1 + u2) + (u′1 + u′2) = (u1 + u′1) + (u2 + u′2)

with u1 + u′1 ∈ U1, u2 + u′2 ∈ U2. And for J1, J2 finite subsets of I, uj ∈ Uj for
j ∈ J1, u

′
j ∈ Uj for j ∈ J2, we find(∑

j∈J1

uj

)
+
(∑
j∈J2

u′j

)
=

∑
j∈J1∪J2

vj ,

where vj = uj ∈ Uj if j ∈ J1 \J2, vj = u′j ∈ Uj if j ∈ J2 \J1, and vj = uj +u′j ∈ Uj
if j ∈ J1 ∩ J2. �

Alternative proof. Clearly the right-hand side is contained in the left-
hand side, so it suffices to prove the opposite inclusions by showing that any
linear combination of elements in the union U1 ∪U2, resp.

⋃
i∈I Ui, is contained in

the right-hand side.

Suppose we have v = λ1w1 + · · ·+ λsws with wi ∈ U1 ∪ U2. Then after reordering
we may assume that for some nonnegative integer r ≥ s we have w1, . . . , wr ∈ U1

and wr+1, . . . , ws ∈ U2. Then for u1 = λ1w1 + · · ·+λrwr ∈ U1 and u2 = λr+1wr+1 +
· · ·+ λsws ∈ U2 we have v = u1 + u2, as required.

Suppose we have v = λ1w1 + · · · + λsws with wk ∈
⋃
i∈I Ui for each 1 ≤ k ≤ s.

Since the sum is finite, there is a finite subset J ⊂ I such that wk ∈
⋃
j∈J Uj for

each 1 ≤ k ≤ s. After collecting those elements contained in the same subspace
Uj together, we may write v as

v =
∑
j∈J

rj∑
k=1

λjkwjk

for scalars λjk and elements wjk ∈ Uj. Then for uj =
∑rj

k=1 λjkwjk ∈ Uj we have
v =

∑
j∈J uj, as required. �

Example 2.43. The union U = U1 ∪ U2 of Example 2.20 contains the vectors
e1 = (1, 0) and e2 = (0, 1), so the sum U1 + U2 = L(U) contains L(e1, e2) = R2

and we conclude U1 + U2 = R2.

Example 2.44. Let V ⊂ RR be the vector space of all continuous functions from
R to R. Set

U0 = {f ∈ V : f(0) = 0}, U1 = {f ∈ V : f(1) = 0}.
We now prove the claim U0 + U1 = V . It suffices to show that every continuous
function f can be written as f = f0 + f1 where f0 and f1 are continuous functions
(depending on f) with f0(0) = f1(1) = 0. Indeed, if f(0) 6= f(1), then we can
take

f0 =
f(1)

f(1)− f(0)
(f − f(0)), f1 =

f(0)

f(0)− f(1)
(f − f(1)),

while in the case f(0) = f(1) = c we can take f0 and f1 given by

f0(x) = c(f(x) + x− c) + (f(x)− c), f1(x) = −c(f(x) + x− c− 1).

Lemma 2.45. Suppose V is a vector space containing two subsets S and T . Then
the equality L(S) + L(T ) = L(S ∪ T ) holds. In other words, the sum of two
subspaces is generated by the union of any set of generators for one of the spaces
and any set of generators for the other.

Proof. Exercise. �
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Definition 2.46. Let V be a vector space. Two linear subspaces U1, U2 ⊂ V are
said to be complementary if U1 ∩ U2 = {0} and U1 + U2 = V .

Example 2.47. Take u = (1, 0) and u′ = (2, 1) in R2, and set U = L(u) and
U ′ = L(u′). We can write every (x, y) ∈ R2 as

(x, y) = (x− 2y, 0) + (2y, y) = (x− 2y) · u+ y · u′ ∈ U + U ′,

so U + U ′ = R2. Suppose v ∈ U ∩ U ′ Then there are λ, µ ∈ R with

(λ, 0) = λu = v = µu′ = (2µ, µ),

which implies µ = 0, so v = 0 and U ∩ U ′ = {0}. We conclude that U and U ′ are
complementary subspaces.

Lemma 2.48. Let V be a vector space and U and U ′ subspaces of V . Then U
and U ′ are complementary subspaces of V if and only if for every v ∈ V there are
unique u ∈ U , u′ ∈ U ′ such that v = u+ u′.

Proof. First suppose U and U ′ are complementary subspaces. Let v ∈ V.
Since V = U + U ′, there certainly are u ∈ U and u′ ∈ U ′ such that v = u + u′.
Now assume that also v = w+w′ with w ∈ U and w′ ∈ U ′. Then u+u′ = w+w′,
so u− w = w′ − u′ ∈ U ∩ U ′, hence u− w = w′ − u′ = 0, and u = w, u′ = w′.

Conversely, suppose that for every v ∈ V there are unique u ∈ U , u′ ∈ U ′ such
that v = u + u′. Then certainly we have U + U ′ = V . Now suppose w ∈ U ∩ U ′.
Then we can write w in two ways as w = u + u′ with u ∈ U and u′ ∈ U ′, namely
with u = w and u′ = 0, as well as with u = 0 and u′ = w. From uniqueness, we
find that these two are the same, so w = 0 and U ∩ U ′ = {0}. We conclude that
U and U ′ are complementary subspaces. �

As it stands, we do not yet know if every subspace U of a vector space V has a
complementary subspace. In Proposition 5.64 we will see that this is indeed the
case, at least when V is finitely generated. In the next section, we will see an
easy special case, namely when U is a subspace of F n generated by an element
a ∈ F n satisfying 〈a, a〉 6= 0. It turns out that in that case the hyperplane {a}⊥ is
a complementary subspace (see Corollary 2.63).

Exercises

2.4.1. Prove Lemma 2.45.
2.4.2. State and prove a version of Lemma 2.45 for an arbitrary collection of (Si)i∈I

of subsets.
2.4.3. Suppose F is a field and U1, U2 ⊂ Fn subspaces. Show that we have

(U1 + U2)⊥ = U⊥1 ∩ U⊥2 .

2.4.4. Suppose V is a vector space with a subspace U ⊂ V . Suppose that U1, U2 ⊂ V
are subspaces of V that are contained in U . Show that the sum U1 +U2 is also
contained in U .

2.4.5. Take u = (1, 0) and u′ = (α, 1) in R2, for any α ∈ R. Show that U = L(u)
and U ′ = L(u′) are complementary subspaces.

2.4.6. Let U+ and U− be the subspaces of RR of even and odd functions, respectively
(cf. Exercise 2.3.7).
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(1) Show that for any f ∈ RR, the functions f+ and f− given by

f+(x) =
f(x) + f(−x)

2
and f−(x) =

f(x)− f(−x)
2

are even and odd, respectively.
(2) Show that U+ and U− are complementary subspaces.

2.4.7. Are the subspaces U0 and U1 of Example 2.44 complementary subspaces?
2.4.8. True or false? For every subspaces U, V,W of a common vector space, we

have U ∩ (V +W ) = (U ∩ V ) + (U ∩W ). Prove it, or give a counterexample.

2.5. Euclidean space: lines and hyperplanes

This section, with the exception of Proposition 2.62, Corollary 2.63, and Exercise
2.5.18, deals with Euclidean n-space Rn, as well as F n for fields F that are con-
tained in R, such as the field Q of rational numbers. As usual, we identify R2 and
R3 with the plane and three-space through an orthogonal coordinate system, as in
Example 1.21. Vectors correspond with points and vectors can be represented by
arrows. In the plane and three-space, we have our usual notions of length, angle,
and orthogonality. (Two lines are called orthogonal, or perpendicular, if the angle
between them is π/2, or 90◦.) In this section we will generalize these notions to
all n ≥ 0. Those readers that adhere to the point of view that even for n = 2 and
n = 3, we have not carefully defined these notions, have a good point and may
skip the paragraph before Definition 2.50, as well as Proposition 2.53.

In R we can talk about elements being ‘positive’ or ‘negative’ and ‘smaller’ or
‘bigger’ than other elements. The dot product satisfies an extra property in this
situation.

Proposition 2.49. Suppose F is a field contained in R. Then for any element
x ∈ F n we have 〈x, x〉 ≥ 0 and equality holds if and only if x = 0.

Proof. Write x as x = (x1, x2, . . . , xn). Then 〈x, x〉 = x2
1+x2

2+· · ·+x2
n. Since

squares of real numbers are nonnegative, this sum of squares is also nonnegative
and it equals 0 if and only if each terms equals 0, so if and only if xi = 0 for all i
with 1 ≤ i ≤ n. �

Over R and fields that are contained in R, we will also refer to the dot product as
the standard inner product or just inner product. In other pieces of literature, the
dot product may be called the inner product over any field.

The vector x = (x1, x2, x3) ∈ R3 is represented by the arrow from the point
(0, 0, 0) to the point (x1, x2, x3); by Pythagoras’ Theorem, the length of this arrow

is
√
x2

1 + x2
2 + x2

3, which equals
√
〈x, x〉. Similarly, in R2 the length of an arrow

representing the vector x ∈ R2 equals
√
〈x, x〉. We define, more generally, the

length of a vector in Rn for any integer n ≥ 0 accordingly.

Definition 2.50. Suppose F is a field contained in R. Then for any element
x ∈ F n we define the length ‖x‖ of x as ‖x‖ =

√
〈x, x〉.

Note that by Proposition 2.49, we can indeed take the square root in R, but the
length ‖x‖ may not be an element of F . For instance, the vector (1, 1) ∈ Q2 has
length

√
2, which is not contained in Q.

Example 2.51. The length of the vector (1,−2, 2, 3) in R4 equals
√

1 + 4 + 4 + 9 =
3
√

2.
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Lemma 2.52. Suppose F is a field contained in R. Then for all λ ∈ F and
x ∈ F n we have ‖λx‖ = |λ| · ‖x‖.

Proof. Exercise. �

Proposition 2.53. Suppose n = 2 or n = 3. Let v, w be two nonzero elements in
Rn and let α be the angle between the arrow from 0 to v and the arrow from 0 to
w. Then we have

(1) cosα =
〈v, w〉
‖v‖ · ‖w‖

.

The arrows are orthogonal to each other if and only if 〈v, w〉 = 0.

Proof. Because we have n = 2 or n = 3, the new definition of length coincides
with the usual notion of length and we can use ordinary geometry. The arrows
from 0 to v, from 0 to w, and from v to w form a triangle in which α is the angle
at 0. The arrows represent the vectors v, w, and w−v, respectively. By the cosine
rule, we find that the length ‖w − v‖ of the side opposite the angle α satisfies

‖w − v‖2 = ‖v‖2 + ‖w‖2 − 2 · ‖v‖ · ‖w‖ · cosα.

We also have

‖w − v‖2 = 〈w − v, w − v〉 = 〈w,w〉 − 2〈w, v〉+ 〈v, v〉 = ‖v‖2 + ‖w‖2 − 2〈w, v〉.
Equating the two right-hand sides yields the desired equation. The arrows are
orthogonal if and only if cosα = 0, so if and only if 〈w, v〉 = 0. �

Example 2.54. Let the lines l and m in the (x, y)-plane R2 be given by y = ax+b
and y = cx + d, respectively. Then their directions are the same as the lines
l′ = L((1, a)) and m′ = L((1, c)), respectively. By Proposition 2.53, the lines l′ and
m′, and thus l andm, are orthogonal to each other when 0 = 〈(1, a), (1, c)〉 = 1+ac,
so when ac = −1.

Inspired by Proposition 2.53, we define orthogonality for vectors in Rn for all
n ≥ 0.

Definition 2.55. Suppose F is a field contained in R. Then we say that two
vectors v, w ∈ F n are orthogonal, or perpendicular to each other, when 〈v, w〉 = 0.
Note that the zero vector is orthogonal to every vector.

Warning 2.56. Proposition 2.49 implies that the only vector in Rn that is per-
pendicular to itself, is 0. Over other fields, however, we may have 〈v, v〉 = 0 for
nonzero v. For instance, the vector v = (1, i) ∈ C2 satisfies 〈v, v〉 = 0, so in C2 we
have v ∈ {v}⊥. Also the vector w = (1, 1) ∈ F2

2 satisfies 〈w,w〉 = 0.

Remark 2.57. If two vectors v and w in Rn are orthogonal, we sometimes write
v ⊥ w. This explains the notation S⊥ (see Definition 2.37) for S ⊂ Rn, as the set

S⊥ = {x ∈ Rn : 〈s, x〉 = 0 for all s ∈ S }
consists exactly of all elements that are orthogonal to all elements of S.

Definition 2.58. Suppose F is a field contained in R and a ∈ F n a nonzero vector
and b ∈ F a constant. Then we say that a is a normal of the hyperplane

H = {x ∈ Rn : 〈a, x〉 = b }.
Proposition 2.59. Suppose F is a field contained in R and H a hyperplane with
a normal a. Then for any p, q ∈ H, the vector q − p is orthogonal to a. If H
contains 0, then every q ∈ H is orthogonal to a.
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Proof. There is a constant b ∈ F such that H consists exactly of all x ∈ F n

with 〈a, x〉 = b. This implies that for p, q ∈ H we have 〈a, q−p〉 = 〈a, q〉−〈a, p〉 =
b − b = 0, so a is orthogonal to q − p. The last statement follows by taking
p = 0. �

Because of Proposition 2.59, we say that a normal a of a hyperplane is orthogonal
to that hyperplane. Beware though, as for hyperplanes not containing 0, it does
not mean that a is orthogonal to the elements of H, but to the differences between
elements. Draw a picture to clarify this for yourself!

Example 2.60. Suppose H ⊂ Rn is a hyperplane with normal a, containing the
point p. Then there is a constant b such that H consists of all points x ∈ Rn with
〈a, x〉 = b. From p ∈ H we obtain b = 〈a, p〉.

With Definitions 2.50 and 2.55 we immediately have the following analogon of
Pythagoras’ Theorem.

Proposition 2.61. Suppose F is a field contained in R. Then two vectors v, w ∈
F n are orthogonal if and only if they satisfy ‖v − w‖2 = ‖v‖2 + ‖w‖2.

Proof. We have

‖v − w‖2 = 〈v − w, v − w〉 = 〈v, v〉 − 2〈v, w〉+ 〈w,w〉 = ‖v‖2 + ‖w‖2 − 2〈v, w〉.
The right-most side equals ‖v‖2 + ‖w‖2 if and only if 〈v, w〉 = 0, so if and only if
v and w are orthogonal. �

We would like to define the angle between two vectors in Rn by letting the angle
α ∈ [0, π] between two nonzero vectors v, w be determined by (1). However, before
we can do that, we need to know that the value on the right-hand side of (1) lies
in the interval [−1, 1]. We will see that this is the case in Proposition 2.77. First
we state some auxiliary results.

The following proposition and its first corollary are the only results of this section
that hold for all fields.

Proposition 2.62. Let F be any field, n ≥ 0 an integer, and a ∈ F n an element
with 〈a, a〉 6= 0. Then for every element v ∈ F n there is a unique λ ∈ F such that

for w = v − λa we have 〈a, w〉 = 0. Moreover, this λ equals 〈a,v〉〈a,a〉 ; we then have

〈λa, λa〉 = 〈a,v〉2
〈a,a〉 and w = v − λa satisfies 〈w,w〉 = 〈v, v〉 − 〈a,v〉

2

〈a,a〉 .

Proof. For any λ ∈ F , we have 〈a, v − λa〉 = 〈a, v〉 − λ〈a, a〉, so we have

〈a, v − λa〉 = 0 if and only if 〈a, v〉 = λ〈a, a〉, so if and only if λ = 〈a,v〉
〈a,a〉 . The dot

products of λa and w = v − λa with themselves follow from

〈λa, λa〉 = λ2〈a, a〉
and

〈w,w〉 = 〈w, v − λa〉 = 〈w, v〉 − λ〈w, a〉 = 〈v − λa, v〉 − 0 = 〈v, v〉 − λ〈a, v〉.
�

Corollary 2.63. Let F be any field, n ≥ 0 an integer, and a ∈ F n an element
with 〈a, a〉 6= 0. Then the subspaces L(a) and

Ha = {a}⊥ = {x ∈ F n : 〈a, x〉 = 0 }
are complementary subspaces.
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Proof. Proposition 2.62 says that every v ∈ F n can be written uniquely as
the sum of an element λa ∈ L(a) and an element w in the hyperplane Ha = {a}⊥
given by 〈a, x〉 = 0. By Lemma 2.48, the spaces L(a) and Ha are complementary
subspaces. Alternatively, we first only conclude L(a) +Ha = F n from Proposition
2.62. We also claim L(a) ∩ Ha = {0}. Indeed, for v = λa ∈ L(a) we have
〈v, a〉 = λ〈a, a〉, so 〈v, a〉 = 0 if and only if λ = 0, which means v = 0. �

Corollary 2.64. Suppose F is a field contained in R and a ∈ F n is a vector. Then
every element v ∈ F n can be written uniquely as a sum v = v1 + v2 of a multiple
v1 of a and an element v2 that is orthogonal to a. Moreover, if a is nonzero, then
we have v1 = λa with λ = 〈a, v〉 · ‖a‖−2.

Proof. The statement is just a reformulation of Proposition 2.62 for F ⊂ R,
with v1 = λa and v2 = w. Indeed, for a = 0 the statement is trivial and for a 6= 0,
we have 〈a, a〉 6= 0 by Proposition 2.49. �

Definition 2.65. Using the same notation as in Corollary 2.64 and assuming a is
nonzero, we call v1 the orthogonal projection of v onto a or the line L = L(a), and
we call v2 the orthogonal projection of v onto the hyperplane H = {a}⊥ = L⊥.

Lemma 2.66. Suppose F is a field contained in R and a, v ∈ F n elements with
a nonzero. Set L = L(a) and H = {a}⊥ = L⊥. Let v1 ∈ L and v2 ∈ H be the
orthogonal projections of v on L and H respectively. Then for any x ∈ L we have
‖v−x‖ ≥ ‖v− v1‖ = ‖v2‖ and for any y ∈ H we have ‖v− y‖ ≥ ‖v− v2‖ = ‖v1‖.

Proof. We have v = v1 + v2. Suppose x ∈ L. we can write v − x as the
sum (v − v1) + (v1 − x) of two orthogonal vectors, so that by Proposition 2.61
(Pythagoras) we have

‖v − x‖2 = ‖v − v1‖2 + ‖v1 − x‖2 ≥ ‖v − v1‖2 = ‖v2‖2.
This proves the first part of the statement. The second part follows similarly by
writing v − y as (v − v2) + (v2 − y). �

Lemma 2.66 shows that the distance ‖v − x‖ from v to any point x ∈ L is at
least the distance from v to the orthogonal projection v1 of v on L. Similarly, the
distance from v to any point in H is at least the distance from v to the orthogonal
projection of v on H. This shows that the minimum in the following definition
exists, at least if the line or hyperplane W contains 0. Of course the same holds
when W does not contain 0, as we can translate W and v, so the definition makes
sense.

Definition 2.67. Suppose F is a field contained in R. Suppose W ⊂ F n is either
a line or a hyperplane. For any v ∈ F n, we define the distance d(v,W ) from v to
W to be the minimal distance from v to any point in W , i.e.,

d(v,W ) = min
w∈W
‖v − w‖.

One can in fact similarly define the distance from any vector v ∈ F n to any
translate of any subspace of F n.

Proposition 2.68. Suppose F is a field contained in R and a, v ∈ F n are elements
with a nonzero. Let v1 and v2 be the orthogonal projections of v on L(a) and {a}⊥,
respectively. Then we have

d(v, {a}⊥) = ‖v1‖ =
|〈a, v〉|
‖a‖

and d(v, L(a)) = ‖v2‖ =
√
‖v‖2 − 〈a,v〉

2

‖a‖2 .
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Proof. This follows immediately from Proposition 2.62, Corollary 2.64 and
Lemma 2.66. Make a picture to support this! �

Note that L(a) and {a}⊥ are subspaces, so they contain 0. In order to find
the distance to a line or hyperplane that does not contain 0, we first apply an
appropriate translation to make sure the line or hyperplane does contain 0 (cf.
Examples 2.71 and 2.72).

Example 2.69. Take a = (1, 1, 1) ∈ R3. Then the hyperplane H = {a}⊥ is the
set

H = {x ∈ R3 : 〈a, x〉 = 0 } = { (x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0 }
with normal a. To write the vector v = (2, 1, 3) as the sum v = v1 + v2 with v1 a
multiple of a and v2 ∈ H, we compute

λ =
〈a, v〉
〈a, a〉

=
6

3
= 2,

so we get v1 = 2a = (2, 2, 2) and thus v2 = v− v1 = (2, 1, 3)− (2, 2, 2) = (0,−1, 1).
Indeed, we have v2 ∈ H. We find that the distance d(v, L(a)) from v to L(a)
equals ‖v2‖ =

√
2 and the distance from v to H equals d(v,H) = ‖v1‖ = 2

√
3.

In fact, we can do the same for every element in R3. We find that we can write
x = (x1, x2, x3) as x = x′ + x′′ with

x′ =
x1 + x2 + x3

3
· a

and

x′′ =

(
2x1 − x2 − x3

3
,
−x1 + 2x2 − x3

3
,
−x1 − x2 + 2x3

3

)
∈ H.

Verify this and derive it yourself! Also find the distance from x to L and H in
this general setting.

Example 2.70. Consider the point p = (2, 1, 1) and the plane

V = { (x1, x2, x3) ∈ R3 : x1 − 2x2 + 3x3 = 0 }
in R3. We will compute the distance from p to V . The normal a = (1,−2, 3) of
V satisfies 〈a, a〉 = 14. We have V = {a}⊥, so by Proposition 2.68, the distance
d(p, V ) from p to V equals the length of the orthogonal projection of p on a. This
projection is λa with λ = 〈a, p〉 · ‖a‖−2 = 3

14
. Therefore, the distance we want

equals ‖λa‖ = 3
14

√
14.

Example 2.71. Consider the vector a = (1,−2, 3), the point p = (2, 1, 1) and the
plane

W = {x ∈ R3 : 〈a, x〉 = 1 }
in R3 with normal a. We will compute the distance from p to W . Since W does
not contain 0, it is not a subspace and our results do not apply directly. Note that
the point q = (2,−1,−1) is contained in W . We translate the whole configuration
by −q and obtain the point p′ = p− q = (0, 2, 2) and the plane

W ′ = {x ∈ R3 : 〈a, x− (−q)〉 = 1 } = {x ∈ R3 : 〈a, x〉 = 0 } = {a}⊥,
which does contain 0 (by construction, of course, because it is the image of q ∈ W
under the translation). Note the minus sign in the derived equation 〈a, x−(−q)〉 =
1 for W ′ and make sure you understand why it is there! By Proposition 2.68, the
distance d(p′,W ′) from p′ to W ′ equals the length of the orthogonal projection of
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p′ on a. This projection is λa with λ = 〈a, p′〉 · ‖a‖−2 = 1
7
. Therefore, the distance

we want equals d(p,W ) = d(p′,W ′) = ‖λa‖ = 1
7

√
14.

Example 2.72. Let L ⊂ R3 be the line through the points p = (1,−1, 2) and
q = (2,−2, 1). We will find the distance from the point v = (1, 1, 1) to L. First we
translate the whole configuration by −p to obtain the point v′ = v−p = (0, 2,−1)
and the line L′ through the points 0 and q − p = (1,−1,−1). If we set a = q − p,
then we have L′ = L(a) (which is why we translated in the first place) and the
distance d(v, L) = d(v′, L′) is the length of the orthogonal projection of v′ onto the
hyperplane {a}⊥. We can compute this directly with Corollary 2.64. It satisfies

d(v′, L′)2 = ‖v′‖2 − 〈a, v
′〉2

‖a‖2
= 5− (−1)2

3
=

14

3
,

so we have d(v, L) = d(v′, L′) =
√

14
3

= 1
3

√
42. Alternatively, in order to deter-

mine the orthogonal projection of v′ onto {a}⊥, it is easiest to first compute the

orthogonal projection of v′ onto L(a), which is λa with λ = 〈a,v′〉
‖a‖2 = −1

3
. Then

the orthogonal projection of v′ onto {a}⊥ equals v′ − (−1
3
a) = (1

3
, 5

3
,−4

3
) and its

length is indeed 1
3

√
42.

Definition 2.73. Let a ∈ Rn be nonzero and set

Ha = {a}⊥ = {x ∈ Rn : 〈a, x〉 = 0 }.
Then for any v ∈ Rn, we define the reflection of v in Ha to be

v′ = v − 2
〈v, a〉
〈a, a〉

a.

Note that if we write v = v1+v2 with v1 a multiple of a and v2 ∈ Ha, as in Corollary
2.64, then we have v′ = v2 − v1; note also that 〈v′, a〉 = 〈−v1, a〉 = −〈v, a〉, so the
reflection v′′ of v′ in Ha is v, as we have

v′′ = v′ − 2
〈v′, a〉
〈a, a〉

a = v′ + 2
〈v, a〉
〈a, a〉

a = v.

Draw a picture to see why v′ is called the reflection of v and compare it with the
following proposition.

Proposition 2.74. Let a ∈ Rn be nonzero and set Ha = {a}⊥. Let v ∈ Rn be any
vector and v′ the reflection of v in Ha. Then the following statements hold.

(1) The vector v − v′ is orthogonal to Ha.
(2) The distances of v and v′ to Ha are the same, i.e., d(v,Ha) = d(v′, Ha).
(3) If v is not contained in Ha, then v′ is the unique point different from v

itself that satisfies the two points above.
(4) If v is contained in Ha, then v′ = v.

Proof. Exercise. �

Example 2.75. Let L ⊂ R2 be the line given by y = −2x. Then L = {a}⊥ for
a = (2, 1), i.e., a is a normal of L. The reflection of the point p = (3, 4) in L is

p′ = p− 2
〈p, a〉
〈a, a〉

a = p− 2 · 10

5
· a = p− 4a = (−5, 0).

Draw a picture to verify!
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Example 2.76. Consider the vector a = (−1, 2, 3) ∈ R3 and the plane

V = { v ∈ R3 : 〈a, v〉 = 2}.

We will compute the reflection of the point q = (0, 3, 1) in V . Note that V does
not contain 0, so we first translate everything over −p with p = (0, 1, 0) ∈ V .
Then we get q̃ = q − p = (0, 2, 1) and

Ṽ = {v − p : v ∈ V } = {a}⊥.

The reflection of q̃ in Ṽ equals

q̃′ = q̃ − 2
〈q̃, a〉
〈a, a〉

a = q̃ − 2 · 7

14
· a = q̃ − a = (1, 0,−2).

Finally, to get the reflection q′ of q in V , we have to translate back over p, so
q′ = q̃′ + p = (1, 1,−2).

Proposition 2.77 (Cauchy-Schwarz). Suppose F is a field contained in R and
n ≥ 0 is an integer. Then for all v, w ∈ F n we have |〈v, w〉| ≤ ‖v‖ · ‖w‖ and
equality holds if and only if there are λ, µ ∈ F , not both zero, such that λv+µw = 0.

Proof. For v = 0, we automatically have equality, as well as a nontrivial
linear combination that is 0, namely with λ = 1 and µ = 0. Suppose v 6= 0. Let
z be the orthogonal projection of w onto {v}⊥ (see Definition 2.65, so our vectors
v, w, z correspond to a, v, v2 of Proposition 2.64, respectively). Then by Corollary
2.64 we have

‖z‖2 = ‖w‖2 − 〈v, w〉
2

‖v‖2
.

From ‖z‖2 ≥ 0 we conclude 〈v, w〉2 ≤ ‖v‖2 · ‖w‖2, which implies the inequality, as
lengths are nonnegative. We have equality if and only if z = 0, so if and only if
w = λv for some λ ∈ F , in which case we have λv + (−1) · w = 0. Conversely, if
we have a nontrivial linear combination λv+ µw = 0 with λ and µ not both zero,
then we have µ 6= 0, for otherwise λv = 0 would imply λ = 0; therefore, we have
w = −λµ−1v, so w is a multiple of v and the inequality is an equality. �

Proposition 2.78 (Triangle inequality). Suppose F is a field contained in R and
n ≥ 0 is an integer. Then for all v, w ∈ F n we have ‖v + w‖ ≤ ‖v‖ + ‖w‖ and
equality holds if and only if there are nonnegative scalars λ, µ ∈ F , not both zero,
such that λv = µw.

Proof. By the inequality of Cauchy-Schwarz, Proposition 2.77, we have

‖v + w‖2 = 〈v + w, v + w〉 = 〈v, v〉+ 2〈v, w〉+ 〈w,w〉
= ‖v‖2 + 2〈v, w〉+ ‖w‖2 ≤ ‖v‖2 + 2‖v‖ · ‖w‖+ ‖w‖2 = (‖v‖+ ‖w‖)2.

Since all lengths are nonnegative, we may take square roots to find the desired
inequality. The investigation of equality is left as an exercise. �

Definition 2.79. Suppose F is a field contained in R and n ≥ 0 is an integer.
Then for all nonzero v, w ∈ F n we define the angle between v and w to be the
unique real number α ∈ [0, π] that satisfies

(2) cosα =
〈v, w〉
‖v‖ · ‖w‖

.
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Note that the angle α between v and w is well defined, as by Proposition 2.77, the
right-hand side of (2) lies between −1 and 1. The angle also corresponds with the
usual notion of angle in R2 and R3 by Proposition 2.53. Finally, Definitions 2.55
and 2.79 imply that two nonzero vectors v and w in F n are orthogonal if and only
the angle between them is π/2.

Example 2.80. For v = (3, 0) and w = (2, 2) in R2 we have 〈v, w〉 = 6, while
‖v‖ = 3 and ‖w‖ = 2

√
2. Therefore, the angle θ between v and w satisfies

cos θ = 6/(3 · 2
√

2) = 1
2

√
2, so we have θ = π/4.

Example 2.81. For v = (1, 1, 1, 1) and w = (1, 2, 3, 4) in R4 we have 〈v, w〉 = 10,
while ‖v‖ = 2 and ‖w‖ =

√
30. Therefore, the angle θ between v and w satisfies

cos θ = 10/(2 ·
√

30) = 1
6

√
30, so θ = arccos

(
1
6

√
30
)
.

Exercises

2.5.1. Prove Lemma 2.52.
2.5.2. Take a = (−1, 2, 1) ∈ R3 and set V = {a}⊥ ⊂ R3. Write the element

x = (x1, x2, x3) ∈ R3 as x = x′ + x′′ with x ∈ L(a) and x′′ ∈ V .
2.5.3. Finish the proof of Proposition 2.78.
2.5.4. Explain why Proposition 2.78 might be called the triangle inequality, which

usually refers to c ≤ a + b for the sides a, b, c of a triangle. Prove that for all
v, w ∈ Rn we have ‖v − w‖ ≤ ‖v‖+ ‖w‖. When does equality hold?

2.5.5. Let a and b be the lengths of the sides of a parallelogram and c and d the
lengths of its diagonals. Prove that then c2 + d2 = 2(a2 + b2).

2.5.6. Prove the cosine rule in Rn.
2.5.7.

(1) Show that two vectors v, w ∈ Rn have the same length if and only if v−w
and v + w are orthogonal.

(2) Prove that the diagonals of a parallelogram are orthogonal to each other
if and only if all sides have the same length.

2.5.8. Compute the distance from the point (1, 1, 1, 1) ∈ R4 to the line L(a) with
a = (1, 2, 3, 4).

2.5.9. Given the vectors p = (1, 2, 3) and w = (2, 1, 5), let L be the line consisting
of all points of the form p+ λw for some λ ∈ R. Compute the distance d(v, L)
for v = (2, 1, 3).

2.5.10. Let a1, a2, a3 ∈ R be such that a2
1 + a2

2 + a2
3 = 1, and let f : R3 → R be the

function that sends x = (x1, x2, x3) to a1x1 + a2x2 + a3x3.
(1) Show that the distance from any point p to the plane in R3 given by

f(x) = 0 equals |f(p)|.
(2) Suppose b ∈ R. Show that the distance from any point p to the plane in

R3 given by f(x) = b equals |f(p)− b|.
2.5.11. Let H ⊂ R4 be the hyperplane with normal a = (1,−1, 1,−1) going though

the point q = (1, 2,−1,−3). Determine the distance from the point (2, 1,−3, 1)
to H.

2.5.12. Determine the angle between the vectors (1,−1, 2) and (−2, 1, 1) in R3.
2.5.13. Let V ⊂ R3 be the plane that has normal a = (1, 2,−1) and that goes through

the point p = (1, 1, 1). Determine the reflection of the point (1, 0, 0) in V .
2.5.14. Prove Proposition 2.74.
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2.5.15. Given a = (a1, a2, a3) and b = (b1, b2, b3) in R3, the cross product of a and b
is the vector

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

(1) Show that a× b is perpendicular to a and b.
(2) Show ‖a× b‖2 = ‖a‖2 ‖b‖2 − 〈a, b〉2.
(3) Show ‖a× b‖ = ‖a‖ ‖b‖ sin(θ), where θ is the angle between a and b.
(4) Show that the area of the parallelogram spanned by a and b equals ‖a×b‖.
(5) Show that the volume of the parallelepipid spanned by vectors A,B,C ∈

R3 equals |〈A,B × C〉|. (Does this equal |〈C,A×B〉|? If so, why?).
2.5.16. The angle between two hyperplanes is defined as the angle between their

normal vectors. Determine the angle between the hyperplanes in R4 given by
x1 − 2x2 + x3 − x4 = 2 and 3x1 − x2 + 2x3 − 2x4 = −1, respectively.

2.5.17. Let p, q ∈ Rn be two different points. Let V ⊂ Rn be the set of all points in
Rn that have the same distance to p as to q, i.e.,

V = { v ∈ Rn : ‖v − p‖ = ‖v − q‖ }.
(1) Show that V is the hyperplane of all v ∈ Rn that satisfy

〈q − p, v〉 =
1
2

(‖q‖2 − ‖p‖2).

(2) Show q−p is a normal of V and that the point 1
2(p+ q) is contained in V .

(3) Show that the reflection of p in V is q.
2.5.18. In this exercise, we generalize the notion of reflection to arbitrary fields. Let

F be any field, n ≥ 0 an integer, and a ∈ Fn an element with 〈a, a〉 6= 0. Set

Ha = {a}⊥ = {x ∈ Fn : 〈a, x〉 = 0 }.
Then for any v ∈ Fn, we define the reflection of v in Ha to be

v′ = v − 2
〈v, a〉
〈a, a〉

a.

(1) Show that the reflection of v′ in Ha equals v.
(2) Suppose that w′ is the reflection of a vector w ∈ Fn and x′ is the reflection

of the sum x = v + w. Show that x′ = v′ + w′. (A similar statement
holds for the scalar multiplication instead of the sum; together, this shows
that reflections are linear maps, as defined in the next section. See also
Examples 3.7.)





CHAPTER 3

Linear maps

So far, we have defined the objects of our theory: vector spaces and their elements.
Now we want to look at relations between vector spaces. These are provided by
linear maps — maps between two vector spaces that preserve the linear structure.
But before we give a definition, we have to review what a map or function is and
what their basic properties are.

3.1. Review of maps

A map or function f : X → Y is a ‘black box’ that for any given x ∈ X gives
us back some f(x) ∈ Y that only depends on x. More formally, we can define
functions by identifying f with its graph

Γf = {(x, f(x)) : x ∈ X} ⊂ X × Y .

In these terms, a function or map from X to Y is a subset f ⊂ X×Y such that for
every x ∈ X there is a unique y ∈ Y such that (x, y) ∈ f ; we then write f(x) = y.
It is important to keep in mind that the data of a function include the domain X
and target (or codomain) Y .

If f : X → Y is a map, then we call {f(x) : x ∈ X} ⊂ Y the image of f , im(f).
The map f is called injective or one-to-one (1–1) if no two elements of X are
mapped to the same element of Y . More formally, if x, x′ ∈ X and f(x) = f(x′),
then x = x′. The map f is called surjective or onto if its image is all of Y .
Equivalently, for all y ∈ Y there is some x ∈ X such that f(x) = y. The map f
is called bijective if it is both injective and surjective. In this case, there is an
inverse map f−1 such that f−1(y) = x ⇐⇒ f(x) = y.

A map f : X → Y induces maps from subsets of X to subsets of Y and conversely,
which are denoted by f and f−1 again (so you have to be careful to check the
‘datatype’ of the argument). Namely, if A ⊂ X, we set f(A) = {f(x) : x ∈ A}
(for example, the image of f is then f(X)), and for a subset B ⊂ Y , we set
f−1(B) = {x ∈ X : f(x) ∈ B}; this is called the preimage of B under f . Note
that when f is bijective, there are two meanings of f−1(B) — one as just defined,
and one as g(B) where g is the inverse map f−1. Fortunately, both meanings agree
(Exercise), and there is no danger of confusion.

Maps can be composed: if f : X → Y and g : Y → Z, then we can define a map
X → Z that sends x ∈ X to g(f(x)) ∈ Z. This map is denoted by g ◦ f (“g after
f”) — keep in mind that it is f that is applied first!

Composition of maps is associative: if f : X → Y , g : Y → Z and h : Z → W ,
then (h ◦ g) ◦ f = h ◦ (g ◦ f). Every set X has a special map, the identity map
idX : X → X, x 7→ x. It acts as a neutral element under composition: for
f : X → Y , we have f ◦ idX = f = idY ◦f . If f : X → Y is bijective, then its
inverse satisfies f ◦ f−1 = idY and f−1 ◦ f = idX .

41
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When talking about several sets and maps between them, we often picture them
in a diagram like the following.

X
f //

g

��

Y

g′

��
U

f ′ // V

X

f

��

h

  @
@@

@@
@@

Y
g // Z

We call such a diagram commutative if all possible ways of going from one set to
another lead to the same result. For the left diagram, this means that g′◦f = f ′◦g,
for the right diagram, this means that h = g ◦ f .

3.2. Definition and examples

We want to single out among all maps between two vector spaces V and W those
that are ‘compatible with the linear structure.’

Definition 3.1. Let V and W be two F -vector spaces. A map f : V → W is
called an (F -)linear map or a homomorphism if

(1) for all v1, v2 ∈ V , we have f(v1 + v2) = f(v1) + f(v2),

(2) for all λ ∈ F and all v ∈ V , we have f(λv) = λf(v).

(Note: the first property states that f is a group homomorphism between the
additive groups of V and W .)

An injective homomorphism is called a monomorphism, a surjective homomor-
phism is called an epimorphism, and a bijective homomorphism is called an iso-
morphism. Two vector spaces V and W are said to be isomorphic, written V ∼= W ,
if there exists an isomorphism between them.

A linear map f : V → V is called an endomorphism of V ; if f is in addition
bijective, then it is called an automorphism of V.

Here are some simple properties of linear maps.

Lemma 3.2. Let U, V,W be vector spaces over a field F .

(1) If f : V → W is linear, then f(0) = 0.

(2) If f : V → W is an isomorphism, then the inverse map f−1 is also an
isomorphism.

(3) If f : U → V and g : V → W are linear maps, then g ◦ f : U → W is
also linear.

Proof.

(1) This follows from either one of the two properties of linear maps:

f(0) = f(0 + 0) = f(0) + f(0) =⇒ f(0) = 0

or
f(0) = f(0 · 0) = 0 · f(0) = 0 .

(Which of the zeros are scalars, which are vectors in V , in W?)

(2) The inverse map is certainly bijective; we have to show that it is linear.
So let w1, w2 ∈ W and set v1 = f−1(w1), v2 = f−1(w2). Then f(v1) = w1,
f(v2) = w2, hence f(v1 + v2) = w1 + w2. This means that

f−1(w1 + w2) = v1 + v2 = f−1(w1) + f−1(w2) .

The second property is checked in a similar way.
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(3) Easy.

�

Lemma 3.3. Let f : V → W be a linear map of F -vector spaces.

(1) For all v, w ∈ V and λ, µ ∈ F , we have f(λv − µw) = λf(v)− µf(w).

(2) For all v1, v2, . . . , vn ∈ V and λ1, λ2, . . . , λn ∈ F we have

f(λ1v1 + · · ·+ λnvn) = λ1f(v1) + · · ·+ λnf(vn).

(3) For any subset S ⊂ V we have f(L(S)) = L(f(S)).

Proof. Exercise. �

Associated to a linear map there are two important linear subspaces: its kernel
and its image.

Definition 3.4. Let f : V → W be a linear map. Then the kernel of f is defined
to be

ker(f) = {v ∈ V : f(v) = 0} .

Lemma 3.5. Let f : V → W be a linear map.

(1) ker(f) ⊂ V is a linear subspace. More generally, if U ⊂ W is a linear
subspace, then f−1(U) ⊂ V is again a linear subspace; it contains ker(f).

(2) im(f) ⊂ W is a linear subspace. More generally, if U ⊂ V is a lin-
ear subspace, then f(U) ⊂ W is again a linear subspace; it is contained
in im(f).

(3) f is injective if and only if ker(f) = {0}.

Proof.

(1) We have to check the three properties of subspaces for ker(f). By the
previous remark, f(0) = 0, so 0 ∈ ker(f). Now let v1, v2 ∈ ker(f).
Then f(v1) = f(v2) = 0, so f(v1 + v2) = f(v1) + f(v2) = 0 + 0 = 0, and
v1 +v2 ∈ ker(f). Finally, let λ be a scalar and v ∈ ker(f). Then f(v) = 0,
so f(λv) = λf(v) = λ · 0 = 0, and λv ∈ ker(f).

The more general statement is left as an exercise.

(2) We check again the subspace properties. We have f(0) = 0 ∈ im(f). If
w1, w2 ∈ im(f), then there are v1, v2 ∈ V such that f(v1) = w1, f(v2) =
w2, hence w1 + w2 = f(v1 + v2) ∈ im(f). If λ is a scalar and w ∈ im(f),
then there is v ∈ V such that f(v) = w, hence λw = f(λv) ∈ im(f).

The more general statement is proved in the same way.

(3) If f is injective, then there can be only one element of V that is mapped
to 0 ∈ W , and since we know that f(0) = 0, it follows that ker(f) = {0}.
Now assume that ker(f) = {0}, and let v1, v2 ∈ V such that f(v1) = f(v2).
Then f(v1 − v2) = f(v1) − f(v2) = 0, so v1 − v2 ∈ ker(f). By our
assumption, this means that v1 − v2 = 0, hence v1 = v2.

�

Remark 3.6. If you want to show that a subset U in a vector space V is a linear
subspace, it may be easier to find a linear map f : V → W such that U = ker(f)
than to check the properties directly.
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It is time for some examples.

Examples 3.7.

(1) Let V be any vector space. Then the unique map f : V → {0} into the
zero space is linear. More generally, if W is another vector space, then
f : V → W , v 7→ 0, is linear. It is called the zero homomorphism; often
it is denoted by 0. Its kernel is all of V, its image is {0} ⊂ W .

(2) For any vector space, the identity map idV is linear; it is even an auto-
morphism of V. Its kernel is trivial (= {0}); its image is all of V.

(3) If V = F n, then all the projection maps πj : F n → F , (x1, . . . , xn) 7→ xj
are linear.

(In fact, one can argue that the vector space structure on F n is defined
in exactly such a way as to make these maps linear.)

(4) Suppose V = Rn and a ∈ V is nonzero. Set Ha = {a}⊥. Then the
following maps from V to V are linear.
(a) The orthogonal projection πa : Rn → Rn onto L(a) given by

v 7→ 〈v, a〉
〈a, a〉

a

(see Definition 2.65). Indeed, linearity follows from the identities
〈v + w, a〉 = 〈v, a〉 + 〈w, a〉 and 〈λv, a〉 = λ〈v, a〉. Note that for the
a = ej, the j-th standard vector, and the projection map πj : Rn → R
on the j-th coordinate, we have

πej(v) = πj(v) · ej.

(b) The orthogonal projection πa⊥ : Rn → Rn onto Ha = {a}⊥ given by

v 7→ v − 〈v, a〉
〈a, a〉

a

(see Definition 2.65). Indeed, for checking addition, note that we
have

(v + w)− 〈v + w, a〉
〈a, a〉

a = (v + w)− 〈v, a〉+ 〈w, a〉
〈a, a〉

a

=

(
v − 〈v, a〉
〈a, a〉

a

)
+

(
w − 〈w, a〉

〈a, a〉
a

)
.

The scalar multiplication follows similarly.
(c) The reflection sa : Rn → Rn in the hyperplane Ha = {a}⊥ given by

v 7→ v − 2
〈v, a〉
〈a, a〉

a

(see Definition 2.73). The linearity is proven in the same way as for
the projection onto Ha. The remark under Definition 2.73 shows that
sa ◦ sa = idV .

(5) For any two vector spaces V1, V2 over the same field F , the projection maps
V1 × V2 → V1 and V1 × V2 → V2 given by (v1, v2) 7→ v1 and (v1, v2) 7→ v2,
respectively, are linear, cf. Exercise 1.4.10.

(6) Let P be the vector space of polynomial functions on R. Then the fol-
lowing maps are linear.
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(a) Evaluation: given a ∈ R, the map eva : P → R, p 7→ p(a) is linear.
The kernel of eva consists of all polynomials having a zero at a; the
image is all of R.

(b) Differentiation: D : P → P , p 7→ p′ is linear.
The kernel of D consists of the constant polynomials; the image of D
is P (since D ◦ Ia = idP , cf. (d) below).

(c) Definite integration: given a < b, the map

Ia,b : P −→ R , p 7−→
b∫

a

p(x) dx

is linear.

(d) Indefinite integration: given a ∈ R, the map

Ia : P −→ P , p 7−→
(
x 7→

x∫
a

p(t) dt
)

is linear. This map is injective; its image is the kernel of eva (see
below).

(e) Translation: given a ∈ R, the map

Ta : P −→ P , p 7−→
(
x 7→ p(x+ a)

)
is linear. This map is an isomorphism: T−1

a = T−a.
The Fundamental Theorem of Calculus says that D ◦ Ia = idP and that
Ia,b ◦D = evb− eva and Ia ◦D = idP − eva. This implies that eva ◦Ia =
0, hence im(Ia) ⊂ ker(eva). On the other hand, if p ∈ ker(eva), then
Ia(p

′) = p − p(a) = p, so p ∈ im(Ia). Therefore we have shown that
im(Ia) = ker(eva).

The relation D ◦ Ia = idP implies that Ia is injective and that D is
surjective. Let C ⊂ P be the subspace of constant polynomials, and let
Za ⊂ P be the subspace of polynomials vanishing at a ∈ R. Then C =
ker(D) and Za = ker(eva) = im(Ia), and C and Za are complementary

subspaces. D restricts to an isomorphism Za
∼→ P , and Ia restricts (on

the target side) to an isomorphism P
∼→ Za (Exercise!).

Two isomorphic vector spaces can for all practical purposes be identified. This is
illustrated by the following proposition.

Proposition 3.8. Suppose ϕ : V → V ′ and ψ : W → W ′ are isomorphisms of
vector spaces. Suppose f : V → W is a linear map and set f ′ = ψ ◦ f ◦ϕ−1 : V ′ →
W ′. Then the diagram

V
f //

ϕ

��

W

ψ
��

V ′
f ′ // W ′

commutes, ϕ restricts to an isomorphism ker f → ker f ′, and ψ restricts to an
isomorphism im f → im f ′.

Proof. Exercise. �
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Proposition 3.9. Let F be any field and n a nonnegative integer. For every
a ∈ F n, the function

F n → F, x 7→ 〈a, x〉
is a linear map.

Proof. This follows directly from Proposition 2.10. �

Proposition 3.10. Let F be any field and n a nonnegative integer. Suppose
f : F n → F is a linear map. Then there is a unique vector a ∈ F n such that for
all x ∈ F n we have f(x) = 〈a, x〉.

Proof. Suppose there exists such an element a and write a = (a1, a2, . . . , an).
Then for each i with 1 ≤ i ≤ n we have

f(ei) = 〈a, ei〉 = a1 · 0 + · · ·+ ai−1 · 0 + ai · 1 + ai+1 · 0 + · · ·+ an · 0 = ai.

We conclude that a =
(
f(e1), f(e2), . . . , f(en)

)
, so a is completely determined by

f and therefore unique, if it exists.

To show there is indeed an a as claimed, we take

a =
(
f(e1), f(e2), . . . , f(en)

)
(we have no choice by the above) and show it satisfies f(x) = 〈a, x〉 for all x ∈ F n,
as required. Indeed, if we write x = (x1, x2, . . . , xn), then we find

f(x) = f(x1 · e1 + · · ·+ xn · en) = x1 · f(e1) + · · ·+ xn · f(en) = 〈x, a〉 = 〈a, x〉.
�

One nice property of linear maps is that they are themselves elements of vector
spaces.

Lemma 3.11. Let V and W be two F -vector spaces. Then the set of all linear
maps V → W , with addition and scalar multiplication defined point-wise, forms
an F -vector space. It is denoted by Hom(V,W ).

Proof. It is easy to check the vector space axioms for the set of all maps
V → W (using the point-wise definition of the operations and the fact that W
is a vector space). Hence it suffices to show that the linear maps form a linear
subspace:

The zero map is a homomorphism. If f, g : V → W are two linear maps, we have
to check that f + g is again linear. So let v1, v2 ∈ V ; then

(f + g)(v1 + v2) = f(v1 + v2) + g(v1 + v2) = f(v1) + f(v2) + g(v1) + g(v2)

= f(v1) + g(v1) + f(v2) + g(v2) = (f + g)(v1) + (f + g)(v2) .

Similarly, if λ ∈ F and v ∈ V , we have

(f + g)(λv) = f(λv) + g(λv) = λf(v) + λg(v) = λ
(
f(v) + g(v)

)
= λ · (f + g)(v) .

It follows that f + g is linear. Now let µ ∈ F , and let f : V → W be linear. We
have to check that µf is again linear. So let v1, v2 ∈ V ; then

(µf)(v1 + v2) = µf(v1 + v2) = µ
(
f(v1) + f(v2)

)
= µf(v1) + µf(v2) = (µf)(v1) + (µf)(v2) .

Finally, let λ ∈ F and v ∈ V . Then

(µf)(λv) = µf(λv) = µ
(
λf(v)

)
= (µλ)f(v) = λ

(
µf(v)

)
= λ · (µf)(v) .

It follows that µf is indeed linear. �
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Example 3.12. Suppose V = Rn and a ∈ V is nonzero. Set Ha = {a}⊥. Let
πa, πa⊥ , and sa be the orthogonal projection onto L(a), the orthogonal projection
onto {a}⊥, and the reflection in Ha, respectively, as in Examples 3.7. Then the
linearity of the last two maps follows from the linearity of the first, as we have

πa⊥ = idV −πa, and sa = idV −2πa.

Proposition 3.13. Let F be a field and W be an F -vector space. Then for
every sequence w1, w2, . . . , wn of n vectors in W , there is a unique linear map
ϕ : F n → W with ϕ(ei) = wi for every i ∈ {1, . . . , n}.

Proof. Suppose f is a function with f(ei) = wi for every i ∈ {1, . . . , n}.
Then for x = (x1, x2, . . . , xn) ∈ F n we have

f(x) = f(x1e1 + · · ·+ xnen) = x1f(e1) + · · ·+ x1f(en) = x1w1 + · · ·+ xnwn,

so f is completely determined on all x ∈ F n by the vectors w1, w2, . . . , wn and
therefore ϕ is unique, if it exists.

To show there is indeed a ϕ as claimed, we define the function ϕ : F n → W by

ϕ(x) = x1w1 + · · ·+ xnwn

(we have no choice by the above). One easily checks that ϕ is linear. (Do this!)
For i with 1 ≤ i ≤ n, we have

ϕ(ei) = 0 · w1 + · · ·+ 0 · wi−1 + 1 · wi + 0 · wi+1 + · · ·+ 0 · wn = wi,

so ϕ indeed satisfies the requirements. �

By construction, the image of the map ϕ of Proposition 3.13 consists of all linear
combinations of w1, w2, . . . , wn, so it equals L(w1, . . . , wn); this implies that ϕ is
surjective if and only if the elements w1, w2, . . . , wn generate W .

Definition 3.14. For any vector space W over a field F , and a sequence C =
(w1, w2, . . . , wn) of n elements in W , we write ϕC for the linear map ϕ : F n → W
associated to C as in Proposition 3.13.

Exercises

3.2.1. Prove Lemma 3.3.
3.2.2. Which of the following maps between vector spaces are linear?

(1) R3 → R2, (x, y, z) 7→ (x− 2y, z + 1),
(2) R3 → R3, (x, y, z) 7→ (x2, y2, z2),
(3) C3 → C4, (x, y, z) 7→ (x+ 2y, x− 3z, y − z, x+ 2y + z),
(4) R3 → V, (x, y, z) 7→ xv1 + yv2 + zv3, for a vector space V over R with

v1, v2, v3 ∈ V ,
(5) P → P, f 7→ f ′, where P is the vector space of real polynomials and f ′ is

the derivative of f ,
(6) P → R2, f 7→ (f(2), f ′(0)).

3.2.3. Let f : V →W be a linear map of vector spaces. Show that the following are
equivalent.
(1) The map f is surjective.
(2) For every subset S ⊂ V with L(S) = V we have L(f(S)) = W .
(3) There is a subset S ⊂ V with L(f(S)) = W .

3.2.4. Let ρ : R2 → R2 be rotation about the origin (0, 0) over an angle θ.
(1) Show that ρ is a linear map.
(2) What are the images ρ((1, 0)) and ρ((0, 1))?
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(3) Show that we have

ρ((x, y)) = (x cos θ − y sin θ, x sin θ + y cos θ).

3.2.5. Show that the reflection s : R2 → R2 in the line given by y = −x is a linear
map. Give an explicit formula for s.

3.2.6. Let F be a field and F [x] the vector space of polynomials over F .
(1) Given a ∈ F , we define the evaluation map eva : F [x] → F that sends

a polynomial f =
∑d

i=0 cix
i to f(a) =

∑d
i=0 cia

i. Cf. Example 3.7(6).
Show that eva is linear.

(2) Show that the map ϕ : F [x]→ FF of Exercise 2.3.8 is given by

f 7→ (a 7→ eva(f))

and deduce that ϕ is linear.
3.2.7. Given the map

T : R2 → R2, (x, y) 7→ x(3
5 ,

4
5) + y(4

5 ,−
3
5)

and the vectors v1 = (2, 1) and v2 = (−1, 2).
(1) Show that T (v1) = v1 and T (v2) = −v2.
(2) Show that T equals the reflection in the line given by 2y − x = 0.

3.2.8. Give an explicit expression for the linear map s : R2 → R2 given by reflecting
in the line y = 3x.

3.2.9. Let V ⊂ R3 be the plane

V = { (x, y, z) ∈ R3 : 2x− y + z = 0 }.

(1) Give an explicit expression for the reflection s : R3 → R3 in the plane V .
(2) Show that

U+ = {v ∈ R3 : s(v) = v} and U− = {v ∈ R3 : s(v) = −v}

are subspaces.
(3) Show U+ = V and U− = L(a) for some a ∈ R3.
(4) Show that U+ and U− are complementary subspaces.

3.2.10. Suppose we have a diagram

V
f //

ϕ

��

W

ψ
��

V ′
f ′ // W ′

of linear maps that commutes, i.e., we have linear maps ϕ : V → V ′ and
ψ : W →W ′ and f : V →W and f ′ : V ′ →W ′ satisfying ψ ◦ f = f ′ ◦ ϕ.
(1) Show that ϕ restricts to a linear map ϕ : ker f → ker f ′.
(2) Show that ψ restricts to a linear map ψ : im f → im f ′.
(3) Show that if ϕ is injective, then so is ϕ.
(4) Show that if ψ is injective, then so is ψ.
(5) Show that if ϕ is surjective, then so is ψ.
(6) Show that if ϕ is surjective and ψ is injective, then ϕ is surjective.
(7) Give examples that show that neither of the two hypotheses can be left

out of the previous statement.
(8) Prove Proposition 3.8.

3.2.11. Let F be a field and n a nonnegative integer. Show that there is an isomor-
phism

Fn → Hom(Fn, F )

that sends a vector a ∈ Fn to the linear map x 7→ 〈a, x〉.
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3.2.12. Let F be field. The dot product on Fn is a map Fn × Fn → F , satisfying
some conditions. In this exercise, we will generalize this to FX for any set X.
Note that if X is finite, then FX and F (X) as in Exercise 2.1.12 are equal. In
general, we have a map

FX × F (X) → F, (f, g) 7→ 〈f, g〉 =
∑
x∈X

f(x)g(x),

where the sum contains only finitely many nonzero terms, because there are
only finitely many x ∈ X with g(x) 6= 0.
(1) Show that this generalized dot product satisfies the conditions of Propo-

sition 2.10.
(2) Show that there is an isomorphism

FX → Hom(F (X), F )

that sends a vector f ∈ FX to the linear map g 7→ 〈f, g〉.
3.2.13. Suppose V is a vector space with two complementary subspaces U and U ′,

cf. Definition 2.46. Then for every v ∈ V there are unique elements u ∈ U
and u′ ∈ U ′ with v = u + u′ by Lemma 2.48; let πU : V → U denote the map
that sends v to the corresponding element u. Note that πU also depends on U ′,
even though it is not referred to in the notation. Show that πU is a surjective
linear map with kernel kerπU = U ′ that satisfies πU ◦πU = πU . We call πU the
projection of V onto U along U ′.

3.2.14. This exercise generalizes Exercises 2.4.6 and 3.2.9. Let V be a vector space
over a field F and assume 2 6= 0 in F , so that and we can divide by 2. Let
s : V → V be a linear map satisfying s(s(v)) = v for all v ∈ V (for example,
s : Rn → Rn is the reflection in some hyperplane). Set

V+ = { v ∈ V : s(v) = v }, V− = { v ∈ V : s(v) = −v }.
(1) Show that s is an isomorphism.
(2) Show that for every v ∈ V we have

v + s(v)
2

∈ V+ and
v − s(v)

2
∈ V−.

(3) Show that V+ and V− are complementary subspaces in V .
(4) For what choice of s does Exercise 2.4.6 become a special case?

3.2.15. Let f : V → V be an endomorphism of a finitely generated vectorspace V .
Let σ : V → W be a linear map. Suppose that f sends kerσ to itself, i.e.,
f(kerσ) ⊂ kerσ. Show that f induces a well-defined endomorphism

f̃ : imσ → imσ

that sends the element σ(z) ∈ imσ to σ(f(z)) for every z ∈ V .
3.2.16. Let V be a vector space over a field F . Suppose f1, . . . , fm are linear maps

from V to F . Show that the combined map

V → Fm, v 7→ (f1(x), . . . , fm(x))

is also linear.
3.2.17. Let V be a vector space and σ : X → Y any map of sets. Define the map

σ∗ : V Y = Map(Y, V )→ Map(X,V ) = V X

by σ∗(f) = f ◦ σ.
(1) Show that σ∗ is a linear map.
(2) Show that if σ is injective, then σ∗ is surjective.
(3) Show that if σ is surjective, then σ∗ is injective.
(4) Show that if σ is bijective, then σ∗ is an isomorphism.

3.2.18.
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(1) Suppose α : W →W ′ is a linear map of vector spaces over a field F . Show
that for every vector space V over F there is a linear map

α∗ : Hom(V,W )→ Hom(V,W ′)

that sends f to α ◦ f .
(2) Suppose β : V ′ → V is a linear map of vector spaces over a field F . Show

that for every vector space W over F there is a linear map

β∗ : Hom(V,W )→ Hom(V ′,W )

that sends f to f ◦ β.
(3) Check that in Proposition 3.8 we have

f ′ = (ψ∗ ◦ (ϕ−1)∗)(f) = ((ϕ−1)∗ ◦ ψ∗)(f).

3.2.19. Suppose α, α1, α2 : V ′ → V and β : V ′′ → V ′ are linear maps of vector spaces
over a field F . Let W be a vector space over F . With the notation of Exercise
3.2.18, show that we have the following.
(1) Show that (α ◦ β)∗ = β∗ ◦ α∗.
(2) Show that (α1 + α2)∗ = α∗1 + α∗2.
(3) Show that (λα)∗ = λ · α∗ for any λ ∈ F .

3.2.20. This exercise generalizes Proposition 3.13. Let F be a field and X a (not
necessarily finite) set. Consider the subspace F (X) of FX as in Exercise 2.1.12,
and the elements ex (for x ∈ X) as in Exercise 2.3.5. Let W be a vector space
over F containing a collection C = (wx)x∈X of elements in W . Show that
there is a unique linear map ϕC : F (X) → W that satisfies ϕC(ex) = wx for
every x ∈ X and that this map is surjective if and only if the collection C
generates W .



CHAPTER 4

Matrices

By Proposition 3.13, every linear map ϕ : F n → Fm is uniquely determined by
the images w1 = ϕ(e1), . . . , wn = ϕ(en) in Fm of the n standard generators of
F n. If C = (w1, . . . , wn) is the sequence of these images, then ϕ equals ϕC as in
Definition 3.14.

From a different viewpoint, we can interpret ϕ : F n → Fm as a sequence of m
linear maps, one for each coordinate of Fm. More formally, if πi : F

m → F is
the projection of Fm onto its i-th coordinate (1 ≤ i ≤ m), then the composition
πi ◦ ϕ : F n → F , which only remembers the i-th coordinate, is a linear map for
each i, and ϕ equals the combined map

F n → Fm, x 7→
(
(π1 ◦ ϕ)(x), . . . , (πm ◦ ϕ)(x)

)
(cf. Exercise 3.2.16). Each of the m maps πi ◦ ϕ : F n → F is given by x 7→ 〈vi, x〉
for some vi ∈ F n (see Proposition 3.10), so ϕ is determined by the m vectors
v1, . . . , vm ∈ F n.

We will see that if we write the n vectors w1, . . . , wn ∈ Fm as columns next to
each other, then we obtain the same array of m × n elements of F as when we
write the m vectors v1, . . . , vm ∈ F n as rows underneath each other!

(3)

 | | |
w1 w2 · · · wn
| | |

 =


−v1−
−v2−

...
−vm−


Such an array is called anm×nmatrix. The linear map ϕ is completely determined
by its associated matrix, say M . In the next section, we will describe how exactly:
we will define a product between m × n matrices and vectors in F n in such a
way that for all x ∈ F n we have ϕ(x) = M · x (see Section 4.2). It will make
immediately clear why the two matrices in (3) are the same.

4.1. Definition of matrices

Definition 4.1. Let F be a field and m,n nonnegative integers. An m×n matrix
over F is an array

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 = (aij)1≤i≤m,1≤j≤n

of entries or coefficients aij ∈ F .

51
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For i ∈ {1, . . . ,m}, the vector (ai1, ai2, . . . , ain) is a row of A, which is an element
of F n, and for j ∈ {1, . . . , n}, the vector

a1j

a2j
...
amj


is called a column of A, which is an element of Fm, be it written vertically above.

The set of all m × n matrices with entries in F is denoted by Mat(m × n, F ).
Note that as a boundary case, m = 0 or n = 0 (or both) is allowed; in this case
Mat(m× n, F ) has only one element, which is an empty matrix.

If m = n, we sometimes write Mat(n, F ) for Mat(n× n, F ). The matrix

I = In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 = (δij)1≤i,j≤n .

is called the identity matrix.

For any

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 ∈ Mat(m× n, F ) and x =


x1

x2
...
xn

 ∈ F n

we define the product Ax as

Ax =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn



x1

x2
...
xn

 =


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn

 .

Note that here we have written x and Ax vertically.

As announced in the introduction of this chapter, there are (at least) two useful
ways to think of the multiplication. If we let

vi = (ai1, ai2, . . . , ain)

be the i-th row of A, then we can write Ax as

Ax =


−v1−
−v2−

...
−vm−

 · x =


〈v1, x〉
〈v2, x〉

...
〈vm, x〉

 ,

so the entries of Ax are the dot-products of x with the row vectors of A. If we let

wj =


a1j

a2j
...
amj


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denote the j-th column of A, then we can write Ax as

Ax =

 | | |
w1 w2 · · · wn
| | |



x1

x2
...
xn

 = x1w1 + x2w2 + . . . xnwn,

so Ax is the linear combination of the column vectors of A with the entries of x
as coefficients. Note that Aej = wj.

Example 4.2. We have 3 2 1
−1 2 7
−3 5 −2

 2
−2
−1

 =

 3 · 2 + 2 · (−2) + 1 · (−1)
(−1) · 2 + 2 · (−2) + 7 · (−1)

(−3) · 2 + 5 · (−2) + (−2) · (−1)

 =

 1
−13
−14

 .

Verify that the result does indeed correspond with the three dot products of the
vector (2,−2,−1) with the rows of the 3 × 3 matrix. Also verify that the result
equals the right linear combination of the columns.

4.2. Linear maps associated to matrices

Definition 4.3. To any matrix A ∈ Mat(m × n, F ) we associate the function
fA : F n → Fm given by

fA(x) = Ax

for all x ∈ F n.

The dual description of matrices in the introduction of this chapter corresponds
to the following two lemmas. They also imply the equality of the two matrices
in (3).

Lemma 4.4. Let A be an m × n matrix over F with rows v1, . . . , vm ∈ F n. Let
fA : F n → Fm be the function associated to A. Then we have

fA(x) =


〈v1, x〉
〈v2, x〉

...
〈vm, x〉


for all x ∈ F n.

Proof. This follows immediately from first of the two useful ways to think of
the matrix multiplication described at the end of the previous section. �

Lemma 4.5. Let A be an m × n matrix over F with columns w1, . . . , wn ∈ Fm.
Let fA : F n → Fm be the function associated to A. Then we have fA(ej) = wj for
all 1 ≤ j ≤ n, and fA equals ϕC as in Definition 3.14 with C = (w1, . . . , wn).

Proof. This follows immediately from second of the two useful ways to think
of the matrix multiplication described at the end of the previous section. �

Note that Lemma 4.5 implies that for any m× n matrix A, the j-th column of A
equals fA(ej) for any j ∈ {1, . . . , n}. In fact, the function fA : F n → Fm is the
unique linear map sending ej to the j-th column of A.

Lemma 4.6. For any matrix A ∈ Mat(m×n, F ), the associated function fA : F n →
Fm is a linear map.
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Proof. By Lemma 4.5, the function fA equals the linear map ϕC of Definition
3.14, where C = (w1, . . . , wn) is the sequence of columns of A. Alternatively, let
v1, v2, . . . , vm denote the row vectors of A. Then for each i, the map F n → F that
sends x to 〈vi, x〉 is linear by Proposition 3.9. By Lemma 4.4, the function fA is
the combination of these m maps as in Exercise 3.2.16, so it is linear as well. �

Clearly, the linear map fI associated to the matrix I = In is the identity map
F n → F n.

Example 4.7. Let A ∈ Mat(3× 4,R) be the matrix3 2 0 −1
1 −2 5 −3
0 1 4 7

 .

Then the map fA sends
x1

x2

x3

x4

 ∈ R4 to

3x1 +2x2 −x4

x1 −2x2 +5x3 −3x4

x2 +4x3 +7x4

 ∈ R3.

Proposition 4.8. Let F be a field and m,n nonnegative integers. Suppose f : F n →
Fm is a linear map. Then there is a unique matrix A ∈ Mat(m×n, F ) with f = fA.

Proof. Define wj = f(ej) for 1 ≤ j ≤ n, and let A be the matrix of which
the j-th column is wj for each j. Then fA(ej) = Aej = wj = f(ej) for all j, so
f = fA by Proposition 3.13. Furthermore, any m× n matrix A′ with fA′ = f has
its j-th column equal to A′ej = fA′(ej) = f(ej) = wj for all j, so A′ = A. This
finishes the proof. �

Lemma 4.6 and Proposition 4.8 together show that there is a bijection

Mat(m× n, F )→ Hom(F n, Fm), A 7→ fA.

Therefore, one often identifies a matrix A with the linear map fA that the matrix
induces. In this way we may refer to the kernel and image of fA as the kernel and
image of A and we write kerA = ker fA and imA = im fA.

Example 4.9. Let ρ : R2 → R2 be rotation about the origin (0, 0) over an angle
θ. From Exercise 3.2.4, we know that ρ is given by

ρ

((
x
y

))
=

(
x cos θ − y sin θ
x sin θ + y cos θ

)
.

We conclude that ρ corresponds to the matrix(
cos θ − sin θ
sin θ cos θ

)
.

Example 4.10. Let s : R2 → R2 be the reflection in the line L given by y = 2x.
Then s is linear and we can determine a 2 × 2 matrix A such that s = fA. By
Lemma 4.5, the columns of A are the images fA(e1) = s(e1) and fA(e2) = s(e2).
Note that the vector a = (2,−1) is a normal of L. For any vector v ∈ R2, the

projection of v onto a equals λa with λ = 〈v,a〉
〈a,a〉 , so the projection of v onto L is

v − λa and the reflection of v in L is s(v) = v − 2λa. (Make a picture!) We find

s(e1) =

(
−3

5
4
5

)
and s(e2) =

(
4
5
3
5

)
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(do the calculations yourself), so we get

A =

(
−3

5
4
5

4
5

3
5

)
.

Definition 4.11. The row space R(A) of an m× n matrix A ∈ Mat(m× n, F ) is
the subspace of F n that is generated by the row vectors of A; the column space
C(A) is the subspace of Fm generated by the column vectors of A.

Remark 4.12. The column space of a matrix A ∈ Mat(m× n, F ) is the same as
the image of A, i.e., the image of the linear map fA.

Proposition 4.13. Let A ∈ Mat(m× n, F ) be a matrix. Then we have

kerA = (R(A))⊥ ⊂ F n.

For F = R, the kernel of A consists of all vectors in Rn that are orthogonal to the
row space R(A) of A.

Proof. Let v1, v2, . . . , vm be the rows of A. Then R(A) = L(v1, . . . , vm). The
map fA : F n → Fm is then given by fA(x) = (〈v1, x〉, . . . , 〈vm, x〉) for all x ∈ F n

(see Lemma 4.4; here we have written fA(x) normally instead of vertically). Thus,
we have x ∈ kerA = ker fA, i.e., fA(x) = 0, if and only if 〈vi, x〉 = 0 for all
1 ≤ i ≤ m, so if and only if x is contained in

{v1, . . . , vm}⊥ = L(v1, . . . , vm)⊥ = (R(A))⊥

(see Proposition 2.39(2)). We conclude kerA = (R(A))⊥, as stated. The last
statement is merely a rephrasing of this equality for F = R. �

Remark 4.14. Let U ⊂ F n be a subspace of F n. We can use Proposition 4.13 to
reinterpret U⊥. Let U be generated by the vectors v1, v2, . . . , vm. Let f : F n → Fm

be the linear map given by

f(x) =


〈v1, x〉
〈v2, x〉

...
〈vm, x〉

 .

Then the kernel of f equals U⊥. The map f is also given by x 7→ Mx, where M
is the m× n matrix whose i-th row vector is vi for all i ≤ m.

Exercises

4.2.1. Prove Lemmas 4.4 and 4.5.
4.2.2. Prove Remark 4.12.
4.2.3. For the given matrix A and the vector x, determine Ax.

(1)

A =

 −2 −3 1
1 1 −2
0 1 1

 and x =

 −3
−4

2

 ,

(2)

A =
(

1 −3 2
−2 −4 2

)
and x =

 1
2
−1

 ,
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(3)

A =


4 3
3 −2
−3 −1
−1 1

 and x =
(
−2

3

)
.

4.2.4. For each of the linear maps f : Fn → Fm of the exercises of Section 3.2, give
a matrix M such that f is given by

x 7→Mx.

4.2.5. Given the matrix

M =

 −4 −3 0 −3
2 2 −3 −1
0 −3 1 −1


and the linear map f : Rn → Rm, x 7→ Mx for the corresponding m and n.
What are m and n? Give vectors v1, . . . , vn such that f is also given by

f
(
(x1, x2, . . . , xn)

)
= x1v1 + · · ·+ xnvn.

4.2.6. Determine the matrix M for which fM : R3 → R3 is reflection in the plane
given by x+ 2y − z = 0.

4.2.7. Given the following linear maps Rn → Rm, determine a matrix A such that
the map is also given by x 7→ Ax.
(1) f : R3 → R4, (x, y, z) 7→ (3x+ 2y − z,−x− y + z, x− z, y + z),
(2) g : R3 → R3, (x, y, z) 7→ (x+ 2y − 3z, 2x− y + z, x+ y + z),
(3) h : R3 → R2, (x, y, z) 7→ x · (1, 2) + y · (2,−1) + z · (−1, 3),
(4) j : R2 → R3, v 7→ (〈v, w1〉, 〈v, w2〉, 〈v, w3〉), with w1 = (1,−1), w2 = (2, 3)

and w3 = (−2, 4).

4.3. Addition and multiplication of matrices

We know that Hom(F n, Fm) has the structure of an F -vector space (see Lemma 3.11).
We can ‘transport’ this structure to Mat(m×n, F ) using the identification of ma-
trices and linear maps.

Definition 4.15. For A,B ∈ Mat(m × n, F ), we define A + B to be the matrix
corresponding to the linear map fA + fB sending x to Ax + Bx. Similarly, for
λ ∈ F , we define λA to be the matrix corresponding to the linear map λfA sending
x to λ · Ax, so that fA+B = fA + fB and fλA = λfA.

It is a trivial verification to see that (aij) + (bij) = (aij + bij), i.e., that addition
of matrices is done coefficient-wise. Similarly, we see easily that λ(aij) = (λaij).
With this addition and scalar multiplication, Mat(m×n, F ) becomes an F -vector
space, and it is clear that it is ‘the same’ as (i.e., isomorphic to) Fmn — the
only difference is the arrangement of the coefficients in an array instead of in a
sequence.

By Lemma 3.2, the composition of two linear maps is again linear. How is this
reflected in terms of matrices?

Definition 4.16. Let A ∈ Mat(l × m,F ) and B ∈ Mat(m × n, F ). Then B
gives a linear map fB : F n → Fm, and A gives a linear map fA : Fm → F l. We
define the product AB to be the matrix corresponding to the composite linear

map fA ◦ fB : F n B−→ Fm A−→ F l. So AB will be a matrix in Mat(l × n, F ).

Remark 4.17. Note that for the product AB to exist, the number of columns of
A has to equal the number of rows of B.
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By Definition 4.16, the product AB satisfies fAB = fA ◦ fB, so we have

(4) (AB)x = fAB(x) = fA(fB(x)) = A(Bx)

for all x ∈ F n. To express AB in terms of A and B, we let v1, v2, . . . , vl denote
the rows of A and w1, w2, . . . , wn the columns of B. The relation (4) holds in
particular for x = ek, the k-th standard vector. Note that (AB)ek and Bek are
the k-th column of AB and B, respectively. Since the latter is wk, we find that
the k-th column of AB equals

(AB)ek = A(Bek) = Awk =


〈v1, wk〉
〈v2, wk〉

...
〈vl, wk〉

 .

We conclude

AB =


−v1−
−v2−

...
−vl−


 | | |
w1 w2 · · · wn
| | |

 =


〈v1, w1〉 〈v1, w2〉 · · · 〈v1, wn〉
〈v2, w1〉 〈v2, w2〉 · · · 〈v2, wn〉

...
...

...
〈vl, w1〉 〈vl, w2〉 · · · 〈vl, wn〉

 .

In other words, the (i, k)-th entry in the i-th row and the k-th column of the
product AB is the dot product 〈vi, wk〉 of the i-th row of A and the k-th row of
B. With

A =


a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
...

al1 al2 · · · alm

 and B =


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

bm1 bm2 · · · bmn


we get

vi = (ai1, ai2, . . . , aim) and wk =


b1k
b2k
...
bmk

 ,

so in terms of the entries of A and B, the (i, k)-th entry cik of the product AB
equals

cik = 〈vi, wk〉 = ai1b1k + ai2b2k + · · ·+ aimbmk =
m∑
j=1

aijbjk .

If we write the matrix A on the left of AB and the matrix B above AB, then the
(i, k)-th entry cik of AB is the dot product of the i-th row of A next to this entry
and the k-th column of B above the entry.

b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

bm1 bm2 · · · bmn

 = B(5)

A =


a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
...

al1 al2 · · · alm



c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
...

cl1 cl2 · · · cln

 = AB
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Example 4.18. To compute the product AB for the matrices

A =

(
1 3 5 7
9 11 13 15

)
and B =


2 4 6
8 10 12
14 16 18
20 22 24

 ,

we write them diagonally with respect to each other.
2 4 6

8 10 12
14 16 18
20 22 24( 1 3 5 7 ) ( . 268 . )

9 11 13 15 . . .

The product AB is a matrix with as many rows as A and as many columns as B,
so it is a 2× 3 matrix. The (1, 2)-th entry of AB, for instance, is the dot product
of the first row of A and the second column of B, which equals

〈(1, 3, 5, 7), (4, 10, 16, 22)〉 = 1 · 4 + 3 · 10 + 5 · 16 + 7 · 22 = 268.

The other entries are computed similarly and we find

AB =

(
236 268 300
588 684 780

)
.

Proposition 4.19. The matrix multiplication is associative: for A ∈ Mat(k×l, F )
and B ∈ Mat(l ×m,F ) and C ∈ Mat(m× n, F ), we have

A(BC) = (AB)C.

Proof. The left-hand side is the unique matrix associated to the composi-
tion fA ◦ (fB ◦ fC), while the right-hand side is the unique matrix associated to
the composition (fA ◦ fB) ◦ fC . These composite maps are the same because of
associativity of composition. In other words, we have

fA(BC) = fA ◦ fBC = fA ◦ (fB ◦ fC) = (fA ◦ fB) ◦ fC = fAB ◦ fC = f(AB)C ,

so A(BC) = (AB)C by Proposition 4.8. �

Proposition 4.20. The matrix multiplication is distributive with respect to addi-
tion:

A(B + C) = AB + AC for A ∈ Mat(l ×m,F ), B,C ∈ Mat(m× n, F );

(A+B)C = AC +BC for A,B ∈ Mat(l ×m,F ), C ∈ Mat(m× n, F ).

Proof. Exercise. �

If A is an m × n matrix, then for both the product AB and the product BA
to exist, the matrix B has to be an n × m matrix. However, even if AB and
BA both exist, we do not necessarily have AB = BA. In other words, matrix
multiplication is not commutative in general. Furthermore, AB = 0 (where 0
denotes a zero matrix of suitable size) does not imply that A = 0 or B = 0. For a
counterexample (to both properties), consider (over a field of characteristic 6= 2)

A =

(
1 1
0 0

)
and B =

(
0 1
0 1

)
.
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Then

AB =

(
0 2
0 0

)
6=
(

0 0
0 0

)
= BA .

Definition 4.21. If the linear map fA corresponding to A ∈ Mat(m×n, F ) is an
isomorphism, then A is called invertible.

The matrix corresponding to the inverse linear map is (obviously) denoted A−1, so
that fA−1 = f−1

A ; if A is an m×n matrix, then we have AA−1 = Im and A−1A = In,
and A−1 is uniquely determined by this property. We will see in Corollary 5.56
that if A ∈ Mat(m × n, F ) is invertible, then m = n, so A is in fact a square
matrix.

Proposition 4.22. A matrix A ∈ Mat(m×n, F ) is invertible if and only if there
exist matrices B and C such that AB = Im and CA = In.

Proof. Exercise. �

Proposition 4.23. Suppose A and B are invertible matrices for which the product
AB exists. Then AB is also invertible, and (AB)−1 = B−1A−1. (Note the reversal
of the factors!)

Proof. Exercise. �

Remark 4.24. The identity matrix acts as a multiplicative identity:

ImA = A = AIn for A ∈ Mat(m× n, F ).

The following definition introduces the transpose A> of a matrix A, which is the
matrix we get from A by a ‘reflection on the main diagonal.’ This associated
matrix occurs naturally in many applications, which can often be explained by
Exercise 4.3.10.

Definition 4.25. Let A = (aij) ∈ Mat(m×n, F ) be a matrix. The transpose of A
is the matrix

A> = (aji)1≤i≤n,1≤j≤m ∈ Mat(n×m,F ) .

Example 4.26. For

A =

1 2 3 4
5 6 7 8
9 10 11 12


we have

A> =


1 5 9
2 6 10
3 7 11
4 8 12

 .

Proposition 4.27. Let F be a field, and l,m, n nonnegative integers.

(1) For A,B ∈ Mat(m× n, F ) we have (A+B)> = A> +B>.
(2) For A ∈ Mat(m× n, F ) and λ ∈ F , we have (λA)> = λ · A>.
(3) For A ∈ Mat(l×m,F ) and B ∈ Mat(m×n, F ), we have (AB)> = B>A>

(note the reversal of factors!).
(4) If A ∈ Mat(m× n, F ) is invertible, then so is A> and we have (A>)−1 =

(A−1)>.
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Proof. The first two statements are obvious. For the third, let v1, . . . , vl be
the rows of A and w1, . . . , wn the columns of B. Then the product AB is the l×n
matrix whose (i, k)-th entry is 〈vi, wk〉. The rows of B> are w1, . . . , wn and the
columns of A> are v1, . . . , vl, so the (k, i)-th entry of the product B>A> equals
〈wk, vi〉 = 〈vi, wk〉 as well. This shows that (AB)> = B>A>. For a more abstract
proof, see Exercise 4.3.10. The fourth statement follows from the third. �

Remark 4.28. We have expressed the product AB of matrices A and B in terms
of the dot products of the rows of A and the columns of B. Conversely, we can
interpret the dot product as product of matrices. Suppose we have vectors

a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)

in F n. We can think of a and b as 1 × n matrices (implicitly using that F n and
Mat(1× n, F ) are isomorphic). Then the transpose b> is an n× 1 matrix and the
matrix product

a · b> =
(
a1 a2 . . . an

)
·


b1
b2
...
bn

 = (a1b1 + · · ·+ anbn)

is the 1× 1 matrix whose single entry equals the dot product 〈a, b〉.

Remark 4.29. The product Ax of a matrix A ∈ Mat(m × n, F ) and a vector
x ∈ F n can be interpreted as a product between matrices as well. If we think of
x as a 1× n matrix, then x> is an n× 1 matrix and the product Ax corresponds
to the matrix product A · x>.

Exercises

4.3.1. Prove Proposition 4.23. If matrices A and B have a product AB that is
invertible, does this imply that A and B are invertible? Cf. Exercise 6.4.4.

4.3.2. Prove Proposition 4.20.
4.3.3. Let ρ : R2 → R2 be rotation around 0 over an angle α, cf. Exercise 3.2.4 and

Example 4.9. Show that the matrix

A =
(

cosα − sinα
sinα cosα

)
satisfies ρ(v) = Av for all v ∈ R2. Show that for all α, β ∈ R we have

cos(α+ β) = cosα cosβ − sinα sinβ,

sin(α+ β) = sinα cosβ + cosα sinβ.

4.3.4. For which i, j ∈ {1, . . . , 5} does the product of Ai and Aj exist and in which
order?

A1 =
(

1 1 1
−1 −2 −1

)
, A2 =

(
2 −1 1 −4
3 −1 2 4

)

A3 =

 2 3 4
−1 0 2

3 2 1

 , A4 =

 −1 −3
2 −2
1 1

 , A5 =
(

1 −2
−3 2

)
.

Determine those products.
4.3.5. For each i ∈ {1, , . . . , 5}, we define the linear map fi by x 7→ Aix with Ai as

in the previous exercise.
(1) What are the domains and codomains of these functions?
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(2) Which pairs of these maps can be composed and which product of the
matrices belongs to each possible composition?

(3) Is there an order in which you can compose all maps, and if so, which
product of matrices corresponds to this composition, and what are its
domain and codomain?

4.3.6. Take the linear maps f and g of Exercise 4.2.7 and call the corresponding
matrices A and B. In which order can you compose f and g? Write the
composition in the same manner that f and g are given by substituting one in
the other. Multiply the matrices A and B (in the appropriate order) and verify
that this product does indeed correspond with the composition of the linear
maps.

4.3.7. This exercise proves Proposition 4.22. Let A be an m× n matrix over a field
F .
(1) Show that if there exists a matrix B such that AB = Im, then fA is

surjective.
(2) Show that if there exists a matrix C such that CA = In, then fA is

injective.
(3) Show that if there exist matrices B and C such that AB = Im and CA =

In, then fA is an isomorphism and B = C.
(4) Show that if fA is an isomorphism, then there exist matrices B and C

such that AB = Im and CA = In.
4.3.8. Let F be a field and m,n nonnegative integers. Show that there exists an

isomorphism

Mat(m× n, F )→ Hom(Fn, Fm)

that sends A to fA. (The fact that this map is linear is almost true by defini-
tion, as we defined the addition and scalar product of matrices in terms of the
addition and scalar product of the functions that are associated to them.)

4.3.9. Let F be a field and m,n nonnegative integers. Some of the previous two
sections can be summarized by the following diagram.

(Fn)m //

''OOOOOOOOOOO
Mat(m× n, F )

��

(Fm)noo

wwooooooooooo

Hom(Fn, Fm)

Describe a natural isomorphism for each arrow, making the diagram commu-
tative.

4.3.10. Let F be a field and m,n nonnegative integers. For each k ∈ {m,n}, let
ϕk : F k → Hom(F k, F ) denote the isomorphism that sends the vector a ∈ F k to
the linear map (x 7→ 〈a, x〉) (see Proposition 3.10 and Exercise 3.2.11). To each
linear map f ∈ Hom(Fn, Fm), we associate the linear map f∗ : Hom(Fm, F )→
Hom(Fn, F ) that sends α to the composition α ◦ f (see Exercise 3.2.17), and
the linear map f> = ϕ−1

n ◦ f∗ ◦ ϕm : Fm → Fn.

Hom(Fm, F )
f∗ // Hom(Fn, F )

Fm

ϕm

OO

f>
// Fn

ϕn

OO

Let A be an m× n matrix with rows v1, . . . , vm, and let fA : Fn → Fm be the
associated linear map. Let j ∈ {1, . . . ,m}.
(1) Show that ϕm sends the j-th standard generator ej to the projection map

πj : Fm → F onto the j-th coordinate.
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(2) Show that f∗A ◦ ϕm sends ej to the map Fn → F that sends x ∈ Fn to
〈vj , x〉.

(3) Show that f>A sends ej to vj .
(4) Show that f>A is the map associated to the transpose A> of A, i.e., f>A =

fA> .
(5) Use Exercise 3.2.19 to prove Proposition 4.27.

4.3.11. (infinite matrices) An m × n matrix over a field F can be viewed as a map
from the set {1, 2, . . . ,m} × {1, 2, . . . , n} to F , sending (i, j) to the (i, j)-th
entry of the matrix in row i and column j. In general, for sets X and Y , we
define an X × Y matrix over F to be a map X × Y → F . In other words, we
set Mat(X × Y, F ) = Map(X × Y, F ).
(1) Show that for each M ∈ Mat(X × Y, F ), there is a linear map

fM : F (Y ) → FX , g 7→

x 7→∑
y∈Y

M(x, y) · g(y)

 .

(2) Describe the map above both in terms of “row vectors” and “column
vectors” as in Section 4.1, cf. Exercise 3.2.12.

(3) Show that there is an isomorphism

Mat(X × Y, F )→ Hom(F (Y ), FX)

that sends a matrix M to the linear map fM .
Note that, for any set W , two infinite matrices N ∈ Mat(W × X) and M ∈
Mat(X × Y, F ) can, in general, not be multiplied together, just as the maps
F (Y ) → FX and F (X) → FW can not be composed.

4.4. Elementary row and column operations

Matrices are very suitable for doing computations. The main tool for that are the
so-called ‘elementary row and column operations.’

Definition 4.30. Let A be a matrix with entries in a field F . We say that we
perform an elementary row operation on A, if we

(1) multiply a row of A by some λ ∈ F \ {0}, or

(2) add a scalar multiple of a row of A to another (not the same) row of A,
or

(3) interchange two rows of A.

We call two matrices A and A′ row equivalent if A′ can be obtained from A by a
sequence of elementary row operations.

Note that the third type of operation is redundant, since it can be achieved by a
sequence of operations of the first two types (Exercise).

Let F be a field and m a positive integer. Let Eij be the m×m matrix over F of
which the only nonzero entry is a 1 in row i and column j. For 1 ≤ i, j ≤ m with
i 6= j and λ ∈ F , we define the elementary m×m matrices

Li(λ) = Im + (λ− 1)Eii,

Mij(λ) = Im + λEij,

Nij = Im + Eij + Eji − Eii − Ejj.
One easily verifies that if A is an m×n matrix, then multiplying the i-th row of A
by λ amounts to replacing A by Li(λ) ·A, while adding λ times the j-th row of A
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to the i-th row of A amounts to replacing A by Mij(λ) ·A and switching the i-th
and the j-th row amounts to replacing A by Nij · A.

The elementary matrices are invertible, which corresponds to the fact that all
elementary row operations are invertible by an elementary row operation of the
same type. Indeed, we have

Li(λ) · Li(λ−1) = Im, Mij(λ) ·Mij(−λ) = Im, and N2
ij = Im.

This implies that row equivalence is indeed an equivalence.

We define elementary column operations and column equivalence in a similar way,
replacing the word ‘row’ by ‘column’ each time it appears. While each row op-
eration on a matrix A ∈ Mat(m × n, F ) corresponds to multiplying A by an
elementary m×m matrix M from the left, yielding MA, each column operation
corresponds to multiplying A by an elementary n × n matrix N from the right,
yielding AN .

The following proposition shows that the elementary row operations do not change
the row space and the kernel of a matrix.

Proposition 4.31. If M and M ′ are row equivalent matrices, then we have

R(M) = R(M ′) and kerM = kerM ′.

Proof. Exercise. �

Proposition 4.32. Suppose A and A′ are row equivalent m × n matrices. If
A′ is obtained from A by a certain sequence of elementary row operations, then
there is an invertible m×m matrix B, depending only on the sequence, such that
A′ = BA. Similarly, if A and A′ are column equivalent, then there is an invertible
n× n matrix C such that A′ = AC.

Proof. Let A ∈ Mat(m × n, F ). Let B1, B2, . . . , Br be the elementary
matrices corresponding to the row operations we have performed on A to obtain A′,
then

A′ = Br

(
Br−1 · · ·

(
B2(B1A)

)
· · ·
)

= (BrBr−1 · · ·B2B1)A ,

and B = BrBr−1 · · ·B2B1 is invertible as a product of invertible matrices. The
statement on column operations is proved in the same way, or by applying the
result on row operations to the transpose A>. �

Proposition 4.33. Suppose A ∈ Mat(m× n, F ) is a matrix. Let A′ be a matrix
obtained from A by applying a sequence of elementary row and column operations.
Then the following are true.

(1) If the sequence contains only row operations, then there is an isomorphism
ψ : Fm → Fm, depending only on the sequence, with fA′ = ψ ◦ fA.

(2) If the sequence contains only column operations, then there is an isomor-
phism ϕ : F n → F n, depending only on the sequence, with fA′ = fA ◦ ϕ.

(3) There is an isomorphism ϕ : F n → F n, depending only on the subsequence
of column operations, and an isomorphism ψ : Fm → Fm, depending only
on the subsequence of row operations, with fA′ = ψ ◦ fA ◦ ϕ, so that the
diagram

F n
fA // Fm

ψ
��

F n
fA′
//

ϕ

OO

Fm
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is commutative.

Proof. Exercise. �

Corollary 4.34. Let M and M ′ be row equivalent matrices. Then fM is injective
if and only if fM ′ is injective and fM is surjective if and only if fM ′ is surjective.

Proof. By Proposition 4.33 there is an isomorphism ψ with fM ′ = ψ ◦ fM .
Indeed, the composition is surjective or injective if and only if fM is, cf. Proposi-
tion 3.8. �

Exercises

4.4.1. Let v1, v2, . . . , vm ∈ Rn be m vectors and consider the m × n matrix M
whose rows are these vectors. Let M ′ be a matrix that is row equivalent to
M . Use Exercise 2.3.9 to show that for the rows v′1, v

′
2, . . . , v

′
m of M ′ we have

L(v1, . . . , vm) = L(v′1, . . . , v
′
m).

4.4.2. Prove Proposition 4.31.
4.4.3. Show that column equivalent matrices have the same column space, cf. Propo-

sition 4.31.
4.4.4. In the following sequence of matrices, each is obtained from the previous by

one or two elementary row operations. Find, for each 1 ≤ i ≤ 9, a matrix
Bi such that Ai = BiAi−1. Also find a matrix B such that A9 = BA0. You
may write B as a product of other matrices without actually performing the
multiplication.

A0 =


2 5 4 −3 1
1 3 −2 2 1
0 4 −1 0 3
−1 2 2 3 1

 A1 =


1 3 −2 2 1
2 5 4 −3 1
0 4 −1 0 3
−1 2 2 3 1



A2 =


1 3 −2 2 1
0 −1 8 −7 −1
0 4 −1 0 3
0 5 0 5 2

 A3 =


1 3 −2 2 1
0 −1 8 −7 −1
0 0 31 −28 −1
0 0 40 −30 −3



A4 =


1 3 −2 2 1
0 −1 8 −7 −1
0 0 31 −28 −1
0 0 9 −2 −2

 A5 =


1 3 −2 2 1
0 −1 8 −7 −1
0 0 4 −22 5
0 0 9 −2 −2



A6 =


1 3 −2 2 1
0 −1 8 −7 −1
0 0 4 −22 5
0 0 1 42 −12

 A7 =


1 3 −2 2 1
0 −1 8 −7 −1
0 0 1 42 −12
0 0 4 −22 5



A8 =


1 3 −2 2 1
0 −1 8 −7 −1
0 0 1 42 −12
0 0 0 −190 53

 A9 =


1 3 −2 2 1
0 1 −8 7 1
0 0 1 42 −12
0 0 0 190 −53


4.4.5. Show that row operations commute with column operations. In other words,

if M is a matrix and M ′ is the matrix obtained from M by first applying a
certain row operation and then a certain column operation, then applying the
two operations in the opposite order to M yields the same matrix M ′.

4.4.6. Prove Proposition 4.33.
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4.4.7. Is Corollary 4.34 also true for column equivalent matrices M and M ′? What
about matrices M and M ′ that can be obtained from each other by a sequence
of row or column operations?

4.5. Row Echelon Form

If we want to find generators for the kernel of an m×n matrix A or, equivalently,
its associated linear map fA : F n → Fm, then according to Proposition 4.31 we
may replace A by any row equivalent matrix.

Example 4.35. We want generators for the kernel of the real matrix

A =

−1 2 1 1
1 −1 1 0
2 −3 0 1

 .

We leave it to the reader to check that A is row equivalent to the matrix

A′ =

1 0 3 0
0 1 2 0
0 0 0 1

 .

(Start by multiplying the first row of A by −1 to obtain v1 = (1,−2,−1,−1) as
first row and subtract v1 and 2v1 from the second and third row, respectively.)
Hence kerA = kerA′ by Proposition 4.31. Suppose x = (x1, x2, x3, x4) ∈ kerA′.
Then we have

A′x =

1 0 3 0
0 1 2 0
0 0 0 1

 ·

x1

x2

x3

x4

 =

x1 + 3x3

x2 + 2x3

x4

 =

0
0
0

 .

This yields three equations, namely

x1 + 3x3 = 0,

x2 + 2x3 = 0,

x4 = 0.

It follows that x4 = 0 and x2 = −2x3 and x1 = −3x3, so x = x3 · (−3,−2, 1, 0).
Hence, the vector (−3,−2, 1, 0) generates the kernels of A′ and A.

The matrix A′ of Example 4.35 is said to be in row echelon form. This form
made it very easy to solve the equations (in terms of the coefficients of x ∈ R4)
that describe the fact that x ∈ kerA′. In this section we will define the row
echelon form, and we explain how to find a matrix in row echelon form that is row
equivalent to some given matrix. In the next section we will see in full generality
how to obtain generators for the kernel from the row echelon form.

A matrix is said to be in row echelon form when its nonzero rows (if they exist)
are on top and its zero rows (if they exist) on the bottom and, moreover, the first
nonzero entry in each nonzero row, the so-called pivot of that row, is farther to
the right than the pivots in the rows above.

Example 4.36. The matrix A9 of Exercise 4.4.4 is in row echelon form. The
following matrices are all in row echelon form as well, with the last one describing
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the most general shape with all pivots equal to 1.
1 4 −2 4 3
0 2 7 2 5
0 0 0 1 −1
0 0 0 0 0




1 4 −2 4
0 5 7 2
0 0 3 1
0 0 0 −1
0 0 0 0




0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0


1
2
...
r

r + 1
...
m



0 · · · 0 1 ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗
0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗ ∗ ∗ · · · ∗

...
...

...
...

...
...

...
0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

...
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0


j1 j2 . . . jr

To make the matrix A in most general shape with all pivots equal to 1 more
precise, note that there are integers 0 ≤ r ≤ m and 1 ≤ j1 < j2 < · · · < jr ≤ n
where r is the number of nonzero rows and, for each 1 ≤ i ≤ r, the number ji
denotes the column of the pivot in row i, so that if A = (aij), then aij = 0 if i > r
or if i ≤ r and j < ji, and aiji = 1 for 1 ≤ i ≤ r.

Every matrix can be brought into row echelon form by a sequence of elementary
row operations. The following procedure describes precisely how to do this. The
input is a matrix A and the output is a matrix in row echelon form that is row
equivalent to A. This algorithm is the key to most computations with matrices.
It makes all pivots equal to 1.

Proposition 4.37 (The Row Echelon Form Algorithm). Let A ∈ Mat(m× n, F )
be a matrix. The following procedure applies successive elementary row operations
to A and transforms it into a matrix A′ in row echelon form.

1. Set A′ = A, r = 0 and j0 = 0.

2. (At this point, a′ij = 0 if i > r and j ≤ jr or if 1 ≤ i ≤ r and 1 ≤ j < ji. Also,
a′iji = 1 for 1 ≤ i ≤ r.)

If the (r + 1)st up to the mth rows of A′ are zero, then stop.

3. Find the smallest j such that there is some a′ij 6= 0 with r < i ≤ m. Replace
r by r + 1, set jr = j, and interchange the rth and the ith row of A′ if r 6= i.
Note that jr > jr−1.

4. Multiply the rth row of A′ by (a′rjr)
−1.

5. For each i = r + 1, . . . ,m, add −a′ijr times the rth row of A′ to the ith row
of A′.

6. Go to Step 2.

Proof. The only changes that are done to A′ are elementary row operations
of the third, first and second kinds in steps 3, 4 and 5, respectively. Since in each
pass through the loop, r increases, and we have to stop when r = m, the procedure
certainly terminates. We have to show that when it stops, A′ is in row echelon
form.

We check that the claim made at the beginning of step 2 is correct. It is trivially
satisfied when we reach step 2 for the first time. We now assume it is OK when
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we are in step 2 and show that it is again true when we come back to step 2. Since
the first r rows are not changed in the loop, the part of the statement referring
to them is not affected. In step 3, we increase r and find jr (for the new r) such
that a′ij = 0 if i ≥ r and j < jr. By our assumption, we must have jr > jr−1.
The following actions in steps 3 and 4 have the effect of producing an entry with
value 1 at position (r, jr). In step 5, we achieve that a′ijr = 0 for i > r. So a′ij = 0
for i > r and j ≤ jr and for i = r and j < jr. This shows that the condition in
step 2 is again satisfied.

So at the end of the algorithm, the statement in step 2 is true. Also, we have seen
that 0 < j1 < j2 < · · · < jr, hence A′ has row echelon form when the procedure is
finished. �

Example 4.38. Consider the following matrix.

A =

1 2 3
4 5 6
7 8 9


Let us bring it into row echelon form.

Since the upper left entry is nonzero, we have j1 = 1. We subtract 4 times the
first row from the second and 7 times the first row from the third. This leads to

A′ =

1 2 3
0 −3 −6
0 −6 −12

 .

Now we have to distinguish two cases. If 3 = 0 in F , then

A′ =

1 2 0
0 0 0
0 0 0


is already in row echelon form. Otherwise, −3 6= 0, so we divide the second row
by −3 and then add 6 times the new second row to the third. This gives

A′′ =

1 2 3
0 1 2
0 0 0

 ,

which is in row echelon form.

Example 4.39. In Example 4.35, the matrix A′ is a matrix in row echelon form
that is row equivalent to A.

Remark 4.40. The row space of A in Example 4.38 is spanned by its three rows.
Assume 3 6= 0. By Proposition 4.31, the row spaces of A and A′′ are the same, so
this space is also spanned by the two nonzero rows of A′′. We will see in the next
chapter that the space can not be generated by fewer elements. More generally,
the number of nonzero rows in a matrix in row echelon form is the minimal number
of vectors needed to span its row space (see Theorem 5.46 and Proposition 6.9).

Example 4.41 (Avoiding denominators). The algorithm above may introduce
more denominators than needed. For instance, it transforms the matrix(

22 5
9 2

)
in two rounds as (

22 5
9 2

)
 

(
1 5

22
0 − 1

22

)
 

(
1 5

22
0 1

)
.
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Instead of immediately dividing the first row by 22, we could first subtract a
multiple of the second row from the first. We can continue to decrease the numbers
in the first column by adding multiples of one row to the other. Eventually we
end up with a 1 in the column, or, in general, with the greatest common divisor
of the numbers involved.(

22 5
9 2

)
 

R1 − 2R2

R2

(
4 1
9 2

)
 

R1

R2 − 2R1

(
4 1
1 0

)
 

R2

R1

(
1 0
4 1

)
 

R1

R2 − 4R1

(
1 0
0 1

)
.

We see that the 2 × 2 identity matrix is also a row echelon form for the original
matrix.

Note that in Example 4.41 we indicated the row operations by writing on the
left of each row of a matrix, the linear combination of the rows of the previous
matrix that this row is equal to. This is necessary, because we do not follow the
deterministic algorithm. Note that if in some step you add a multiple of a row,
say Ri, to another row, say Rj, then row Ri should appear unchanged as one of
the rows in the new matrix.

We give one more example, where we avoid denominators all the way, except for
the last step.

Example 4.42.
3 5 2 2
1 3 −4 3
2 −2 5 −1
−1 3 1 −3

 
R2

R1

R3

R4


1 3 −4 3
3 5 2 2
2 −2 5 −1
−1 3 1 −3



 

R1

R2 − 3R1

R3 − 2R1

R4 +R1


1 3 −4 3
0 −4 14 −7
0 −8 13 −7
0 6 −3 0

 
R1

R2

R3

R4 +R2


1 3 −4 3
0 −4 14 −7
0 −8 13 −7
0 2 11 −7



 

R1

R4

R3

R2


1 3 −4 3
0 2 11 −7
0 −8 13 −7
0 −4 14 −7

 
R1

R2

R3 + 4R2

R4 + 2R2


1 3 −4 3
0 2 11 −7
0 0 57 −35
0 0 36 −21



 

R1

R2

R3 −R4

R4


1 3 −4 3
0 2 11 −7
0 0 21 −14
0 0 36 −21

 
R1

R2

R3

R4 −R3


1 3 −4 3
0 2 11 −7
0 0 21 −14
0 0 15 −7



 

R1

R2

R3 −R4

R4


1 3 −4 3
0 2 11 −7
0 0 6 −7
0 0 15 −7

 
R1

R2

R3

R4 − 2R3


1 3 −4 3
0 2 11 −7
0 0 6 −7
0 0 3 7



 

R1

R2

R4

R3


1 3 −4 3
0 2 11 −7
0 0 3 7
0 0 6 −7

 
R1

R2

R3

R4 − 2R3


1 3 −4 3
0 2 11 −7
0 0 3 7
0 0 0 −21


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R1
1
2
R2

1
3
R3

− 1
21
R4


1 3 −4 3
0 1 11

2
−7

2
0 0 1 7

3
0 0 0 1


While the row echelon form of a matrix is not unique, the reduced row echelon
form below is (see Corollary 4.46).

Definition 4.43. A matrix A = (aij) ∈ Mat(m× n, F ) is in reduced row echelon
form, if it is in row echelon form and in addition all pivots equal 1 and we have
aijk = 0 for all 1 ≤ k ≤ r and i 6= k. This means that the entries above the pivots
are zero as well:

A =



0 · · · 0 1 ∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗
0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗ 0 ∗ · · · ∗

...
...

...
...

...
...

...
0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

...
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0


It is clear that every matrix can be transformed into reduced row echelon form by
a sequence of elementary row operations — we only have to change Step 5 of the
algorithm to

5. For each i = 1, . . . , r− 1, r+ 1, . . . ,m, add −a′ijr times the rth row of A′ to the
ith row of A′.

Proposition 4.44. Suppose that A ∈ Mat(m × n, F ) is a matrix in reduced row
echelon form. Then the nonzero rows of A are uniquely determined by the row
space R(A).

Proof. Let r be the number of nonzero rows of A and let j1 < j2 < . . . < jr
be the numbers of the columns with a pivot. Let v1, v2, . . . , vr be the nonzero rows
of A. Then the j1-th, j2-th, . . . , jr-th entries of the linear combination

λ1v1 + λ2v2 + · · ·+ λrvr

are exactly the coefficients λ1, λ2, . . . , λr. This implies that the nonzero vector in
R(A) with the most starting zeros is obtained by taking λ1 = . . . = λr−1 = 0, so
the vector vr is the unique nonzero vector in R(A) with the most starting zeros
of which the first nonzero entry equals 1. Thus the row space R(A) determines
vr and jr uniquely. Similarly, vr−1 is the unique nonzero vector in R(A) with
the most starting zeros of which the jr-th entry equals 0 and the first nonzero
entry equals 1. This also uniquely determines jr−1. By (downward) induction, vi
is the unique nonzero vector in R(A) with the most starting zeros of which the
ji+1-th, . . . , jr-th entries equal 0 and the first nonzero entry, the ji-th, equals 1.
This process yields exactly the r nonzero rows of A and no more, as there are no
nonzero vectors in R(A) of which the j1-th, j2-th, . . . , jr-th entries are zero. This
means that also r is determined uniquely by R(A). �

Corollary 4.45. The following statements about two matrices A,A′ ∈ Mat(m ×
n, F ) are equivalent.

(1) The matrices A and A′ are row equivalent.
(2) The row spaces R(A) and R(A′) are equal.



70 4. MATRICES

(3) For any matrices B and B′ in reduced row echelon form that are row
equivalent to A and A′, respectively, we have B = B′.

Proof. If A and A′ are row equivalent, then the row spaces R(A) and R(A′)
are the same by Proposition 4.31, which proves (1)⇒ (2). For (2)⇒ (3), suppose
that the row spaces R(A) and R(A′) are equal. Let B and B′ be any matrices in
reduced row echelon form with B and B′ row equivalent to A and A′, respectively.
By Proposition 4.31 we have R(B) = R(A) and R(B′) = R(A′), so we conclude
R(B) = R(B′). Therefore, by Proposition 4.44, the nonzero rows of B and B′

coincide, and as the matrices have the same size, they also have the same number
of zero rows. This yields B = B′. The implication (2) ⇒ (3) follows from the
fact that if B = B′ is row equivalent to both A and A′, then A and A′ are row
equivalent. �

Corollary 4.46. The reduced row echelon form is unique in the sense that if a
matrix A is row equivalent to two matrices B,B′ that are both in reduced row
echelon form, then B = B′.

Proof. This follows from Corollary 4.45 by taking A = A′. �

In other words, the m× n matrices in reduced row echelon form give a complete
system of representatives of the row equivalence classes.

Remark 4.47. It follows from Corollary 4.46 that the number r of nonzero rows
in the reduced row echelon form of a matrix A is an invariant of A. It equals the
number of nonzero rows in any row echelon form of A. We will see later that this
number r equals the so-called rank of the matrix A, cf. Section 6.2.

4.6. Generators for the kernel

If we want to compute generators for the kernel of a matrix A ∈ Mat(m× n, F ),
then, according to Proposition 4.31, we may replace A by any row equivalent
matrix. In particular, it suffices to understand how to determine generators for
the kernel of matrices in row echelon form. We start with an example.

Example 4.48. Suppose M is the matrix (over R)
1 2 −1 0 2 1 −3

0 0 1 −1 2 −1 2

0 0 0 0 1 1 1

0 0 0 0 0 0 0

 ,

which is already in row echelon form with its pivots circled. Let v1, v2, v3 denote
its nonzero rows, which generate the row space R(M). Suppose the vector x =
(x1, x2, x3, x4, x5, x6, x7) is contained in

kerM = R(M)⊥ = {x ∈ R7 : 〈vi, x〉 = 0 for i = 1, 2, 3}.
Then the coordinates x1, x3, x5, which belong to the columns with a pivot, are
uniquely determined by the coordinates x2, x4, x6, x7, which belong to the columns
without a pivot. Indeed, starting with the lowest nonzero row, the equation
〈v3, x〉 = 0 gives x5 + x6 + x7 = 0, so

x5 = −x6 − x7.
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The equation 〈v2, x〉 = 0 then gives x3 − x4 + 2x5 − x6 + 2x7, so

x3 = x4 − 2(−x6 − x7) + x6 − 2x7 = x4 + 3x6.

Finally, the equation 〈v1, x〉 = 0 gives

x1 = −2x2 + (x4 + 3x6)− 2(−x6 − x7)− x6 + 3x7 = −2x2 + x4 + 4x6 + 5x7.

Moreover, any choice for the values x2, x4, x6, x7, with these corresponding values
for x1, x3, x5, does indeed give an element of the kernel kerM , as the equations
〈vi, x〉 = 0 for 1 ≤ i ≤ 3 are automatically satisfied. With q = x2, r = x4, s = x6,
and t = x7, we may write

x =



x1

x2

x3

x4

x5

x6

x7


=



−2q + r + 4s+ 5t
q

r + 3s
r

−s− t
s
t


= q



−2
1
0
0
0
0
0


+ r



1
0
1
1
0
0
0


+ s



4
0
3
0
−1
1
0


+ t



5
0
0
0
−1
0
1


= qw2 + rw4 + sw6 + tw7,

where

w2 =



−2

1

0

0

0

0

0


, w4 =



1

0

1

1

0

0

0


, w6 =



4

0

3

0

−1

1

0


, w7 =



5

0

0

0

−1

0

1


.

This shows that the kernel kerM is generated by w2, w4, w6, w7, i.e., we have
kerM = L(w2, w4, w6, w7). In each wk, we circled the coordinates that correspond
to the columns of M with a pivot. Note that the non-circled coordinates in each wk
are all 0, except for one, the k-th coordinate, which equals 1. Conversely, for each
of the columns of M without pivot, there is exactly one wk with 1 for the (non-
circled) coordinate corresponding to that column and 0 for all other coordinates
belonging to a column without a pivot.

This could also be used to find w2, w4, w6, w7 directly: choose any column without
a pivot, say the k-th, and set the k-th coordinate of a vector w ∈ R7 equal to 1,
then set all other coordinates corresponding to columns without pivot equal to 0,
and compute the remaining coordinates. For instance, for the sixth column, which
has no pivot, we get a vector w of which the sixth entry is 1, and all other entries
corresponding to columns without pivots are 0, i.e.,

w =



∗
0
∗
0
∗
1
0


.
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The entries that correspond to columns with a pivot (so the first, third, and fifth)
can now be computed using the equations 〈vi, w〉 = 0, starting with i = 3 and
going down to i = 1. We find w = w6 in this example.

The following theorem says that we can find generators for the kernel of any matrix
in row echelon form in the same manner.

Proposition 4.49. Let A ∈ Mat(m× n, F ) be a matrix in row echelon form with
r nonzero rows and let j1 < j2 < . . . < jr be the numbers of the columns with a
pivot. Then for each 1 ≤ k ≤ n with k 6∈ {j1, j2, . . . , jr}, there is a unique vector
wk ∈ kerA such that

(1) the k-th entry of wk equals 1, and
(2) the l-th entry of wk equals 0 for all 1 ≤ l ≤ n with l 6= k and l 6∈
{j1, j2, . . . , jr}.

Furthermore, the n−r vectors wk (for 1 ≤ k ≤ n with k 6∈ {j1, j2, . . . , jr}) generate
the kernel kerA.

Proof. The proof is completely analogous to Example 4.48 and is left to the
reader. �

The computation of generators of the kernel of a matrix A is easier when A is
in reduced row echelon form. A reduced row echelon form for the matrix M of
Example 4.49, for instance, is

1 2 0 −1 0 −4 −5

0 0 1 −1 0 −3 0

0 0 0 0 1 1 1

0 0 0 0 0 0 0

 .

The circled entries of w6 of Example 4.48 are exactly the negatives of the elements
−4,−3, 1 in the nonzero rows and the sixth column. The same holds for the
other generators w2, w4, and w7. In terms of Proposition 4.49, with A = (aij)i,j in
reduced row echelon form: if 1 ≤ k ≤ n and k 6∈ {j1, j2, . . . , jr}, then the l-th entry
of wk is given by Proposition 4.49 for l 6∈ {j1, j2, . . . , jr}, while the ji-th entry of
wk is −aik for 1 ≤ i ≤ r; this yields wk = ek −

∑r
i=1 aikeji . This is summarized in

the next proposition.

Proposition 4.50. If A = (aij) ∈ Mat(m × n, F ) is a matrix in reduced row
echelon form with r nonzero rows and pivots in the columns numbered j1 < . . . <
jr, then the kernel ker(A) is generated by the n− r elements

wk = ek −
∑

1≤i≤r
ji<k

aikeji , for k ∈ {1, . . . , n} \ {j1, . . . , jr} ,

where e1, . . . , en are the standard generators of F n.

Proof. We leave it as an exercise to show that this follows from Proposition
4.49. �

Proposition 4.50 gives a very efficient way of computing the kernel of a matrix.
First bring it into reduced row echelon form using elementary row operations,
and then write down generators for the kernel according to the given recipe, one
generator for each column without pivot.
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We can now also check efficiently whether the map associated to a matrix is
injective.

Proposition 4.51. Let A ∈ Mat(m× n, F ) be a matrix and A′ a row equivalent
matrix in row echelon form. Then the associated map fA : F n → Fm is injective
if and only if A′ has n nonzero rows or, equivalently, if and only if each column
of A′ contains a pivot.

Proof. By Proposition 4.34, the map fA is injective if and only if fA′ is
injective, so it suffices to do the case A = A′. By Lemma 3.5, the map fA is
injective if and only if the kernel ker fA = kerA is zero, which, according to
Proposition 4.49, happens if and only if each of the n columns of A has a pivot,
so if and only if there are exactly n nonzero rows. �

Proposition 4.44 and Corollaries 4.45 and 4.46 state that if A is an m× n matrix
and A′ is the associated reduced row echelon form, then the nonzero rows of A′

are uniquely determined by the row space R(A) of A. The following proposition
shows how the columns of A determine which of the columns of A′ contain pivots.

Proposition 4.52. Suppose A and A′ are row equivalent m × n matrices with
A′ in row echelon form. Then for every k ∈ {1, . . . , n}, the k-th column of A′

contains a pivot if and only if the k-th column of A is not a linear combination of
the previous columns of A.

Proof. Let F be a field that A and A′ are matrices over. Suppose the column
vectors of an m× n matrix B over F are denoted by v1, v2, . . . , vn. Then the k-th
column vk of B is a linear combination of the previous columns if and only if there
are λ1, . . . , λk−1 such that vk = λ1v1 + · · ·+ λk−1vk−1, i.e., such that the element

(−λ1,−λ2, . . . ,−λk−1, 1, 0, . . . , 0︸ ︷︷ ︸
n−k

)

is contained in the kernel of B. As A and A′ have the same kernel by Proposition
4.31, the k-th column of A is a linear combination of the previous columns of A if
and only if the k-th column of A′ is a linear combination of the previous columns
of A′. Thus, we have reduced to the case A = A′ and without loss of generality,
we may and will also assume that A = A′ = (aij) ∈ Mat(m × n, F ) is in reduced
row echelon form.

Let v1, v2, . . . , vn denote the columns of A. If the k-th column vk has a pivot, say
in the i-th row, then the previous columns v1, . . . , vk−1 have a 0 on that row, so
clearly vk is not a linear combination of v1, . . . , vk−1. For the converse, let r denote
the number of nonzero rows of A and let the columns with pivot be numbered
j1, j2, . . . , jr. If the k-th column does not contain a pivot, then by Proposition
4.50 the element

wk = ek −
∑

1≤i≤r
ji<k

aikeji

is contained in the kernel, so we have Awk = 0, i.e.,

vk =
∑

1≤i≤r
ji<k

aikvji ,

and we conclude that vk is indeed a linear combination of v1, v2, . . . , vk−1. �

Exercises
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4.6.1. Prove Proposition 4.49.
4.6.2. Determine the “reduced row echelon form” for the following matrices over C

and give generators for their kernels.(
2 + i 1 1 + i

2 1− 3i 3− 5i

)  3 0 3
2 3 0
3 3 1


 −1 0 0 1 2

2 1 −1 0 2
0 0 0 −1 0




1 0 −1 0
0 2 2 −2
2 3 1 0
−2 0 2 1





CHAPTER 5

Linear independence and dimension

5.1. Linear independence

This section, like all others, has a large overlap with Stoll’s notes [S], in particular
with its chapter 6, which in turn follows essentially Chapter 3 in Jänich’s book [J].

In the context of looking at linear hulls, it is a natural question whether we really
need all the given vectors in order to generate their linear hull. Also (maybe in
order to reduce waste. . . ), it is interesting to consider minimal generating sets.
These questions lead to the notions of linear independence and basis.

Definition 5.1. Let V be an F -vector space, v1, v2, . . . , vn ∈ V. We say that
v1, v2, . . . , vn are linearly independent, if for all λ1, λ2, . . . , λn ∈ F , the equality

λ1v1 + λ2v2 + · · ·+ λnvn = 0

implies λ1 = λ2 = · · · = λn = 0. (“The zero vector cannot be written as a
nontrivial linear combination of v1, . . . , vn.”)

In a similar way we can define linear independence for arbitrary collections of
elements of V. If I is any index set (not necessarily finite) and for each i ∈ I
we have an element vi ∈ V , then we write the collection of all these elements as
(vi)i∈I . Note that such a collection has more structure than a set, as for each index
i, we know which element of the collection belongs to that index i. In other words,
we know which is the i-th element. Also, elements may occur multiple times, so
for i, j ∈ I with i 6= j, we may have vi = vj. Such a collection is also called a
labeled set, where the index i is called the label of the element vi.

Definition 5.2. A collection (vi)i∈I of elements in V is linearly independent if for
every finite subset S ⊂ I, the finite collection (vi)i∈S is linearly independent, i.e.,
for all (finite) collections (λi)i∈S of scalars in F , the equality

∑
i∈S λivi = 0 implies

λi = 0 for all i ∈ S.

Note that for finite index sets I = {1, 2, . . . , n}, Definitions 5.1 and 5.2 are equiv-
alent, so we have no conflicting definitions. As a special case, the empty sequence
or empty collection of vectors is considered to be linearly independent.

If we want to refer to the field of scalars F , we say that the given vectors are
F -linearly independent or linearly independent over F .

If v1, v2, . . . , vn (resp., (vi)i∈I) are not linearly independent, then we say that they
are linearly dependent. An equation of the form λ1v1 + λ2v2 + · · · + λnvn = 0 is
called a linear relation among the elements v1, . . . , vn; if the scalars λ1, λ2, . . . , λn
are all zero, then we call it the trivial relation, otherwise a nontrivial relation.

Example 5.3. Let V be any vector space. If a collection (vi)i∈I of elements
of V contains the element 0V ∈ V , then the collection is linearly dependent.
Furthermore, if there are i, j ∈ I with i 6= j and vi = vj, then the collection is
linearly dependent as well.

75
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Example 5.4. Let V be a vector space over a field F . Then for any v ∈ V ,
the one-element sequence v is linearly independent if and only if v 6= 0. Any two
elements v1, v2 ∈ V are linearly dependent if and only if there are s, t ∈ F , not
both 0, such that sv1 + tv2 = 0. This is the case if and only if v1 is a multiple of
v2 or v2 is a multiple of v1 (or both), because s 6= 0 implies v1 = − t

s
v2 and t 6= 0

implies v2 = − s
t
v1.

Example 5.5. For an easy example that the field of scalars matters in the context
of linear independence, consider 1, i ∈ C, where C can be considered as a real or
as a complex vector space. We then have that 1 and i are R-linearly independent
(essentially by definition of C — 0 = 0 ·1+0 · i, and this representation is unique),
whereas they are C-linearly dependent — i · 1 + (−1) · i = 0.

Example 5.6. The vectors

v1 = (1, 2, 3, 4), v2 = (5, 6, 7, 8), v3 = (9, 10, 11, 12)

in R4 are linearly dependent, as we have a linear relation v1 − 2v2 + v3 = 0.

Example 5.7. Let F be a field and V = F [x] be the vector space of all polynomials
in the variable x over F (see Example 1.23). For each n ∈ Z≥0 we have the
monomial xn. The collection (xn)n∈Z≥0

is linearly independent, because any finite

subcollection is contained in (1, x, x2, . . . , xd) for some d ∈ Z≥0 and any relation

adx
d + ad−1x

d−1 + · · ·+ a1x+ a0 = 0

(as polynomials) implies ad = ad−1 = . . . = a1 = a0 = 0.

Example 5.8. In C(R), the functions

x 7−→ 1 , x 7−→ sinx , x 7−→ cosx , x 7−→ sin2 x , x 7−→ cos2 x

are linearly dependent, since 1− sin2 x− cos2 x = 0 for all x ∈ R.

On the other hand,

x 7−→ 1 , x 7−→ sinx , x 7−→ cosx

are linearly independent. To see this, assume that λ + µ sinx + ν cosx = 0 for
all x ∈ R. Plugging in x = 0, we obtain λ + ν = 0. For x = π, we get λ− ν = 0,
which together imply λ = ν = 0. Then taking x = π/2 shows that µ = 0 as well.

Example 5.9. Consider the vectors

w1 = (1, 1, 1), w2 = (1, 2, 4), w3 = (1, 3, 9)

in R3 and suppose we have λ1w1 + λ2w2 + λ3w3 = 0. Then we have

λ1 + λ2 + λ3 = 0,

λ1 + 2λ2 + 3λ3 = 0,

λ1 + 4λ2 + 9λ3 = 0.

These equations imply λ1 = λ2 = λ3 = 0, so w1, w2, and w3 are linearly indepen-
dent.

Recall from Definition 3.14 that for any sequence C = (w1, . . . , wn) of n elements
in a vector space W over a field F , we have a unique linear map ϕC : F n → W
that sends the j-th standard vector ej to wj; the map ϕC sends (a1, . . . , an) ∈ F n

to a1w1 + · · ·+ anwn.

Proposition 5.10. Suppose W is a vector space over the field F and C =
(w1, w2, . . . , wn) a sequence of n vectors in W . Then the elements w1, w2, . . . , wn
are linearly independent if and only if kerϕC = {0}.
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Proof. The kernel of ϕC consists of all the n-tuples (λ1, . . . , λn) with λ1w1 +
· · · + λnwn = 0, so indeed, we have kerϕC = {0} if and only if the elements
w1, w2, . . . , wn are linearly independent. �

In fact, the proof shows that the nontrivial linear relations on w1, . . . , wn corre-
spond exactly with the nonzero elements of the kernel of ϕC . A statement similar
to Proposition 5.10 holds for arbitrary collections (exercise). For W = Fm, we
have the following corollary.

Corollary 5.11. Let F be a field and m a nonnegative integer. Then any vectors
w1, w2, . . . , wn ∈ Fm are linearly independent if and only if the m× n matrix that
has w1, w2, . . . , wn as columns has kernel {0}.

Proof. The linear map F n → Fm that sends ej to wj ∈ Fm corresponds
to the described matrix by Lemma 4.5 and Proposition 4.8, so this follows from
Proposition 5.10. �

Example 5.12. Let w1, w2, w3 ∈ R3 be as in Example 5.9. Then the map R3 → R3

that sends ej to wj corresponds to the matrix1 1 1
1 2 3
1 4 9


that has w1, w2, w3 as columns. It is easily checked that the kernel of this matrix
is zero, so it follows again that the vectors w1, w2, w3 are linear independent. If
we add the vector w4 = (1, 4, 16), then the vectors w1, w2, w3, w4 are linearly
independent if and only if the matrix1 1 1 1

1 2 3 4
1 4 9 16


has kernel zero. Its reduced row echelon form is1 0 0 1

0 1 0 −3
0 0 1 3


so the kernel is spanned by (−1, 3,−3, 1) and we find the linear relation −w2 +
3w2 − 3w3 + w4 = 0. We conclude that the vectors w1, w2, w3, w4 are linearly
dependent. Of course, we could have already concluded that from the fact that
the matrix with w1, w2, w3, w4 as columns has more columns than rows, so not
every column in the reduced row echelon form could have a pivot, cf. Proposition
4.51.

Lemma 5.13. Let f : V → W be a linear map of vector spaces. Then any vectors
v1, v2, . . . , vn ∈ V are linearly independent if their images f(v1), f(v2), . . . , f(vn)
are. If f is injective, then the converse holds as well.

Proof. Take any sequence C = (v1, v2, . . . , vn) of vectors in V. Then, by
Proposition 5.10, the map ϕC : F n → V sending ej to vj for 1 ≤ j ≤ n is in-
jective if and only if v1, v2, . . . , vn are linearly independent. Similarly, the com-
position f ◦ ϕC : F n → W , which sends ej to f(vj), is injective if and only if
f(v1), f(v2), . . . , f(vn) are linearly independent. Therefore, the first statement fol-
lows from the fact that if f ◦ϕC is injective, then so is ϕC . The second statement
follows from the fact that if f is injective, then ϕC is injective if and only if the
composition f ◦ ϕC is. �
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Alternative proof. Take any vectors v1, v2, . . . , vn ∈ V . Any nontrivial
relation λ1v1 + · · ·+ λnvn = 0 implies a nontrivial relation

λ1f(v1) + · · ·+ λnf(vn) = f(λ1v1 + · · ·+ λnvn) = f(0) = 0,

so if the elements v1, v2, . . . , vn are linearly dependent, then so are the elements
f(v1), f(v2), . . . , f(vn). This is equivalent to the first statement.

Suppose that f is injective. Take any linearly independent vectors v1, v2, . . . , vn ∈
V . Any linear relation

λ1f(v1) + · · ·+ λnf(vn) = 0

implies f(v) = 0 with v = λ1v1 + · · · + λnvn, so v ∈ ker f = {0} and thus v = 0.
Since v1, . . . , vn are linearly independent, this implies λ1 = . . . = λn = 0, which
implies that the elements f(v1), . . . , f(vn) are linearly independent as well. This
proves the second statement. �

From the finite case, it follows immediately that Lemma 5.13 holds for arbitrary
collections as well (exercise).

Example 5.14. Let V = R[x] be the vector space of all real polynomials, con-
taining the elements f1 = x3 − x − 3, f2 = x2 + 4, and f3 = x2 + x + 1. These
polynomials all lie in the subspace R[x]3 of all polynomials of degree at most 3, so
to check for linear independence, we may check it within R[x]3. This is obvious,
but it also follows from Lemma 5.13, with f taken to be the inclusion R[x]3 → R[x]
sending any polynomial p to itself.

The linear map c : R[x]3 → R4 that sends any polynomial a3x
3 +a2x

2 +a1x+a0 to
the sequence (a0, a1, a2, a3) of its coefficients is injective (in fact, an isomorphism),
so by Lemma 5.13, the polynomials f1, f2, and f3 are linearly independent if and
only if c(f1), c(f2), and c(f3) are. The matrix that has these vectors as columns is

M =


−3 4 1
−1 0 1
0 1 1
1 0 0

 ,

which is easily checked to have zero kernel, so c(f1), c(f2), and c(f3) are linearly
independent by Corollary 5.11, and therefore, so are f1, f2, and f3.

Note that if we had looked for explicit λ1, λ2, λ3 with λ1f1 +λ2f2 +λ3f3 = 0, then
collecting similar powers of x gives

(−3λ1 + 4λ2 + λ3) + (−λ1 + λ3)x+ (λ2 + λ3)x
2 + λ1x

3 = 0.

Each of the coefficients has to equal 0, which gives four equations, expressed by
the equation

M ·

λ1

λ2

λ3

 = 0.

The equality kerM = {0} shows λ1 = λ2 = λ3 = 0, and we conclude again that
f1, f2, and f3 are linearly independent.

Proposition 5.15. Let V be a vector space, v1, v2, . . . , vn ∈ V. Then v1, v2, . . . , vn
are linearly dependent if and only if one of the vj is a linear combination of the
others, i.e., if and only if

L(v1, v2, . . . , vn) = L(v1, . . . , vj−1, vj+1, . . . , vn)
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for some j ∈ {1, 2, . . . , n}. A similar statement holds for any collection (vi)i∈I of
vectors in V .

Proof. Let us first assume that v1, v2, . . . , vn are linearly dependent. Then
there are scalars λ1, λ2, . . . , λn, not all zero, such that

λ1v1 + λ2v2 + · · ·+ λnvn = 0 .

Let j be such that λj 6= 0. Then

vj = −λ−1
j (λ1v1 + · · ·+ λj−1vj−1 + λj+1vj+1 + · · ·+ λnvn) .

Conversely, assume that vj is a linear combination of the other vectors:

vj = λ1v1 + · · ·+ λj−1vj−1 + λj+1vj+1 + · · ·+ λnvn .

Then
λ1v1 + · · ·+ λj−1vj−1 − vj + λj+1vj+1 + · · ·+ λnvn = 0 ,

so the given vectors are linearly dependent. Given that a collection (vi)i∈I is lin-
early dependent if and only if for some finite subset S ⊂ I, the finite subcollection
(vi)i∈S is linearly dependent, the last statement also follows. �

If we take the order of the vectors into consideration, we can make the following
stronger statement.

Proposition 5.16. Let V be a vector space, v1, v2, . . . , vn ∈ V. Then the ele-
ments v1, v2, . . . , vn are linearly dependent if and only if one of the vj is a linear
combination of the previous ones, i.e., if and only if

vj ∈ L(v1, . . . , vj−1)

for some j ∈ {1, 2, . . . , n}. A similar statement holds for infinite sequences of
vectors in V .

Proof. Exercise. �

Example 5.17. Consider the real polynomials

f1 = 1, f2 = x+ 2, f3 = x2 − 2x+ 3, f4 = 2x4 − 2x2 + 5

inside the real vector space R[x] (cf. Example 1.5 and Warning 1.24). The degree
of each polynomial is higher than the degree of all the previous ones, so none of
the polynomials is a linear combination of the previous ones and we conclude by
Proposition 5.16 that the polynomials are linearly independent.

Example 5.18. Take the vectors

v1 = (1, 2, 1,−1, 2, 1, 0),

v2 = (0, 1, 1, 0,−1,−2, 3),

v3 = (0, 0, 0, 3, 3,−1, 2),

v4 = (0, 0, 0, 0, 0, 6, 4)

in Q7. We consider them in opposite order, so v4, v3, v2, v1. Then for each vector,
the first coordinate that is nonzero (namely the sixth, fourth, second, and first
coordinate respectively), is zero for all previous vectors. This implies that no
vector is a linear combination of the previous ones, so the vectors are linearly
independent by Proposition 5.16.

Proposition 5.19. Let v1, v2, . . . , vr be the nonzero rows of a matrix in row ech-
elon form. Then v1, v2, . . . , vr are linearly independent.
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Proof. The proof is completely analogous to Example 5.18 and is left to the
reader. �

Proposition 5.20. Let A be an m× n matrix in row echelon form. Let r be the
number of nonzero rows in A. Then the n− r elements wk (for all 1 ≤ k ≤ n for
which the k-th column contains no pivot) of Proposition 4.49 (or Proposition 4.50
if A is in reduced row echelon form) are linearly independent.

Proof. For each k with 1 ≤ k ≤ n, for which the k-th column of A contains no
pivot, the element wk has a 1 on the k-th coordinate, where all the other n− r− 1
elements have a 0. This implies that none of the wk is a linear combination of the
others, so by Proposition 5.15, these n− r elements are linearly independent. �

Exercises

5.1.1. Which of the following sequences of vectors in R3 are linearly independent?
(1)

(
(1, 2, 3), (2, 1,−1), (−1, 1, 1)

)
,

(2)
(

(1, 3, 2), (1, 1, 1), (−1, 3, 1)
)
.

5.1.2. Are the polynomials 3, x − 1, x2 − 3x + 2, x4 − 3x + 13, x7 − x + 14 linearly
independent?

5.1.3. Are the polynomials x7−2x+1, 5x2, 2x4−5x3, x, x6−3x linearly independent?
5.1.4. Are the vectors

v1 = (1, 4, 2, 3, 5),

v2 = (−1, 7, 2, 3, 6),

v3 = (4, 2, 3,−3, 4),

v4 = (2,−3, 1, 4, 2),

v5 = (6, 5, 3,−2,−4),

v6 = (1,−7, 3, 2, 5)

in R5 linearly independent? (Hint: do not start a huge computation)
5.1.5. Prove Proposition 5.19.
5.1.6.

(1) Prove Proposition 5.16.
(2) Phrase and prove a version of Proposition 5.16 for collections of vectors

indexed by Z≥0, i.e., for infinite sequences v0, v1, v2, . . ..
(3) Phrase and prove a version of Proposition 5.16 any collection of vectors

indexed by a totally ordered set I.
5.1.7. Suppose W is a vector space over a field F , containing a (possibly infinite)

collection (wi)i∈I of elements. Let ϕ : F (I) → W be the unique linear map
sending the standard vector ei to wi for all i ∈ I (see Exercise 3.2.20). Show
that the collection (wi)i∈I is linearly independent if and only if ϕ is injective.

5.1.8. State and prove a generalization of Proposition 5.10 for arbitrary collections
of vectors, cf. Exercise 3.2.20.

5.1.9. State and prove a generalization of Lemma 5.13 for arbitrary collections of
vectors.

5.2. Bases

Definition 5.21. Let V be a vector space. A sequence (v1, v2, . . . , vn) of elements
of V is called a basis of V if v1, v2, . . . , vn are linearly independent, and V =
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L(v1, v2, . . . , vn). We also say that the elements v1, v2, . . . , vn form a basis for
V . More generally, a basis is a collection (vi)i∈I of vectors in V that is linearly
independent and generates V.

Note that the elements of a basis (v1, v2, . . . , vn) have a specific order. Also in the
general case of arbitrary collections, a basis (vi)i∈I has more structure than just
a set. For each index i ∈ I, we know which element of the basis belongs to that
index i. In other words, we know which is the i-th element. See also the remark
between Definitions 5.1 and 5.2.

Example 5.22. The most basic example of a basis is the canonical basis or stan-
dard basis of F n. This is E = (e1, e2, . . . , en), where

e1 = (1, 0, 0, . . . , 0, 0)

e2 = (0, 1, 0, . . . , 0, 0)

...
...

en = (0, 0, 0, . . . , 0, 1) .

Example 5.23. Let X be a finite set and F a field. For each x ∈ X, we define
the function fx : X → F that sends x to 1 and every other element of X to 0.
Then the collection (fx)x∈X is a basis for the vector space FX . Compare this to
the previous example. For infinite sets X, see Exercise 5.2.5.

Example 5.24 (Basis of row space and kernel). Let A ∈ Mat(m × n, F ) be a
matrix in row echelon form with r nonzero rows. Then these r rows form a basis
for the row space R(A), as they generate the row space by definition and they are
linearly independent by Proposition 5.19. The n−r elements wk (for all 1 ≤ k ≤ n
for which the k-th column contains no pivot) of Proposition 4.49 (or Proposition
4.50 if A is in reduced row echelon form) form a basis of the kernel of A, as they
generate the kernel by Proposition 4.49 or 4.50 and they are linearly independent
by Proposition 5.20.

Remark 5.25 (Basis of U and U⊥ using rows). We can use Example 5.24 to find
a basis of a subspace U of F n generated by elements v1, v2, . . . , vm. First we let
A denote the m × n matrix of which the rows are v1, v2, . . . , vm. Then we apply
a sequence of elementary row operations to A to obtain a matrix A′ that is in
row echelon form. Since the row spaces R(A) and R(A′) are equal by Proposition
4.31, the nonzero rows of A′ form a basis for R(A′) = R(A) = U by Example 5.24.
Moreover, the subspace U⊥ equals kerA = kerA′ by Propositions 4.13 and 4.31,
so Example 5.24 also gives a basis for U⊥.

Remark 5.25 puts generators of a subspace U ⊂ F n as rows in a matrix in order to
find a basis for U and U⊥. In Proposition 5.28 we will describe a method to find
a basis for U that puts generators of U as columns in a matrix. We first phrase a
useful lemma.

Lemma 5.26. Suppose V is a vector space and v1, v2, . . . , vn ∈ V . Let I ⊂
{1, 2, . . . , n} be the set of all i for which vi is not a linear combination of v1, . . . , vi−1.
Then the collection (vi)i∈I is a basis for L(v1, v2, . . . , vn).

Proof. Exercise. �
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Example 5.27. Consider the matrix

A =


1 1 2 1 3 4 0
0 1 −1 2 1 2 0
0 0 0 1 0 2 −3
0 0 0 0 0 1 1
0 0 0 0 0 0 0

 ,

which is in row echelon form. By Proposition 4.52, the columns with a pivot, i.e.,
the first, second, fourth, and sixth, are exactly the columns that are not a linear
combination of the previous columns of A. From Lemma 5.26 we conclude that
these four columns form a basis for the column space C(A) of A.

We can combine Proposition 4.52 and Lemma 5.26 to make a method to determine
a basis for the column space of a matrix.

Proposition 5.28 (Basis of column space). Let A be an m × n matrix over a
field F with columns w1, . . . , wn. Let A′ be a matrix in row echelon form that
is row equivalent to A. Let I ⊂ {1, . . . , n} be the set of all indices of columns
of A′ with a pivot. Then the collection (wi)i∈I is a basis for the column space
C(A) = L(w1, . . . , wn) of A.

Proof. By Proposition 4.52, the collection (wi)i∈I consists exactly of those
columns wi of A that are not a linear combination of the previous columns of A.
By Lemma 5.26, this implies that this collection (wi)i∈I is a basis for the space
L(w1, . . . , wn) = C(A). �

Remark 5.29 (Basis of U using columns). We can use Proposition 5.28 to deter-
mine a basis of a subspace U of F n generated by elements w1, w2, . . . , wm. First
we let B denote the n×m matrix of which the columns are w1, w2, . . . , wm. Note
that B = A> for A as in Remark 5.25. Then we apply a sequence of elementary
row operations to B to obtain a matrix B′ that is in row echelon form, and we let
I denote the set of all indices i with 1 ≤ i ≤ n for which the i-th column contains
a pivot. Then the collection (wi)i∈I is a basis for U = C(A).

An advantage of this method is that the basis we find consists entirely of vectors
that we started with.

A summary of the idea behind this is the following. Note that row operations may
change the column space, but the kernel is preserved, which means that linear
relations among the columns of a matrix B are preserved among the columns of a
row equivalent matrix B′ (and vice versa). If B′ is a matrix in row echelon form,
the existence of linear relations can be read off easily from the pivots.

Example 5.30. Let us determine a basis for the subspace U ⊂ R4 generated by

v1 = (1, 0, 2,−1),

v2 = (0, 1, 0, 2),

v3 = (1, 2, 2, 3),

v4 = (1,−1, 0, 1),

v5 = (0, 3, 2, 2).
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The 4× 5 matrix B with these vectors as columns has reduced row echelon form
1 0 1 0 1
0 1 2 0 2
0 0 0 1 −1
0 0 0 0 0

 .

The pivots are contained in columns 1, 2, and 4, so the first, second, and fourth
column of B form a basis (v1, v2, v4) for U . From the reduced row echelon form we
can also read off the linear relations v3 = v1 + 2v2 and v5 = v1 + 2v2 − v4, which
correspond to the generators (1, 2,−1, 0, 0) and (1, 2, 0,−1,−1) of the kernel (cf.
Proposition 4.50).

Recall from Definition 3.14, as in the previous section, that for any sequence
C = (w1, . . . , wn) of n elements in a vector space W over a field F , we have a
unique linear map ϕC : F n → W that sends the j-th standard vector ej to wj; the
map ϕC sends (a1, . . . , an) ∈ F n to a1w1 + · · ·+ anwn.

Proposition 5.31. Suppose W is a vector space over the field F and C =
(w1, w2, . . . , wn) a sequence of n vectors in W . Then C is a basis for W if and
only if the map ϕC : F n → W is an isomorphism.

Proof. The map ϕC is injective if and only if w1, . . . , wn are linearly inde-
pendent by Proposition 5.10. The map ϕC is surjective if and only if w1, . . . , wn
generate W (see the remark below Proposition 3.13). The statement follows. �

A statement similar to Proposition 5.31 holds for arbitrary collections (exercise).

From Proposition 5.15 above, we see that a basis of V is a minimal generating set
of V, be it with an ordering or labels, in the sense that we cannot leave out some
element and still have a generating set.

What is special about a basis among generating sets?

Lemma 5.32. Suppose V is an F -vector space. Then a sequence (v1, v2, . . . , vn)
of elements in V is a basis for V if and only if for every v ∈ V , there are unique
scalars λ1, λ2, . . . , λn ∈ F such that

v = λ1v1 + λ2v2 + · · ·+ λnvn .

Proof. Set C = (v1, v2, . . . , vn). Then by Proposition 5.31, the sequence C
is basis for V if and only if ϕC is an isomorphism. On the other hand, ϕC is
surjective if and only if for every v ∈ V , there are scalars λ1, λ2, . . . , λn ∈ F such
that

v = λ1v1 + λ2v2 + · · ·+ λnvn,

and ϕC is injective if and only if such scalars are unique, if they exist. It follows
that ϕC is bijective if and only if there are unique scalars satisfying the given
equation. This proves the lemma. �

Alternative proof. Suppose that the sequence (v1, v2, . . . , vn) is a basis for
V . The existence of (λ1, λ2, . . . , λn) ∈ F n such that

v = λ1v1 + λ2 + · · ·+ λnvn

follows from the fact that v1, v2, . . . , vn generate V.

To show uniqueness, assume that (µ1, µ2, . . . , µn) ∈ F n also satisfy

v = µ1v1 + µ2v2 + · · ·+ µnvn .
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Taking the difference, we obtain

0 = (λ1 − µ1)v1 + (λ2 − µ2)v2 + · · ·+ (λn − µn)vn .

Since v1, v2, . . . , vn are linearly independent, it follows that

λ1 − µ1 = λ2 − µ2 = · · · = λn − µn = 0 ,

i.e., (λ1, λ2, . . . , λn) = (µ1, µ2, . . . , µn). The converse is left as an exercise. �

Lemma 5.33. Let f : V → W be an isomorphism of vector spaces and v1, v2, . . . , vn
elements of V . Then the elements v1, v2, . . . , vn form a basis for V if and only if
their images f(v1), f(v2), . . . , f(vn) form a basis for W .

Proof. Set C = (v1, v2, . . . , vn). By Proposition 5.31, the elements v1, v2, . . . , vn
form a basis for V if and only if ϕC is an isomorphism. The composition f ◦
ϕC : F n → W sends ej to f(vj), so the elements f(v1), f(v2), . . . , f(vn) form a
basis for W if and only if f ◦ϕC is an isomorphism. The lemma now follows from
the fact that ϕC is an isomorphism if and only if the composition f ◦ ϕC is. �

Alternative proof. Suppose v1, v2, . . . , vn form a basis for V . Then the
elements v1, . . . , vn are linearly independent and since f is injective, the linear
independence of f(v1), . . . , f(vn) follows from Lemma 5.13. Because v1, . . . , vn
generate V , we also have

L (f(v1), . . . , f(vn)) = f (L(v1, . . . , vn)) = f(V ) = W

by Lemma 3.3, so f(v1), . . . , f(vn) generate W , so they form a basis. The converse
statement follows by applying the same argument to f−1. �

Proposition 5.34. Let V and W be vector spaces, f : V → W a linear map, and
let v1, . . . , vn be a basis of V. Then

(1) f is injective if and only if f(v1), . . . , f(vn) are linearly independent,

(2) f is surjective if and only if L(f(v1), . . . , f(vn)) = W , and

(3) f is an isomorphism if and only if f(v1), . . . , f(vn) is a basis of W.

Proof. The proof of the first two statements is an exercise; the third follows
from the first two. �

Lemmas 5.32 and 5.33 and Proposition 5.34 also hold for arbitrary collections
(exercise).

Exercises

5.2.1. Determine a basis for the subspaces of Rn generated by
(1) v1 = (1, 3), v2 = (2, 1), v3 = (1, 1),
(2) v1 = (1, 3, 1), v2 = (2, 1, 2), v3 = (1, 1, 1),
(3) v1 = (1, 3, 1), v2 = (3, 1, 3), v3 = (1, 1, 1),
(4) v1 = (1, 2, 3), v2 = (4, 5, 6), v3 = (7, 8, 9),
(5) v1 = (1, 2, 3, 4), v2 = (4, 3, 2, 1), v3 = (1,−1, 1,−1),

5.2.2. Redo Exercise 5.1.4.
5.2.3. Finish the alternative proof of Lemma 5.32.
5.2.4. For each of the matrices of Exercise 4.6.2, select some columns that form a

basis for the column space of that matrix.
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5.2.5. This exercise generalizes Example 5.23. Let X be any set and F a field. For
each x ∈ X, we define the function fx : X → F that sends x to 1 and every
other element of X to 0.
(1) Give an example where the collection (fx)x∈X is not a basis for FX .
(2) Show that the collection (fx)x∈X is a basis of the vector space F (X).

5.2.6. State and prove a generalization of Proposition 5.31 for arbitrary collections
of vectors, cf. Exercise 3.2.20.

5.2.7. State and prove an analog of Lemma 5.32 for arbitrary collections (vi)i∈I of
vectors in V .

5.2.8. Use Proposition 3.13 to prove the following generalization of Proposition 3.13
itself: “Let V and W be vector spaces over a field F , and let B = (v1, v2, . . . , vn)
be a basis for V . Then for every sequence w1, w2, . . . , wn of vectors in W there
is a unique linear map f : V →W such that f(vj) = wj for all j ∈ {1, . . . , n}.”
Also state and prove an analog for arbitrary collections (vi)i∈I (basis for V )
and (wi)i∈I (general elements in W ).

5.2.9. Prove Lemma 5.26. Is the same statement true for infinite sequences v1, v2, v3, . . .
? What about sequences (vi)i∈Z = . . . , v−1, v0, v1, . . . that are infinite in both
directions, with the hypothesis that I consist of all i ∈ Z for which vi is not a
linear combination of the previous elements?

The last exercises relate linear independence and generating on one hand to in-
jectivity and surjectivity on the other. They are related to Lemmas 5.13 and 5.33
and Proposition 5.34. We will not use/assume in these statements that every
vector space has a basis, cf. Warning 5.52, which is why it is included as explicit
hypothesis whenever needed.

5.2.10. State and prove an analog of Lemma 5.33 for arbitrary collections (vi)i∈I of
vectors in V .

5.2.11. Prove Proposition 5.34. Also state and prove an analog of Proposition 5.34
for an arbitrary collection (vi)i∈I of vectors as a basis for V (follows from the
next three exercises).

5.2.12. Let f : V →W be a linear map. Show that the following are equivalent.
(1) The map f is injective.
(2) For every nonnegative integer n and every sequence v1, . . . , vn ∈ V of

linearly independent vectors, the images f(v1), . . . , f(vn) are linearly in-
dependent in W .

(3) For every collection (vi)i∈I of linearly independent vectors in V , the col-
lection (f(vi))i∈I of images is linearly independent in W .

Show also that if V has a (not necessarily finite) basis, then these statements
are also equivalent to the following.
(4) For all bases (vi)i∈I for V , the collection (f(vi))i∈I of images is linearly

independent in W .
(5) There exists a basis (vi)i∈I for V for which the collection (f(vi))i∈I of

images is linearly independent in W .
5.2.13. Let f : V →W be a linear map. Show that the following are equivalent.

(1) The map f is surjective.
(2) For every collection (vi)i∈I of vectors that generate V, the collection (f(vi))i∈I

of their images generates W .
(3) There is a collection (vi)i∈I of vectors in V for which the collection (f(vi))i∈I

of their images generates W .
Explain why the analog for finite sequences is missing among these statements
by giving an example of a linear map f : V → W that is not surjective, but
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such that for all sequences v1, v2, . . . , vn of elements in V that generate V , the
images f(v1), f(v2), . . . , f(vn) generate W .

5.2.14. Let f : V → W be a linear map and assume V has a (not necessarily finite)
basis. Then the following are equivalent.
(1) The map f is an isomorphism.
(2) For every basis (vi)i∈I for V, the collection (f(vi))i∈I is a basis for W .
(3) There exists a basis (vi)i∈I for V for which the collection (f(vi))i∈I is a

basis for W .

5.3. The basis extension theorem and dimension

Proposition 5.31 says that if v1, v2, . . . , vn form a basis for a vector space V , then V
is isomorphic to the standard vector space F n, so that we can express everything
in V in terms of F n. Since we seem to know “everything” about a vector space
as soon as we know a basis, it makes sense to use bases to measure the “size”
of vector spaces. In order for this to make sense, we need to know that any two
bases of a given vector space have the same size. The key to this (and many other
important results) is the following.

Theorem 5.35 (Basis Extension Theorem). Let V be a vector space, and let
v1, . . . , vr, w1, . . . , ws ∈ V be vectors such that v1, . . . , vr are linearly independent
and V = L(v1, . . . , vr, w1, . . . , ws). Then there is t ∈ N0 and indices i1, . . . , it ∈
{1, . . . , s} such that (v1, . . . , vr, wi1 , . . . , wit) is a basis of V.

The Basis Extension Theorem says that when v1, . . . , vr and w1, . . . , ws are as
given, then by adding suitably chosen vectors from w1, . . . , ws, we can extend
v1, . . . , vr to a basis of V. Make sure you understand how we have formalized the
notion of “suitably chosen vectors from w1, . . . , ws!”

Note that this is an existence theorem — what it says is that if we have a bunch of
vectors that is ‘too small’ (linearly independent, but not necessarily generating)
and a larger bunch of vectors that is ‘too large’ (generating but not necessarily
linearly independent), then there is a basis ‘in between’. Proposition 5.38 tells us
how to actually find such a basis, i.e., how to select the wj that we have to add,
in the case V is a subspace of F n.

Proof of Theorem 5.35. The idea of the proof is simply to add vectors
from the wj’s as long as this is possible while keeping the sequence linearly inde-
pendent. When no further lengthening is possible, we should have a basis. So we
are looking for a maximal linearly independent sequence v1, . . . , vr, wi1 , . . . , wit .
Note that there cannot be repetitions among the wi1 , . . . , wit if this sequence is
to be linearly independent. Therefore t ≤ s, and there must be such a sequence
of maximal length. We have to show that it generates V. It suffices to show
that wj ∈ L(v1, . . . , vr, wi1 , . . . , wit) for all j ∈ {1, . . . , s}. This is clear if j = ik
for some k ∈ {1, . . . , t}. Otherwise, assume that wj is not a linear combination
of v1, . . . , vr, wi1 , . . . , wit . Then v1, . . . , vr, wi1 , . . . , wit , wj would be linearly inde-
pendent, which would contradict our choice of a linearly independent sequence
of maximal length. So wj must be a linear combination of our vectors, and the
theorem is proved. �

Alternative proof. Here is an alternative proof, using induction on the
number s of vectors wj. The base case is s = 0. In this case, the assumptions
tell us that v1, . . . , vr are linearly independent and generate V, so we have a ba-
sis. For the induction step, we assume the statement of the theorem is true for
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w1, . . . , ws (and any choice of linearly independent vectors v1, . . . , vr), and we have
to prove it for w1, . . . , ws, ws+1. First assume that L(v1, . . . , vr, w1, . . . , ws) = V.
Then the induction hypothesis immediately gives the result. So we assume now
that L(v1, . . . , vr, w1, . . . , ws) ( V. Then ws+1 is not contained in the subspace
L(v1, . . . , vr, w1, . . . , ws), so ws+1 is not a linear combination of v1, . . . , vr, hence
v1, . . . , vr, ws+1 are linearly independent. Now we can apply the induction hy-
pothesis again (to v1, . . . , vr, ws+1 and w1, . . . , ws); it tells us that we can extend
v1, . . . , vr, ws+1 to a basis by adding suitable vectors from w1, . . . , ws. This gives
us what we want. �

Example 5.36. Consider the real polynomials f1 = x2 − 1, f2 = x3 − x, and
f3 = x3− 2x2−x+ 1 in the vector space R[x]3 of polynomials of degree at most 3.
It is easy to check that these polynomials are linearly independent. On the other
hand, the monomials 1, x, x2, x3 generate R[x]3, so certainly

f1, f2, f3, 1, x, x
2, x3

generate R[x]3. By the Basis Extension Theorem we can extend f1, f2, f3 to a
basis by adding suitably chosen monomials. The monomials 1 and x2 are already
contained in L(f1, f2, f3), so adding either of those to f1, f2, f3 would cause non-
trivial linear relations. The element x, however, is not contained in L(f1, f2, f3),
because f1, f2, f3, x are linearly independent (check this). We also have

1 = f2 − 2f1 − f3, x2 = f2 − f1 − f3, and x3 = f2 + x,

so the generators 1, x, x2, x3 of R[x]3 are contained in L(f1, f2, f3, x), and therefore
L(f1, f2, f3, x) = R[x]3, so f1, f2, f3, x generate R[x]3 and form a basis for R[x]3.
We could have also added x3 to f1, f2, f3 to obtain a basis.

Example 5.37. Let us revisit the previous example. The linear map

ϕ : R4 → R[x]3, (a0, a1, a2, a3) 7→ a3x
3 + a2x

2 + a1x+ a0

is an isomorphism, so ϕ and ϕ−1 send linearly independent vectors to linearly
independent vectors (Lemma 5.13) and bases to bases (Lemma 5.33). Setting
vi = ϕ−1(fi) for i = 1, 2, 3 and wj = ϕ−1(xj) for j = 0, 1, 2, 3, we get wj = ej and

v1 =


−1
0
1
0

 , v2 =


0
−1
0
1

 , and v3 =


1
−1
−2
1

 .

We wish to extend v1, v2, v3 to a basis of R4 by adding suitably chosen elements
from {e1, e2, e3, e4}. In order to do so, we use Proposition 5.28 and Remark 5.29
and put the seven vectors as columns in a matrix

A =


−1 0 1 1 0 0 0
0 −1 −1 0 1 0 0
1 0 −2 0 0 1 0
0 1 1 0 0 0 1

 ,

of which the reduced row echelon form equals
1 0 0 2 0 −1 0
0 1 0 1 0 1 1
0 0 1 −1 0 −1 0
0 0 0 0 1 0 1

 .

The pivots in the latter matrix are contained in columns 1, 2, 3, and 5, so by
Proposition 5.28 and Remark 5.29, the column space C(A) has a basis consisting
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of the corresponding columns of B. We conclude that (v1, v2, v3, e2) is a basis of
C(A) = R4 and after applying ϕ, we find that (f1, f2, f3, x) is a basis for R[x]3,
which is exactly the basis we had found before.

Note that it was not a coincidence that the first three columns of the matrix in
row echelon form contained a pivot, because we already knew that the elements
v1, v2, v3 are linearly independent, so none of these is a linear combination of the
previous, cf. Proposition 4.52.

The idea of the example above can be used in general to extend some linearly inde-
pendent vectors in a subspace V of F n to a basis of V . The following proposition
makes this precise.

Proposition 5.38 (Explicit Basis Extension Theorem). Let V ⊂ F n be a subspace
containing elements v1, . . . , vr, w1, . . . , ws ∈ V such that v1, . . . , vr are linearly
independent and V = L(v1, . . . , vr, w1, . . . , ws). Let A be the n × (r + s) matrix
with columns v1, . . . , vr, w1, . . . , ws, let A′ be the associated reduced row echelon
form, and I the set of all indices i with 1 ≤ i ≤ s for which the (r + i)-th column
of A′ has a pivot. Then v1, v2, . . . , vr and (wi)i∈I together form a basis for V .

Proof. The vectors v1, . . . , vr are linearly independent, so none is a linear
combination of the others, so the first r columns of A′ contain a pivot by Propo-
sition 4.52. This means that the elements v1, v2, . . . , vr and (wi)i∈I correspond
exactly to the columns of A′ that contain a pivot. By Proposition 5.28, these
elements form a basis for the column space C(A) of A, which equals V by con-
struction. �

The Basis Extension Theorem implies another important statement, namely the
Exchange Lemma. It says that if we have two finite bases of a vector space, then
we can trade any vector of our choice in the first basis for a vector in the second
basis in such a way as to still have a basis.

Lemma 5.39 (Exchange Lemma). If v1, . . . , vn and w1, . . . , wm are two bases of
a vector space V, then for each i ∈ {1, 2, . . . , n} there is some j ∈ {1, 2, . . . ,m}
such that v1, . . . , vi−1, wj, vi+1, . . . , vn is again a basis of V.

Proof. Fix i ∈ {1, . . . , n}. Since v1, . . . , vn are linearly independent, vi cannot
be a linear combination of the remaining v’s. So U = L(v1, . . . , vi−1, vi+1, . . . , vn) (
V . This implies that there is some j ∈ {1, . . . ,m} such that wj /∈ U (if all
wj ∈ U , then V ⊂ U). This in turn implies that v1, . . . , vi−1, wj, vi+1, . . . , vn
is linearly independent. If it is not a basis of V , then by the Basis Extension
Theorem, v1, . . . , vi−1, wj, vi+1, . . . , vn, vi must be a basis (we apply the Basis Ex-
tension Theorem to the linearly independent vectors v1, . . . , vi−1, wj, vi+1, . . . , vn
and the additional vector vi; together they generate V ). However, the vectors in
this latter sequence are not linearly independent, since wj is a linear combination
of v1, . . . , vn. So v1, . . . , vi−1, wj, vi+1, . . . , vn must already be a basis of V. �

Theorem 5.40. If v1, v2, . . . , vn and w1, w2, . . . , wm are two bases of a vector
space V, then n = m.

Proof. Assume, without loss of generality, that n > m. By repeatedly ap-
plying the Exchange Lemma, we can successively replace v1, v2, . . . , vn by some
wj and still have a basis. Since there are more v’s than w’s, the resulting sequence
must have repetitions and therefore cannot be linearly independent, contradic-
tion. �
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This implies that the following definition makes sense.

Definition 5.41. If a vector space V over a field F has a basis (v1, v2, . . . , vn),
then n ≥ 0 is called the dimension of V , written n = dimV = dimF V, and we
say that V is finite-dimensional. If V does does not have a finite basis, then we
write dimV =∞ and we say that V is infinite-dimensional.

Example 5.42. The empty sequence is a basis of the zero space, so dim {0} = 0.

Example 5.43. The canonical basis of F n has length n, so dimF n = n.

Example 5.44. Let F be a field. The vector space F [x] of all polynomials in the
variable x with coefficients in F contains polynomials of arbitrarily high degree.
The polynomials in any finite sequence f1, f2, . . . , fr have bounded degree, so they
can not generate F [x]. This shows that no finite sequence of polynomials can form
a basis for F [x], so dimF [x] =∞.

Example 5.45. Let F be a field and d ≥ 0 an integer. Then the vector space F [x]d
of all polynomials of degree at most d has a basis (1, x, x2, . . . , xd), so dimF [x]d =
d+ 1.

Theorem 5.46. Let V be a vector space containing elements v1, . . . , vr. Then the
following statements hold.

(1) If v1, v2, . . . , vr are linearly independent, then we have r ≤ dimV with
equality if and only if (v1, . . . , vr) is a basis for V .

(2) If v1, v2, . . . , vr generate V , then we have dimV ≤ r with equality if and
only if (v1, . . . , vr) is a basis for V .

(3) If r = dimV , then v1, . . . , vr are linearly independent if and only if they
generate V .

Proof. For (1), we are done if dimV =∞, so we assume that dimV is finite-
dimensional, say dimV = s with a basis w1, w2, . . . , ws for V . We apply the Basis
Extension Theorem to the sequences v1, . . . , vr and w1, . . . , ws. As we have

V = L(w1, . . . , ws) = L(v1, . . . , vr, w1, . . . , ws),

we can extend v1, . . . , vr to a basis of length s. We immediately conclude r ≤ s =
dimV and equality holds if and only if (v1, . . . , vr) needs no extension, i.e., it is
already a basis.

For (2), we apply the Basis Extension Theorem to the empty sequence and the
sequence v1, . . . , vr. The empty sequence can be extended to a basis by adding
suitably chosen elements from v1, . . . , vr. As no element occurs doubly in such
a basis (or it would not be linearly independent), the basis contains at most r
elements, so dimV ≤ r.

If the inequality dimV ≤ r is an equality, then each vi is included in the basis,
as otherwise some element would occur doubly. This shows that v1, . . . , vr are
linearly independent, so (v1, . . . , vr) is a basis for V . Conversely, if (v1, . . . , vr) is a
basis for V , then we have dimV = r. Statement (3) follows from (1) and (2). �

Remark 5.47. Theorem 5.46(2) shows that if V is a finitely generated vector
space, then V has a finite basis and a finite dimension.

Note that Theorem 5.46 yields a quite strong existence statement: if V is a vector
space of dimension dimV = n containing a sequence C = (v1, v2, . . . , vr) of r ele-
ments in V , then the nontrivial linear relations among v1, v2, . . . , vr correspond to
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the nonzero elements in the kernel of ϕC : F r → V (see remark below Proposition
5.10), and part (1) guarantees the existence of such a nontrivial linear relation
whenever r > n without the need to do any computation. This is very useful

in many applications. On the other hand, it is quite a different matter to actu-
ally find such a relation: the proof is non-constructive and we usually need some
computational method to exhibit an explicit relation.

Part (1) of Theorem 5.46 tells us that in a vector space of (finite) dimension n,
there is an upper bound (namely, n) for the length of a linearly independent
sequence of vectors. We can use this to show in another way that dimF [x] = ∞
(see Example 5.44).

Example 5.48. Let F be a field. The vector space F [x] of all polynomials in
the variable x with coefficients in F contains the monomials 1, x, x2, x3, x4, . . .,
which are linearly independent, see Example 5.7. This means that we can find
arbitrarily many linearly independent elements in F [x], so F [x] can not have a
finite basis by Theorem 5.46(1). We conclude, again, dimF [x] = ∞. Note that
since F [x] = L({xn : n ∈ N0}), we have shown that the collection (xn)n∈N0 is a
basis of F [x].

With a little more effort, we can also show that the subspace of RR of real poly-
nomial functions does not have a finite basis either.

Example 5.49. Let us consider again the linear subspace of polynomial functions
in C(R) (the vector space of continuous functions on R), compare Example 2.34.
Let us call this space P :

P = {f ∈ C(R) : ∃n ∈ N0 ∃a0, . . . , an ∈ R ∀x ∈ R : f(x) = anx
n + · · ·+ a1x+ a0}

Denote as before by fn the nth power function: fn(x) = xn. I claim that the col-
lection (f0, f1, f2, . . . ) = (fn)n∈N0 is linearly independent. Recall that this means
that the only way of writing zero (i.e., the zero function) as a finite linear com-
bination of the fj is with all coefficients equal to zero. If we let n be the largest
number such that fn occurs in the linear combination, then it is clear that we can
write the linear combination as

λ0f0 + λ1f1 + · · ·+ λnfn = 0 .

We have to show that this is only possible when λ0 = λ1 = · · · = λn = 0.

Note that our assumption means that

λnx
n + · · ·+ λ1x+ λ0 = 0 for all x ∈ R.

There are various ways to proceed from here. For example, we can make use of
the fact that a polynomial of degree n ≥ 0 can have at most n zeros in R. Since
there are infinitely many real numbers, the polynomial above has infinitely many
zeros, hence it must be the zero polynomial.

Another possibility is to use induction on n (which, by the way, is implicit in the
proof above: it is used in proving the statement on zeros of polynomials). Let us
do this in detail. The claim we want to prove is

∀n ∈ N0 ∀λ0, . . . , λn ∈ R :
((
∀x ∈ R : λnx

n+· · ·+λ0 = 0
)

=⇒ λ0 = · · · = λn = 0
)
.

We now have to establish the induction base: the claim holds for n = 0. This is
easy — let λ0 ∈ R and assume that for all x ∈ R, λ0 = 0 (the function is constant
here: it does not depend on x). Since there are real numbers, this implies λ0 = 0.
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Next, and this is usually the hard part, we have to do the induction step. We
assume that the claim holds for a given n (this is the induction hypothesis) and
deduce that it then also holds for n+ 1. To prove the statement for n+ 1, we have
to consider coefficients λ0, . . . , λn+1 ∈ R such that for all x ∈ R,

f(x) = λn+1x
n+1 + λnx

n + · · ·+ λ1x+ λ0 = 0 .

Now we want to use the induction hypothesis, so we have to reduce this to a
statement involving a polynomial of degree at most n. One way of doing that is to
borrow some knowledge from Analysis about differentiation. This tells us that the
derivative of f is zero again, and that it is a polynomial function of degree ≤ n:

0 = f ′(x) = (n+ 1)λn+1x
n + nλnx

n−1 + · · ·+ λ1 .

Now we can apply the induction hypothesis to this polynomial function; it tells
us that (n + 1)λn+1 = nλn = · · · = λ1 = 0, hence λ1 = · · · = λn = λn+1 = 0.
So f(x) = λ0 is in fact constant, which finally implies λ0 = 0 as well (by our
reasoning for the induction base).

This completes the induction step and therefore the whole proof of the fact that
the collection (fn)n∈N0 is linearly independent. From Proposition 5.46 we conclude
dimP =∞.

Note that since P = L({fn : n ∈ N0}), we have shown that the collection (fn)n∈N0

is a basis for P .

Example 5.50. We have inclusions

P ⊂ C∞(R) =
∞⋂
n=0

Cn(R) ⊂ · · · ⊂ C2(R) ⊂ C1(R) ⊂ C(R) ⊂ RR .

Since P contains arbitrarily long sequences of linearly independent functions, so
do all these spaces and therefore they are all infinite-dimensional.

Warning 5.51. Although the vector space of real polynomial functions is infinite-
dimensional, over finite fields this is not the case (see Exercise 5.4.2).

Warning 5.52. In Examples 5.48 and 5.49 we actually found infinite bases for
F [x] and P ⊂ RR, but for example for RR, it is a priori not at all clear that
there even exists a collection C of functions in RR that is linearly independent and
generates the whole vector space RR.
Using something called “Zorn’s Lemma,” one can show that all vector spaces do
magically turn out to have some basis, but by definition the claim dimV = ∞
only means that there is no finite basis, and does not directly state that there
would exist an infinite basis.

The following proposition also justifies the word infinite-dimensional for those
vector spaces that are not finite-dimensional.

Proposition 5.53. Let V be a vector space. Then the following statements are
equivalent.

(1) We have dimV =∞.
(2) The space V is not finitely generated.
(3) Every sequence v1, . . . , vn of n linearly independent elements in V can

be extended to a sequence v1, . . . vn, vn+1, . . . , vr of linearly independent
vectors in V of arbitrary length r ≥ n.

Proof. Exercise. �
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In the following proposition, and thereafter, we use the usual convention that
n <∞ for n ∈ N0.

Proposition 5.54. Suppose f : V → W is a linear map of vector spaces. Then
the following statements hold.

(1) If f is injective, then dimV ≤ dimW .
(2) If f is surjective, then dimV ≥ dimW .
(3) If f is an isomorphism, then dimV = dimW .

Proof. For (1), suppose f is injective. Suppose V is finite-dimensional, say
dimV = n. If dimW =∞, then we are done, so assume dimW = n. If v1, . . . , vs ∈
V are linearly independent, then so are f(v1), . . . , f(vs) by Lemma 5.13, and by
Proposition 5.46 we obtain s ≤ n. We conclude that V contains no sequences of
more than n linearly independent vectors. By Proposition 5.53 this implies that
V is not infinite-dimensional, say dimV = m. Repeating the argument for s = m
with a basis (v1, . . . , vm), we conclude m ≤ n.

For (2), suppose f is surjective. If dimV = ∞, then we are done, so assume
V is finite-dimensional, say dimV = n, and let (v1, . . . , vn) be a basis for V .
Then f(v1), . . . , f(vn) generate W by Proposition 5.34, so dimW ≤ n = dimV by
Proposition 5.46.

Implication (3) follows from (1) and (2). �

Example 5.55. We conclude, just from the dimensions, that the 3× 4 matrix A
of Example 4.7 induces a linear map F 4 → F 3 that is not injective.

Corollary 5.56. Every invertible matrix is a square matrix.

Proof. Suppose an m×n matrix A over F is invertible. Then the associated
map fA : F n → Fm is an isomorphism, so we get m = dimFm = dimF n = n. �

The next proposition shows that the converse of Proposition 5.54(3) also holds.
Together, these results show that essentially (‘up to isomorphism’), there is only
one F -vector space of any given dimension n (namely F n, cf. Proposition 5.31).

Proposition 5.57. If V and W are finite-dimensional vector spaces over the same
field F with dimV = dimW , then V and W are isomorphic.

Proof. If we have dimW = dimV = n, then V has a basis B = (v1, . . . , vn)
and W has a basis C = (w1, . . . , wn), so ϕB : F n → V and ϕC : F n → W are
isomorphisms by Proposition 5.31 and the composition ϕC ◦ ϕ−1

B : V → W is an
isomorphism. �

In particular, we see that if V is an F -vector space of dimension dimV = n, then
V is isomorphic to F n; indeed, an isomorphism is given by ϕB for any basis B for
V . Note, however, that in general there is no natural (or canonical) isomorphism

V
∼→ F n. The choice of isomorphism is equivalent to the choice of a basis, and

there are many bases of V. In particular, we may want to choose different bases
of V for different purposes, so it does not make sense to identify V with F n in a
specific way.

Exercises
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5.3.1. Show that the real polynomials f1 = x2 + 2, f2 = 2x2−3, and f3 = x3 +x−1
are linearly independent and extend them to a basis for the space R[x]4 of all
real polynomials of degree at most 4. In other words, give polynomials f4, . . . , ft
for a certain t, such that (f1, . . . , ft) is a basis for R[x]4.

5.3.2. Let V ⊂ R4 be the hyperplane V = {a}⊥ with a = (1, 1, 1, 1).
(1) What is the dimension of V ?
(2) Show that the vectors v1 = (2,−3,−1, 2) and v2 = (−1, 3, 2,−4) are

linearly independent and contained in V .
(3) Extend (v1, v2) to a basis for V .

5.3.3. Let V be a finite-dimensional vector space and S ⊂ V a subset that generates
V . Show that there is a finite subset of S that generates V .

5.3.4. Prove Proposition 5.53.
5.3.5. This exercise gives two alternative definitions for the dimension of a matrix.

Let V be a vector space.
(1) Show that dimV equals the supremum (possibly ∞) of the set of all inte-

gers r for which there exists a sequence

{0} = V0 ( V1 ( V2 ( . . . ( Vr−1 ( Vr = V

of subspaces of V , each properly contained in the previous.
(2) Show that dimV equals the supremum (possibly ∞) of the set of all inte-

gers r for which there exists a sequence

v1, v2, . . . , vr

of linearly independent elements in V .

5.4. Dimensions of subspaces

The following result shows that our intuition that dimension is a measure for the
‘size’ of a vector space is not too far off: larger spaces have larger dimension.

Lemma 5.58. Let U be a linear subspace of the vector space V . Then we have
dimU ≤ dimV . If dimV is finite, then we have equality if and only if U = V .

Note that in the case that dimV is finite, the statement also asserts the existence
of a finite basis of U .

Proof. There is nothing to show if dimV = ∞. So let us assume that V
has a basis v1, . . . , vn. If u1, . . . , um ∈ U are linearly independent, then m ≤ n
by Theorem 5.46(1). Hence there is a sequence u1, . . . , um of linearly independent
vectors in U of maximal length m (and m ≤ n). We claim that u1, . . . , um is in
fact a basis of U . The first claim then follows, since then dimU = m ≤ n = dimV .

We have to show that u1, . . . , um generate U . So assume that there is u ∈ U that
is not a linear combination of the uj. Then u1, . . . , um, u are linearly independent,
which contradicts our choice of u1, . . . , um as a maximal linearly independent se-
quence in U . So there is no such u, hence U = L(u1, . . . , um).

To prove the second part, first assume dimU < dimV . Then by Theorem 5.40, no
basis of U would also be a basis of V , so U 6= V . Conversely, assume U 6= V and
consider a basis of U . It can be extended to a basis for V by the Basis Extension
Theorem 5.35. Since it does not generate V , at least one element has to be added,
which implies dimU < dimV . �

Now we have the following nice formula relating the dimensions of U1, U2, U1∩U2

and U1 + U2. We use the convention that ∞ + n = n +∞ = ∞ +∞ = ∞ for
n ∈ N0.
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Theorem 5.59. Let U1 and U2 be linear subspaces of a vector space V. Then

dim(U1 + U2) + dim(U1 ∩ U2) = dimU1 + dimU2 .

Proof. First note that the statement is trivially true when U1 or U2 is infinite-
dimensional, since then both sides are ∞. So we can assume that U1 and U2 are
both finite-dimensional.

For the proof, we use the Basis Extension Theorem 5.35 again. Since U1 ∩ U2 ⊂ U1

and U1 is finite-dimensional, we know by Lemma 5.58 that U1 ∩ U2 is also finite-
dimensional. Let v1, . . . , vr be a basis of U1 ∩ U2. Using the Basis Extension
Theorem, we can extend it on the one hand to a basis v1, . . . , vr, w1, . . . , ws of U1

and on the other hand to a basis v1, . . . , vr, z1, . . . , zt of U2. I claim that then
v1, . . . , vr, w1, . . . , ws, z1, . . . , zt is a basis of U1 + U2. It is clear that these vectors
generate U1 + U2 (since they are obtained by putting generating sets of U1 and
of U2 together, see Lemma 2.45). So it remains to show that they are linearly
independent. Consider a general linear combination

λ1v1 + · · ·+ λrvr + µ1w1 + · · ·+ µsws + ν1z1 + · · ·+ νtzt = 0 .

Then z = ν1z1 + · · ·+ νtzt ∈ U2, but also

z = −λ1v1 − · · · − λrvr − µ1w1 − · · · − µsws ∈ U1 ,

so z ∈ U1 ∩ U2, which implies that

z = α1v1 + · · ·+ αrvr

for suitable αj, since v1, . . . , vr is a basis of U1 ∩ U2. Then we have

0 = z − z = α1v1 + · · ·+ αrvr − ν1z1 − · · · − νtzt.
But v1, . . . , vr, z1, . . . , zt are linearly independent (being a basis of U2), so this is
only possible if α1 = · · · = αr = ν1 = · · · = νt = 0. This then implies that z = 0,
so

0 = −z = λ1v1 + · · ·+ λrvr + µ1w1 + · · ·+ µsws ,

and since v1, . . . , vr, w1, . . . , ws are linearly independent (being a basis of U1), we
get λ1 = · · · = λr = µ1 = · · · = µt = 0 as well. So we have dim(U1+U2) = r+s+t,
dim(U1 ∩ U2) = r, dimU1 = r + s and dimU2 = r + t, from which the claim
follows. �

Remark 5.60. Note the analogy with the formula

#(X ∪ Y ) + #(X ∩ Y ) = #X + #Y

for the number of elements in a set. However, there is no analogue of the corre-
sponding formula for three sets:

#(X∪Y ∪Z) = #X+#Y +#Z−#(X∩Y )−#(X∩Z)−#(Y ∩Z)+#(X∩Y ∩Z) .

It is an exercise to find a vector space V and linear subspaces U1, U2, U3 ⊂ V such
that

dim(U1 + U2 + U3) + dim(U1 ∩ U2) + dim(U1 ∩ U3) + dim(U2 ∩ U3)

6= dimU1 + dimU2 + dimU3 + dim(U1 ∩ U2 ∩ U3) .

Example 5.61. Let L and V be a line and a plane in R3, both containing 0, so
that they are subspaces. Then dimL = 1 and dimV = 2. By Theorem 5.59 we
have

dim(L ∩ V ) + dim(L+ V ) = 1 + 2 = 3.
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From dimL + V ≥ dimV = 2, we find that there are two possibilities. Either
dim(L+ V ) = 3 and dim(L∩ V ) = 0, which means L+ V = R3 and L∩ V = {0},
or dim(L+V ) = 2 and dim(L∩V ) = 1, which implies L∩V = L, so L is contained
in V .

For given dimensions of U1 and U2, we see that if the intersection U1 ∩ U2 is
relatively small, then the sum U1 + U2 is relatively big, and vice versa.

Note that if U1 ∩ U2 = {0}, then we simply have dim(U1 + U2) = dimU1 +
dimU2 (and conversely). Complementary subspaces (see Definition 2.46) give an
especially nice case.

Proposition 5.62. If U1 and U2 are complementary subspaces in a vector space
V , then we have

dimU1 + dimU2 = dimV.

Proof. Follows immediately from Theorem 5.59. �

Example 5.63. Let a ∈ Rn be nonzero and H the hyperplane H = {a}⊥. Then
dimH = n− 1 by Corollary 2.63.

We can use the Basis Extension Theorem to show the existence of complementary
subspaces in finite-dimensional vector spaces.

Proposition 5.64. Let V be a finite-dimensional vector space. If U ⊂ V is a
linear subspace, then there is a linear subspace U ′ ⊂ V that is complementary
to U .

Proof. In this case, U is finite-dimensional by Proposition 5.58, with basis
u1, . . . , um (say). By the Basis Extension Theorem 5.35, we can extend this to a
basis u1, . . . , um, v1, . . . , vn of V . Let U ′ = L(v1, . . . , vn). Then we clearly have
V = U + U ′ (Lemma 2.45). But we also have U ∩ U ′ = {0}: if v ∈ U ∩ U ′, then

v = λ1u1 + · · ·+ λmum = µ1v1 + · · ·+ µnvn ,

which gives

λ1u1 + · · ·+ λmum − µ1v1 − · · · − µnvn = v − v = 0.

But u1, . . . , umv1, . . . , vn are linearly independent, so all the λs and µs must be
zero, hence v = 0. �

Example 5.65. Given U ⊂ V , there usually are many complementary subspaces.
For example, consider V = R2 and U = {(x, 0) : x ∈ R}. What are its complemen-
tary subspaces U ′? We have dimV = 2 and dimU = 1, so we must have dimU ′ = 1
as well. Let u′ = (x′, y′) be a basis of U ′. Then y′ 6= 0 (otherwise 0 6= u′ ∈ U ∩U ′).
Then we can scale u′ by 1/y′ (replacing u′, x′, y′ by 1

y′
u′, x′/y′, 1, respectively) to

obtain a basis of the form u′ = (x′, 1), and U ′ = L(u′) then is a complementary
subspace for every x′ ∈ R — note that (x, y) = (x− yx′, 0) + y(x′, 1) ∈ U + U ′.

Remark 5.66. For any two subspaces U1 and U2 of a vector space V , we have
dim(U1 + U2) ≤ dimV by Lemma 5.58. This means that Theorem 5.59 implies
the inequality

dim(U1 ∩ U2) ≥ dimU1 + dimU2 − dimV.
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Example 5.67. Let a1, a2 ∈ Rn be nonzero and Hi the hyperplane Hi = {ai}⊥
for i = 1, 2. Then dimHi = n− 1 by Example 5.63, so we have

n− 1 ≥ dimH1 ≥ dim(H1 ∩H2) ≥ dimH1 + dimH2 − dim Rn = n− 2.

Now there are two cases, namely dim(H1∩H2) = n−2 and dim(H1∩H2) = n−1.
In the former case we have dim(H1 +H2) = n, so H1 +H2 = Rn by Lemma 5.58.
In the latter we have H1 ∩H2 = H1 and thus H1 ⊂ H2; by symmetry we obtain
H1 = H2 = H1 + H2. For R3 we conclude that two different planes that both
contain 0 intersect in a subspace of dimension 1, i.e., a line.

Exercises

5.4.1. Do the exercise in Remark 5.60.
5.4.2. Let F be a finite field, and consider the F -vector space V of functions from F

to F (so V = FF in our earlier notation). Consider again the linear subspace
of polynomial functions:

P (F ) = LF ({f0, f1, f2, . . . })
where fn : x 7→ xn (for x ∈ F ). Show that dimF P (F ) is finite. (Warning:
do not confuse the space P (F ) of polynomial functions with the space F [x]
of polynomials, which has infinite dimension, cf. Warning 2.36 and Examples
2.35, 5.48, 5.49, and 5.50.)

5.4.3. Let F be a finite field. Show that the map ϕ : F [x]→ FF of Exercise 2.3.8 is
not injective, cf. Exercise 3.2.6.

[Remark: one can show that if q = |F |, then the kernel of ϕ consists of all
polynomials that are a multiple of xq − x.]

5.4.4. Let d ≥ 1 be an integer, and for any r ∈ R, let Ur ⊂ R[x]d be the kernel of
the evaluation map R[x]d → R that sends f to f(r).
(1) Prove dimUr = d and give a basis for Ur.
(2) Prove that for r, s ∈ R with r 6= s, we have dim(Ur ∩Us) = d− 1 and give

a basis for Ur ∩ Us.
(3) Prove that Ur + Us = R[x]d.

5.4.5. Let U1, U2 be subspaces of a finite-dimensional vector space V satisfying
U1 ∩ U2 = {0} and dimU1 + dimU2 ≥ dimV . Show that U1 and U2 are
complementary subspaces.

5.4.6. Find a vector space V and linear subspaces U1, U2, U3 ⊂ V such that

dim(U1 + U2 + U3) + dim(U1 ∩ U2) + dim(U1 ∩ U3) + dim(U2 ∩ U3)

6= dimU1 + dimU2 + dimU3 + dim(U1 ∩ U2 ∩ U3) .



CHAPTER 6

Ranks

6.1. The rank of a linear map

There is an important result that relates the dimensions of the kernel, image and
domain of a linear map.

Definition 6.1. Let f : V → W be a linear map. Then we call the dimension of
the image of f the rank of f : rk(f) = dim im(f).

Theorem 6.2 (Dimension Formula for Linear Maps). Let f : V → W be a linear
map. Then

dim ker(f) + rk(f) = dimV .

Proof. First we consider the case that V is finite-dimensional. By Propo-
sition 5.64, there is a complementary subspace U of ker(f) in V and we have
dim ker f + dimU = dimV by Proposition 5.62.

Let f ′ : U → im(f) be the linear map given by restricting f to U . We will show
that f ′ is an isomorphism. Note that ker(f ′) = ker(f)∩U = {0}, so f ′ is injective.
To show that f ′ is also surjective, take w ∈ im(f). Then there is v ∈ V such that
f(v) = w. We can write v = u′+u with u′ ∈ ker(f) and u ∈ U (see Lemma 2.48).
Now

f ′(u) = f(u) = f(v − u′) = f(v)− f(u′) = w − 0 = w ,

so w ∈ im(f ′) as well. This implies that f ′ is surjective and thus an isomorphism.
We conclude dimU = dim im(f) = rk f and therefore

dimV = dim ker f + dimU = dim ker f + rk f.

Now consider the case dimV = ∞. If rk f = ∞, then we are done, so assume
rk f = n for some integer n. Let r be any positive integer. Let U ⊂ V be any r-
dimensional subspace of V , which exists because we can take r linearly independent
elements v1, . . . , vr ∈ V (see Proposition 5.53) and set U = L(v1, . . . , vr). Let
f ′ : U → im f be the linear map given by restricting f to U . Then by the finite-
dimensional case, we have

dim ker f ≥ dim ker f ′ = dimU − rk f ′ ≥ dimU − dim im f = r − n,
where the two inequalities follow from the inclusions ker f ′ ⊂ ker f and im f ′ ⊂
im f , respectively. Since r was an arbitrary positive integer, we conclude dim ker f =
∞, which proves the dimension formula for linear maps. �

For a proof working directly with bases, see Chapter 4 in Jänich’s book [J].

Example 6.3. Let k ≤ n be positive integers, and F [x]n−k and F [x]n the vector
spaces of polynomials over F of degree at most n − k and n, respectively. Let
α1, α2, . . . , αk ∈ F be distinct elements, and set p = (x− α1)(x− α2) · · · (x− αk).
The map T : F [x]n−k → F [x]n that sends an element f to f · p is clearly injective,
so the rank of T equals rkT = dimF [x]n−k−dim kerT = (n−k+1)−0 = n−k+1.
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The (n− k + 1)-dimensional image of T consists of all polynomials in F [x]n that
are multiples of p.

Let S : F [x]n → F k be the map that sends f ∈ F [x]n to
(
f(α1), f(α2), . . . , f(αk)

)
.

Then for each 1 ≤ i ≤ k, the map S sends the polynomial pi = p/(x − αi) to a
nonzero multiple of ei ∈ F k, so these k images are linearly independent and thus
rkS = dim imS ≥ k. Of course we also have dim imS ≤ k, as imS is a subspace
of F k. Thus rkS = k and dim kerS = dimF [x]n − rkS = n+ 1− k.

Clearly, the kernel kerS of S contains the image imT of T , and as they both have
dimension n− k + 1, we conclude kerS = imT . This shows that a polynomial f
satisfies f(α1) = f(α2) = . . . = f(αk) = 0 if and only if f is a multiple of p.

Corollary 6.4. Let f : V → W be a linear map between finite-dimensional vector
spaces with dimV = dimW . Then the following statements are equivalent.

(1) The map f is injective.
(2) The map f is surjective.
(3) The map f is an isomorphism.

Proof. Note that f is injective if and only if dim ker f = 0 and f is surjective
if and only if rk(f) = dimW = dimV . By Theorem 6.2, these two statements are
equivalent. �

Example 6.5. Let T : F [x]n → F [x]n be the linear map that sends a polynomial
f to f + f ′, where f is the derivative of f . Since f ′ has smaller degree than f , we
have deg T (f) = deg(f +f ′) = deg f . This shows that the only polynomial f with
T (f) = 0, is f = 0, so T is injective and therefore, it is surjective. This proves,
without explicit computations, that for every polynomial g, there is a polynomial
f with f + f ′ = g.

Exercises

6.1.1. Is the statement of Corollary 6.4 true without the assumption that V and W
be finite-dimensional? If not, then give a counterexample and show where in
the proof of Corollary 6.4 finite-dimensionality is used.

6.1.2. Let n be a positive integer and F [x]n the vector space of polynomials over
F of degree at most n. Assume α0, α1, . . . , αn ∈ F are distinct elements. Let
T : F [x]n → Fn+1 be the function given by

T (f) =
(
f(α0), f(α1), . . . , f(αn)

)
.

(1) Show that T is a linear map.
(2) Show that T is surjective (cf. Example 6.3).
(3) Show that T is an isomorphism.
(4) Show that for every i ∈ {0, . . . , n}, there is a unique polynomial fi ∈ F [x]n

such that fi(αj) = 1 if i = j and fi(αj) = 0 if i 6= j.
(5) Show that f0, f1, . . . , fn form a basis for F [x]n.
(6) The polynomials f0, . . . , fn are called Lagrange polynomials. Give an ex-

plicit expression for them in terms of the elements α0, α1, . . . , αn.
6.1.3. Let n be a positive integer and T : F [x]n → F [x]n the map that sends f to

xf ′, where f ′ is the derivative of f . Show that T is a linear map and determine
the rank of T .
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6.2. The rank of a matrix

Definition 6.6. Let A ∈ Mat(m× n, F ). Then the rank rkA of A is the rank of
the associated linear map fA : F n → Fm.

Recall that for a matrix A ∈ Mat(m × n, F ), the image of fA equals the column
space C(A) ⊂ Fm of A (see Remark 4.12). Therefore, we have rk(A) ≤ min{m,n},
as the rank rkA is the dimension of a subspace of Fm, generated by n vectors.

By this definition, the rank of A is the same as the column rank of A, i.e., the
dimension of the column space C(A) ⊂ Fm of A. We can as well define the row
rank of A to be the dimension of the row space R(A) ⊂ F n of A. Part (3) of the
following theorem tells us that these additional definitions are not really necessary,
as the row rank of any matrix equals the column rank.

Theorem 6.7. Let A ∈ Mat(m× n, F ) be a matrix. Then the following are true.

(1) We have dim kerA+ dimC(A) = n.
(2) We have dim kerA+ dimR(A) = n.
(3) We have dimC(A) = dimR(A).

We will give several proofs of this important theorem.

Proof. Clearly, any two of the three statements imply the third. Statement
(1) is true because it is a restatement of Theorem 6.2, so statements (2) and
(3) are equivalent. After repeatedly deleting from A some row that is a linear
combination of the other rows, thus not changing the row space, we obtain an r×n
matrix A′ of which the rows are linearly independent. As the row spaces R(A′)
and R(A) are equal, we have kerA′ = kerA by Proposition 4.13, and therefore
dimC(A′) = dimC(A) by statement (1). The r rows of A′ form a basis of the row
space R(A′), so we have r = dimR(A′). The column space C(A′) is contained in
F r, so we find

dimC(A) = dimC(A′) ≤ dimF r = r = dimR(A′) = dimR(A).

By symmetry, or applying the same argument to A>, we also get the opposite
inequality dimR(A) ≤ dimC(A), so statement (3), and thus also (2), follows. �

First alternative proof. Again, any two of the three statements imply
the third. Statement (1) is true because it is a restatement of Theorem 6.2, so
statements (2) and (3) are equivalent.

Applying elementary row operations to A does not change kerA and R(A) (see
Proposition 4.31), so the truth of statement (2) is invariant under row operations,
and therefore so is the truth of statement (3). Since statement (3) is symmetric
in the rows and columns, the truth of both statements is also invariant under
elementary column operations.

Using row and column operations, we can transform A into a matrix A′ of which
all entries are zero, except for some ones along the diagonal. For example, we
could first use row operations to find the reduced row echelon form of A, then
apply some permutation of the columns so that all pivots are along the diagonal,
and finally apply column operations to make all non-diagonal entries zero; then
A′ would have the form of a block matrix

A′ =

(
Ir 0
0 0

)
.
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It is clear that the row rank and column rank of A′ both equal the number of ones
along the diagonal, which proves statement (3) and therefore also (2). �

Second alternative proof. Again, any two of the three statements imply
the third. Statement (1) is true because it is a restatement of Theorem 6.2, so
statements (2) and (3) are equivalent and it suffices to prove statement (2). By
Proposition 4.31, the subspaces kerA and R(A) do not change under elementary
row operations, so we may assume that A is in reduced row echelon form. Let r be
the number of nonzero rows of A. Then from Example 5.24 we find dimR(A) = r
and dim kerA = n− r, so dimR(A) + dim kerA = n. �

Third alternative proof. Assume A′ is as in the first proof. We now only
give an alternative proof of one step of the first proof, namely that the equality
kerA′ = kerA implies dimC(A′) = dimC(A).

So assume kerA′ = kerA. Then the linear relations among the columns of A′

correspond exactly with the linear relations among the columns of A. This means
that for any maximal linearly independent subset of the columns of A (and thus a
basis of the column space C(A)), the corresponding columns of A′ form a maximal
linearly independent subset of the columns of A′, (and thus a basis of C(A′)). This
yields dimC(A′) = dimC(A). �

Remark 6.8. Statement (3) of Theorem 6.7 can be stated as rkA = rkA>.

Remark 6.9. By statement (3) of Theorem 6.7, the rank of a matrix A equals the
row rank of A, which also equals the number of nonzero rows in a row equivalent
matrix A′ that is in row echelon form by Example 5.24.

Remark 6.10. The first proof, with the argument for the implication

kerA′ = kerA ⇒ dimC(A′) = dimC(A)

replaced by the argument in the third alternative proof, gives a proof of statement
(3) that does not depend on (1). The second alternative proof contains a direct
proof of statement (2). Together they imply (1), which gives an alternative proof
of the dimension formula for linear maps between vector spaces F n and Fm. Since
every finite-dimensional vector space over F is isomorphic to F n for some integer
n (Proposition 5.57), the dimension formula for general finite-dimensional vector
spaces follows (again) from Proposition 3.8.

Remark 6.11. In Example 5.24, we found that for an m×n matrix in row echelon
form with r nonzero rows, the n− r elements wk of Proposition 4.49 form a basis
of the kernel of the matrix, as they generate the kernel (Proposition 4.49) and
they are linearly independent (Proposition 5.20). Theorem 6.7, statement (2),
shows independently that the dimension of the kernel equals n− r. Therefore, by
Theorem 5.46, in order to show that the wk form a basis, it suffices in hind sight
to show only one of the two: either that they are linearly independent or that they
generate the kernel.

Example 6.12. Consider the matrix

A =

1 2 3
4 5 6
7 8 9


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over R. The reduce row echelon form of A is

A′ =

1 0 −1
0 1 2
0 0 0

 ,

which has two nonzero rows, so we find rk(A) = 2.

Corollary 6.13. For any m × n matrix A we have kerA = {0} if and only if
rkA = n.

Proof. This follows immediately from Theorem 6.7. �

Remark 6.14. Corollary 5.11 states that n vectors w1, w2, . . . , wn ∈ Fm are
linearly independent if and only if the m× n matrix A of which the columns are
w1, w2, . . . , wn has kernel kerA = {0}. By Corollary 6.13, this is the case if and
only if rkA = n. As we have rkA = rkA>, we may also put the n vectors as rows
in a matrix and check that the rank of this matrix (namely A>) equals n. We
could have also concluded this from Remark 5.25.

Corollary 6.15. Let F be a field, n a positive integer, and U a subspace of F n.
Then dimU + dimU⊥ = n and (U⊥)⊥ = U .

Proof. By Lemma 5.58 there is a finite basis v1, v2, . . . , vr for U . Let A be the
r×n matrix of which the rows are v1, v2, . . . , vr. Then R(A) = U and kerA = U⊥

by Proposition 4.13. The first equality follows immediately from Theorem 6.7,
statement (2). It implies

dim(U⊥)⊥ = n− dimU⊥ = n− (n− dimU) = dimU,

and since U is contained in (U⊥)⊥ (Proposition 2.39), we conclude (U⊥)⊥ = U
from Lemma 5.58. �

Corollary 6.16. Let U be a subspace of Rn. Then U and U⊥ are complementary
subspaces.

Proof. Suppose x ∈ U ∩ U⊥, so that we have 〈x, x〉 = 0. Because we work
over R, we conclude x = 0, so we have U ∩U⊥ = {0}. From the dimension formula
5.59 we then find

dim(U + U⊥) = dimU + dimU⊥ − dim(U ∩ U⊥) = n− 0 = n,

so from Lemma 5.58 we conclude U +U⊥ = Rn and U and U⊥ are complementary
spaces. �

For any subset U ⊂ Rn, we call U⊥ the orthogonal complement of U .

Warning 6.17. For some fields F , such as F2 and C, there exist subspaces U ⊂ F n

with U ∩ U⊥ 6= {0}, so Corollary 6.16 is not true over general fields.

Exercises

6.2.1. Determine the rank of the matrices in Exercises 4.3.3 and 4.3.4.
6.2.2. Determine the rank of the matrices in Exercise 4.6.2.
6.2.3. Determine the rank of the linear maps and matrices of the exercises of Section

4.2.
6.2.4. Show that for any subset S of Fn, we have L(S) = (S⊥)⊥.
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6.3. Computing intersections

Proposition 6.18. Suppose F is a field and U1, U2 ⊂ F n are subspaces. Then we
have

U1 ∩ U2 = (U⊥1 + U⊥2 )⊥ and (U1 ∩ U2)
⊥ = U⊥1 + U⊥2 .

Proof. Exercise, cf. Exercise 2.4.3. �

Proposition 6.18 expresses taking intersections in terms of taking sums and orthog-
onal subspaces. This allows us to explicitly compute generators for the intersection
U1 ∩ U2 if we know generators for the subspaces U1 (or U⊥1 ) and U2 (or U⊥2 ). In-
deed, we already know how to take sums and orthogonal subspaces: if we have
generating subsets S1 and S2 for two subspaces V1 and V2 of F n, then the union
S1∪S2 generates V1 +V2 by Lemma 2.45, and if v1, v2, . . . , vr ∈ F n generate a sub-
space V ⊂ F n, then V ⊥ is the kernel of the matrix whose rows are v1, v2, . . . , vn by
Proposition 4.13 and we can compute generators for this kernel with Proposition
4.49.

Example 6.19. Let U ⊂ R5 be generated by the elements

u1 = (1, 3, 1, 2, 2),

u2 = (−1, 2,−2, 3, 2),

u3 = (3, 2, 0,−1,−4),

and V ⊂ R5 by the elements

v1 = (−2, 0,−6, 3,−2),

v2 = (1, 2,−3, 1,−3),

v3 = (−1, 0,−3,−2,−1).

To determine generators for the intersection U ∩ V , we use the identity U ∩ V =
(U⊥ + V ⊥)⊥. The subspaces U⊥ and V ⊥ equal the kernels of the matrices

M =

 1 3 1 2 2
−1 2 −2 3 2
3 2 0 −1 −4

 and N =

−2 0 −6 3 −2
1 2 −3 1 −3
−1 0 −3 −2 −1

 ,

respectively, where the rows of M are u1, u2, u3 and those of N are v1, v2, v3. The
reduced row echelon forms of M and N are

M ′ =

1 0 0 −1 −2
0 1 0 1 1
0 0 1 0 1

 and N ′ =

1 0 3 0 1
0 1 −3 0 −2
0 0 0 1 0

 ,

respectively. The dimensions of U and V equal the number of nonzero rows in
M and N , respectively, so dimU = dimV = 3. By Proposition 4.50, the kernels
kerM ′ = kerM = U⊥ and kerN ′ = kerN = V ⊥ are generated by {w4, w5} and
{x3, x5} respectively, with

w4 =


1
−1
0
1
0

 , w5 =


2
−1
−1
0
1

 , x3 =


−3
3
1
0
0

 , x5 =


−1
2
0
0
1

 .
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Therefore, the subspace U⊥ + V ⊥ is generated by w4, w5, x3, x5, so the subspace
U ∩ V = (U⊥ + V ⊥)⊥ is the kernel of the matrix

1 −1 0 1 0
2 −1 −1 0 1
−3 3 1 0 0
−1 2 0 0 1

 ,

which has w4, w5, x3, x5 as rows. The reduced row echelon form of this matrix is
1 0 0 2 1
0 1 0 1 1
0 0 1 3 0
0 0 0 0 0

 ,

so the kernel U∩V is generated by the vectors (now not written as column vectors)

z4 = (−2,−1,−3, 1, 0) and z5 = (−1,−1, 0, 0, 1).

Note that the row space of the last matrix equals U⊥ + V ⊥, so even without
computing its kernel explicitly, we find dim(U⊥+V ⊥) = 3 and thus dim(U ∩V ) =
dim(U⊥ + V ⊥)⊥ = 5− 3 = 2. We also conclude dim(U + V ) = dimU + dimV −
dim(U∩V ) = 3+3−2 = 4. Indeed, U and V are both contained in the hyperplane
H with normal a = (2,−1,−1, 0, 1), which has dimension 4, so U + V = H. This
is of course easier to verify immediately than through the computation we just
did.

There is a different way to compute the intersection of two subspaces, based on
the equality

U1 ∩ U2 = (U⊥1 )⊥ ∩ U2 = {u ∈ U2 : u ⊥ U⊥1 }.

Example 6.20. Let U and V be as in Example 6.19. Just as in Example 6.19,
we first determine that U⊥ = kerM is generated by w4 and w5. This shows

U ∩ V = (U⊥)⊥ ∩ V = {v ∈ V : 〈v, w4〉 = 〈v, w5〉 = 0}.
Every v ∈ V can be written as v = λ1v1 + λ2v2 + λ3v3 for some λ1, λ2, λ3 ∈ R. In
terms of the λi, the equation 〈v, wk〉 = 0 (for k = 4, 5) is equivalent to

0 = 〈λ1v1 + λ2v2 + λ3v3, wk〉 = λ1〈v1, wk〉+ λ2〈v2, wk〉+ λ3〈v3, wk〉,
so the two equations 〈v, w4〉 = 〈v, w5〉 = 0 are equivalent to (λ1, λ2, λ3) lying in
the kernel of the matrix(

〈v1, w4〉 〈v2, w4〉 〈v3, w4〉
〈v1, w5〉 〈v2, w5〉 〈v3, w5〉

)
=

(
1 0 −3
0 0 0

)
.

It turns out (as the bottom row is zero) that w5 is orthogonal to V and this
matrix is already in reduced row echelon form. Its kernel is generated by (0, 1, 0)
and (3, 0, 1), which correspond to the vectors 0 · v1 + 1 · v2 + 0 · v3 = v2 and
3 · v1 + 0 · v2 + 1 · v3 = 3v1 + v3. We conclude that U ∩ V is generated by v2 and
3v1 + v3.

Remark 6.21. The method you choose to compute an intersection U1 ∩U2 obvi-
ously depends on whether you have generators for Ui or equations (i.e., generators
for U⊥i ), and whether you want generators for the intersection or equations. Also,
if Ui requires many generators, then U⊥i only needs few, so it is worth considering
a method where you can do the bulk of the computation with U⊥i instead of Ui.
Another point to consider is that the method of Example 6.20 yields generators
for U1 ∩ U2 that are given as explicit linear combinations of the generators of U1
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and/or U2, which in some applications is an advantage. The big advantage of the
method of Example 6.19 is that it always yields a minimal number of generators,
regardless of whether the number of given generators for U1 and U2 is minimal.

Exercises

6.3.1. Prove Proposition 6.18.
6.3.2. Compute the intersection U ∩ V with U and V as in Example 6.19 with the

method of Example 6.20, but with the roles of U and V reversed.
6.3.3. Let F = F2 be the field of two elements. Let U ⊂ F 4 be the subspace

generated by

(1, 1, 1, 1), (1, 1, 0, 0), and (0, 1, 1, 0),

and let V ⊂ F 4 be the subspace generated by

(1, 1, 1, 0) and (0, 1, 1, 1).

Find generators for the intersection U ∩ V .
6.3.4. Take two subspaces of R6 generated by four elements and compute generators

for the intersection.

6.4. Inverses of matrices

Recall that every invertible matrix is square by Corollary 5.56.

Lemma 6.22. An n × n matrix A is invertible if and only if kerA = {0} and if
and only if rkA = n.

Proof. By Corollary 6.4, a square matrix A is invertible if and only if fA is
injective, i.e., kerA = {0}, and if and only if fA is surjective, i.e., rkA = n. �

In this section, we will give a method to check whether a square matrix is invertible,
and, if so, to compute the inverse.

Lemma 6.23. Let A,B,C be matrices satisfying AB = C. Let A′ be the matrix
obtained from A by a sequence of elementary row operations, and let C ′ be the
matrix obtained from C by the same sequence of operations. Then we have A′B =
C ′.

Proof. By Proposition 4.32, there is an invertible matrix M , depending only
on the applied sequence of row operations, such that A′ = MA and C ′ = MC.
We immediately see A′B = (MA)B = M(AB) = MC = C ′. Alternatively, this
also follows easily from the fact that the entries of C are the dot products of the
rows of A and the columns of B, and the fact that the dot product is linear in its
variables. �
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Lemma 6.23 states that if we start with a product AB = C, written as
b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

bm1 bm2 · · · bmn

 = B(6)

A =


a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
...

al1 al2 · · · alm



c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
...

cl1 cl2 · · · cln

 = C

as in (5), and we perform an elementary row operation on the two bottom matrices
simultaneously, then we obtain the matrices A′ and C ′ and, together with B, these
resulting matrices depict the equality A′B = C ′.

Given the matrices A and C, one might be interested in finding a matrix B such
that AB = C, if such B exists. If A is invertible, then we have B = A−1(AB) =
A−1C. If A−1 is known, then this is readily computed by multiplying A−1 with
C. The following proposition gives a criterion for A being invertible and, if so, for
determining A−1C efficiently if the inverse A−1 is not yet known.

Proposition 6.24. A matrix A ∈ Mat(n, F ) is invertible if and only if its reduced
row echelon form is the identity matrix In. Suppose In is obtained from A by a
sequence of elementary row operations. Then A−1 is obtained from In by the same
sequence of operations. More generally, for any matrix C with n rows, the matrix
A−1C is obtained from C by the same sequence of operations.

Proof. If A is invertible, then fA is injective, and by Proposition 4.51 we
conclude that any row echelon form of A has n nonzero rows, so every row has a
pivot and all pivots are on the diagonal; it follows that the reduced row echelon form
is the identity matrix. Conversely, suppose that the reduced row echelon form of
A is the identity matrix In. Then by Proposition 4.32 there is an invertible matrix
M , such that In = MA, so A = M−1 is invertible. Applying Lemma 6.23 to the
products A · A−1 = In and A · (A−1C) = C and the sequence of elementary row
operations that transform A into In, yields the last two statements. �

Here is a visual interpretation of Proposition 6.24. If we write X = A−1C for A
and C as in Proposition 6.24, then we can depict the equality AX = C as in (6)
by

X

A C
.

Applying elementary row operations to the combined matrix A C yields

a combined matrix A′ C ′ of matrices A′ and C ′ that satisfy A′X = C ′ by
Lemma 6.23, depicted as follows.

X

A C  

X

A′ C ′

In particular, if we obtain A′ = I, then we have C ′ = A′X = IX = X.
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X

A C  

X

I X

Therefore, if a priori we do not yet know the matrix X = A−1C, then we can find X
by writing down the combined matrix A C and applying row operations until
the left part of the combined matrix equals I. The right part then automatically
equals X = A−1C.

Example 6.25. Let us see how to invert the following matrix

A =

1 1 1
1 2 4
1 3 9

 ,

where we assume 2 6= 0, so that we can divide by 2.

We perform the row operations on A and on I in parallel, as above. 1 1 1 1 0 0
1 2 4 0 1 0
1 3 9 0 0 1

  

 1 1 1 1 0 0
0 1 3 −1 1 0
0 2 8 −1 0 1


 

 1 0 −2 2 −1 0
0 1 3 −1 1 0
0 0 2 1 −2 1


 

 1 0 0 3 −3 1
0 1 0 −5

2
4 −3

2
0 0 1 1

2
−1 1

2


So

A−1 =

 3 −3 1
−5

2
4 −3

2
1
2
−1 1

2

 .

Remark 6.26. This inversion procedure will also tell us whether a matrix A is
invertible or not. Namely, if at some point in the computation of the row echelon
form, the lower part of the next column has no non-zero entries, then the reduced
row echelon form of A is not the identity, so the matrix is not invertible.

Corollary 6.27. If A ∈ Mat(m,F ) is invertible, then A can be written as a
product of matrices Mi(λ) (λ 6= 0) and In + λEij (i 6= j) of Section 4.4.

Proof. Exercise. �

Example 6.28. Let A be the matrix of Example 6.25 and b ∈ F 3 the vector

b =

−1
2
1

 .

Using the inverse A−1, it is easy to find an element x ∈ F 3 with Ax = b, namely

x = A−1(Ax) = A−1b =

 3 −3 1
−5

2
4 −3

2
1
2
−1 1

2

−1
2
1

 =

−8
9
−2

 .
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If we had not know A−1 yet, then we can apply Lemma 6.23 directly to the product
Ax = b and the sequence of row operations that transforms A into I3, so that we
need not compute A−1 first. We put A and b in an extended matrix 1 1 1 −1

1 2 4 2
1 3 9 1


and transform the left part to I3: 1 1 1 −1

1 2 4 2
1 3 9 1

  

 1 1 1 −1
0 1 3 3
0 2 8 2


 

 1 0 −2 −4
0 1 3 3
0 0 2 −4

 
 1 0 0 −8

0 1 0 9
0 0 1 −2

 ,

so

x =

−8
9
−2

 .

Exercises

6.4.1. Determine the inverses of the following matrices

(
−3 −1
−2 −1

)
,

 −1 −2 −1
1 3 1
1 −2 0

 ,

 −1 2 −2
0 −1 0
1 −2 3

 ,


0 −1 0 1
3 −2 −2 1
−1 −2 −2 0

0 0 −1 −1

 .

6.4.2. Are the matrices(
1 2
−2 4

)
,

 −2 1 −2
−1 1 −1

1 −1 1


invertible?

6.4.3. Determine the inverse of those matrices (over R) that are invertible. 0 −2 −1
−1 1 0
−2 −2 1



−1 1 −2 2
−2 1 1 −1

2 −1 1 0
0 1 2 1




0 2 −1 1
−2 −1 −2 0

1 0 −1 2
2 2 0 2


 1 2 1

1 1 −1
1 0 0

 .

6.4.4. Suppose the product AB of matrices A,B ∈ Mat(n, F ) is invertible. Prove
that A and B are also invertible. Cf. 4.3.1.

6.4.5. Suppose M,N are n × n matrices with MN = In. Prove that then also
NM = In.

6.4.6. Let F be a field and m a positive integer. Recall the elementary matrices
from Section 4.4.
(1) Show that multiplication by an elementary matrix (from the left) corre-

sponds to applying an elementary row operation.
(2) Conclude that if A and A′ are row equivalent, then there is an invertible

matrix B such that A′ = BA (see Proposition 4.32).
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(3) Prove that a matrix A is invertible if and only if A can be written as the
product of elementary matrices.

(4) Prove Corollary 6.27.
(5) Write the following matrices as a product of elementary matrices, if pos-

sible: 1 −1 0
−1 −2 −1

2 2 1

  −1 0 −2
−1 −1 −2

2 3 3

  2 3 −2
3 2 2
0 −1 2





CHAPTER 7

Linear maps and matrices

7.1. The matrix associated to a linear map

Proposition 5.57 shows that any finite-dimensional vector space V over a field F is
isomorphic with F n for n = dimV . For any basis B for V , there is an isomorphism
ϕB : F n → V . As we have seen before in Proposition 3.8, this means that for all
practical purposes, we can identify V and F n, though we should keep in mind
that the identification depends on the choice of a basis B. If we identify a second
finite-dimensional vector space W over F with Fm for m = dimW (based on a
choice of basis for W ), then any linear map f : V → W corresponds with a linear
map F n → Fm, which is given by some matrix. The following definition makes
this precise.

Definition 7.1. Let F be a field and V,W finite-dimensional vector spaces over
F with bases B and C, respectively, and dimensions n = dimV and m = dimW .
Then for every linear map f : V → W , the matrix associated to f with respect to
the bases B and C, denoted [f ]BC , is the unique m × n matrix whose associated
function is the linear map (ϕ−1

C ◦ f ◦ ϕB) : F n → Fm.

In the case V = W and B = C, we also refer to [f ]BB as the matrix associated to
f with respect to B.

If we identify the matrix [f ]BC with the map F n → Fm it defines, then we have the
following commutative diagram.

(7) V
f // W

F n

ϕB∼=

OO

[f ]BC

// Fm

ϕC∼=

OO

Note that the map ϕ−1
C ◦ f ◦ ϕB : F n → Fm is nothing but the composition of (1)

the identification of F n with V , (2) the map f : V → W , and (3) the identification
of W with Fm. In other words, if we identify V with F n and W with Fm, through
the choice of bases B and C for V and W , respectively, then the map f : V → W
corresponds with the map F n → Fm given by the m× n matrix [f ]BC .

Example 7.2. Let A be an m × n matrix over F , and let fA : F n → Fm be the
associated linear map. Then with respect to the standard bases En and Em for
F n and Fm, respectively, we have

[fA]EnEm = A,

which follows from the fact that ϕEn and ϕEm are the identity maps on F n and
Fm, respectively.

Example 7.3. Let R[x]3 be the vector space of real polynomials of degree at most
3 with basis B = (1, x, x2, x3). Let D : R[x]3 → R[x]3 denote the map that sends

109
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g ∈ R[x]3 to its derivative g′.

a0 + a1x+ a2x
2 + a3x

3 R[x]3
D // R[x]3

(a0, a1, a2, a3)
_

OO

R4

ϕB∼=

OO

[D]BB

// R4

ϕB∼=

OO

Consider the composition ϕ−1
B ◦D◦ϕB. The map ϕB sends a quadruple (a0, a1, a2, a3)

to the polynomial g = a0 + a1x + a2x
2 + a3x

3, of which the derivative D(g) = g′

equals a1+2a2x+3a3x
2, which in turn is identified through ϕ−1

B with the quadruple
(a1, 2a2, 3a3, 0). This means that the map associated to the matrix [D]BB sends

(a0, a1, a2, a3) to (a1, 2a2, 3a3, 0),

so the matrix equals

[D]BB =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

Example 7.4. Let F be a field with k elements α1, α2, . . . , αk ∈ F and let n be
a positive integer. Let T : F [x]n → F k be the linear map that sends a polynomial
g ∈ F [x]n to the vector

(
g(α1), . . . , g(αk)

)
. We determine the matrix associated to

T with respect to the basis B = (1, x, x2, . . . , xn) for F [x]n and the standard basis
E for F k. Note that ϕE : F k → F k is the identity. Therefore, the composition
ϕ−1
E ◦ T ◦ ϕB sends the j-th standard basis vector ej to

ϕ−1
E (T (ϕB(ej))) = T (xj−1) = (αj−1

1 , αj−1
2 , . . . , αj−1

k ).

By definition of the matrix [T ]BE , this vector also equals [T ]BE · ej, i.e., the j-th
column of [T ]BE , cf. Lemma 4.5. Hence, we find

[T ]BE =


1 α1 α2

1 · · · αn1
1 α2 α2

2 · · · αn2
...

...
...

. . .
...

1 αk α2
k · · · αnk

 .

Such a matrix is called a Vandermonde matrix.

Definition 7.5. If V is a vector space over a field F of dimension n with basis
B = (v1, . . . , vn), then we say that the n-tuple a = (a1, . . . , an) ∈ F n is the
sequence of coefficients of the vector v = ϕB(a) = a1v1 + · · · + anvn with respect
to B, and we write vB = a = ϕ−1

B (v).

Lemma 7.6. Let f : V → W be a linear map, B = (v1, v2, . . . , vn) a basis for V ,
and C a basis for W . Then for any 1 ≤ j ≤ n, the j-th column of the m × n
matrix [f ]BC is the sequence f(vj)C of coefficients of f(vj) with respect to C.

[f ]BC =

 | | |
f(v1)C f(v2)C · · · f(vn)C
| | |


Proof. As for any matrix, the j-th column of the matrix [f ]BC equals the image

of the j-th standard basis vector ej under the map associated to the matrix. By
definition of [f ]BC , this is equal to (ϕ−1

C ◦ f ◦ ϕB)(ej) = ϕ−1
C (f(vj)) = f(vj)C . �
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Example 7.7. Indeed, in Example 7.4, the columns are as described in Lemma
7.6. Also in Example 7.3, the j-th element in the basis B is xj−1, and the j-th
column of [D]BB is the sequence of coefficients of D(xj−1) = (j−1)xj−2 with respect
to the basis B = (1, x, x2, x3).

Remark 7.8. If we identify [f ]BC with the linear map that it induces, then the
commuting diagram (7) can also be expressed as ϕ−1

C ◦f = [f ]BC ◦ϕ−1
B , i.e., for each

v ∈ V we have

f(v)C = [f ]BC · vB.
In words: the sequence of coefficients of f(v) with respect to C equals the product
of the matrix [f ]BC and the sequence of coefficients of v with respect to B.

Example 7.9. The sequence B =
(
(x− 1)3, (x− 1)2, x− 1, 1

)
is a basis for F [x]3.

Let C denote the usual basis (1, x, x2, x3). Then the matrix associated to the
identity map id: F [x]3 → F [x]3 is

[id]BC =


−1 1 −1 1
3 −2 1 0
−3 1 0 0
1 0 0 0

 .

This can be found directly from Lemma 7.6 (the j-th column contains the sequence
of coefficients of (x− 1)4−j with respect to C), but the identity

a1(x− 1)3 + a2(x− 1)2 + a3(x− 1) + a4

= (−a1 + a2 − a3 + a4) + (3a1 − 2a2 + a3)x+ (−3a1 + a2)x
2 + a3x

3

also shows that [id]BC sends the quadruple (a1, a2, a3, a4) to(
− a1 + a2 − a3 + a4, 3a1 − 2a2 + a3, −3a1 + a2, a3

)
.

Example 7.10. Let V ⊂ R3 be the plane spanned by v1 = (1, 2, 1) and v2 =
(1, 1, 0). Then the vector v3 = (1,−1, 1) is a normal to V . Let B be the basis
(v1, v2, v3) of R3, and let s : R3 → R3 denote the reflection in V . Note that
s(vi) = vi for i = 1, 2, and s(v3) = −v3. This means that the matrix associated to
s with respect to B is easy to find; we have

[s]BB =

1 0 0
0 1 0
0 0 −1

 .

Indeed, for any triple a = (a1, a2, a3) ∈ R3 we have [s]BB · a = (a1, a2,−a3), which
corresponds to the fact that by linearity of s we have

s(ϕB(a)) = s(a1v1 + a2v2 + a3v3) = a1v1 + a2v2 − a3v3 = ϕB
(
[s]BB · a

)
.

Example 7.11. Let B = (v1, v2, v3) be the basis for R3 as in Example 7.10, and
let E be the standard basis for R3. Then ϕE : R3 → R3 is the identity, which
reflects the fact that the sequence of coefficients of a vector v ∈ R3 with respect
to E is the vector v itself. Therefore, the columns of the matrix [id]BE are v1, v2, v3

and we have

[id]BE =

1 1 1
2 1 −1
1 0 1

 .
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Again, we can check for consistency by verifying that for a = (a1, a2, a3) we have

id
(
ϕB(a)

)
= a1v1 + a2v2 + a3v3 =

 a1 + a2 + a3

2a1 + a2 − a3

a1 + a3

 = ϕE
(
[id]BE · a

)
.

Exercises

7.1.1. Let T : R[x]4 → R[x]4 be the linear map given by T (f) = 3f + (x − 2)f ′′.
Determine the matrix [T ]BB of T with respect to the basis B = (1, x, x2, x3, x4).

7.1.2. Let F be a field containing k distinct elements α1, α2, . . . , αk ∈ F . Show that
the square Vandermonde matrix

1 α1 α2
1 · · · αk−1

1

1 α2 α2
2 · · · αk−1

2
...

...
...

. . .
...

1 αk α2
k · · · αk−1

k

 .

is invertible, cf. Exercise 6.1.2 and Example 7.4.
7.1.3. Let V1 be the vector space of 2 × 2 matrices over R and V2 the vector space

of 3× 2 matrices over R with bases

B =
((

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

))
and

C =

1 0
0 0
0 0

 ,

0 1
0 0
0 0

 ,

0 0
1 0
0 0

 ,

0 0
0 1
0 0

 ,

0 0
0 0
1 0

 ,

0 0
0 0
0 1

 ,

respectively. Let T : V1 → V2 be the linear map given by

T (M) =

1 2
3 4
5 6

 ·M.

Determine [T ]BC .

7.2. The matrix associated to the composition of linear maps

Suppose U, V,W are finite-dimensional vector spaces of dimensions dimU = p,
dimV = n, and dimW = m, and with bases A,B,C respectively. Then for any
linear maps g : U → V and f : V → W , we get associated matrices [g]AB and [f ]BC .
The two commuative diagrams as in (7) can be combined into one.

(8) U
g // V

f // W

F p

ϕA∼=

OO

[g]AB

// F n

ϕB∼=

OO

[f ]BC

// Fm

ϕC∼=

OO

Proposition 7.12. With the notation as above, we have [f ◦ g]AC = [f ]BC · [g]AB.
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Proof. The commutative diagram above simplifies to the following diagram.

U
f◦g // W

F p

ϕA∼=

OO

[f ]BC ·[g]
A
B

// Fm

ϕC∼=

OO

In other words, identifying matrices with the maps they induce, we obtain from
the identities

[f ]BC = ϕ−1
C ◦ f ◦ ϕB and [g]AB = ϕ−1

B ◦ g ◦ ϕA,

that

[f ]BC · [g]AB = ϕ−1
C ◦ (f ◦ g) ◦ ϕA = [f ◦ g]AC ,

which proves the statement. �

Alternative proof. By first multiplying the sequence of coefficients with
respect to A of a vector u ∈ U with the matrix [g]AB, we obtain the sequence of
coefficients of g(u) with respect to B; multiplying that vector with the matrix [f ]BC
yields the sequence of coefficients of f(g(u)) with respect to C. In other words,
we have (

f(g(u))
)
C

= [f ]BC ·
(
g(u)

)
B

= [f ]BC · [g]AB · uA.
Similarly, we have (

f(g(u))
)
C

=
(
(f ◦ g)(u)

)
C

= [f ◦ g]AC · uA.

This holds for all u ∈ U , in particular for the j-th element of the basis A, for
which we have uA = ej ∈ F p, so we find

[f ]BC · [g]AB · ej = [f ◦ g]AC · ej
for all j. This shows that the two matrices [f ]BC · [g]AB and [f ◦ g]AC have the same
columns, so they are equal. �

Note that the order of f and g in the product [f ]BC · [g]AB of matrices, and in the
composition f ◦ g, is opposite of the order in which they appear in diagram (8).

Corollary 7.13. With the notation as above, if f is an isomorphism, then we

have [f−1]CB =
(
[f ]BC

)−1
.

Proof. If f is an isomorphism, then m = n, and [f ]BC is a square matrix.
Apply Proposition 7.12 with g = f−1 and A = C to find

[f ]BC · [f−1]CB = [id]CC = Im.

The statement follows. �

Example 7.14. Let B and E be the bases for R3 as in Example 7.11. Then

[id]EB =
(
[id]BE

)−1
=

−1
3

1
3

2
3

1 0 −1
1
3
−1

3
1
3

 .

Since the sequence of coefficients of any vector v ∈ R3 with respect to E is equal
to itself, this shows

vB = (id(v))B = [id]EB · vE = [id]EB · v,
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so the sequence of coefficients of a vector v with respect to B equals [id]EB · v.
Indeed, the sequence of coefficients with respect to B of the j-th standard vector
is the j-th column of [id]EB, as we have

e1 = −1
3
v1 + v2 + 1

3
v3, e2 = 1

3
v1 − 1

3
v3, e3 = 2

3
v1 − v2 + 1

3
v3.

Example 7.15. Let d : R[x]3 → R4 be the linear map that sends a polynomial
f ∈ R[x]3 to

(f(2) + f ′(2), f(3) + f ′(3), f(4) + f ′(4), f(5) + f ′(5)),

where f ′ is the derivative of f . Then d is the composition of the map d1 : R[x]3 →
R[x]3 that sends f to f + f ′ and the map d2 : R[x]3 → R4 that sends g to
(g(2), g(3), g(4), g(5)). With respect to the basis B = (1, x, x2, x3) for R[x]3 and
the standard basis E for R4, we get

[d]BE = [d2]
B
E · [d1]

B
B =


1 2 4 8
1 3 9 27
1 4 16 64
1 5 25 125

 ·


1 1 0 0
0 1 2 0
0 0 1 3
0 0 0 1

 =


1 3 8 20
1 4 15 54
1 5 24 112
1 6 35 200

 ,

cf. Examples 7.3 and 7.4.

Exercises

7.2.1. Let B = (v1, v2, v3, v4) be a basis for a vector space V over R. Show that
B′ = (v′1, v

′
2, v
′
3, v
′
4) with

v′1 = v1,

v′2 = v1 + 2v2,

v′3 = v1 + 2v2 + 3v3,

v′4 = v1 + 2v2 + 3v3 + 4v4

is also a basis for V .
(1) Determine the matrices M = [id]B

′
B and N = [id]BB′ .

(2) Explain that for x = (x1, x2, x3, x4) ∈ R4, the vector Mx is the sequence
of coefficients with respect to B of the vector v = x1v

′
1+x2v

′
2+x3v

′
3+x4v

′
4.

(3) Explain that for x = (x1, x2, x3, x4) ∈ R4, the vector Nx is the sequence of
coefficients with respect to B′ of the vector v = x1v1 +x2v2 +x3v3 +x4v4.

7.2.2. Let E = (e1, e2, e3) be the standard basis for R3 and B = (v1, v2, v3) a basis
with

v1 = (−1,−2, 0), v2 = (−2, 1, 3), v3 = (1,−1,−2).

Determine the matrices [id]BE and [id]EB.

7.3. Changing bases

Proposition 7.16. Let f : V → W be a linear map of finite-dimensional vector
spaces. Suppose B and B′ are bases for V and C and C ′ are bases for W . Then
we have

(9) [f ]B
′

C′ = [id]CC′ · [f ]BC · [id]B
′

B .

Proof. This follows immediately from Proposition 7.12. �
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The following commuting diagram corresponds to the identity (9) of Proposi-
tion 7.16.

V
id //

f

((
V

f // W
id // W

F n

[f ]B
′

C′

;;
[id]B

′
B

//

ϕB′

OO

F n

[f ]BC

//

ϕB

OO

Fm

[id]C
C′

//

ϕC

OO

Fm

ϕC′

OO

In the spirit of the alternative proof of Proposition 7.12, we can explain the identity
(9) as follows. Take a vector v ∈ V . By first multiplying the sequence vB′ of
coefficients of v with respect to B′ with the matrix [id]B

′
B , we obtain the sequence

vB of coefficients of v with respect to B; multiplying that vector with the matrix
[f ]BC yields the sequence (f(v))C of coefficients of f(v) with respect to C. Finally,
multiplying this last vector with the matrix [id]CC′ gives the sequence (f(v))C′ of
coefficients of f(v) with respect to C ′. This sequence could also have been obtained
directly by multiplying [f ]B

′

C′ with the vector vB′ . In other words, we have

[f ]B
′

C′ · uB′ =
(
f(v)

)
C′

=
(
[id]CC′ · [f ]BC · [id]B

′

B

)
· uB′

for all u ∈ U , in particular for the j-th element of the basis B′, for which we have
uB′ = ej ∈ F n. So we find

[f ]B
′

C′ · ej =
(
[id]CC′ · [f ]BC · [id]B

′

B

)
· ej

for all j. This shows that the two matrices [f ]B
′

C′ and [id]CC′ · [f ]BC · [id]B
′

B have the
same columns, so they are equal.

Note again that the order of the matrices in the right-hand side of (9) is opposite
of the order in which they appear in this diagram. Because of Proposition 7.16,
the matrices

[id]B
′

B = ϕ−1
B ◦ ϕB′ and [id]CC′ = ϕ−1

C′ ◦ ϕC
are often called basis change matrices. The latter, for example, satisfies [id]CC′ ·wC =
wC′ for all w ∈ W , so multiplying [id]CC′ with the sequence wC of coefficients of a
vector w with respect to C gives the sequence wC′ of coefficients of w with respect
to C ′.

Lemma 7.17. Suppose V is an n-dimensional vector space over F with basis B.
Then for every invertible matrix P , there is a basis B′ for V such that [id]B

′
B = P .

Proof. Set wj = ϕB(P · ej) and B′ = (w1, w2, . . . , wn). Then we have ϕB′ =
ϕB ◦P , so ϕB′ is invertible and B′ is a basis. From P = ϕ−1

B ◦ id ◦ϕB′ , we conclude
P = [id]B

′
B . �

Proposition 7.18. If f : V → W is a linear map between finite-dimensional
F -vector spaces and M ∈ Mat(m × n, F ) is the matrix associated to f relative
to some choice of bases of V and W , then the set of all matrices associated to f
relative to any choice of bases is

{QMP : P ∈ Mat(n, F ), Q ∈ Mat(m,F ), P and Q invertible} .

Proof. By Proposition 7.16, every matrix associated to f is in the given set.
Conversely, let B and C be the original bases for V and W , so that M = [f ]BC .
Given invertible matrices P and Q, we can find bases B′ and C ′ for V and W ,
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respectively, such that P = [id]B
′

B and Q−1 = [id]C
′

C by Lemma 7.17. Then (by
Proposition 7.16 again) we have QMP = [f ]B

′

C′ . �

If we choose bases that are well-adapted to the linear map, then we will obtain a
very nice matrix. This is used in the following result.

Corollary 7.19. Let M ∈ Mat(m × n, F ). Then there are invertible matrices
P ∈ Mat(n, F ) and Q ∈ Mat(m,F ) such that

QMP =



1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · 1 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
...

...
...

0 0 · · · 0 0 · · · 0


=

(
Ir 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
,

where r = rk(M).

Proof. Let V = F n, W = Fm, and let f : V → W be the linear map given
by M . Let B = (v1, . . . , vn) be a basis of V such that vr+1, . . . , vn is a basis
of ker(f). Then w1 = f(v1), . . . , wr = f(vr) are linearly independent in W , and
we can extend to a basis C = (w1, . . . , wm). We then have

f(vi) =

{
wi if 1 ≤ i ≤ r

0 if r + 1 ≤ i ≤ n.

So the matrix M ′ = [f ]BC associated to f with respect to B and C has the required
form. Set P = [id]BEn and Q = [id]EmC , where En and Em are the standard bases of
F n and Fm, respectively. Then by Proposition 7.16, we have

M ′ = [f ]BC = [id]EmC · [f ]EnEm · [id]BEn = QMP,

as M is the matrix associated to f relative to the standard bases En and Em. �

Remark 7.20.

(1) If we say that two matrices M,M ′ ∈ Mat(m × n, F ) are equivalent if
there are invertible matrices P ∈ Mat(n, F ) and Q ∈ Mat(m,F ) such
that M ′ = QMP (exercise: this really defines an equivalence relation),
then Corollary 7.19 tells us that M and M ′ are equivalent if and only if
rk(M) = rk(M ′). To see this, first note that if M and M ′ are equivalent,
they must have the same rank (since the rank does not change under
multiplication by invertible matrices). Then Corollary 7.19 tells us that
if M has rank r, it is equivalent to the matrix given there, so any two
matrices of rank r are equivalent to the same matrix.

(2) Recall that by Proposition 4.32, row operations on a matrix M correspond
to multiplication on the left by an invertible matrix, and column oper-
ations on M correspond to multiplication on the right by an invertible
matrix. Interpreting M as the matrix associated to a linear map relative
to some bases, we see that row operations correspond to changing the
basis of the target space (containing the columns) of M , whereas column
operations correspond to changing the basis of the domain space (con-
taining the rows) of M . The result of Corollary 7.19 then also means that
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any matrix M can be transformed into the given simple form by elemen-
tary row and column operations. The advantage of this approach is that
by keeping track of the operations, we can also determine the matrices P
and Q explicitly, much in the same way as when inverting a matrix, cf.
the first alternative proof of Theorem 6.7.

Exercises

7.3.1. Let E2 and E3 be the standard bases of R2 and R3, respectively. Let T : R2 →
R3 be the map given by

T
(
(x, y)

)
= (3x+ 2y, x− y,−x+ 2y).

(1) Determine the matrix [T ]E2
E3

.
(2) Determine the matrix [T ]BC for the basis B =

(
(1, 2), (−1, 1)

)
of R2 and

the basis C = (v1, v2, v3) of R3 with

v1 = (−1,−2, 0), v2 = (−2, 1, 3), v3 = (1,−1,−2).

as in Exercise 7.2.2.
7.3.2. Let V ⊂ R3 be the subspace spanned by v1 and v3 as in Exercise 7.3.1. Then

B = (v1, v3) is a basis for V . Let T : V → R3 be the inclusion map. Let E be
the standard basis for R3. Let C be the basis for R3 as in Exercise 7.3.1.
(1) Determine the matrices [T ]BE and [T ]BC directly.
(2) Verify the equality that should hold between one of the matrices [T ]BE and

[T ]BC on the one hand and the product of the the other with [id]CE on the
other hand.

7.3.3. Let B and C be the standard bases of R2 and R3, respectively. Let T : R2 →
R3 be the linear map given by

T
(
(x, y)

)
= (2x− 3y, x+ y, 3x+ y).

(1) Determine the matrix [T ]BC .
(2) Determine the matrix [T ]B

′
C′ for the basis B′ =

(
(3, 4), (1,−2)

)
for R2 and

the basis C ′ = (v1, v2, v3) for R3 with

v1 = (1, 1, 1), v2 = (1, 2, 3), v3 = (1, 4, 9).

(3) Show that for the vector v ∈ R2 with vB′ = (1, 1) (i.e., v = ϕB′((1, 1))),
we indeed have

[T ]B
′

C′ · vB′ =
(
T (v)

)
C′
.

(4) Repeat this verification for vB′ = (1, 0) and vB′ = (0, 1).

7.4. Endomorphisms

In the special case of Proposition 7.16 that we have V = W , we can take B = C
and B′ = C ′ to obtain the following.

Proposition 7.21. Let f : V → V be an endomorphism of a finite-dimensional
vector space V with bases B and B′. Then we have

[f ]B
′

B′ = [id]BB′ · [f ]BB · [id]B
′

B = [id]BB′ · [f ]BB ·
(
[id]BB′

)−1
.

Proof. This follows immediately from Proposition 7.16 and Corollary 7.13.
�
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Example 7.22. Let B = (v1, v2, v3) be the basis for R3 as in Examples 7.10, 7.11,
and 7.14. As in Example 7.10, let s denote the reflection in the plane V spanned
by v1 and v2. Then with the matrices of those examples, we find that the matrix
associated to s with respect to the standard basis E is

[s]EE = [id]BE · [s]BB · [id]EB = [id]BE · [s]BB ·
(
[id]BE

)−1

=

1 1 1
2 1 −1
1 0 1

 ·
1 0 0

0 1 0
0 0 −1

 ·
−1

3
1
3

2
3

1 0 −1
1
3
−1

3
1
3

 =

 1
3

2
3
−2

3
2
3

1
3

2
3

−2
3

2
3

1
3

 .

Example 7.23. Let B = (v1, v2, v3) be the basis for R3 as in Example 7.22 and
let π : R3 → R3 be the orthogonal projection onto the plane V spanned by v1 and
v2. Then we have π(vi) = vi for i = 1, 2, and π(v3) = 0, as v3 is a normal to V .
Therefore, we find

[π]BB =

1 0 0
0 1 0
0 0 0


and as in Example 7.22, we find the matrix [π]EE with Proposition 7.16:

[π]EE = [id]BE · [π]BB · [id]EB = [id]BE · [π]BB ·
(
[id]BE

)−1

=

1 1 1
2 1 −1
1 0 1

 ·
1 0 0

0 1 0
0 0 0

 ·
−1

3
1
3

2
3

1 0 −1
1
3
−1

3
1
3

 =

 2
3

1
3
−1

3
1
3

2
3

1
3

−1
3

1
3

2
3

 .

Definition 7.24. We say that two n× n matrices M and M ′ are similar if there
is an invertible n× n matrix Q such that M ′ = QMQ−1.

The notion of similarity defines an equivalence relation on Mat(n, F ) (exercise).
Proposition 7.21 shows that any two matrices associated to the same endomor-
phism of V , but possibly with respect to different bases are similar. Conversely,
any two similar n × n matrices over F describe the same endomorphism of F n

with respect to some carefully chosen bases (exercise).

We have seen that it is easy to classify matrices in Mat(m× n, F ) with respect to
equivalence: the equivalence class is determined by the rank. In contrast to this,
the classification of matrices in Mat(n, f) with respect to similarity is much more
complicated. For example, the ‘multiplication by λ’ endomorphism (for λ ∈ F )
has matrix λIn regardless of the basis, and so λIn and µIn are not similar if λ 6= µ.

Example 7.25. As another example, consider the matrices

Mλ,t =

(
λ t
0 λ

)
.

The corresponding endomorphism fλ,t = fMλ,t
has ker(fλ,t − µ id) = 0 if λ 6= µ,

and has nontrivial kernel otherwise. This shows that Mλ,t and Mµ,u can be similar
only when λ = µ. Since dim ker(fλ,t − λ · id) is 1 if t 6= 0 and 2 if t = 0, Mλ,0 and
Mλ,1 are not similar. On the other hand, Mλ,t is similar to Mλ,1 if t 6= 0, since(

λ t
0 λ

)
=

(
1 0
0 t−1

)(
λ 1
0 λ

)(
1 0
0 t

)
.

This example gives you a first glimpse of the classification theorem, the ‘Jordan
Normal Form Theorem’.
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For purposes of classification, it is useful to have invariants, i.e., functions that
are constant on the equivalence classes. In the case of equivalence of matrices,
the rank is an invariant, and in this case, it gives the complete classification. The
rank is (of course) still an invariant with respect to similarity, but as the example
above shows, it is by no means sufficient to separate the classes. Here is another
invariant.

Definition 7.26. For A = (aij) ∈ Mat(n, F ), we define the trace of A to be

Tr(A) = a11 + a22 + · · ·+ ann .

Lemma 7.27. If A ∈ Mat(m× n, F ) and B ∈ Mat(n×m,F ), then

Tr(AB) = Tr(BA) .

Proof. The (i, i)-entry ofAB is
∑n

j=1 aijbji. The (j, j)-entry ofBA is
∑m

i=1 bjiaij.
So we get

Tr(AB) =
m∑
i=1

n∑
j=1

aijbji =
n∑
j=1

m∑
i=1

bjiaij = Tr(BA) .

�

Corollary 7.28. Let A,A′ ∈ Mat(n, F ) be similar. Then Tr(A) = Tr(A′).

Proof. There is an invertible matrix Q ∈ Mat(n, F ) such that A′ = QAQ−1.
It follows that

Tr(A′) = Tr(QA ·Q−1) = Tr(Q−1 ·QA) = Tr(A) .

�

This allows us to make the following definition.

Definition 7.29. Let V be a finite-dimensional F -vector space and f : V → V an
endomorphism of V. We define the trace Tr(f) of f to be the trace of any matrix
associated to f relative to some basis of V.

Note that Tr(f) is well-defined, since all matrices associated to f have the same
trace according to Corollary 7.28.

In the next chapter, we will introduce another invariant, which is even more im-
portant than the trace: the determinant.

Remark 7.30. To finish off this section, let us remark that, having chosen bases
B and C of the F -vector spaces V and W of dimensions n and m, respectively,
we obtain an isomorphism

Hom(V,W )
∼=−→ Mat(m× n, F ) , f 7−→ [f ]BC .

In particular, we see that dim Hom(V,W ) = mn.

Exercises

7.4.1. Let B be the basis
(
1, 1 + x, 1 + x + x2, 1 + x + x2 + x3

)
for R[x]3. Let

T : R[x]3 → R[x]3 be the linear map given by T (f) = f ′.
(1) Determine the matrix [T ]BB directly.
(2) Determine the matrix [T ]BB by first determining the matrix [T ]CC for the

basis C = (1, x, x2, x3), and then using a basis change matrix.



120 7. LINEAR MAPS AND MATRICES

7.4.2. Let L ⊂ R2 be the line given by y = 2x. Let π : R2 → R2 be the orthogonal
projection of R2 on L.
(1) Determine [π]BB, where B is the standard basis.
(2) Determine v1 and v2 such that (v1) is a basis for L and (v2) is a basis for

L⊥. Set C = (v1, v2). Determine [T ]CC .
(3) Determine [T ]BB again, this time using [T ]CC and a basis change matrix.

7.4.3. Let V ⊂ R3 be the plane given by x + 3y − 2z = 0. Let π : R3 → R3 be the
orthogonal projection of R3 on V . Let B be the standard basis for R3.
(1) Determine [π]BB directly.
(2) Determine [π]BB via [π]CC , where C = (v1, v2, v3) is a basis consisting of a

basis (v1, v2) for V and a basis (v3) for V ⊥.
7.4.4. Determine the trace of the following three matrices.

M1 =


1 2 2 1
4 −3 5 2
−2 1 5 11
3 2 7 −13



M2 =


1 1 1 1
1 2 3 4
1 4 9 16
1 8 27 64


−1

1 2 2 1
4 −3 5 2
−2 1 5 11
3 2 7 −13




1 1 1 1
1 2 3 4
1 4 9 16
1 8 27 64


M3 =

1 1 1
1 5 7
1 25 49

−11 5 6
0 2 7
0 0 3

 1 2 2
4 −3 5
−2 1 5

1 5 6
0 2 7
0 0 3

−11 1 1
1 5 7
1 25 49


7.4.5. Show that the notion of similarity defines an equivalence relation on the space

Mat(n, F ) of n× n matrices, as claimed.
7.4.6. Let M and M ′ be two similar n× n matrices over F . Show that there exists

a basis B of Fn such that for M ′ = [fM ]BB.
7.4.7. Prove Remark 7.30.



CHAPTER 8

Determinants

We will define the determinant det f of any endomorphism f : V → V of a finite-
dimensional vector space V over a field F . The most important properties of the
determinant include the fact that f is an isomorphism if and only if det f 6= 0,
and the fact that it is multiplicative, i.e., det(f ◦ g) = (det f) · (det g).

8.1. Determinants of matrices

We start with the case V = F n, so that f : V → V is given by some matrix. In
the case F = R, the determinant of f : Rn → Rn will turn out to correspond with
the factor by which f scales ‘oriented volumes’ (see Remark 8.13). So we have to
think a little bit about functions that define ‘oriented volume’.

We will only consider parallelotopes; these are the bodies spanned by n vectors
v1, . . . , vn ∈ Rn:

P (v1, . . . , vn) = {λ1v1 + · · ·+ λnvn : λ1, . . . , λn ∈ [0, 1]}.

The parallelotope P (v1, . . . , vn) is the image of the ‘unit cube’ P (e1, . . . , en) under
the linear map that sends the standard basis vectors e1, . . . , en to v1, . . . , vn; this
map is given by the matrix that has v1, . . . , vn as columns.

Now let D : Mat(n,R) → R be a function that is supposed to measure oriented
volume of n-dimensional parallelotopes — D(A) gives the volume of the image
of the ‘unit cube’ P (e1, . . . , en) under fA, i.e., the volume of P (v1, . . . , vn), where
v1, . . . , vn are the columns of A. What properties should such a function D satisfy?

For notational convenience, for any m×n matrix A over F , any integer 1 ≤ j ≤ n,
and any vector x ∈ Fm, we denote by rj(A, x) the matrix obtained by replacing the
j-th column of A by x; similarly, for integers 1 ≤ j, k ≤ n and vectors x, y ∈ Fm, we
denote by rjk(A, x, y) the matrix obtained by replacing the j-th and k-th column
of A by x and y, respectively.

The volume should scale corresponding to scaling of the vectors, i.e.,

(10) D(rj(A, λx)) = λD(rj(A, x)) .

Also, volumes should be additive in the following sense:

(11) D(rj(A, x+ y)) = D(rj(A, x)) +D(rj(A, y)) .

This corresponds to the fact that if the n − 1 columns v1, . . . , vj−1, vj+1, . . . , vn
of A other than the j-th column, span an (n − 1)-dimensional parallelotope
B = P (v1, . . . , vj−1, vj+1, . . . , vn) inside a hyperplane H with normal a, and this
so-called base B has (n − 1)-dimensional volume b, then the volume D(A) of
P (v1, . . . , vn) equals b times the height of P (v1, . . . , vn) with respect to this base;
this height is the oriented length of the projection of the j-th column onto a, which
is indeed additive in the j-th column. (Draw a picture supporting this argument
for n = 2 and n = 3!)

121
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These two properties (10) and (11) can be stated simply by saying that D is linear
in each column separately, when the other n−1 columns are held constant, i.e., for
each n× n matrix A and each 1 ≤ j ≤ n, the function F n → F, x 7→ D(rj(A, x))
is linear. Such a function Mat(n,R) → R is said to be multilinear as function in
the columns.

Another property of D should certainly be that the n-dimensional volume D(A)
vanishes when the parallelotope spanned by the columns of A is of lower dimension,
i.e., when the columns are linearly dependent. Together with multilinearity, it
suffices to only require the special case when two of the columns are equal (see
Lemma 8.2(1)), i.e.,

D(rij(A, x, x)) = 0 if 1 ≤ i, j ≤ n and i 6= j.

A function Mat(n,R) → R that is multilinear in the columns and that satisfies
this third property is said to be alternating. So these are the functions we are
looking for. Note that it makes sense to talk about functions Mat(n, F )→ F that
are multilinear and alternating in the columns for any field F .

Definition 8.1. Let F be a field and n a positive integer. A function Mat(n, F )→
F is called a determinantal function if it is multilinear and alternating as function
in the columns.

How many determinantal functions are there? First, it is pretty clear that the set
of all determinantal functions on V forms an F -vector space. So the question we
should ask is, what is the dimension of this vector space?

Before we state the relevant theorem, let us first prove a few simple properties of
determinantal functions.

Lemma 8.2. Let F be a field, n a positive integer, and A ∈ Mat(n, F ). Let
D : Mat(n, F )→ F be a determinantal function.

(1) If A is not invertible, then D(A) = 0.

(2) If we add a scalar multiple of the i-th column of a matrix A to the j-th
column, where i 6= j, then D(A) is unchanged, i.e.,

D(rij(A, x, y)) = D(rij(A, x, y + λx)).

(3) If we interchange two of the columns, then D(A) changes sign, i.e., for
i 6= j we have

D(rij(A, x, y)) = −D(rij(A, y, x)).

Proof.

(1) If A ∈ Mat(n, F ) is not invertible, then its columns v1, v2, . . . , vn are
linearly dependent, so one of them, say vj, is a linear combination of the
others, say

vj =
∑
i 6=j

λivi.

By linearity of D in the j-th column, this implies

D(A) = D(rj(A, vj)) = D
(
rj

(
A,
∑
i 6=j

λivi

))
=
∑
i 6=j

λiD(rj(A, vi)) =
∑
i 6=j

λi · 0 = 0,

where the second-to-last equality follows from the fact that for i 6= j, the
matrix rj(A, vi) has two identical columns, namely the i-th and the j-th.
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(2) By linearity of D in the j-th column and the fact that D is alternating,
we have

D(rij(A, x, y + λx)) = D(rij(A, x, y)) + λD(rij(A, x, x)) = D(rij(A, x, y)).

(3) For any x, y ∈ F n, we have

0 = D(rij(A, x+ y, x+ y)) =D(rij(A, x, x)) +D(rij(A, x, y)) +D(rij(A, y, x))

+D(rij(A, y, y)) = D(rij(A, x, y)) +D(rij(A, y, x)),

so D(rij(A, x, y)) = −D(rij(A, y, x)).

�

Proposition 8.3. For any field F , nonnegative integer n, and element λ ∈ F ,
there is at most one determinantal function D : Mat(n, F )→ F with D(In) = λ.

Proof. SupposeD : Mat(n, F )→ F is a determinantal function withD(In) =
λ. Lemma 8.2(1) gives D(A) = 0 if A is not invertible. Otherwise, the matrix A
is invertible, and we can transform it into the identity matrix In by elementary
column operations. The multilinearity of D and Lemma 8.2 tell us how the value
of D changes in the process: we see that

D(A) = (−1)kδ−1D(In) = (−1)kδ−1λ ,

where k is the number of times we have swapped two columns and δ is the product
of all the scaling factors we have used when scaling a column. This shows that D
is uniquely determined, as D(A) is determined for any matrix A. �

We cannot use the observation made in the proof of Proposition 8.3 easily to
show existence of a determinantal function on F n (we would have to show that
(−1)kδ−1 does not depend on the sequence of elementary column operations we
have performed in order to obtain In). Instead, we define an explicit function and
show that it is determinantal.

Definition 8.4. We define the functions

dn : Mat(n, F )→ F

(for n ≥ 0) inductively. We set d0(I0) = 1 for the unique 0 × 0 matrix I0. For
n > 0 we choose an index 1 ≤ i ≤ n and set

(12) dn(A) =
n∑
j=1

(−1)i+jaij · dn−1(Aij),

where aij is the entry in the i-th row and j-th column of A and Aij is the submatrix
of A obtained by deleting the i-th row and the j-th column from A.

Note that we have d1

(
(λ)
)

= λ, which could also have been used as the base case
in the inductive definition of the functions dn.

Proposition 8.5. For any integer n ≥ 0, the function dn : Mat(n, F ) → F is a
determinantal function with dn(In) = 1 that is independent of the choice of i in
Definition 8.4.

Proof. We use induction on n. For n = 0 the statement is trivial. (If you
suffer from horror vacui, i.e., you are afraid of the empty set, you can consider
n = 1; then d1 : Mat(1, F )→ F sends the 1×1 matrix (λ) to λ.) For the induction
step, we assume n ≥ 1 and let i be the corresponding choice from Definition 8.4.
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We first show that dn is linear in each of its columns. Indeed, note that the
function F n → F n−1 that deletes the i-th coordinate is linear. By the induction
hypothesis, this implies that for 1 ≤ j, k ≤ n, the function Mat(n, F ) → F that
sends A to dn−1(Aij) is linear as a function in the k-th column of A for j 6= k and
constant for j = k; The function A 7→ aij is constant as a function in the k-th
column of A for j 6= k and linear for j = k, so the j-th term in the right-hand side
of (12) is linear in all columns. Therefore, so is the sum dn.

To see that dn is alternating, we will show that for any n × n matrix A of which
the k-th and l-th column are the same for some k < l, we have dn(A) = 0. Let A
be such a matrix. Then for 1 ≤ j ≤ n with j 6= k, l, the submatrix Aij also has
two identical columns, so dn−1(Aij) = 0 by the induction hypothesis. We conclude

dn(A) = (−1)i+kc · dn−1(Aik) + (−1)i+lc · dn−1(Ail)

with c = aik = ail. The matrices Aik and Ail have the same columns, but in
a different order: the matrix Aik can be obtained from Ail by shifting the k-th
column l−k−1 positions to the right, or, equivalently, swapping this column with
its right neighbor l−k−1 times. Since dn−1 is an alternating multilinear function
in the columns, we find dn−1(Aik) = (−1)l−k−1dn−1(Ail) by Lemma 8.2(3). This
means that the two terms for j = k and j = l cancel and we have dn(A) = 0.

We conclude that dn is indeed a determinantal function. It is easy to check that
dn(In) = 1. From Proposition 8.3, we conclude that dn is uniquely determined, so
it is independent of the choice of i, which finishes the proof. �

Corollary 8.6. The determinantal functions Mat(n, F )→ F form a 1-dimensional
F -vector space.

Proof. From Proposition 8.3, it follows that the dimension is at most 1, while
Proposition 8.5 implies it is at least 1. �

Definition 8.7. For any field F and any nonnegative integer n, we let

det : Mat(n, F )→ F

be the unique determinantal function with det(In) = 1; for any matrix A ∈
Mat(n, F ), we call det(A) the determinant of A.

Note that the field F and the dimension n are not explicit in the notation det; by
Proposition 8.5, we have det = dn. If A = (aij) is written as an n × n array of
entries, we also write

det(A) =

∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣
and by (12) we have

(13) det(A) =
n∑
j=1

(−1)i+jaij det(Aij)

for all 1 ≤ i ≤ n; this is called the expansion of the determinant by the i-th row.
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Example 8.8. For 2× 2 matrices and 3× 3 matrices, we find∣∣∣∣a b
c d

∣∣∣∣ = ad− bc,∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = aei+ bfg + cdh− afh− bdi− ceg.

Example 8.9. If one of the rows of a square matrix contains many zeros, then
it is useful to expand the determinant by that row. If we expand the following
determinant by the second row, then we get∣∣∣∣∣∣∣∣

1 −1 2 1
1 0 2 0
2 1 2 1
3 −1 1 0

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣
−1 2 1
1 2 1
−1 1 0

∣∣∣∣∣∣− 2

∣∣∣∣∣∣
1 −1 1
2 1 1
3 −1 0

∣∣∣∣∣∣ = −1 · 2− 2 · (−7) = 12.

Example 8.10. Using induction, it is easy to show that the determinant of a
diagonal matrix 

λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn


equals the product

∏n
i=1 λi of the diagonal elements. The same holds for upper

triangular matrices, which are matrices of which all entries below the diagonal
are zero.

The proof of Proposition 8.3 gives us a second procedure to compute determinants:
we perform elementary column operations on A, keeping track of the scalings and
swappings, until we get a zero column (then det(A) = 0), or we reach the identity
matrix.

Example 8.11. We compute a determinant by elementary column operations.
Note that we can avoid divisions (and hence fractions) by choosing the operations
cleverly, cf. Example 4.41.∣∣∣∣∣∣∣∣
1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0 0 0
2 −3 −2 −5
3 −2 −7 −11
4 −5 −11 −14

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0 0 0
2 1 −2 −5
3 12 −7 −11
4 17 −11 −14

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
−21 12 17 49
−30 17 23 71

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
−21 12 17 −2
−30 17 23 2

∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
−21 12 1 17
−30 17 −1 23

∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
−51 29 −1 40

∣∣∣∣∣∣∣∣
= 2 · 40

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣ = 80

Proposition 8.12. For any n× n matrices A and B, we have

det(AB) = (detA) · (detB).
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Proof. LetA be an n×nmatrix. Consider the functionsD1, D2 : Mat(n, F )→
F , given by

D1(M) = (detA) · (detM),

D2(M) = det(AM).

Then D1 is a multiple of det, so D1 is a determinantal function and it satisfies
D1(In) = detA. The function D2 is easily seen to be linear in each column of M .
It is also alternating, because if M has two identical columns, then so does AM
and so det(AM) = 0. We conclude that D2 is a determinantal function satisfying
D2(In) = detA as well. By Proposition 8.3 we conclude D1 = D2 and in particular
D1(B) = D2(B), i.e., det(AB) = (detA) · (detB). �

Remark 8.13. We look back at our earlier motivation for the determinant: ori-
ented volumes. For two real n×n matrices A and B, we can interpret detB as the
oriented volume of the parallelotope P spanned by the columns of B, and det(AB)
as the oriented volume of the image fA(P ) of P under the map fA, namely the
parallelotope spanned by the columns of AB. Then Proposition 8.12 states that
the oriented volume of fA(P ) is (detA) times the oriented volume of P . Hence,
instead of viewing detA as the volume of the one parallelotope spanned by the
columns of A, i.e., the image of the unit cube, we can view detA as the factor by
which the endomorphism fA scales the volumes of all polytopes.

Corollary 8.14. If A is an invertible matrix, then detA 6= 0 and det(A−1) =
(detA)−1.

Proof. Let n be the number of rows (and thus also the number of columns)
of A. By Proposition 8.12, we have

(det(A−1)) · (detA) = det(A−1A) = det(In) = 1,

from which the statement follows. �

Remark 8.15. A square matrix A is invertible if and only if detA 6= 0, because
if A is not invertible, then detA = 0 by Lemma 8.2, and if A is invertible, then
detA 6= 0 by Corollary 8.14.

Theorem 8.16. Let A ∈ Mat(n, F ). Then det(A>) = det(A).

Proof. We show that A 7→ det(A>) is a determinantal function. First, we
have

det(A) = 0 ⇐⇒ rk(A) < n ⇐⇒ rk(A>) < n ⇐⇒ det(A>) = 0 ,

so our function is alternating. Second, we have to show that det(A>) is linear in
each of the columns of A. This is obviously equivalent to saying that det(A) is
linear in each of the rows of A. To check that this is the case for the ith row, we
expand det(A) by the ith row according to (13). For A = (aij), we have

det(A) =
n∑
j=1

(−1)i+jaij det(Aij) .

Now in Aij the ith row of A has been removed, so det(Aij) does not depend
on the ith row of A; linearity is then clear from the formula. Finally, we have
det(I>n ) = det(In) = 1, so det(A>) must coincide with det(A) because of the
uniqueness of determinantal functions. �
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Corollary 8.17 (Expansion by Columns). We can also expand determinants by
columns. Let n ≥ 1 and A = (aij) ∈ Mat(n, F ); we use the notation Aij as before.
Then for 1 ≤ j ≤ n,

det(A) =
n∑
i=1

(−1)i+jaij det(Aij) .

Proof. We expand the determinant of A> by the j-th row as in (13), but
with the roles of i and j switched. The elements in the j-th row of A> are
a1j, a2j, . . . , aij, so we get

det(A) = det(A>) =
n∑
i=1

(−1)i+jaij det
(
(A>)ji

)
=

n∑
i=1

(−1)i+jaij det
(
(Aij)

>) =
n∑
i=1

(−1)i+jaij det(Aij) .

�

Remark 8.18. Just as Lemma 8.2 tells us how the determinant of a matrix
behaves under elementary column operations, we conclude from Theorem 8.16
that it behaves similarly under elementary row operations.

Example 8.19. A matrix A ∈ Mat(n, F ) is said to be orthogonal if AA> = In.
What can we deduce about det(A)? Well,

1 = det(In) = det(AA>) = det(A) det(A>) = det(A)2 ,

so det(A) = ±1.

Definition 8.20. Let A ∈ Mat(n, F ) with n ≥ 1. Then the adjugate matrix
of A (sometimes called the adjoint matrix, but this also has other meanings) is
the matrix Ã ∈ Mat(n, F ) whose (i, j)-entry is (−1)i+j det(Aji). Here Aij is, as
before, the matrix obtained from A by removing the ith row and jth column. Note
the reversal of indices — Ãij = (−1)i+j det(Aji) and not det(Aij)!

Proposition 8.21 (Cramer’s rule). Let A ∈ Mat(n, F ) with n ≥ 1. Then

AÃ = ÃA = det(A)In .

If A is invertible, then det(A) 6= 0, and

A−1 = det(A)−1Ã .

Proof. The (i, k)-th entry of AÃ is
n∑
j=1

aij(−1)j+k det(Akj) .

Let A′ = (a′ij) be the matrix that we obtain from A by replacing the k-th row by
the i-th row. Expanding the determinant of A′ by the k-th row, we find

det(A′) =
n∑
j=1

(−1)k+ja′kj det(A′kj) =
n∑
j=1

(−1)j+kaij det(Akj),

which equals the (i, k)-th entry above. The proposition now follows from the fact
that for i = k we have A′ = A, so detA′ = detA, while for i 6= k, we have
detA′ = 0, as the i-th and k-th row of A′ are equal.
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The assertion on ÃA is proved in the same way (or by applying what we have just
proved to A>). �

Example 8.22. The inverse of a 2× 2 matrix(
a b
c d

)
with determinant ad− bc 6= 0 is

1
ad−bc

(
d −b
−c a

)
.

Exercises

8.1.1. Determine the determinants of the following matrices, both by expansion by
a row or column, or using elementary row and/or column operations.(

−1 −2
−3 −2

)  −2 −3 2
0 1 2
−3 −3 0

  2 −2 −2
1 3 −1
2 −2 0




1 −2 −2 −1
1 −1 −1 2
−2 −2 0 −1

0 0 −1 1



−3 2 1 2
−1 −1 −3 1

3 −2 −3 −2
3 −2 −1 −1


8.1.2. An upper triangular matrix is a square matrix of which all entries below

the main diagonal are 0. Show that the determinant of an upper triangular
matrix is equal to the product of its diagonal entries. Prove the same for lower
triangular matrices.

8.1.3. Let A,B be two n× n matrices. True or not true?
(1) TrAB = TrBA.
(2) TrAB = (TrA)(TrB).
(3) TrA+B = TrA+ TrB.
(4) detAB = detBA.
(5) detAB = (detA)(detB).
(6) detA+B = detA+ detB.
(7) detA 6= 0 if and only if A is invertible.

8.1.4. Let Mn denote the n × n matrix over R of which the entry in the i-th row
and the j-th column equals 1 if |i− j| ≤ 1 and 0 otherwise. For example,

M6 =


1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1

 .

(1) Compute the determinant of Mn for 2 ≤ n ≤ 5.
(2) Give (with proof) a general formula in terms of n for the determinant of

Mn.
8.1.5. Let M be a block matrix

M =
(
A B
0 C

)
over a field F with A and C square matrices, say A ∈ Mat(m,F ) and C ∈
Mat(n, F ), and B ∈ Mat(m × n, F ) and where 0 denotes the zero matrix in
Mat(n×m,F ). Show that detM = (detA) · (detC).
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8.1.6. Show that for any block matrix

A =


A11 A12 · · · A1t

0 A22 · · · A2t
...

...
. . .

...
0 0 · · · Att


with zeros below the diagonal blocks, we have

detA = (detA11)(detA22) · · · (detAtt).

8.1.7. Let Mn denote the n× n matrix over R with zeros on the diagonal and ones
for every entry off the diagonal.
(1) Compute the determinant of Mn for 2 ≤ n ≤ 5.
(2) Guess a general formula in terms of n for the determinant of Mn.
(3) Can you prove your guess?

8.2. Determinants of endomorphisms

Definition 8.23. Let f : V → V be an endomorphism of a finite-dimensional
vector space V with basis B. Then we define the determinant of f , written det f ,
to be the determinant det[f ]BB of the matrix associated to f with respect to B.

The fact that the choice of basis B is not reflected in the notation det f is justified
by the following proposition.

Proposition 8.24. The determinant det f of an endomorphism f : V → V of a
finite-dimensional vector space with basis B is independent of the basis B.

Proof. Let B′ be a second basis for V . Then with P = [id]BB′ we have
P−1 = [id]B

′
B and [f ]B

′

B′ = P · [f ]BB · P−1, so

det[f ]B
′

B′ = (detP ) · (det[f ]BB) · (detP−1) = (detP ) · (det[f ]BB) · (detP )−1 = det[f ]BB.

This shows that the determinant det f = det([f ]BB) is indeed independent of the
choice of basis B. �

Example 8.25. For the identity idV : V → V we have det idV = 1.

Example 8.26. By Example 7.2, we of course have det fA = det[fA]EE = detA for
any square matrix A.

Example 8.27. Let V ⊂ R3 be a plane and s : R3 → R3 the reflection in V , cf.
Examples 7.10 and 7.22. To compute the determinant of s, we may choose any
basis. Take a basis (v1, v2) for V and a normal v3 of V . Then B = (v1, v2, v3) is a
basis for R3 (why?), and as in Example 7.10, we find

[s]BB =

1 0 0
0 1 0
0 0 −1

 .

We conclude det s = det([s]BB) = −1. Note that this is consistent with the fact
that the reflection s preserves volumes and changes the orientation of the volumes.

Proposition 8.28. For any two endomorphisms f, g : V → V of a finite-dimensional
vector space V , we have det(f ◦ g) = (det f) · (det g).

Proof. Choose a basis B for V . Then from Proposition 8.12 we find

det(f ◦ g) = det([f ◦ g]BB) = det([f ]BB · [g]BB) = (det[f ]BB)(det[g]BB) = (det f)(det g).

�
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Note that by Corollary 6.4, an endomorphism f : V → V of a finite-dimensional
vector space V is an isomorphism if and only if it is injective, so if and only if
ker f 6= {0}. By the following proposition, this happens if and only if det f 6= 0.

Proposition 8.29. Let f : V → V be an endomorphism of a finite-dimensional
vector space V . Then f is an isomorphism if and only if det f 6= 0.

Proof. Choose a basis for B and set n = dimV . By Proposition 3.8, the
map f is an isomorphism if and only if the matrix [f ]BB is invertible. By Remark
8.15, this is the case if and only if det([f ]BB) 6= 0. �

Exercises

8.2.1. Determine the determinant of the following linear maps.
(1) f : R3 → R3, (x, y, z) 7→ (2x+ z, y − 3z,−x+ 2y + 3z),
(2) the rotation R2 → R2 about 0 over an angle ϕ,
(3) the orthogonal projection R3 → R3 of R3 onto the plane given by x−2y+

z = 0,
(4) the map R[x]3 → R[x]3 given by f 7→ xf ′ with f ′ the derivative of f ,

8.2.2. Let ϕ : V → W be an isomorphism of finite-dimensional vector spaces, and
f : V → V an endomorphism of V . Show that f ′ = ϕ ◦ f ◦ ϕ−1 is an endomor-
phism of W satisfying det f ′ = det f .

8.2.3. Let f : V → V be an endomorphism of a finite-dimensional vectorspace V .
Let σ : V → W be a linear map. Suppose that f(kerσ) ⊂ kerσ. Let f ′ be the
restriction of f to kerσ and let f ′′ be the endomorphism of imσ induced by f
(see Exercise 3.2.15). Show that det f = (det f ′) · (det f ′′).

[Hint: use Exercise 8.1.5.]

8.3. Linear equations

The system 
a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

of m linear equations in n variables x1, . . . , xn over a field F can also be written
as Ax = b with

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 ∈ Mat(m× n, F )

and

x =


x1

x2
...
xn

 and b =


b1
b2
...
bm

 ∈ Fm.

In terms of the linear map fA : F n → Fm, the solution set equals

{ x ∈ F n : Ax = b } = f−1
A (b).

Thus solving systems of linear equations comes down to determining inverse images
under linear maps.
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Definition 8.30. Let f : V → W be a linear map between two F -vector spaces.
The equation

f(x) = 0 ,

to be solved for x ∈ V, is called a homogeneous linear equation. If V = F n

and W = Fm (with m > 1), we also speak of a homogeneous system of linear
equations. (Since as above, the equation consists of m separate equations in F ,
coming from the coordinates of Fm.)

If b ∈ W \ {0}, then the equation

f(x) = b

(again to be solved for x ∈ V ) is called an inhomogeneous linear equation, or in
the case V = F n and W = Fm, an inhomogeneous system of linear equations.
The equation or system of equations is called consistent if it has a solution, i.e., if
b ∈ im(f).

With the theory we have built so far, the following result is essentially trivial.

Theorem 8.31. Let f : V → W be a linear map between two F -vector spaces.

(1) The solution set of the homogeneous linear equation f(x) = 0 is the linear
subspace ker f ⊂ V.

(2) Let b ∈ W \ {0}. If the inhomogeneous linear equation f(x) = b is
consistent, and a ∈ V is a solution, then the set of all solutions is the set

(14) f−1(b) = { a+ z : z ∈ ker f }.

Proof.

(1) By definition, the solution set f−1(0) is exactly the kernel of f .

(2) Let x be any solution and z = x− a. Then f(z) = f(x)− f(a) = b− b =
0, so z ∈ ker f and x = a + z. This shows the inclusion ‘⊂’ in (14).
Conversely, if x = a + z for some z ∈ ker f , then f(x) = f(a + z) =
f(a) + f(z) = b+ 0 = b, which proves the other inclusion ‘⊃’.

�

Example 8.32. Consider the wave equation

∂2f

∂t2
= c2

∂2f

∂x2

for f ∈ C2(R × [0, π]), with boundary conditions f(t, 0) = f(t, π) = 0 and initial
conditions f(0, x) = f0(x) and ∂f

∂t
(0, x) = 0. If we ignore the first initial condition

for a moment, we can consider this as a homogeneous linear equation, where we
let

V = {f ∈ C2(R×[0, π]) : ∀t ∈ R : f(t, 0) = f(t, π) = 0, ∀x ∈ ]0, π[ : ∂f
∂t

(0, x) = 0}
and W = C(R× [0, π]), and the linear map V → W is the wave operator

w : f 7−→ ∂2f

∂t2
− c2 ∂

2f

∂x2
.

We can find fairly easily a bunch of solutions using the trick of ‘separating the
variables’ — we look for solutions of the form f(t, x) = g(t)h(x). This leads to an
equation

1

c2
g′′(t)

g(t)
=
h′′(x)

h(x)
,



132 8. DETERMINANTS

and the common value of both sides must be constant. The boundary conditions
then force h(x) = sin kx (up to scaling) for some k ≥ 1, and then g(t) = cos kct
(again up to scaling). Since we know that the solution set is a linear subspace, we
see that all linear combinations

f(t, x) =
n∑
k=1

ak cos kct sin kx

are solutions. Such a solution has

f(0, x) =
n∑
k=1

ak sin kx ,

so if f0 is of this form, we have found a (or the) solution to the original prob-
lem. Otherwise, we have to use some input from Analysis, which tells us that we
can approximate f0 by linear combinations as above and that the corresponding
solutions will approximate the solution we are looking for.

Let us now look at the more familiar case where V = F n and W = Fm, so that
we have a system of m linear equations in n variables. This is most conveniently
written in matrix notation as Ax = 0 in the homogeneous case and Ax = b in the
inhomogeneous case.

Algorithm for homogeneous equations. To solve a homogeneous system of
linear equations Ax = 0, use elementary row operations to bring the matrix A
into reduced row echelon form; then read off a basis of the kernel (which is the
solution space) according to Proposition 4.50.

Algorithm for inhomogeneous equations. To solve an inhomogeneous system
of linear equations Ax = b, we do the same as in Example 6.28 (though this time we
do not assume A is invertible). Let A◦ = (A|b) denote the extended matrix of the
system (the matrix A with b attached as an (n+1)-st column). Use elementary row
operations to bring A◦ into reduced row echelon form. The system is consistent
if and only if the last column does not contain a pivot. In this case, the first
n coordinates of −wn+1 (in the notation of Proposition 4.50) give a solution of
the system, but such a solution can also be easily found by solving the equations
corresponding to the nonzero rows of the row echelon form from the bottom up.
A basis of the solution space of the corresponding homogeneous system (needed to
find the complete solution set with Theorem 8.31) can be read off from the first
n columns of the reduced row echelon form of A◦, as these form the reduced row
echelon form of A.

To see that this algorithm is correct, we depict the system, as in Section 6.4, as

x

A b
.

Applying elementary row operations to the combined matrix A◦ = A b yields

a combined matrix A′ b′ , for which the solution set to the equation A′x = b′ is
the same as the solution set to the original equation Ax = b. Note that the last
column of the row echelon form of A◦ does not contain a pivot if and only if the
rank of the first n columns equals the rank of all n + 1 columns, i.e., if and only
if rk(A) = rk(A◦). The latter is equivalent to saying that b is in the span of the
columns of A, which is the image of A as a linear map. The statement on how to
find a solution is then easily verified.
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Remark 8.33. Suppose f : V → W is a linear map of which you already know
it is an isomorphism and you know its inverse g = f−1 explicitly. Then for any
b ∈ W , the solution to the linear equation f(x) = b is of course just x = g(b).

Similarly, if A is an invertible n × n matrix over F , then for any b ∈ F n, the
solution to the equation Ax = b is just x = A−1b.

Example 8.34. Consider the following system of linear equations:

x + y + z + w = 0
x + 2y + 3z + 4w = 2
x + 3y + 5z + 7w = 4

We will solve it according to the procedure outlined above. The extended matrix is

A′ =

 1 1 1 1 0
1 2 3 4 2
1 3 5 7 4

 .

We transform it into reduced row echelon form. 1 1 1 1 0
1 2 3 4 2
1 3 5 7 4

 −→
 1 1 1 1 0

0 1 2 3 2
0 2 4 6 4

 −→
 1 0 −1 −2 −2

0 1 2 3 2
0 0 0 0 0


Since the last column does not contain the leading 1 of a row, the system is
consistent, and a solution is given by a = (x, y, z, w) = (−2, 2, 0, 0). The kernel
of the non-extended matrix has basis (z1, z2) with z1 = (1,−2, 1, 0) and z2 =
(2,−3, 0, 1). So all solutions are given by

(x, y, z, w) = a+ rz1 + sz2 = (−2 + r + 2s, 2− 2r − 3s, r, s) ,

for some r and s.

Example 8.35. For any c ∈ R we set

Ac =

 1 −1 c
1 1 −2
−1 c 2

 and b =

 2
1
−1

 .

For each c ∈ R, we want to know whether the linear equation Ac · x = b has no
solutions, exactly one solution, or more than one solution. We first compute the
determinant by expanding it by the first column.

detAc =

∣∣∣∣1 −2
c 2

∣∣∣∣−∣∣∣∣−1 c
c 2

∣∣∣∣−∣∣∣∣−1 c
1 −2

∣∣∣∣ = (2+2c)−(−2−c2)−(2−c) = (c+1)(c+2).

We see that for c 6= −2,−1, the determinant detAc is nonzero, so the matrix Ac
is invertible and there is exactly one x with Ac · x = b. For c = −1, the extended
matrix is  1 −1 −1 2

1 1 −2 1
−1 −1 2 −1


with reduced row echelon form 1 0 −3

2
3
2

0 1 −1
2
−1

2
0 0 0 0

 .
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It follows immediately that a = (3
2
,−1

2
, 0) satisfies A−1 · a = b. The kernel of A−1

is generated by z = (2, 1, 1), so the complete solution set is { a + rz : r ∈ R }.
Finally, for c = −2, the extended matrix is 1 −1 −2 2

1 1 −2 1
−1 −2 2 −1


with reduced row echelon form 1 0 −2 0

0 1 0 0
0 0 0 1

 .

Here, the last column does contain a pivot, so there is no solution.

Exercises

8.3.1. For each of the following systems of linear equations, find a matrix A and a
vector b, such that the system is equivalent with the equation Ax = b in x.
Then describe the full solution set. 2x1+ 3x2+ −2x3 = 0

3x1+ 2x2+ 2x3 = 0
−x2+ 2x3 = 0 2x1+ 3x2+ −2x3 = 1

3x1+ 2x2+ 2x3 = −1
−x2+ 2x3 = −1 2x1+ 3x2+ −2x3 = 1

3x1+ 2x2+ 2x3 = 1
−x2+ 2x3 = 1

3x1+ x2+ 2x3+ −2x4 = 1
2x1+ −x2+ 2x3 = 2
x1+ x3 = 3

−2x1+ −x2+ −x3+ x4 = 4
8.3.2. For any real numbers a, b ∈ R, we define the matrix Ca and the vector vb by

Ca =

 a a 2
1 0 a
−2 −3 1

 and vb =

2
1
b

 .

(1) For each a ∈ R, determine the rank of the matrix Ca.
(2) Is Ca invertible for a = 2? If no, explain why not; if yes, give the inverse.
(3) For which pairs (a, b) does the equation Cax = vb have more than one

solution x ∈ R3?
(4) Describe the complete solution set for the pair of part (3) with the smallest

value of a.



CHAPTER 9

Eigenvalues and Eigenvectors

In Example 8.27 we saw that for a reflection s : R3 → R3 in a plane V ⊂ R3,
there is a special basis B such that the associated matrix [s]BB with respect to B
is a diagonal matrix. It allowed us to compute the determinant very easily as
the product of the diagonal entries, but it also makes other computations easier.
The k-th power of a diagonal matrix D, for instance, is just the diagonal matrix
of which the diagonal entries are the k-th power of the corresponding entries
of D. In this chapter we will investigate these special bases consisting of so-called
eigenvectors.

9.1. Eigenvalues and eigenvectors

Definition 9.1. Let f : V → V be an endomorphism of a vector space V . For
any λ ∈ F , we say that λ is an eigenvalue of f if there exists a nonzero vector
v ∈ V with f(v) = λv; we call such a vector an eigenvector for the eigenvalue λ,
and the subspace Eλ(f) = { v ∈ V : f(v) = λv} is called the λ-eigenspace of f .
The spectrum Ω(f) of f is the set of eigenvalues of f .

Note that λ ∈ F is an eigenvalue of f if and only if Eλ(f) 6= {0}.
Example 9.2. Let V = R2 and consider the map f : V → V given by f(x, y) =
(y, x). Then 1 and −1 are eigenvalues of f , and we have

E1(f) = {(x, x) : x ∈ R},
E−1(f) = {(x,−x) : x ∈ R}.

The eigenvectors (1, 1) and (1,−1) form a basis of V , and the matrix of f relative
to that basis is (

1 0
0 −1

)
.

Example 9.3. Let V = C∞(R) be the space of infinitely differentiable functions
on R. Consider the endomorphism D : f 7→ f ′′. Then every λ ∈ R is an eigenvalue,
and all eigenspaces are of dimension two:

Eλ(D) =


L(x 7→ 1, x 7→ x) if λ = 0

L(x 7→ eµx, x 7→ e−µx) if λ = µ2 > 0

L(x 7→ sinµx, x 7→ cosµx) if λ = −µ2 < 0

Example 9.4. Let s : R3 → R3 be the reflection in a plane V ⊂ R3. Then 1 is an
eigenvalue with eigenspace E1(s) = V , and −1 is an eigenvalue with eigenspace
E−1(s) = V ⊥.

If π : R3 → R3 is the orthogonal projection onto V , then 1 is an eigenvalue with
eigenspace E1(π) = V , and 0 is an eigenvalue with eigenspace E0(π) = V ⊥.

Since matrices can be identified with linear maps, it makes sense to speak about
eigenvalues, eigenvectors, and eigenspaces of a square matrix A ∈ Mat(n, F ).

135
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Proposition 9.5. Let f : V → V be an endomorphism of a vector space V . Sup-
pose v ∈ V is an eigenvector of f for eigenvalue λ. Then for every positive integer
k, the vector v is an eigenvector for eigenvalue λk of the endomorphism

fk = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k

: V → V.

Proof. Exercise. �

Proposition 9.6. Let f : V → V be an endomorphism of a vector space V over
a field F . Then for any λ ∈ F , we have

Eλ(f) = ker(f − λ · idV ).

Proof. This follows immediately from the fact that for every v ∈ V we have
f(v) = λv if and only if (f − λ · idV )(v) = 0. �

So λ is an eigenvalue of an endomorphism f if and only if ker(f − λ · idV ) 6= {0}.
If V is finite-dimensional, then we can use the determinant to find out whether
this is the case.

Proposition 9.7. Let f : V → V be an endomorphism of a finite-dimensional
vector space V over a field F with an element λ ∈ F . Then λ is an eigenvalue of
f if and only if det(f − λ · idV ) = 0.

Proof. Proposition 9.6 gives that λ is an eigenvalue of f if and only if ker(f−
λ · idV ) 6= {0}, so if and only if f − λ · idV is not injective, which is equivalent by
Corollary 6.4 to the fact that f − λ · idV is not an isomorphism. By Proposition
8.29 this is the case if and only if det(f − λ · idV ) = 0. �

Exercises

9.1.1. Prove Proposition 9.5.
9.1.2. Let V = C∞(R) be the space of infinitely differentiable functions on R. Con-

sider the endomorphism D : f 7→ f ′. Show that every λ ∈ R is an eigenvalue
of D. Cf. Example 9.3 and Proposition 9.5.

9.2. The characteristic polynomial

How do we find all eigenvalues (and eigenvectors) of an endomorphism? Of course,
we can not just try all elements of F . If we want to find all eigenvalues of an
endomorphism f : V → V of a finite-dimensional vector space V , then we can use
the characteristic polynomial of f , defined as follows.

Definition 9.8. Let f : V → V be an endomorphism of a finite-dimensional vector
space V over a field F . Then the characteristic polynomial Pf ∈ F [t] of f is a
polynomial over F (see Example 1.23) in the variable t, defined by

Pf (t) = det(t · idV −f).

The characteristic polynomial PA(t) of an n× n matrix A over F is defined by

PA(t) = det(t · In − A).

Proposition 9.9. Suppose V is a finite-dimensional vector space with basis B
and f : V → V an endomorphism. Set A = [f ]BB. Then we have Pf (t) = PA(t).
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Proof. Set n = dimV . Then we have

Pf (t) = det(t · idV −f) = det([t · idV −f ]BB) = det(t · In − [f ]BB) = PA(t).

�

Lemma 9.9 shows that the separate definitions of the characteristic polynomial for
endomorphisms and matrices will not cause confusion. Moreover, it shows that if
we want to compute the characteristic polynomial of an endomorphism, then we
can use the associated matrix with respect to any basis. Applying this to fA for
any square matrix A yields the following result, which can also be proved directly.

Proposition 9.10. Let F be a field, n a nonnegative integer and A,P ∈ Mat(n, F )
matrices with P invertible. Set A′ = P−1AP . Then the characteristic polynomials
PA and PA′ are equal.

Proof. Exercise. �

If we write A = (aij)ij ∈ Mat(n, F ), then

Pf (t) = det(t · In − A) =

∣∣∣∣∣∣∣∣
t− a11 −a12 · · · −a1n

−a21 t− a22 · · · −a2n
...

...
. . .

...
−an1 −an2 · · · t− ann

∣∣∣∣∣∣∣∣ .
Expanding the determinant, we find (exercise)

Pf (t) = PA(t) = tn − Tr(A)tn−1 + · · ·+ (−1)n det(A)

= tn − Tr(f)tn−1 + · · ·+ (−1)n det(f) .

Proposition 9.11. Let f : V → V be an endomorphism of a finite-dimensional
vector space V over a field F with an element λ ∈ F . Then λ is an eigenvalue of
f if and only if λ is a root of the characteristic polynomial Pf , i.e., Pf (λ) = 0.

Proof. Set n = dimV . We have Pf (λ) = det(λ · idV −f) = (−1)n · det(f −
λ · idV ), so Pf (λ) = 0 if and only if det(f − λ · idV ) = 0. The statement therefore
follows immediately from Proposition 9.7. �

Example 9.12. Let us come back to the earlier example f : (x, y) 7→ (y, x) on R2

of Example 9.2. With respect to the canonical basis E, the associated matrix is

[f ]EE =

(
0 1
1 0

)
,

so the characteristic polynomial is

Pf (t) =

∣∣∣∣ t −1
−1 t

∣∣∣∣ = t2 − 1

and the eigenvalues are the two roots 1 and −1.

Example 9.13. Let us consider the real matrix

A =

 5 2 −6
−1 0 1
3 1 −4

 .
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What are its eigenvalues and eigenspaces? We compute the characteristic polyno-
mial:

PA(t) =

∣∣∣∣∣∣
t− 5 −2 6

1 t −1
−3 −1 t+ 4

∣∣∣∣∣∣
= (t− 5)

(
t(t+ 4)− 1

)
+ 2
(
(t+ 4)− 3

)
+ 6
(
−1 + 3t

)
= t3 − t2 − t+ 1 = (t− 1)2(t+ 1) .

The roots are 1 and −1; these are therefore the eigenvalues. To find (bases of)
the eigenspaces, note that Eλ(A) = ker(A− λI3). For λ = 1, we have

A− I3 =

 4 2 −6
−1 −1 1
3 1 −5

 
1 0 −2

0 1 1
0 0 0


(by elementary row operations), so E1(A) = ker(A− I3) is generated by (2,−1, 1).
For λ = −1, we obtain

A+ I3 =

 6 2 −6
−1 1 1
3 1 −3

 
1 0 −1

0 1 0
0 0 0


and so E−1(A) = ker(A+ I3) is generated by (1, 0, 1).

Exercises

9.2.1. Let A be an n× n matrix. Show that we have

PA(t) = tn − Tr(A)tn−1 + · · ·+ (−1)n det(A),

i.e., the coefficients of tn−1 equals −Tr(A) and the constant coefficient equals
(−1)n det(A).

9.2.2. What is the characteristic polynomial of the reflection s : R3 → R3 in some
plane V ⊂ R3?

9.2.3. For each matrix A of the following real matrices, find a basis for the eigenspace
Eλ(A) of each eigenvalue λ.(

5 −4
8 −7

) (
−6 −4

8 6

) (
1 1
−4 5

)
 3 2 0
−1 0 0

0 0 −3

  7 0 8
0 3 0
−4 0 −5

  0 −1 0
4 4 0
2 1 2




3 1 0 0
−2 0 0 0
−2 −2 1 0
−9 −9 0 −3




2 −1 0 3
0 1 0 2
−2 1 1 −6

0 0 0 2


9.2.4. Let ϕ : V → W be an isomorphism of finite-dimensional vector spaces, and

f : V → V an endomorphism of V . Show that f ′ = ϕ ◦ f ◦ ϕ−1 is an endomor-
phism of W satisfying Pf ′ = Pf , cf. Exercise 8.2.2.

9.2.5. Let F be a field and a0, a1, . . . , ad−1 ∈ F . Show that there is a matrix A ∈
Mat(d, F ) with PA = td + ad−1t

d−1 + . . .+ a1t+ a0.
9.2.6. Let f : V → V be an endomorphism of a finite-dimensional vectorspace V .

Let σ : V → W be a linear map. Suppose that f(kerσ) ⊂ kerσ. Let f ′ be the
restriction of f to kerσ and let f ′′ be the endomorphism of imσ induced by f
(see Exercises 3.2.15 and 8.2.3). Show that Pf = Pf ′ · Pf ′′ .
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9.3. Diagonalization

Definition 9.14. Let f : V → V be an endomorphism of a finite-dimensional
vector space V . Then f is diagonalizable if there exists a basis B for V such that
the matrix [f ]BB associated to f with respect to B is diagonal. A matrix A is
diagonalizable if the associated linear map fA is diagonalizable.

Recall that for any two bases B and C for V we have

[f ]BB = P−1 · [f ]CC · P
with P = [id]BC . In particular, for V = F n, C = E, and f = fA for some matrix
A, we have [f ]CC = [fA]EE = A, and we find that A is diagonalizable if and only if
there is an invertible matrix P such that P−1AP is diagonal (see Lemma 7.17).
We also conclude that, in general, the endomorphism f is diagonalizable if and
only if the matrix [f ]CC is diagonalizable for some (and thus every) basis C for V .

Proposition 9.15. Let f : V → V be an endomorphism of a finite-dimensional
vector space V with basis B = (v1, . . . , vn). Then [f ]BB is a diagonal matrix with
diagonal entries λ1, . . . , λn if and only if for all 1 ≤ j ≤ n, the vector vj is an
eigenvector of f for eigenvalue λj.

Proof. The j-th column of [f ]BB is the sequence (f(vj))B of coefficients of f(vj)
with respect to B. The matrix [f ]BB is diagonal with diagonal entries λ1, . . . , λn
if and only if for each j, the j-th column (f(vj))B equals λjej, which happens if
and only if for each j, we have f(vj) = λjvj, i.e., vj is an eigenvector of f for
eigenvalue λj. �

It follows that f : V → V is diagonalizable if and only if there exists a basis for V
consisting of eigenvectors of f .

The big question is now: when is a matrix or endomorphism diagonalizable?

This is certainly not always the case. In Example 9.13, for instance, we only
found two linearly independent eigenvectors in R3, and so there cannot be a basis
of eigenvectors. Another example is f : (x, y) 7→ (−y, x) on R2. The characteristic
polynomial equals t2 + 1 and does not have roots in R, so there are no eigenvalues
and therefore no eigenvectors. (If we take C instead as the field of scalars, then
we do have two roots ±i, and f becomes diagonalizable.)

Lemma 9.16. Let V be an F -vector space and f : V → V an endomorphism. Let
λ1, . . . , λm ∈ F be distinct, and for i = 1, . . . ,m, let vi ∈ Eλi(f). If

v1 + v2 + · · ·+ vm = 0 ,

then vi = 0 for all i.

Proof. We use induction on m. The case m = 0 (or m = 1) is trivial. So
assume the claim is true for m, and consider the case with m+ 1 eigenvalues. We
apply the endomorphism f − λm+1 idV to the equation

v1 + v2 + · · ·+ vm + vm+1 = 0

and obtain (note (f − λm+1 idV )(vm+1) = 0)

(λ1 − λm+1)v1 + (λ2 − λm+1)v2 + · · ·+ (λm − λm+1)vm = 0 .

By induction, we find that (λi − λm+1)vi = 0 for all 1 ≤ i ≤ m. Since λi 6= λm+1,
this implies vi = 0 for 1 ≤ i ≤ m. But then we must also have vm+1 = 0. �
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Alternative proof. Set v = v1 + v2 + · · ·+ vm = 0. Then for every integer
k, we have fk(v) = 0, where fk = f ◦ f ◦ · · · ◦ f is the composition of k copies of
f ; this gives

0 = fk(v) = λk1v1 + · · ·+ λkmvm,

so the vector ak = (λk1, . . . , λ
k
m) is contained in the kernel of the linear map

ρ : Fm → V that sends ej to vj. By Example 7.4 and Exercise 7.1.2, the Vander-
monde matrix with columns a0, a1, . . . , am−1 is invertible, so these columns span
Fm. We conclude ker ρ = Fm, so ρ is the zero map and vj = 0 for all j. �

Corollary 9.17. Let V be an F -vector space and f : V → V an endomorphism.
Let λ1, . . . , λm ∈ F be distinct, and for each 1 ≤ j ≤ m, let Bi be a basis for Eλi(f).
Then the concatenation of B1, B2, . . . , Bm is a sequence of linearly independent
vectors.

Proof. Let v be a linear combination on the elements inB1, B2, . . . , Bm. Then
v can be written as v = v1 +v2 + · · ·+vm with vi the part of the linear combination
that uses elements in Bi, so vi ∈ Eλi(f). Suppose v = 0. Then by Lemma 9.16,
we have vi = 0 for all i. Since the elements of Bi are linearly independent, all the
coefficients in the linear combination that gives vi vanish. We conclude that all
coefficients in the original linear combination that gives v vanish, so indeed, the
concatenation of B1, B2, . . . , Bm is a sequence of linearly independent vectors. �

Example 9.18. We can use this to show once again that the power functions
fn : x 7→ xn for n ∈ N0 are linearly independent as elements of the space P of
polynomial functions on R. Namely, consider the endomorphism D : P → P ,
f 7→ (x 7→ xf ′(x)). Then D(fn) = nfn, so the fn are eigenvectors of D for
eigenvalues that are pairwise distinct, hence they must be linearly independent.

Corollary 9.19. Let V be a finite-dimensional F -vector space and f : V → V an
endomorphism. Then we have∑

λ∈F

dimEλ(f) ≤ dimV

and equality holds if and only if f is diagonalizable.

Proof. The inequality follows from Theorem 5.46 and Corollary 9.17. If f
is diagonalizable, then there is a basis consisting of eigenvectors, and so we must
have equality. Conversely, if we have equality, then the union of bases of the
eigenspaces will be a basis of V , which consists of eigenvectors of f . �

Proposition 9.20. Let V be an n-dimensional F -vector space and f : V → V an
endomorphism. If Pf (t) has n distinct roots in F , then f is diagonalizable.

Proof. In this case, there are n distinct eigenvalues λ1, . . . , λn. Therefore,
Eλi(f) is nontrivial for 1 ≤ i ≤ n, which means that dimEλi(f) ≥ 1. So

dimV = n ≤
n∑
i=1

dimEλi(f) ≤ dimV ,

and we must have equality. The result then follows by the previous corollary. �

The converse of this statement is false in general, as the identity endomorphism
idV shows (for dimV ≥ 2).
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Example 9.21. Consider the real matrix

A =

−5 6 6
0 1 0
−3 3 4

 .

We want to know if A is diagonalizable and, if so, find an invertible 3×3 matrix P
such that P−1AP is diagonal. This means we want to know whether there exists a
basis of eigenvectors. We first compute the characteristic polynomial to determine
the eigenvalues. We expand by the second row to get

PA(t) =

∣∣∣∣∣∣
t+ 5 −6 −6

0 t− 1 0
3 −3 t− 4

∣∣∣∣∣∣ = (t− 1) ·
(
(t+ 5)(t− 4) + 18

)
= (t− 1)2(t+ 2).

This shows that the eigenvalues are λ1 = 1 and λ2 = −2. To find the eigenspaces
Eλ(A) = ker(A− λI3), we apply elementary row operations to A− λI3 to obtain
the reduced row echelon form. We get

A− I3 =

−6 6 6
0 0 0
−3 3 3

 
1 −1 −1

0 0 0
0 0 0


and

A+ 2I3 =

−3 6 6
0 3 0
−3 3 6

 
1 0 −2

0 1 0
0 0 0

 .

We conclude that E1(A) = ker(A− I3) has a basis (v1, v2) and E−2(A) = ker(A+
2I3) has a basis (v3) with

v1 =

1
1
0

 , v2 =

1
0
1

 , v3 =

2
0
1

 .

The vectors v1, v2, v3 are linearly independent by Corollary 9.17, so they form a
basis B = (v1, v2, v3) for R3 of eigenvectors of A, which already shows that A is
diagonalizable. The corresponding eigenvalues are 1, 1, −2, respectively, so we get

[fA]BB =

1 0 0
0 1 0
0 0 −2


by Proposition 9.15. Furthermore, if we set D = [fA]BB and

P = [id]BE =

 | | |
v1 v2 v3

| | |

 =

1 1 2
1 0 0
0 1 1

 ,

then we find

D = [fA]BB = [id]EB · [fA]EE · [id]BE = P−1AP.

Remark 9.22. Let A be an n×n matrix over a field F . Assume that, analogously
to Example 9.21, there is a basis B = (v1, . . . , vn) for F n consisting of eigenvectors



142 9. EIGENVALUES AND EIGENVECTORS

of A, corresponding to eigenvalues λ1, . . . , λn, respectively. Set

D = [fA]BB =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 and P = [id]BE =

 | | |
v1 v2 · · · vn
| | |

 .

Then again we have

D = [fA]BB = [id]EB · [fA]EE · [id]BE = P−1AP.

We can verify the equivalent identity PD = AP also differently. Note that for
each 1 ≤ j ≤ n, we have A · vj = λjvj. This implies

AP =

 | | |
λ1v1 λ2v2 · · · λnvn
| | |

 = PD.

Example 9.23. Let F be a field, n a positive integer, and let D : F [x]n → F [x]n
be the linear map that sends a polynomial f ∈ F [x]n to its derivative f ′. Note
that Dn+1 is the zero map, so the only eigenvalue of Dn+1 is 0. It follows from
Proposition 9.5 that D can have no other eigenvalue than 0. The corresponding
eigenspace E0(D) = kerD consists of only the constant polynomials. This implies
that there is no basis of eigenvectors, so D is not diagonalizable.

Example 9.24. Let a, b ∈ Rn be two nonzero vectors with 〈a, b〉 = 0. Let
T : Rn → Rn be the map defined by T (x) = 〈x, a〉 · b. Then T 2 = T ◦ T is
the zero map, so as in the previous example, the map T has no eigenvalue other
than 0. The eigenspace E0(T ) = kerT is the hyperplane {b}⊥, which is a proper
subspace of Rn, so there is no basis of eigenvectors and T is not diagonalizable.

Proposition 9.20 only gives sufficient conditions for an endomorphism to be diag-
onalizable. Before we give necessary and sufficient conditions for a matrix (or an
endomorphism of a finite-dimensional vector space) to be diagonalizable, we will
do some preparations.

Definition 9.25. Let V be a finite-dimensional F -vector space, f : V → V an
endomorphism and λ ∈ F . Then dimEλ(f) is called the geometric multiplicity of
the eigenvalue λ of f . (So the geometric multiplicity is positive if and only if λ is
indeed an eigenvalue.)

Recall that if F is a field, then the degree of a nonzero polynomial p =
∑d

i=0 ait
i ∈

F [t] with ad 6= 0 is d; the coefficient ad is called the leading coefficient of p and p
is called monic if ad = 1.

For example, if V is an n-dimensional vector space and f : V → V is an endomor-
phism, then the characteristic polynomial Pf of f is monic of degree n.

Theorem 9.26. Let p = td+ad−1t
d−1+· · ·+a1t+a0 ∈ F [t] be a monic polynomial,

and let α ∈ F . If p(α) = 0, then there is a polynomial q = td−1 +bd−2t
d−2 + · · ·+b0

such that p = (t− α)q.

Proof. If α = 0, this is certainly true, since then 0 = p(0) = a0, and visibly

p = tq for q =
∑d

i=1 ait
i−1. In general, we replace t by t+α. Then the polynomial

p̃ = p(t + α) is again monic of degree d, and p̃(0) = p(α) = 0, so p̃ = tq̃ for some
monic polynomial q̃ of degree d− 1. Then

p = p̃(t− α) = (t− α)q̃(t− α) = (t− α)q ,
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where q = q̃(t− α) is monic of degree d− 1. �

Corollary 9.27. Let p = td + ad−1t
d−1 + · · · + a1t + a0 ∈ F [t] and α ∈ F . Then

there is a largest m ∈ N0 such that p = (t − α)mq for some polynomial q ∈ F [t];
we then have q(α) 6= 0.

Proof. Write p = (t−α)mq with m as large as possible. (Note that deg(p) =
m+deg(q), som ≤ d.) Then we must have q(α) 6= 0, since otherwise we could write
q = (t− α)r for some r ∈ F [t], which would yield p = (t− α)m+1r, contradicting
our choice of m. �

Definition 9.28. Given p and m as in the corollary above, the number m is called
the multiplicity of the root α of p; we have m > 0 if and only if p(α) = 0.

Now we can make another definition.

Definition 9.29. Let V be a finite-dimensional F -vector space and f : V → V
an endomorphism. Then the multiplicity of λ ∈ F as a root of the characteristic
polynomial Pf is called the algebraic multiplicity of the eigenvalue λ of f .

Note that the following statements are then equivalent.

(1) λ is an eigenvalue of f ;

(2) the geometric multiplicity of λ is ≥ 1;

(3) the algebraic multiplicity of λ is ≥ 1.

We also know that the sum of the geometric multiplicities of all eigenvalues is
bounded by dimV . The following result shows that the same holds for the sum
of the algebraic multiplicities of all eigenvalues.

Lemma 9.30. Let f : V → V be an endomorphism of an n-dimensional F -vector
space V, and let Pf be its characteristic polynomial. Then the sum of the algebraic
multiplicities of the eigenvalues of f is at most n; it is equal to n if and only if Pf
is a product of linear factors t− λ (with λ ∈ F ).

Proof. By Thm. 9.26, if λ is a root of Pf , we can write Pf = (t− λ)q with a
monic polynomial q of degree n− 1. Continuing in this way, we can write

Pf = (t− λ1)
m1 · · · (t− λk)mkq

with a monic polynomial q that does not have roots in F and distinct elements
λ1, . . . , λk ∈ F . If µ ∈ F , then

Pf (µ) = (µ− λ1)
m1 · · · (µ− λk)mkq(µ) ,

so if Pf (µ) = 0, then µ ∈ {λ1, . . . , λk} (since q(µ) 6= 0). Therefore the eigenvalues
are exactly λ1, . . . , λk, with algebraic multiplicities m1, . . . ,mk, and

m1 +m2 + · · ·+mk ≤ m1 +m2 + · · ·+mk + deg(q) = n .

We have equality if and only if deg(q) = 0, i.e., if and only if q = 1; then

Pf = (t− λ1)
m1 · · · (t− λk)mk

is a product of linear factors. �

There is one further important relation between the multiplicities.

Theorem 9.31. Let V be a finite-dimensional F -vector space, f : V → V an
endomorphism, and λ ∈ F . Then the geometric multiplicity of λ as an eigenvalue
of f is not larger than its algebraic multiplicity.



144 9. EIGENVALUES AND EIGENVECTORS

Proof. We can choose a basis v1, . . . , vk, vk+1, . . . , vn of V such that v1, . . . , vk
form a basis of the eigenspace Eλ(f); then k is the geometric multiplicity. The
matrix associated to f relative to this basis then has the form

A =



λ 0 . . . 0 ∗ . . . ∗
0 λ . . . 0 ∗ . . . ∗
...

...
. . .

...
...

...
0 0 . . . λ ∗ . . . ∗
0 0 . . . 0 ∗ . . . ∗
...

...
...

...
. . .

...
0 0 . . . 0 ∗ . . . ∗


=

(
λIk B
0 C

)
.

We then have

Pf = det(t · In − A) = det

(
(t− λ) · Ik −B

0 t · In−k − C

)
= det

(
(t− λ) · Ik

)
· det(t · In−k − C) = (t− λ)k · PC(t),

by Exercise 8.1.5. We see that λ has multiplicity at least k as a root of Pf . �

Corollary 9.32. Let V be a finite-dimensional F -vector space and f : V → V an
endomorphism. Then f is diagonalizable if and only if

(1) Pf is a product of linear factors, and

(2) for each λ ∈ F , its geometric and algebraic multiplicities as an eigenvalue
of f agree.

Proof. By Corollary 9.19, the map f is diagonalizable if and only if the sum of
the geometric multiplicities of all eigenvalues equals n = dimV. By Theorem 9.31,
this implies that the sum of the algebraic multiplicities is at least n; however it
cannot be larger than n, so it equals n as well. This already shows that geometric
and algebraic multiplicities agree. By Lemma 9.30, we also see that Pf is a product
of linear factors.

Conversely, if we can write Pf as a product of linear factors, this means that the
sum of the algebraic multiplicities is n. If the geometric multiplicities equal the
algebraic ones, their sum must also be n, hence f is diagonalizable. �

Remark 9.33. If F is an algebraically closed field, for example F = C, then
condition (1) in the corollary is automatically satisfied (by definition!). However,
condition (2) can still fail. It is then an interesting question to see how close we
can get to a diagonal matrix in this case. This is what the Jordan Normal Form
Theorem is about, which will be a topic in Linear Algebra II.

Example 9.34. We will check whether the matrix

A =

−3 1 0
0 −3 0
0 0 5


is diagonalizable. The characteristic polynomial of A is PA = (t+3)2(t−5), so the
eigenvalues of A are −3 and 5 with algebraic multiplicities 2 and 1, respectively.
Lemma 9.30 shows that the geometric multiplicity of 5 is 1 as well, so it suffices
to check whether the geometric multiplicity of −3 is 2. One easily checks that
the eigenspace E−3(A) = ker(A + 3I3) is generated by (1, 0, 0), so the geometric
multiplicity of −3 is 1, which does not equal its algebraic multiplicity, so A is not
diagonalizable.
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Note that for any n× n matrices D,P , with P invertible, and A = PDP−1, and
any positive integer k, we find

Ak = (PDP−1)k = (PDP−1)(PDP−1) · · · (PDP−1)︸ ︷︷ ︸
k

= PDkP−1.

In fact, if D is invertible, then the identity Ak = PDkP−1 holds for every inte-
ger k, also if k is negative (exercise). If D is a diagonal matrix with diagonal
entries λ1, . . . , λn, and k ≥ 0, then Dk is a diagonal matrix with diagonal entries
λk1, . . . , λ

k
n. This gives an efficient way to compute Ak if A is diagonalizable.

Example 9.35. Take the matrix A as in Example 9.21. We found A = PDP−1

with

D =

1 0 0
0 1 0
0 0 −2

 and P =

1 1 2
1 0 0
0 1 1

 .

We conclude that for any integer k, we have

Ak = PDkP−1 =

1 1 2
1 0 0
0 1 1

1 0 0
0 1 0
0 0 (−2)k

 0 1 0
−1 1 2
1 −1 −1


=

2(−2)k − 1 (−2)k+1 + 2 (−2)k+1 + 2
0 1 0

(−2)k − 1 1− (−2)k 2− (−2)k

 .

Exercises

9.3.1. Show that for any integer k, and any invertible n× n matrices D,P , we have
(PDP−1)k = PDkP−1.

9.3.2. Determine whether the following real matrices are diagonalizable. If not,
explain why. If so, then determine an invertible matrix P and a diagonal
matrix D, such that the matrix equals PDP−1. Also give a closed expression
as in Example 9.35 for the k-th power of the matrix, where k is an arbitrary
integer. (

1 1
0 1

)
,

(
6 −2
6 −1

)
,

 3 −1 −1
4 −2 −4
−2 2 4

 .

9.3.3. For each matrix A of the real matrices in Exercise 9.2.3, determine whether A
is diagonalizable, and, if it is, determine a diagonal matrix D and an invertible
matrix P , such that A = PDP−1.

9.3.4. Consider the matrix

M =

 4 6 2
0 −3 0
−4 −12 −2

 .

(1) Determine an invertible matrix P and a diagonal matrix D such that
M = PDP−1.

(2) Determine Mk for all positive integers k.
9.3.5. Determine Mk for the following matrices M and all integers k.(

7 −10
5 −8

)  −2 3 −7
0 −4 6
0 −3 5


9.3.6. Show that a polynomial of degree n over a field F has at most n roots in F .
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9.3.7. Let F be an infinite field, i.e., |F | =∞, and consider the map ϕ : F [x]→ FF

of Exercise 2.3.8, cf. Exercises 3.2.6 and 5.4.3.
(1) Show that ϕ is injective.
(2) Show that ϕ induces an isomorphism from F [x] to the subspace P (F ) of

FF consisting of polynomial functions.
(3) Show that dimP (F ) =∞.

9.3.8. Determine for each of the following matrices M whether they are diagonaliz-
able over F for F = R and F = C. If so, then give an invertible matrix P and
a diagonal matrix D such that M = PDP−1.(

2 1
−5 −2

)  2 −3 −2
0 1 0
4 −2 −2

 .

9.3.9. The same as the previous exercise for
1 0 0 0
0 2 1 0
0 0 1 0
0 0 0 2




1 1 0 0
0 2 1 0
0 0 1 1
0 0 0 2


9.3.10. For which angle θ is the rotation R2 → R2 about 0 over θ diagonalizable over

R?
9.3.11. Let Mn be as in Exercise 8.1.7 and set Nn = Mn + In, so that Nn is an n× n

matrix with all entries equal to 1.
(1) Show rkNn = 1 and dim kerNn = n− 1.
(2) Show that the eigenvalues of Nn are 0 and n.
(3) Show that Nn is diagonalizable.
(4) Show that the characteristic polynomial of Nn equals tn − ntn−1.
(5) Show detMn = (−1)n−1(n− 1).
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R, 3
R2, 3
Map(R,R), 3
Map(X,R), 4
R[x], 4
0 (in a field), 5
1, 5
Q(
√

2), 5
F2, 6
i, 7
C, 7
Re z, 7
Im z, 7
z̄, 7
|z|, 7
0 (in a vector space), 8
λx, 8
x+ y, 8
(V, 0,+, ·), 9
Fn, 9
FX , 11
Map(X,F ), 11
∞, 12
F [x], 12
V X , 13
Map(X,V ), 13
U × V , 13
−x, 14
x− y, 14
Ux, 18
C(R), 18
Cn(R), 18
〈x, y〉, 19
F (X), 21
V (X), 22
L(v1, v2, . . . , vn), 23
LF (S), 23
L(S), 23
ei, 25
S⊥, 26
U1 + U2, 28∑
Ui, 28

‖x‖, 31
⊥, 32
im(f), 41
1–1, 41
f−1(y), 41
f−1(B), 41

g ◦ f , 41
ker f , 43
0, 44
idV , 44
eva, 45
D, 45
Ia,b, 45
Ia, 45
Ta, 45
Hom(V,W ), 46
ϕC , 47
Mat(m× n, F ), 52
Mat(n, F ), 52
In, 52
fA, 53
kerA, 54
imA, 54
R(A), 55
C(A), 55
A+B, 56
AB, 56
A−1, 59
A>, 59
Li(λ), 62
Mij(λ), 62
Nij , 62
dimV , 89
dimF V , 89
P (F ), 96
rk f , 97
rkA, 99
[f ]BC , 109
vB , 110
Tr(A), 119
Tr(f), 119
P (v1, . . . , vn), 121
detA, 124
det f , 129
Eλ(f), 135
Ω(f), 135
Pf , 136
PA, 136
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abelian group, 9
absolute value, 7
addition

in a field, 5
in a vector space, 8

adjoint, 127
adjugate, 127
algebraic multiplicity, 143
algebraically closed field, 144
alternating, 122
angle, 37

between hyperplanes, 39
between vectors, 37

arrow, 10
head, 10
tail, 10

associative, 8, 41
automorphism, 42

basis, 81
canonical, 81

basis change matrix, 115
Basis Extension Theorem, 86

explicit, 88
bijective, 41
bilinear, 19

dot product is, 19

cancellation rule, 14
canonical basis, 81
canonical isomorphism, 92
Cartesian product, 13
Cauchy-Schwarz inequality, 37
characteristic polynomial, 136
codomain, 41
coefficient, 4, 12

leading, 142
column, 52
column expansion of determinant, 127
column operation, 63
column rank, 99

equals row rank, 99
column space, 55
combination

linear, 23
commutative, 8, 42
complement

orthogonal, 101

complementary subspace, 30, 95
complex conjugate, 7
complex number, 7
complex vector space, 9
composition, 41
conjugate

complex, 7
consistent, 131
continuous function, 18
cosine rule, 32, 38
Cramer’s rule, 127
cross product, 39

definite integration, 45
degree, 4, 12, 142
determinant, 121, 124, 129

expansion by columns, 127
expansion by rows, 124
is multiplicative, 125
of an endomorphism, 129

determinantal function, 122
diagonal matrix, 125
diagonalizable, 139

necessary and sufficient conditions, 144
diagram, 42

commutative, 42
differentiable function, 18
differentiation, 45
dimension, 89
dimension formula for linear maps, 97
dimension formula for subspaces, 94
direction, 10
distributive, 8
division, 5
domain, 41
dot product, 19

is bilinear, 19
is symmetric, 19

eigenspace, 135
λ-eigenspace, 135
eigenvalue, 135
eigenvector, 135
elementary column operation, 63
elementary matrices, 107
elementary matrix, 62
elementary row operation, 62
endomorphism, 42
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trace, 119
epimorphism, 42
equation

linear, see also linear equation
equivalent matrices, 116
Euclidean space, 10, 31
evaluation map, 45
even, 27, 31
Exchange Lemma, 88
expansion of determinant by columns, 127
expansion of determinant by rows, 124
explicit Basis Extension Theorem, 88
extended matrix, 107

Fibonacci, 13
field, 3, 5

algebraically closed, 144
finite, 6
of two elements, 6

finite field, 6
finite-dimensional, 89
finitely generated, 24
function, 41, see also map

associated to a matrix, 53
continuous, 18
determinantal, 122
differentiable, 18
periodic, 18
polynomial, 26, see also polynomial

function
real valued, 18

Fundamental Theorem of Algebra, 8
Fundamental Theorem of Calculus, 45

generate, 24
generating set, 24

minimal, 75
generators

standard, 25
geometric multiplicity, 142
graph, 41
group

abelian, 9

head, 10
homogeneous linear equation, 131
homogeneous system of linear equations,

131
homomorphism, 42
horror vacui, 123
hyperplane, 20

identity map, 41, 44
identity matrix, 52
image, 41

is subspace, 43
imaginary part, 7
indefinite integration, 45
induction, 90
induction base, 90
induction hypothesis, 91

induction step, 91
inequality

Cauchy-Schwarz, 37
triangle, 37

infinite-dimensional, 89
inhomogeneous linear equation, 131
inhomogeneous system of linear equations,

131
injective, 41, 43, 98
inner product, 19, 31

standard, 31
integration, 45

definite, 45
indefinite, 45

intersection of subspaces, 22, 102
invariant, 119
inverse map, 41
invertible, 59
isomorphic, 42
isomorphism, 42, 98

canonical, 92
natural, 92

Jordan normal form, 118, 144

kernel, 43
generators, 70
is subspace, 43

labeled set, 75
leading coefficient, 142
length, 10, 31
line, 20
linear combination, 23
F -linear combination, 23
linear equation, 131

homogeneous, 131
homogeneous system, 131
inhomogeneous, 131
inhomogeneous system, 131

linear hull, 24
linear map, 42

associated to a matrix, 53
dimension formula, 97

F -linear map, 42
linear relation, 75, 90
linear space, 8

over F , 8
linear span, 24
linear subspace, 17, see also subspace
linearly dependent, 75
linearly independent, 75

over F , 75
F -linearly independent, 75
lower triangular matrix, 128

map, 41, see also function
bijective, 41
evaluation, 45
identity, 41, 44
injective, 41
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inverse, 41
linear, 42
one-to-one, 41
onto, 41
projection, 44
surjective, 41

matrix, 51
addition, 56
associated to a linear map, 109
basis change, 115
diagonal, 125
elementary, 62
equivalent, 116
extended, 107
identity, 52
lower triangular, 128
multiplication, 56
product, 56
sum, 56
trace, 119
upper triangular, 125, 128
Vandermonde, 110

m× n matrix, 51
matrix multiplication, 56

is associative, 58
is distributive, 58
is not commutative, 58

minimal generating set, 75
modulus, 7
monic, 142
monomial, 4
monomorphism, 42
multilinear, 122
multiplication

in a field, 5
of matrices, see also matrix

multiplication
scalar, 3, 8

multiplicity
algebraic, 143
geometric, 142
of a root, 143

natural isomorphism, 92
negative, 8

is unique, 14
normal, 32
number

complex, 7
rational, 5
real, 5

odd, 27, 31
one-to-one, 41
onto, 41
oriented volume, 121, 126
orthogonal, 31, 32, 127
orthogonal complement, 101
orthogonal projection, 34, 44, 47

parallelotope, 121
periodic function, 18
perpendicular, 31, 32
physics, 10
pivot, 65
plane

pointed, 10
pointed plane, 10
pointed space, 10
polynomial, 4, 11

characteristic, 136
over F , 11
real, 4
versus polynomial function, 26

polynomial function, 26
preimage, 41
product, 13

Cartesian, 13
dot, 19, see also dot product
inner, 19, see also inner product
of matrices, 56

projection, 44
along a subspace, 49
orthogonal, 34, 44

projection map, 44
Pythagoras, 33

rank, 97, 99
rational number, 5
real number, 5
real part, 7
real polynomial, 4
real vector space, 9
real-valued function, 18
reduced row echelon form, 69
reflection, 36, 39, 44, 47
relation

linear, 75, 90
relativity theory, 10
row, 52
row echelon form, 65

algorithm, 66
reduced, 69

row equivalent, 62
row expansion of determinant, 124
row operation, 62
row rank, 99

equals column rank, 99
row space, 55
rule

cancellation, 14
cosine, 32, 38
Cramer’s, 127

scalar, 3
scalar multiplication, 3, 8
sequence of coefficients, 110
set

generating, 24
labeled, 75
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symmetric difference, 12
similar, 118
space, 10

Euclidean, 10, 31
linear, 8
pointed, 10

span, 24
spectrum, 135
standard generators, 25
standard inner product, 31
subspace, 17

complementary, 30, 95
dimension, 93
dimension formula, 94
intersection, 22
is a vector space, 17
sum, 28

subtraction, 5
sum of matrices, 56
sum of subspaces, 28
surjective, 41, 98
symmetric difference, 12

tail, 10
target, 41
term, 12
trace of a matrix, 119
trace of an endomorphism, 119
translation, 45
transpose, 59
triangle inequality, 37

union, 22
conditions to be a subspace, 22
is not a subspace in general, 22

upper triangular matrix, 125, 128

Vandermonde matrix, 110
is invertible, 112

variable, 4
vector, 9
vector space, 8

complex, 9
over F , 8
real, 9

F -vector space, 8
vector subspace, 17, see also subspace
volume

oriented, 121, 126

warning, 6, 12, 26, 32, 91, 101

zero, 8, 17
is unique, 14

zero homomorphism, 44
zero space, 9
Zorn’s Lemma, 91
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